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§ 0. Introduction

We consider the asymptotic distribution of eigenvalues in the problem

Au+Au=0 in G, GCR
(0.1) {

©«=0 on 0G.

Let N(A) denote the number of eigenvalues not exceeding 4. Then it is
a question of the asymptotic behaviour of N(1) as A—>00. When G is a bound-
ed domain in R? the spectrum of the Laplacian in (0.1) is totally discrete
and N(A) behaves as follows

0. 2) N@) ~(A/4r) area(G) (Weyl’s law).

On the other hand, F. Rellich showed, in [5], there is some class of domains
with infinite area where the spectrum is totally discrete. Naturally, one might
be inclined to study the distribution of eigenvalues in such domains. As far
as I know, H. Tamura [6] is the only work obtaining the asymptotic formula
of the distribution. He considered the problem in the domain G= {(x, y) € R?|
0<y<b(x)}, where A/ (14 |x|)*<b(x)<B/(1+ |x|)*is assumed. And he ob-
tained the formula in the form

0. 3) N Ni:l (1/7) j(z—nznzb-z (x)) "*dx

under some additional assumptions.
In this note, we obtain (0. 3) for another class of domains in R? and with
different methods from his. Here we must assume at least & (x) is monotonic.
In §1 and § 2, we introduce a work of F. Rellich and note such varia-
tional considerations are available in our case. In § 3, we show we might
have only to consider the distant part of the domain and obtain the eigenvalue
problems in the form
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2 2
Ou ()% L 3u—0 in (R, 00) % (0, 1)
0z’ 0y?
0. 4 #=0 on z=R, y=0,1
or a—u—=0 on xz=R #=0 on y=0,1
0x

which can be solved by separation of variables. So we must consider the fol-
lowing singular Sturm-Liouville problems.

{q’”+(l—nZQ(l‘))Y’=0 in (R, o)
T(R)=0 or ¥ (R)=0, gq(x)=7""(x)

§ 4 is devoted to study the above problems, and we obtain the formula
of the asymptotic distribution of eigenvalues of (0.5). As is well known, if
q(x) is sufficiently smooth and increases monotonocally, we have

(0.6) N, (&) = (1/m) j;znzqm (A—n*q(x))"*dx (1+0(1)).

But we must pay special attention to the remainder term. We show the esti-
mate of the remainder term is, in a sense, uniform in 7z In order to attain
it, we follow the method of E. C. Titchmarsh developped in [7] (or Langer’s
method), where a uniform asymptotic expansion at a turning point plays a
central role. The proof of the crucial lemma is put off unitil § 6. In §5 we
come back to the original problem and show the asymptotic distribution of the
eigenvalues of (0.4) is equal to that of (0.1) and obtain the formula

N@) Ngl (1/7) f (A—n*n®h (x) ~%) V*dx .

In conclusion, I would like to express my gratitude to Prefessor S. Mizo-
hata and Professor N. Shimakura for valuable advice and encouragement,

§ 1. Semi-infinite domains

In this section, following F. Rellich [5] and D. S. Jones [4], we introduce
a class of domains where the spectrum of (0.1) is totally discrete.

Definition 1. 1. A domain G in R" is called a semi-infinite domain if
GP = {x=G|{x, ad>R} goes to infinity and G¥ = {xG|{x, a)<R} is com-
pact for every R>0. Here a denotes a fixed vector in R" and { , ) the
Euclidean inner product in R”

When a semi-infinite domain G is given, we can consider the following

four eigenvalue problems.
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Au+2du=0 in GY
#=0 on 0GY’NGY¥’

(D), ;
9% _0 on GN{zxeR"|{z, a> =0}
on
Au+Au=0 in G§¥
(ID), { : i
©=0 on 0GY¥ (j=1,2)

Since G® is compact, the spectrum of (I), and (II), totally discrete
Let G be a semi-infinite domain (we may assume a= (0, ---0,1)). Then we
can consider the eigenvalue problem of the form

1.1 {A v+puv=0 in G {x,=R}

v=0 on 0G {x,=R}.

where A’ denotes the Laplacian in R*™,

Definition 1.2. A semi-infinite domain G is said to be infinitely narrow
if the first eigenvalue 4, (R) of (1.1) goes to infinity as R-—>oo0,

A theorem of Rellich says

Theorem 1.3. When G is infinitely narrow, the spectrum of (0.1)
is totally discrete.

By the assumption lim 4, (R) =00, we can see the first eigenvalue of (1),
R—ooo

tends to infinity as R—>oco. Then we can establish Friedrichs’ inequality (see
Courant-Hilbert [2] Chap. 7). which shows the spectrum of (0.1) is totally
discrete. From now on we shall confine ourselves to the domains in R? which
have the following properties.

(1. 2) i) GP is represented as {(x,y) ERg(x) <y<f(x),x>R} by
smooth functions f(x) and ¢g(x). G® is compact for all R>R, for
some R,.
il.) b(x)=f(x) —g(x) tends to zero as xr—»>o0.

i) j "b (2) dz = oo.
R,
iv.) f’'(x) and ¢’ (x) tend to zero as x—>oo.

v.) A/x<—-b'(x)/b(x)<B/x for some A, B>0.
vi) |87 () /b (x) <C/2%, 8" () |/b(x) <C/x* for some C>O0.

We can see the domain G is infinitely narrow by i.) and ii.). iii.) means G
has infinite area. We need iv.) and v.) in §3 and v.) and vi.) in §4. v.)
shows &(x) is monotonically decreasing, which is essential in applying the
method of Langer.
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Remark 1.3. i) Considerations in this note are valid in such a domain

as a finite union of those with the properties (1.2). But for simplicity, we
treat the case where it has one piece.
ii.) We can also consider the domain which is a tubelar neighbourhood of
a curve in R®% If we assume, in addition to some modified version of (1.2),
the curvature %2(s) of the curve satisfies the following conditions a.) and b.),
then we can reduce the case into that of §3 by similar transformations as
(8.1) and (3.2).

a) k(s)—0 as s—oo. b.) |k (5)]/1k(s)|<C/s.

iii.) When G has finite area, we expect to obtain Weyl’s law (0. 2) and the
argument will be a little different,

§ 2. The eigenvalue problem

We consider the eigenvalue problem (0. 1) in a domain with the properties
(1.2). As we have mentioned, Friedrichs’ inequality is valid in such a do-
main, we can rely on variational methods in considering (0.1). Here we
recollect some basic properties for eigenvalues. In a well known manner,

D[¢] denotes the Dirichlet integral jj (ﬁ>2+<%>zdxdy and ||@] the
6 \Dx 0y

L%norm of ¢. Unless otherwise stated, all the functions in this note will be
real-valued and sufficiently smooth.

We may assume the eigenvalues {1, are arranged such that 4,<<2,<<---
and so on. The next proposition is so called “Courant’s minimax principle”.

Proposition 2. 1. The n-th eigenvalue of the Dirichlet problem is
characterized as the following.

2.1 o= max ( min D[é])

vy +e¥, - EL2 IlIl=1, 4 Lvy, =0 On 3G

Now we define N(1), AY’ and BY’ as follows.

Definition 2.2. N(A) =the number of eigenvalues for (1.1) not ex-
ceeding . AY (1) and BY’ (X)) are similarly defined for the problems (I),,
(IT); respectively.

Proposition 2.3. NQ@), AY’ Q) and B’ (2) satisfy
(2.2 APQ + AP DW<NQ<BP (X)) +BP A).

This is a direct consequence of Proposition 2.1. (See Courant-Hilbert
(.

When the domain has infinite area, AL and B® seem to have the main
influence on the distribution of eigenvalues. So we may try to find a function

N @) satisfying:
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(2.3) lim 2/ N (2) =0.
If we fix R and make A infinite, then
(2. 4) lim AP W) /N ) =1+e(R)

lim BY A /N@) <146 (R)

where ¢ (R) are functions of R which tend to zero as R—co.

Proposition 2.4. If there exists a function ﬁ(l) satisfying (2.3)
and (2.4), then NQ) ~N @) i.e. lim NQ)/N@Q) =0.
Ao

Proof. By proposition 2. 3. we have

APWN/NQ)+A2 D/ NQ<SNQ/N®
<BPN/NQ+B2WN/NQ.

We fix R and make 24 infinite, then we have by (2.3) and (2.4)
(2.5) 1+e (R) <lim N(4) /N <limNQ)/NQ<1l+e&(R).
As R is chosen arbitrarily large, (2.5) says NA)~N Q).
§ 3. Separation of the variables
We consider the following transformations of the variables and functions.
3.1 u=zx, v=b"'(x) (v—g(x))

(3.2) G=b"(2) ¢

Proposition 3.1. By (8. 1) and (8.2) the domain G¥ is trans-
Sformed to (R, o) X (0.1), and

oo 1 —~
3.9) 18l= [ [ 1orazdy= [T [ lordvdu=1dls.
The last equality in the definition.

Since dxdy=b (1) dudv, proof is obvious.

Proposition 3.2. When we assume that b (x)/b(zx)=01) and
(@), g (@) =0() as x—o0, we have

(3. 4) (1 —¢) D[] —¢[9| <De[¢]< (1 +¢) De[¢] +¢[d]

where DR[¢] = j: f(g—ﬁy-{-b‘z (w) <g—5>2dvdu. ¢ depends only on R and

tends to zero as R—oo.



588 Fumioki Asakura

Proof. Since %:a% —b"(b’v+g’)£;, —%zb“%,
we have
(@) "+ (@) = () + 072 (d) *+ 207" (' v+ g") Pubs
+07 (v +9)* ()%
Considering Ba=b""+ (07

=b""p,— (1/2)b~"*(b'/b) ¢, we obtain
(3.5) A=) b7 (Ya+b7%) —ef<¢o+ 8, << (1 +e) b7V (YL + 072} +ed.
The proposition is a direct consequence of (3.5).

Corresponding to (I), and (II),, we have thus the following eigenvalue
problems.

) (best 672 @) by +20=0 in (R, 00)x (0, 1)
' 1¢x=0 on xz=R, ¢=0 on y=0,1
(ﬁ)x Gz + 07 (X) Py +A0=0 in (R, 00)x (0,1)

¢=0 on x=R and y=0,1

where (x,y) stands for (u,v).

Corollary 3.3. Let 1P AMY be the n-th eigenvalue of the problem

(I)l((FIV)1 respectively). Then we can see
(3.6) A=) 1P —e<AP< A +e) AP +e.

On account of Proposition 2. 1. the proof is obvious and the same ihequa-
lity holds between the eigenvalues 1? and A9.

(f), and (’ﬁ)1 can be solved by means of separation of the variables.
That is: when we set ¢ (x,y) =¥ (x)sin nry, ¥ (x) satisfies
"+ (A—n*q(2))¥=0 in (R, )

@.7 lw@® =0 or ¥'(R)=0

where g(x) denotes 7*67%(x).

§ 4. A singular Sturm-Liouville problem

In this section we discuss the distribution of the eigenvalues of the prob-
lem (3.7).
Let ¥,(x;1) be a real-valued solution of the following problem.
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4.1 i+ A—ntqx))¥,=0
lim?,=0

=00
We can see immediately ¥, is determined uniquely up to constant multiplica-
tion and that ¥, is continuous in 4. A relation between the eigenvalues of
the problem and ¥, is the following, which can be easily verified.

Proposition 4. 1. A is an eigenvalue of (3.7), if and only if it is
a zero of U,(R:2) (or W, (R;A)).

We want to study the behaviour of %, when 1 becomes large. As the
interval may contain a turning point ie. the point where A—m’q(x) =0, we
make use of some special functions, namely Airy functions in order to obtain
a uniform asymptotic expansion of ¥, at the turning point. Hereafter we shall
carry out the same process as A. Erdélyi [3] in the treatment of the turning
point.

We set g, (x;X) = (#*/D) q(x), p.(x; ) =1—¢q,(x; ), then the equation be-
comes ¥ +p, (x; H)¥ =0. As p, is monotonically decreasing in x, the turning
point X, is uniquely determined. We introduce the function ¢,(x;2) as fol-

lows.

(4. 3) 2/3) B = L (—pyedt i r>X,

X,
2/3) <—¢n>w=j SPdE i <X,

We can see easily ¢ is C, if p, is so and that satisfies an equation

4.4 Bu(Bn) = —Pu .
We set
(4.5) A (z:d) =7 (x;4) PAL (AP0 (22 2))

B, (x; 1) =¢u(x; ) " Bi (¢, (x; 2))

where Ai and Bi are Airy functions (see A. Erdelyi [3]). Roughly speaking,
A7 (Bi) is a solution of y” =xy which is decreasing (increasing) exponentialy
as x—oo. We may take A,(x;A) as the first approximation of ¥, (x;2).

A, and B, satisfy the equation of the form

(4. 6) A" +pu(x: D) A+ (1/2) {pn, x} A=0

where {¢, x} is the Schwarzian derivative of ¢ i.e., {¢, 2} =¢” /¢"— (3/2) (¢”
/9% In our case (1/2) {¢.; x} =p, /4. — (5/16) {pn/Bn+ (P1/Pn)*}.
When we set
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4.7 Ko(x, t; ) = =l {A,(x; ) B, (¢; ) — A, (¢: ) B, (x; 1) },

the equation (3.7) is then formally equivalent to the integral equation of the
form

4.8 o(x; D) = An(z: h) — (1/2) jmKn(x, £ 0) {dn, ¥ (2: D) dt .

The equation (4.8) can be solved by iteration, if |K,(x, t;2) {@,, t}| is
dominated by an integrable function of ¢

Theorem 4.2. Suppose fml {@n, 3 1Pn (85 ) |7 2dt =C <00, then ¥,
and ¥, have the following asyl;;Lptotic Sforms.
A (z; D) {1+0(C. 277} if =X,
A (z; D {1+0(C.a77)}
+O(B.(x; H)CA if <X,
An(x; D {1+0(C 271} if x=X,
AL (x5 1) {1+0(Cad™)}
+O(By(x; NCA™ i <X,

4.9) ¥z = {

(4.10)  ¥L(x;d) = {

Since C,<{co, we can prove the theorem in the same way as in the case
of a finite interval (see A. Erdelyi [3]). So we may omit the proof.
Then we have found it essential to get the estimate of the integral

L“l (e 2} 1150 (25 2) | 72dlt.

Lemma 4. 3. If we assume the following,
(4.11) i) g(x)>0. i) A/x<q'(x)/q(x) <B/x.
i) |q” (x) /q(x) <C/x" iv.) lg(x) |/q(x) <C/x"
then we obtain
(4.12) [, 100 B lipaes 12X

where C is independent of A and n.

The proof is put off until §6.
Owing to Lemma 4. 3. and theorem 4. 2., we have

Theorem 4. 4. Under the assumptions in Lemma 4.3., ¥, can be
represented asymptotically in the form

(4.13) ¥ (z38) =dn(x: ) AT (A7, (x;4) +0ATXN } if <X, .

For derivatives, we have
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Theorem 4. 5.
(4.14) WL (z; ) =2 (2 D) VH{ A7 AP, (2 2)) +O A2 X7y if 2<X,.

Proof. By computation we get
(4.15) A= () VAT g, — 2N AT,
We can show |@n|/|$.|><CX;*? by similar computation as in the proof of

lemma 4.3. Then the theorem follows from (4.15).

Remark 4.6. When we assume, instead of ii.), iii.) and iv.), ii.") A/
zlog x<q' (x) /q(x) <B/x. iii.") lq¢" (x)|/q(x)<Cx’logz. v.”) [¢"(x)|/
q(x)<C/z*log x. we can get a similar result to Lemma 4. 3. Here the estimate
of the remainder term is of order A7“2X}' log (A*X)).

Ai(x) has the following asymptotic forms.
(4.16) Ai(—2) =122V {cos ((2/3) 22— /4) + O (¥}
Al (—x) =7 2" {sin ((2/3) 2**—n/4) + O (x™¥*)}.

Then if we set

Zu@s ) = @3 (=g = [ G—rta)y var,
we obtain
AT WG D) =7 (2 D) 2 (3 D) eos (2, (23 2) — /) +O(Z:0)
(418) Wi(a: ) = (a3 D2, (2 ) Y dsin (Za (w5 D) —7/4) + O(Z:D)},

considering Z, (x; 1) <A"?X,.
From now on, we shall confine ourselves to the case where the boundary
condition is ¥,(R) =0. In the other case, the discussion is the same.

Proposition 4. 7. Let 2{” be the m-th eigenvalue of (3.7), then there
exists an integer m, and the following asymptotic relation holds.

X,
19 Zp= [T aw—rta(0) de= (ntme+ 3/ 7+ 0/ Z),

the first equality is the definition.

Proof. By Proposition 4.1. (™ is a zero of ¥, (R;1). We have only
to consider the case R<<X, and we may assume R=>R, for sufficiently large
R, If R>X,, then we see p,<<0 and ¥, has no zeros. In the case R<<X,,
it follows from (4.17)
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cos(Z,(R; ) —n/4)=0Q1/Z,)

so we can see there exists one zero in the interval 7/442mn<<Z,(R; 1) <57/4
+2mnr. I we set

20 = Z,(R: D) = 4 mo+ 3/ 740,00
(|160mnl<m/2), we can show 0n.,=01/Z™).

It remains to show s, is independent of n. To proceed further, we need
a result on the location of the zeros of Airy function. That is:

Proposition 4.8. Ai(—=z) has exactly n zeros in the interval 0<lx
<{(B/2) n+1/4)7}*?, if n is sufficiently large.

We notice Ai (—x) = (1/3) 2%{J.,s (&) +J-1,5({) }, where J, (&) is the Bes-
sel function of order v and &= (2/3)x*. And the location of zeros of x'
{J,s(x) +J..5(x)} is well studied thanks to the next lemma (in detail, see
E. C. Titchmarsh [7]).

Lemma 4.9. (G. N. Watson) If nis large enough and v>—1, J,(x)
has exactly n zeros in the interval 0<x<(n+v/241/4)7.

A proof of this lemma is found in E. C. Titchmarsh [7].

Now we are able to show the asymptotic form of N, (A1) which is uniform
in .

Theorem 4.10. Let N,(l) be the number of eigenvalues not exceed-
ing A, then we have

(4. 20) LX" (=g (8)) dt = N, () +O(1),

where the remainder term is uniform in n.

Proof. First we fix the notations. {a;} denote the zeros of Ai(—x)
such that 0<la,<la,<:-+, {b;} the zeros of A7’ (—x) such that b;<b,<---. We
set A,={3/2(n+1/4)n}*%. We take sufficiently large N such that 1/N<m/2
and Proposition 4. 8. holds, and fix it. We set §=1/3 Xmin{] Ai(—5,) |05,
<Apy+p. We can see easily there exists a series of points ay, §; which satisfy
the following.

(4. 21) <o <a,<pi<a,<a,<B<l - <av<lan<fn
(4. 22) Ai(—ay) >20, Ai(—B) <—20, Ai(—a,) >20, -
(4. 23) |[A7 (—x) | >0 in ay<<x<lfy.

Since ¥, (R; ) = ¢, (R; D)V {Ai (A%}, (R; 1)) +O A *X;")}, we can see
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there exists at least one zero of ¥,(R;2) in the interval a;<—21"%,(R; 1)
<y, provided that 1 is so large that the remainder term is less than §. As
X,>R, in our case, we can make the remainder term uniformly small in z.
Since —A"*¢,(R;2) is an increasing function of 1 and «;, §; are chosen satisfy-
ing (4.22) and (4.23), we know the zero is the only one in the interval.

Thus we have proved ¥,(R;1) has exactly N zeros in the interval 0<

— A%, (R; ) <Ay namely in 0< L:Yn A—n*q ()Y *de<(N+1/4)7m. As we-

may assume

Xn
(4. 26) N=3/2)n< [ 09 —rta () #de< (N+1/ D)7,
R
we can see Proposition 4.7. is compatible with (4. 26) if and only if m,= —1.

Then we obtain
X,

(4. 25) (m—1/8)7+001/ZM) = j (A — g () 2t .
R

the theorem is a direct consequence of (4. 25).

Using theorem 4. 10., we have the distribution of eigenvalues of (T), and
(ff)1 in § 3.

Theorem 4.11. Let N;(A) be the number of eigenvalues of (T)1 not
exceeding A, then we have

N =/m 5 [ a-nta) marr o).

Proof. As we have only to consider the case A=>#n?q (R), the summation
is, in fact, finite and of order AYZ

o Qja(B))1/2
Hence N =2XIN, D= > N.(D
n=1 n=1

-/m 3 f (=g (£)) 2t + O (W7,

Remark 4.12. When we define Ny (1) for (ﬁ),, the same conclusion
as in the theorem 4.11 holds for N;(1).
§ 5. Distribution of eigenvalues

We come back to the original eigenvalue problem. First, summing up the
results of § 4, we have

Theorem 5.1. Suppose b(x) has the properties v.) and vi.) in (1.2),
then we have the asymptotic formula for N;(Q) and Ny (A) in the form
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© Xn

GH N =a/m E [T a-wmst@) mdzrown <=1 or ),
n=1 R

Proof. When we put g(x) =7*b(x) % g(x) satisfies the conditions of
Lemma 4.3. Then theorem 4.11. holds.

Corollary 5.2. If we fix R, we have
oo X
5.2) N, AWH=QQ/n) X L A—n*7’b (x) D) "dz+0Q) (*=1 or II).
n=1 0

Proof. Since

o X ad Xn
5 j (A= n'1h ()~ Pdz =3 j
23 n=1 JR

n=1

R o Xa
+ [ =% [ +ow.
R, =n=1 JR
we have the corollary.
~ © X,
We set N () = (1/7) 33 j (= n21b () ~%) “*dx. We want to show N ()
n=1 JR,
has the required properties (2.3) and (2.4).

Proposition 5. 3.

2.3) lim /N @) =0.

Py

Proof. We recall X, denotes the solution of the equation in x, 7’7’6 (z)?*
=2

By exchanging the order of integration and summation, we have
~ xl xz
Ny = j (A—7% (2) %) "z + f S — 721% (2) %) dx
x, X, 7=1
X, n
+ J S1(A— b (2) ) dx 4o
Xpa J=1
o X, n
= (4/7") 2] J b(x) 2 (/b (2) ) {1— (Gr/376 (x))%} Vdx .
=1 JXna =

Since i (/b (x) A7) {1— (jm/A"*b (x))*}"* is a Riemannian sum for the area of
=1

the quarter of the unit disk, we observe

A/167 Lx’b(x) dz<NQ)<1/4r L:Ib(x) dz.

As we have assumed b (x) dx= o0, we get the proposition.
R,

Proposition 5. 4.

2. 4) lim AP () /N ) =>1+&(R)

pEry
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lim B (1) /N <1+e&(®).
Proof. By corollary 3.3, we observe (1—¢) IP<<AP<(1+¢)1® when 7
is large. So we can see
N@/1+e®)=N(1-¢ R)N<AP W), BY H<
N@/1—e@®R)=N(Q+eR).

A direct computation shows ﬁ((l +¢ (R =1+8(R)N@. Hence we
have the proposition.

Now we can show the asymptotic formula of the distribution of the eigen-
values of the original problem.

Theorem 5.5. Assume the domain G has the properties (1.2), then
we get the asymptotic formula

(5. 3) NQ) ~ /D) (= nn%b (2) ") "z .

n=1 y=ntz2b(z)-2
Proof. As ﬁ(/l) has the required properties, we can see N(l)wﬁ(l).

oo X,
Hence 3 (A—n*r*b (x) %) V2dx

=1 Jr,

oo

-5 j (A= n'b () ") dz+ O (1),
A=>ner2b(z)-t

n=1

we obtain the formula.

§6. A proof of Lemma 4.3

To begin with, we note some properties of ¢,(x) under the assumptions
v.) and vi.) in (1.2). Since q,(x) = (#*/1) q(x), g, (x) itself has the following
properties.

(6.1) 1) gu.(x)>0. i) Azx"'<q.(x)/q.(x) <Bz™".
iii.) [gy (2) [I<Cx7’qn (), lgn () [<Cx7'qa ().
Integrating the both sides of ii.) from x to ax (>0, a>>1), we obtain
(6.2) at*<q,(az) /q.(x) <a’.
By ii.) and iii.), we can see
(6.3) g7 (2) |I<SACx7'gn(x) and |gr (x) [<ACx™qy (2).

Now we estimate the integral
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(6. 4) le{¢n, t} | pa () |7¥2dt, dividing it into four parts.
B,

That is: we choose a positive number a (a>>1, later we will make « arbitrarily
close to 1) and set

oo ) aX, X, a-1X,

=+

R, aX, X, a-1X, R,
=II+Iz+Is+I4.

From now on we assume C stands for any constant.
1) Estimate of [, (x=>aX,).
As we have noticed

(6.5) {Bn. t} =0 /4n— (5/16) {Pa/ B2+ (Br/Pa) "},
6.6) (2/3) ¢ = L (@0 (D) — a0 (X)) dit

we estimate (6.5) term by term.

0

6.7) r; |87 /4] |Pal ~2dit

= L‘:’ q:w, (t) (Qn (t) —qn (Xn))-g/zdt

<cx;! ji g () (an(8) —qn (X)) 2t

SCX;I (Qn (CXX,") —da (Xn) ) v

<CX:|q, (@) |7 (X<E<aX,)
Hence ¢ (&) '<<A¢q, (8) '<A 'aX,q.(X,) 7,

we have N <CX;'.

aX,

i)
6.8) [ 1pemlipamrae= {7 wrgrae.

When we put £, = (2/3) ¢¥?, we observe (6. 8) is equivalent to jw gretde
aX,
=&, (aX,) . Considering
aX

L@X)> inf (@) L (- X)) dt

X <f<aX, n

=Cinf [§7'¢.(§) "X =CX, ,

we obtain jw dt<CX;
aX,
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iii.)

a

6.9) j"; 0L/ |l 2 dit

- ji 0 ()% (gn () — qn (X)) “dt

r

<CX:' |~ a0 an(®) (@ () —an(X) dt

r~

<CX;* |~ ah(0) (u(0) —au (X)) e

+CX:t |~ ah () (@u()) . (X)) ™,
then (6.9) is less than
CX:' (g (@X,) — (X)) 7+ CX7' (qa (@Xs) — . (X)) < CX;M

Thus we have shown I;<<CX;'. The estimate of I, goes in the same way,
even easier, so we may omit the proof.
I1.) Estimate of I, (aX,>x>X,).

Integrating (6. 6) by parts twice, we obtain

BlE= =2 (B0 L+ /5 pipn () T+ S},
where S=(2/5)pps® [ (=P (87 (60 =8 (1) ()} .

First we observe we make pyp, () 2 and pLp;*~S arbitrarily small, if we
choose « sufficiently close to 1.

i) 1pnpa(n) Pl =105 (@) [ (g. (2)) (P (x)) *
<Cx™'(q¢’' (§)/q (2)) (x—X,)
<CE(@®) /(@) (z—X,) (Xa<é<aX,).

By (6.2), we can see
(6. 10) 16 1 (£) 1< C(a—1)
i) 1SI<Cdl (@) (@n(x) —an (X)) ™ L (@ (2) — qu (X))

X {qn (2) gn () 2 —3qy (), (&) *}dt.

Considering (6. 3), we obtain

|SI<Cal (%) (gn (2) —an (X)) ™" L (@ (8) — 40 (X)) 2, () *dit
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<C{sup g, (&) **/inf ¢, (§)**} g7 (z) (z—X,) ™"
x | -x)ea @
Hence we have
(6.11) ISI<CX (x—X,)'<C(a—1)~
By (6.10) and (6.8), we can see
Gt = — (—pa) " (pn) *{1+0},

where we can make ( arbitrarily small as @—1. Hence p,/d%= — (pn/Pn)?

{1— (4/5) pipa/ @)+ O(S) + O ((Brpa)* (7))}, we get
(6.12) Pa/ b2+ (B2/P)°— (4/5) (B2 /Pa)  (see (6.5))
=0 S@) @) +0(@D @) .
Thus we have only to estimate S(p,/p,)% and (b /pL)%
i) (/P =(¢"/a)'<CX:;.
iv.) S| (n/pn) '<ISlgn () (gn (x) —qa (X2)) ~*
<ISI(@" (®)*/q" (§)®) |x—X, I~

Since |¢’ (z) /¢’ (§) |I<C¢/x<q(x)/q(§) <C, we can see |S|[p,/p.|*<CX3?
considering together (6.11).
Thus we have shown

1/2) {4, 8} |<CX:' in X,<zx<aX,,

aX,
then L<CX;' j (@ (8) —qu (X)) dt<CX;" .
X

The estimate of I; can be carried out just in the same manner. Thus we
have obtained the lemma.
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Added in proof: We should emphasize the fact that the remainder terms in theorem 4.2, 4. 4,
and 4.5 are valid uniformly in 7.



