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§ O. Introduction

We consider the asymptotic distribution of eigenvalues in  th e problem

Au +  Au = 0  in G ,  GOER'
(0.1)

{

u = 0  on G .

Let N )  denote the number o f eigenvalues not exceeding A. Then it is
a question of the asymptotic behaviour of N (À ) as 2--->co. W hen G is a  bound-
ed domain in  R 2 ,  the spectrum o f th e  Laplacian in  (O. 1 )  is totally discrete
and N(2) behaves as follows

(0. 2)N ( 2 )  ,--- (A/47r) area ( G )  (W eyl's law).

On the other hand, F. Rellich showed, in  [5 ], there is some class o f  domains
with infinite area where the spectrum is totally discrete. Naturally, one might
be inclined to study the distribution of eigenvalues in  such domains. As far
as I  know, H . Tam ura [6 ]  is the only work obtaining the asymptotic formula
of the distribution. He considered the problem in the domain G= {(x , y ) G R 2 I
0 < y< b  (x)}, where A/ (1+ Ixl) "< b  (x )< B / (1 +  I x I)" is assumed. And he ob-
tained the formula in  the form

—
(0. 3) N(A) -E (1/7r) n271.2 ( x ) )  " d x

=1

under some additional assumptions.
In  this note, we obtain (O. 3) for another class of domains in R 2 and with

different methods from his. H ere  w e must assume at least b  (x ) is monotonic.
In  § 1 and § 2, we introduce a work of F . Rellich and note such varia-

tional considerations are available in  our case. I n  § 3, w e  show  we m ight
have only to consider the distant part of the domain and obtain th e eigenvalue
problems in  the form
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0 2 i 1

+1) - 2  (x )
O l u  

+ Au =0
x 2y 2

in (R , 00) x (0,1)

(0 .4 ) u =0  o n  x= R , y  = 0 ,1

or O u  _-0  o n  x= R , u  = 0  o n  y •=.- 0, 1
Ox

which can be solved by separation o f variab les. So we must consider the fol-
lowing singular Sturm-Liouville problems.

T. " +  (A— n2q  (x ))F  = 0  in (R, 00)

IT (R ) = 0 o r  T. ' (R ) = 0, q  ( x )  r 21,- 2  (x )

§ 4 is devoted to study the above problems, and we obtain the formula
o f th e asymptotic distribution of eigenvalues o f  (O. 5 ) .  A s  is well known, if
q ( x )  is sufficiently smooth and increases monotonocally, w e  have

(0.6)N .  ( 2 )  =  ( 1 /7T)  f (,1_772q(x))1/2dx (1 +  (1 ) )  .

But w e  must pay special attention to the remainder te rm . W e show the esti-
mate o f th e  remainder term is, in a sense, uniform in  n. In  order to attain
it, w e  fo llow  the method o f  E. C. Titchmarsh developped in  [7 ]  (or Langer's
method), where a  uniform asymptotic expansion a t  a  turning point plays a
central role. T h e  proof of the crucial lemma is put off unitil § 6. In  § 5 we
come back to the original problem and show the asymptotic distribution of the
eigenvalues o f  (0. 4) is equal to that o f  (O. 1 ) and obtain the formula

N ( )  —E (1 /7 r)  ( ) .— n 2 7 r2 b  (x ) - 2 ) 112dx

In conclusion, I w ou ld  lik e  to  express my gratitude to Prefessor S. Mizo-
hata and Professor N .  Shimakura for valuable advice and encouragement.

§  1 .  Semi-infinite domains

In  this section, follow ing F. Rellich [5] and D. S. Jones [4 ], we introduce
a  class of domains where the spectrum o f  (O. 1 ) is totally discrete.

Definition 1 .  1 .  A  domain G  in  R n is called a  semi-infinite domain if

G IP {xE G 1<x, a>>R } goes to infinity and C I  =  {x E G K x , a> < R }  is com-
pact fo r  every R > 0 .  H ere a  denotes a  fixed  vector in  R n  and < >  the
Euclidean inner product in  Rn

W hen a  semi-infinite domain G  is given, w e can  con s id er th e  fo llow ing

fou r e ig en v a lu e  problems.
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( I )

rAud-itu=0 in GP )

ou = 0  on

—

0O G P )  n
o n  G n  E  Rn 1<x , a> = 0}

O n  

{Au ± Au = 0  i n  Git"
u = 0  o n  OGiti ) ( j  = 1 ,  2)

Since G P  is  compact, the spectrum of (1 ) 2 and  (II), tota lly  d iscrete
Let G be a semi-infinite domain (we may assume a =  (0, •••0, 1) ) . Then we

can consider the eigenvalue problem o f th e form

1.6,'7)-P /iv =  0  in G n  tx„ =
v = 0  o n  OG n { x , =  .

w h e r e  '  denotes th e Laplacian in

Definition 1 . 2 . A  semi-infinite domain G  is said to be infinitely narrow
if th e  first eigenvalue ,u ,(R ) o f  (1. 1) goes to infinity as R—› co .

A  theorem o f Rellich says

Theorem  1. 3. W hen G  is  in f in ite ly  narrow , the spectrum  o f  (O. 1)
is to tally  d iscre te .

B y  the assumption lim (R) -= oo, we can see the first eigenvalue o f  (I ) ,
R , 0 0

tends to infinity as R—>co. Then we can establish Friedrichs' inequality (see
Courant.Hilbert [2] Chap. 7). which shows the spectrum o f  (O. 1 ) is totally
discrete. F r o m  n o w  on we shall confine ourselves to the domains in R 2 which
have the following properties.

(1.2)i . )  GP is represented a s  { (x, y ) E R 2 1g  (x ) < y < f (x ) , x > R } by
smooth functions f  (x )  and g (x) . G (1) is  com pact fo r  a ll  R> R„ for
some R,.

ii.) b (x) =f (x) — g (x) tends to  zero as x—>oo.

iii.)
f b  ( x )  d x  co.
Ro

-=

iv.) f '  ( x )  and g ' (x ) tend to  zero as x—>00.
y.) A /  x<—  b' (x) /b  (x) <B/ x fo r  some A , B>0.
vi.) (x)1/12 (x) <C/ x 2 ,  l b  (x)1/ b (x) <C/ x 3 f o r  some C>0.

We can see the domain G is infinitely narrow by i.) and ii.). i i i . )  means G
has in fin ite area. W e need iv .) an d  v . )  in  § 3 and v . )  and vi.) in § 4. v.)
shows b  (x ) is monotonically decreasing, which is essential in  applying the
method of Langer.
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Rem ark 1. 3. i.) Considerations in this note are valid in such a  domain
as a  finite union of those with the properties (1. 2) . B u t for simplicity, we
treat the case where it has one piece.
ii.) We can also consider the domain which is a  tu b e la r  neighbourhood of
a  curve in  122 . I f  w e  assume, in addition to some modified version of (1. 2) ,
the curvature k ( s )  o f th e  curve satisfies the follow ing conditions a.) and b.),
then we can reduce the case into that o f  §  3  by s im ilar transformations as
(3.1) a n d  (3. 2).

a.) k ( s ) - 0  as s--> co . b.) ik' (s) I/ (s) i < C /s
iii.) W hen G has finite area, we expect to obtain W eyl's  law (O. 2 )  and the
argument w ill b e  a  little different.

§  2 .  T h e  eigenval ue problem

We consider the eigenvalue problem (0 . 1 ) in a domain with the properties
(1. 2) . A s  w e  have mentioned, Friedrichs' inequality is valid in  such a  do-
m ain , w e can  re ly  on  variational methods in  considering (O. 1 ) .  H ere w e
recollect some basic properties fo r  e ig e n v a lu e s . I n  a  well known manner,

D [0 ] denotes the Dirichlet integral f  f  ) 2 +  8 Ç6 ) 2c/ x c ly  a n d  N V  the
J O  \ OX \ Oy /

12-norm o f  0. Unless otherwise stated, all the functions in  this note w ill be

real-valued and sufficiently smooth.
W e m ay assume the eigenvalues { 2„} are arranged such that 2 1< 22<•••

and so o n .  T h e  next proposition is so called "Courant's minimax principle".

Proposition 2 .  1 .  T h e  n-th  e igenv alue  o f  th e  D iric h le t  p rob lem  is
c h arac te riz e d  as the f o llow ing .

(2 .1 )A n =  m ax ( min D [0 ])olv9 , 0=0 on  80

Now  w e define N (2 ) , A P  and BSI)  a s  follows.

Definition 2 .  2 .  N (2) =the number o f  e igenvalues f o r  (1 . 1 )  not ex-

ceeding 2. AV )  (2)  and BV ) (2) are similarly defined fo r  th e  problems (D i ,

(II) j  respectively.

Proposition 2 .  3 .  N  (A) , (2 ) and  .13V)  (2 )  satisf y

(2. 2) .4(iP (2) ± A T  (2) <N (2 )  <B T (2) + B T (2) .

This is  a  d irec t consequence of Proposition 2. 1. (See Courant-Hilbert

R D .
When the domain has infinite area, i l (i P  an d  /3(i P  seem  to have the main

influence on th e  distribution o f e ig e n v a lu e s . So we may try to find a  function
-St (2) satisfying:
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(2.3)l i m  2/ g (2) = 0 .

I f  w e fix  R  and make 2. infinite, then

(2. 4) lim A i )  (A) /  (A) >1 +  r (R)
A— ,co

lim (A) /  (2 ) <1 + e,(R)

where E. (R )  are functions of R  which tend to zero as R—> 00 .

Proposition 2. 4 .  I f  there exists a  fu n ction  KT (2) satisfying (2. 3)
and  (2. 4), then N (A ) (2 ) i.e., Um g  (A) / N (2) = 0.

1—..

P r o o f .  By proposition 2. 3. we have

AT (2)/g  ( 2) + (2)/g (2) N(A) /l

< BT (2) / 1-\1- (2) B  (I )  (2) /I■1 (A).

W e fix  R  and make 2 infinite, then we have by (2. 3) and  (2. 4)

(2.5) 1+  r2 (R) <lirn N (A ) /  (A) <lim N (A ) /  (A) < 1  +  (R ) .

A s  R  is chosen arbitrarily la rge , (2. 5) says N (A ) (2) .

§  3 . Separation of the variables

We consider the following transformations of the variables and functions.

(3.1)z t  = x ,  v=17- ' (x ) (y— g (x) )

(3.2)b "  ( x )

Proposition 3. 1. B y  (3 . 1 ) and  (3 . 2 ) th e  dom ain G T  is trans-
fo rm e d  to  (R, co) X (0. 1) , and

(3.3)1 1 0 1 1 1  =  f f o R 1012dx dY $011012clvdit =i1S7 111

T h e  last equality in  th e  definition.

Since dxdy =b (u) dudv, proof is obvious.

Proposition 3. 2. W h e n  w e  assum e th a t  b' (x) /b (x) = o (1) and
f '  ( x ) ,  g' (x) = o (1) as x o .0 ,  w e have

(3.4)— s )  1-5 R[0] — E11-0-11 DR [0] ( 1 +)DR[0] + a IPA

J (  0
)  

2 + b  2  ( u ) ( ,/,
w h e r e  s ki)] =    d vd u , e  depends only o n  R  and

o Ov
tends to zero as R — >co.
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P r o o f  Since

w e  have
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0 0a 0 0—  —12- 1 (b 'v +g ') —b- 
a x  au a v  ay av '

(0x ) 2 + (0 ) 2 = (0„) 2 +1, - 2  (0,,) 2 +2b - 1 (b' v+ g') 0„0„

+ b' (b' v+ g) 2 (00 2 .

Considering q5„-- b - ' 0 „  (13' )  u 0

(1/2)1) - 1 '  (b' / b) 0, we obtain

(3.5) (1— 6)1, - 2 ' 2 (02. - -F- b- z g )  — E(1, _<01+ s32„. (1+ r)  b 2 (02.+17- 24) ± 0 2.

The proposition is  a direct consequence o f  (3. 5).

Corresponding to (I) , and  (II) ,, w e have thus the follow ing eigenvalue
problems.

( O . +  ( x )  „  +  =  0  in (R, 00) ( 0 , 1 )

o n  x =R, Ø =0 o n  y = 0, 1

di)
(x )  „  +  AO = 0  in (R, 00) x (0 ,1 )

1 10 =0 o n  x =  R  a n d  y =0, 1

w here (x, y )  stands for (u , y ) .

Corollary 3. 3. L e t  AT ( ..A';,') )  b e  th e  n-th eigenv alue of the problem

(1) 1 ((I)  ,  respec tiv e ly ). T hen  w e  can  see

(3. 6) e<n).< + ,/2) +  r.

On account of Proposition 2. 1. the proof is obvious and the same inequa-
lity holds between the eigenvalues 4,2 ) and X.

( I ) ,  and (II) 1 can  be so lved  by m eans o f  separation of the variables.
That is : when we set 5  (x, y ) =1P (x) sin wry, !If (x )  satisfies

(3. 7)
ir  ( R )  0  o r  F ' (R) =0

where q (x )  denotes 7c2 b - 2  (x).

§  4 . A  singular Sturm-Liouville problem

In  this section we discuss the distribution of the eigenvalues of the prob-
lem  (3. 7) .

L e t  T . „(x; A ) be a  real-valued solution of the following problem.

( y )

[Yr " + (A — n2 q(x ))1r =0 in ( R ,  co)
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(4.1)+  (A —  n'q (x))? F n =0

lim  „= 0

We can see immediately 11 „ is determined uniquely up to constant multiplica-
tion and that q?,, is continuous in  A . A  re la tion  between th e  eigenvalues of
the problem and T,, is  the following, which can be easily verified.

P roposition  4 . 1 . 4 ,7 ) i s  an  eigenv alue o f  (3 . 7), i f  a n d  on ly  if  it is
a  z e ro  o f  q?,, (R ; A ) (o r ?F(R ; A)) .

W e want to study the behaviour of J1,, when 2  becomes la rg e . A s  th e
interval may contain a  turning point i.e. the point where A— 7n2q(x ) = O, we
make use of some special functions, namely A iry  functions in order to obtain
a  uniform asymptotic expansion of T„ at the turning p o in t. Hereafter we shall
carry out the same process a s  A . E rdé ly i [3 ] in the treatment of the turning
point.

W e set q „ (z; A ) = (n' /A ) q (x) , p „ (x ; A) =1— q„(x ; A) , then the equation be-
comes V" + Ap„ (x ; A)?1; =-  O. A s  p „  is monotonically decreasing in x , the turning
point X„, is uniquely determined. We introduce the function 0„(x; A) as fol-
lows.

(4.3)( 2 / 3 )  0 3./ 2 =  f  ( 2dtx„
i f  x>X„

X ,,
(2/3) ( —  n ) 3 / 2 = pint2dt i f  x<X„ .

W e can see easily qi is  C's, i f  p „  is so and that satisfies an equation

(4.4) On (43 '702 =  —

W e  set

(4. 5) Ar, (z ; A)-=q  (z ; A) A i (A l" (z ; A ))

B „(x ; A ) = ç(x ; A) - 172 B i  ( A 1 / 3  ( x  ;  
A ) )

where A i and B i are Airy functions (see A . E r d e ly i  [3 ] ) .  Roughly speaking,
A i (B i)  is a  solution o f y " =-  x y  which is decreasing (increasing) exponentialy
as x—*co . W e  m a y  ta k e  A„ (x ; A) as the first approximation of T „ (x ; A).

An  an d  B „ satisfy the equation o f th e  form

(4.6)A "  + p , , ( z ;  A) A +  (1/2) {0„, x} A = 0

w h ere  CO, . r }  is  the Schwarzian derivative of 0 i.e., {0, x }  =  " / ' —  (3/2) (0"
/0) 2 . In  our case (1/2) {0„; = ./4/4p„— (5/16) {P„/0 3„ +  (p',/p„) 2 } .

W hen w e set



590 Fumioki A sakura

(4. 7)K , .  ( s ,  t; A) = —7-1.21" A,. (s; A) B,  (t; A) — A,(t ; A) B,. (s; 2)},

the  equation (3. 7) is then form ally equivalent to the integral equation of the
form

(4. 8), . ( x ;  A) = An (x; A) —  (1/2) (x, t; A) 40„, t}T .(t; A) dt .

T he equation (4. 8) can be solved by iteration, i f  IK „(x , t; A) {0., t} I is
dominated by an  integrable function of t.

Theorem 4.2. S u p p o s e  f -  1{0, t} IIP.(t; 2) I - 1 /2 dt = C.<0.0 , th e n  ?I l ,
R0

an d  r .  have the following asymptotic forms.

A) {1+ 0 (C.A - n } if x> X „
(4 .9 ) T„ (x ; il) =

{ A .(x ;
A ..(x ; A) {1+ 0 (Col - 1 1 2 )1

+ 0 (B.(x; 2)C.A - '1 2 ) if x< X „

A) {1+ 0 (c.A-1/2)}
{ A!„(x; if x> X „

(4.10) r .(x ; 2 ) =
A'. (x ; A) {1+ 0 (C .A - 1 1 2 ) }

+ 0 (B'.(x; A) C„A- 1 1 2 ) if x< X „

Since C„<co, we can prove the theorem in  th e  same way as in the case
o f  a  fin ite in terval (see A . E r d e ly i  [3 ] ) .  So  w e m ay om it the proof.

T h en  w e  have fo u n d  it  e ssen tia l to  g e t th e  estim ate o f  th e  integral

I {0 t } (t; I- "2 dt.f

Lemma 4. 3. I f  we assume the following,

(4. 11) i . )  q(x) >0. ii.) A/ x<q' (x) / q(x)<B/ x .

iii.) I q" (x) / q (x) <C / x 2 . i v . )  I q (x) / q (x) <C / x3 .

then we obtain

(4.12) I {0., t} (t ; - 1 / 2 <CX,7, 1

where C  is independent of A an d  n.

T he proof is put off until § 6.
Owing to Lemma 4. 3. and theorem 4. 2., we have

Theorem 4. 4. Under the assumptions i n  Lem m a 4. 3., W „ can be
represented asymptotically in  th e  form

(4. 13) Y „(x; A) = A ) 
h / 2

 {A i (A"0„(x; A)) + 0 (2 - 1'2X ;') }  i f  x<X. .

For derivatives, we have
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Theorem 4. 5.

(4. 14) V"„(x; 2) -=- (x ; A )" { A i' (A"0.„(x; A )) + 0 (A - 1 "X,7, 2 1 3 ) }  i f  x<X„ .

P r o o f .  By computation we get

(4. 15) A'n= A" (0"0" A i' (A "  „) — 2 - 1 A- "  0 ,7 2 A i (2' 1 3  .

W e can show  i g 1 / 1 0 .1 2 < C X „ 7 2 / 2 ,  by similar computation a s  in  th e  proof of
lemma 4. 3. Then the theorem  follows from  (4. 15).

Remark 4. 6. W hen  w e assume, instead o f ii.), iii.) and iv.), ii.') A/
x log x < q ' (x )  /q  (x) <B/ x. q "  ( x ) 1 /  q  ( x )  < C x 2 log x .  iv.') (x) 1 /
q(x)<C/ x 3 log x. we can get a similar result to Lemma 4. 3. Here the estimate
o f th e remainder term is o f order A' X iT,' log (A"X„).

A i ( x )  has the following asymptotic forms.

(4. 16) A i (— x) =g - " x - ' 4 {cos ( (2/3) x" —7r/4) + 0  (x - " ) }

A i' ( —x) = rc - 1 /2 x "  {sin ( (2/3) x"—  7r/4) + 0  (x - " )}  .

Then i f  w e  set

Z r„(x ; A) = (2/3) 2" (— 0,,)  = (A— n2 q (t ) ) "d t  ,

we obtain

(4. 17) I r i n (x; A) = 7r - "0'„ (X; A) - "Z „ (x ; 2 ) -" {cos (Z,, (x; 2) —7r/ 4) + 0 (Z;')1

(4. 18) T . ", (X; 2) =g - '0 ',(x; A ) 1/ 2 Z,, (X ; A )" {sin (Z„(x; A) —7r/ 4) + 0 (Z,;')} ,

considering Z,, (X; <2.1.2xn.

From  now on, we shall confine ourselves to the case where the boundary
condition is „(R ) = O .  In  th e  other case, the discussion is  the same.

Proposition 4. 7. L e t A V  be th e  m-th eigenvalue o f  (3. 7), th en  th e re
e x is ts  a n  in te g e r m, an d  th e  f o llo w in g  asy m p to tic  re la t io n  holds.

s

„
(4. 19) Z V  =  i  ( A V  — leg (t))"d t =  (m  + m ,+ 3/4) 7r + 0 (1 / 4:") )

the  f irs t  e q u a l i t y  is  th e  def inition.

P r o o f .  B y Proposition 4 .1 . 2;,"' )  i s  a  zero of T„(R ; A) . W e have only
to consider the case R < X „  and we m ay assume R R ,  fo r  sufficiently large
Ro. I f  R > X ,„  then we see p„<0  and ?I" has no zeros. In the case R<X„,
it fo llow s from  (4. 17)
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cos (Z„(R; 2) — 7r/4) = 0 (1 / Z )

so we can see there exists one zero in the interval 7r/4+2m7r<Z„ (R;A) <57r/4
+ 2m 2r. I f  w e  set

47 ) =Z„(R;2)V)=- (m+m0d-3/4)7r+6,,,,,,

( a m , n i < 7 r / 2 ) ,  w e can  sh ow  „,.„= 0 (1/ 7) ) •
It remains to show mo  is independent of n. To proceed further, we need

a  result on the location of the zeros o f A iry  function . That is:

Proposition 4 .8 . A i (—  x )  h as  e x ac t ly  n  z e ro s  in  th e  in te rv al 0 < x
<-{ (3/2) (n-1-1/ 4) 7r}2 1 8 ,  i f  n  is  su f f ic ien tly  large.

W e notice A i (— x) (1 / 3 )x "  {J,,,(C) + J , where J,(C) is the Bes-
s e l function o f order y  and C-= (2/3)x 3 1 2 . And the location  o f zeros o f x 1/2

{J ,„ (x ) J  _ ,„ (x )}  is well studied thanks to the next lemma (in detail, see
E . C . T itch m arsh  [7 ]).

Lemma 4. 9. (G. N . W ats o n )  I f  n is  large enough and  v> —1, J, (x )
h as  e x ac t ly  n  z e ro s  in  th e  in te rv al 0 < x < (n + v / 2 + 1 / 4 )7 r .

A  proof o f this lemma is found in  E . C . T itchm arsh  [7 ].
N ow  w e  are able to show the asymptotic form of N „(2 ) which is uniform

in  n.

Theorem 4. 10. L e t  N „(2 ) b e  the  num ber of  eigenvalues not ex ceed-
in g  2, th e n  w e  h av e

(4. 20)
fR I% 

(2 — n2 q (t)) " 2 dt (2) + 0 (1) ,

w h e re  th e  re m ain d e r te rm  is  u n if o rm  in  n.

P r o o f .  F irs t w e fix  the notations. fai l d en o te  th e  zeros o f  Ai(—  x)
such that 0<ct1<a2<•••, {1.5 } the zeros o f A i' ( — x) such that b1 < b 2 < • • • .  We
set A n= {3/2(7+1/4)7r} 3 1 2 . We take sufficiently large N  such that 1/N<7r/2
and Proposition 4 .8 . ho lds, and fix it. W e s e t  = 1/3 X min{l A i (— b i ) 110 <12i

< AN +1} . We can see easily there exists a series of points a i , 8i  which satisfy
the following.

(4. 21) 0<ce1<el1<81<a2<a2<82<•••GaNGaNG8N

(4. 22) A i (—  a,)>26, A i (— 31)G - 26, A i (— a2) >26, •••

(4. 23) A i' (—  x)1>6 in  a i < x < g f

Since T„ (R ; A) = 0", (R; 2) 1/2 {A i ( 2 "  (R ; 2)) + 0 (2 - "X,7 1 )}  ,  we can see
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there exists at least one zero  o f g?„(R; 2 )  in  th e  interval ce; < -2'A b a,(R ; 2)
< 8 i , provided that 2  is  so large that the remainder term is less than 6. As
X R 0 in  our case, we can make the remainder term uniformly small in  n.

"Since — 2
8  (R ; A ) is  an increasing function of 2 and a f , ,ej  are chosen satisfy-

in g  (4. 22) and  (4. 23), w e know  the zero is the on ly one in the interval.
Thus w e have proved T n ( R ;2 )  has exactly N  zeros in the interval 0 <

x,
— Ai "0„(R ; A) < A N  nam ely in  0 < (2 — n2 q (t)) 1"dt < (N  + 1/4) r. A s  we-

JR
may assume

xa
(4. 26)( N —  3/4) r< .1*

R  (27) - n 2 q (t)) 1/2 dt < (N +  1/4) ,

we can see Proposition 4. 7. is compatible with (4. 26) if and only i f  nzo = —1.
Then we obtain

(4. 25) (m — 1/4) r + O (1/47 ) ) = (AV —leg' (t)) 1' 2 dt
JR

the theorem is a direct consequence o f  (4. 25).

—
Using theorem 4. 10., w e  have the distribution of eigenvalues o f  ( I ) ,  and

dibi in  § 3 .

—
Theorem 4 .  1 1 .  L e t  N 1 (2 )  be th e  number of  eigenv alues o f  (1 ) 1 not

exceeding 2 , then we hav e

f x „
N  (A) = (1 / rr) E (2-7-eq  (t)) 1/2 dt + 0 (2 1 '2 ) .

,=1 R

P r o o f  A s  w e  have only to consider the case 2 >n 2 q (R ) , the summation
is, in fact, finite and of order 21".

00 wq(B))in
Hence N 1(2) = E AT,, (2) = E  N,,(2)

n=1 n=1

= (1/r) E - n2 q (t)) 1"dt + 0 (2 1") .
n=1 J R

—
Remark 4 .  1 2 .  W hen we define N 1 1 (2 ) f o r  (II) , ,  the same conclusion

as in the theorem 4. 11 holds fo r  N 1 1 (2).

§  5 .  Distribution o f eigenvalues

We come back to the original eigenvalue problem. First, summing up the
results o f  § 4, w e have

Theorem 5. 1. Suppose h (x ) h as th e  p ro p ertie s  v .)  a n d  v i.) i n  (1. 2),
then we have th e  asymptotic formula f o r  N 1 (2 )  a n d  N 1 1 ( 2 )  in  t h e  form
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—(5. 1) N (2) = (1 / 7r) E n2 7r
2

 b
2 1/2(x ) )  d x +  0  (2 1/2 ) (* -= I  o r II).

00=1 JR

P ro o f .  When we put q(x) = 7r 2 b (x) - 2 ,  q ( x )  satisfies the conditions of
Lemma 4. 3. Then theorem 4. 11. holds.

Corollary 5. 2. I f  w e f ix  R 0 ,  w e have

f x„
(5. 2)N , 1, (A) = (1/2r) E 7127r2b (x) - 2 ) 1' dx +  0(A )( *  = I  o r II) .

n = 1  B o

P ro o f .  Since

E ( A  _ n 2r 2b (z ) -2) ii2dx  _ E00 x. jsx„
= +  (A)

n

s
,

=1 R on = 1 R , 1 i:12

w e have the corollary.

ÊWe set 1■7 (A) =  (1/70 fin  (A — n2 7r2 b (x) 2 ) 1" d x . We want to s h o w  (2)
n = 1  B o

has the required properties (2. 3) and  (2. 4).

Proposition 5. 3.

(2. 3) lim A/ IV (A) = 0 .

P ro o f .  W e recall X n denotes the solution of the equation in x ,  W eb (x) 2

= A.
By exchanging the order o f integration and summation, we have

S z 2

Ar-  (A) = (A — 7r2 b (x) - 2 )v 2 c 1 x + j ‘  E jz n217 (x) - 2 ) 1  1 2 x
x, J13 j  =1

X 7 , n
E (A — _Pet , (x ) - 2 )v 2 d x +
j =,

0 0r I 00n
=  (A /72 )  E J b (x) E(7r/ b (x) 2 1/2 )  11 —  (j7r/Avz b ( x ) ) 2 } 1/2 dx

00=1 1 0000 5=1

Since E (7r/ b (x) {1 —  (Mr/ 2'/2 b (x)) 2 } 1/2 is  a  Riemannian sum for the area of

the quarter of the unit disk, we observe

x, x,
2/16r b (x) d x< IZT (A) <  A / 47t b (x)dx .

R 0B o

-
As w e have assumed f  b (x) dx = Do, we get the proposition.

R 0

Proposition 5. 4.

(2. 4) lim A T  (A) /  (A) > 1  +  (R )
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lim .13i) (A) /  (A) <1 + e,(R) .
A-1.

P r o o f .  By corollary 3. 3, we observe (1— e) -,f;P</IT< (1 + e) TIT when n
is  la rg e . So we can see

Kr (A/1 + e (R)) = f\-7 ( (1— s' (R)) 2) < Ag ) (A) , (A) <

Ei (A /1 — (R)) -= ( (1 ± e' (R )) A ) .

A direct computation shows fq ( (1 ± e' (R )) 2 ) = (1  ± (R ) )  (2) . Hence we
have the proposition.

N ow  w e can  show the asymptotic formula of the distribution of the eigen-
values of the original problem.

Theorem 5. 5. Assume the domain G  has the properties (1. 2) , then
we get the asymptotic formula

co
(5 .3 )N  ( A )  —  (1/a) E (2  n 27..c2b  ( x )  -2)  ii 2d x

n=1 2 b ( x ) - 2

P ro o f .  As i f  (2)  has the required properties, we can see N(2)-4■1 (A).

i•x„,
H ence E n27r2b (x) - 2 ) '"d x

n = 1  R

L n , r2 b(x) - 8

E (A— n 2 reb (x) - 2 ) 1/2 dx + 0 (A),
n=1 

we obtain the formula.

§ 6. A  proof of Lemma 4. 3

To begin  w ith , w e note some properties o f q „ (x ) under the assumptions
v .) and vi.) in  (1 . 2 ). Since q,, (x) = (n 2 /A) q (x) , q,, (x) itself has the following
properties.

(6. 1) i.) q„ (x ) > 0 .  i i . )  A x - '<q",(x ) /q„(x )<B x - i .

iii.) I (x )l< C x 'q ,, (x ) ,  q ,, (x )l< C x - 2 q,,(x).

Integrating the both sides o f ii.) from  x  to  a x  (x > 0 , a>1 ) , we obtain

(6. 2) / q „ (x )< e .

B y ii.) and iii.) , we can see

(6.3) L i , :  (x ) I < A C x - 'q '„ (x ) and le  (x ) l< A C x - 2 q",(x).

N o w  w e  e s t im a te  the integral

CC
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(6. 4)
Lol 

{On, t} I P,, (t) d i v i d i n g  i t  i n t o  four parts.

That is : we choose a positive number a (a > l,  later we will make a  arbitrarily
close to  1 ) and set

f c0 c o faX ,t fX .

I t o J a i , X „ a-IS„ JR°
= 1

1 +
12+ 13+ 1

4

From  now on w e  assume C  stands for any constant.
I.) Estimate of L (x> aX„) .

A s w e have noticed

(6. 5) {0. t} =A:/zIP. —  (5/ 1 6) {P./03n+ (p'n/pn) 2} ,

(6 .6)( 2 / 3 )  q4/2 = f (q.„(t) — q„(X„))'"dt ,
x „

we estimate (6. 5) term  by term.
i.)

(6. 7) rx„ 111.7 Pnii1).1 - 1 1 2  dt

cx
=  f q , ,  (t) (q ,, (t) — q„(X„)) - "d t

X ,,

f q'n (t) (q ,, (t) — q„,(X„))'"dt
t n

< C X V  (q„(aX„) — q„(X„)) - 1 /2

<CX,T, 312 1q'„($)1 - 1 /2. (X „ < $ < a X „ )

Hence q ',, (E) - 1 < .11- 1 $q„(e) - 1 < A - 1 aX„q„(X„)
-

w e  have < C X ;`.
J', ' , ,

ii.)

(6. 8)
fax iPn/03n11P.I-1/2dt = ( x ) - 1 /2 0; 3 dt .

-
When we put Cn = (2/3)0r, we observe (6. 8) is equivalent to jaXn

= C,,(aX7,) Considering

f „
C7,( c eX ,,) > inf (q'n  (e)) " (t — X,,) '"dt„x„sfsax„ 

>C in f q,,(E) i v 2 X1/2 >CX„ ,

w e ob ta in  f  dt<CX;'.
alt n
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(6. 9) oi./p02ipnli-dt

= q'n (t) 2 (q,, (t) — qn (X n )) - " d tal

<CX,T 1 F q'n  (t) q,, (t) (q, (t) —  q„ (X „)) - 5 " d t

< C X 771

x

 q'„ (t) (q„ (t) —  q,, (X 2 ) )  - " d t
„

CX,7, 1 q'n (t) (q„ (t) —  q n  (X „)) dt ,
crX,,

then  (6 . 9 ) is less than

CX ,Ti (q„(aX „) —  q„(X „)) - 1 /2  C X ,T 1 (q„(aX n ) —  q„(X n )) - 2 1 2 <C X ;'.

Thus we have shown /1 <CX,T 1. The estimate of 14 goes in the same way,
even easier, so we may om it the proof.
II.) Estimate o f  I ,  (aX „>. x > X n )

Integrating (6 . 6 ) b y  parts tw ice, we obtain

çb" = (p'n) { 1  +  (2 /5)/4P. WO

w here S= (2/5)p'„p773/2 f X ( — PO "  {14 (11 0 - 3  — 3 V . ' )  (K) dt.

F irst w e observe we make N "p„(p ) - 2  and p N , -3 /2S arbitrarily small, if we
choose a  sufficiently close to  1.

i.)
p p , ,  WO - 'I =IA: (x ) I (q ,, (x )) (10",(x)) - 2

< C x '  (q' () / q' (x )) (x  —  X „)

< C V  (q ($) /q (x)) (x —  X „) ( X „ < < a X „ )  .

By (6. 2) , we can see

(6. 10) (K ) i ‹ C  (a —

ii.) !SI < C q 'n  (x ) (q ,, (x ) — qn (X „ )) 3/2 f  (q,, (t) —  qn (X .))"
x „

X {q: (t) q. ( t )  2 ( t ) 2 q ' n ( t )  — 4} dt .

Considering (6 . 3 ), we obtain

SI < C q  ( x )  (q,, (x) — qn  (X 0 )  — 3 / 2 fx"  ( q i , (t ) - qn (X „ ) ) " q 'n  (t ) - 2  dt
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<C {sup q", ($) "/inf q'„ ($) 3 "} (x ) (x  —  X i )  8 "

x (t — X„)"2 r 2 q"„(t) - 2  dt .Ç
„

Hence we have

(6. 11) ISI<CX,T2 (x —  X„) 2 <C (a — 1) 2 .

B y  (6. 10) an d  (6. 8) , we can see

— ( — PO "(K ) -2 {1 +

where we can m ake 0  arbitrarily small a s  a - 4 .  H e n c e  pn / g =  — (K/p,,) 2

{1— (4/5) (K) 2 + 0 (S) 0 ( (pp n) 2 (p'n ) - 4 )}  , we get

(6. 12) P./0 (P'./P„) 2 (4 / 5 ) (PR /P71) (s e e  (6 . 5 ))

= 0 (S (I4) 2 (pa) - 2 )  + 0  ( ( p ' )  ( p )  2 ) .

Thus w e have only to estimate S (p/ p„) 2 a n d  (p/p 'n ) 2.

iii.) (14 / p) 2 = (q" / q') 2 <CXV

iv.) I SI (p'„/ pn ) 2 <1 Slq", (x) 2 (q„ (x) —  q (X)) - 2

Si (q' (x) 2 / q' (E) 2 ) Ix— XL 2 .

Since q' (x) / q' ($) _.<C$ / x<q (x) / q($) < C , we can see I Si ii4/PnI 2 CX;71

considering together (6. 11).
Thus w e have shown

(1/2) I , j< C X ,-; ' in  X„<x<aX„ ,
a X „

then 1 2 <CX ; 1 f (q,„(t) — q„(X,„)) -.
x

T h e estimate o f /, can be carried out just in the same manner. Thus we

have obtained th e  lemma.
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Added in  proof : We should emphasize the fact that the remainder terms in theorem 4. 2, 4. 4,
and 4. 5 are valid uniformly in n.


