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§1. Introduction

The central aim of this paper is to construct some classes of infinite
dimensional stochastic processes related to population genetics or statistical
mechanics by making use of infinite dimensional stochastic differential
equations.

To begin with, we will explain an example related to population
genetics. Let S be a countable set which we consider as the set of
colonies. Suppose that there are two alleles A and a in each colony and
that the change of gene frequencies is caused by random sampling,
mutation, selection and migration. As is well-known in population gene-
tics ([1], [6]), when we ignore the migration effect, the frequency z; ()
of A-genes in the i-th colony at time ¢ may be considered a path of
I-dimensional diffusion process on the interval [0, 1] determined by the
diffusion coefficient

1
N (=)
and the drift coefficient

v—(u+v)x,+sx;(1—=x,)

for each i€S. Hence the frequency z,(t) satisfies the following 1-di-
mensional stochastic differential equation

1 —2.)dB,(t) + (v— (u+v)z;,+sx;(1 —x,;))dt

dx,(t) = ’2]\7’33,(

for each /€S, where ({B;(f)}.cs is an independent system of I-dimens-
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ional Brownian motions. Now, we suppose that g, stands for the rate of

migration from the j-th colony to the i-th. It seems quite natural to
consider the following stochastic differential equation

(1.1)  dz,(t) = \/-%x,.(l —x,)dB;(t) + (v— (u+v)x,+sx; (1 —x;)
+ 2 gux,)dt, ieS.

Such a system should be called a continuous time stepping stone model. The
discrete time stepping stone model was proposed by M. Kimura for the
problem of local differentiation of gene frequencies and it has been
studied by many biologists. (cf. J. F. Crow & M. Kimura [1]). Natura-
lly, we expect that Eq.(1.1) has a unique solution X(¢) = {z,(¢)},cs taking
values in the space [0, 1]°. In §3, we shall discuss the following stochastic
differential equation, which is more general than Egq.(l. 1),

(1.2) dz;(t) =a,(x,(t))dB,(t) + £, (X (t))dt, €S,

where X(¢) = {z;(t)};es» and {B;(#)};es 1s an independent system of 1-
dimensional Brownian motions and we shall give a sufficient condition
under which Eq.(1.2) has a unique strong solution X(#)= {z;(?)}:esE
[0, 11° for any initial data X(0)E[0, 1]°. Ergodic behaviors of the system
(1. 1) have been discussed by one of the authors [11].

Secondly, we suppose that there are infinite many alleles A, 4,,...,
A,, ... in each colony. We denote by z7(¢) the frequency of A,-genes
in the 7-th colony at time ¢. Then x7(t) satisfies the stochastic differen-
tial equation (1.3) under some genetical assumptions ;

(1.3)  dei()= 2 ai" (@l 2%, ..., 2)dBr+ (pla™ —z0) + 2. q;x;)dt
m=1 JjES
x0(¢) =0, €S, neN

where NV is the set of natural numbers, the functions ai*, iE€S, n, mEN
are continuous on the n-dimensional set {(z', 2% ..., z"); 2*=0 for each

k and ix*§1}, the triangular matrix A= (a;"),z. 1s determined by the
k=1

relation
R 1 (n=m)
t— 20 ( —_m 2> > —
AA'= (6’2" (0,,n —X") ) s.men» where ¢°20 and 9, {0 (ntm)
and {B;(t)}.es= {(B}, B ..., Bi,...)}ies 1s an independent system of

infinite dimesional Brownian motions.
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We shall prove in §3 that Eg.(1.3) has a unique strong solution
X(t) = {27()}senies € (L) ® for any initial data X(0) € (L..)® where L.=
{(X=(', 2% ..., 2", ...); =0 for any nEN and X} z"=1}.

nEN
Finally, in §4 we shall discuss diffusion processes on &’ (Z), the space
of all tempered sequences on Z*. It enable us to construct a time evolution
of an unbounded spin system in statistical mechanics as a diffusion process
on &'(Z%) determined by the following stochastic differential equation

(L4)  dr(0)=dB,() —p (B@) + T 0, @, 0), z,()))dt

where B(t) = {B;(?)} _p4 1S an independent system of 1-dimensional Bro-

wnian motions, @,(x), i€ Z? are self-potential functions, @, ;(z,y), i, JEZ*
are pair potential functions and & ;(z, y)=%@i‘j(x, y).

Recently H. Doss and G. Royer [2] constructed a diffusion process
associated with (1.4). However, our method which is based on a standard

approximation procedure in the theory of stochastc differential equations,
seems to be more natural.

§ 2. Preliminaries

Let S be a countable set. Let, for each iES, a;, be a continuous
mapping from d-dimensional Euclidean space R? into the space of dxd
matrices R‘@QR? and f; be a mapping from (R‘)® into R? which is con-
tinuous in the product topology of (R“)°. Each point of the space (R%)*
is denoted by X= {x,},es where 2;€ER?. |x;| denotes the d-dimensional

d
Euclidean norm of x; and |a,[*= 2] (ai")? where a;™ is the (n,m)-compo-
n,m=1
nent of a;.

In this section, we shall discuss the following stochastic differential
equation ;

2. 1) z,(0) =2,(0) +S‘ &, (@, (5) )dB, (s) +S'f,.(X(s))ds, ies,

0 0
where B(t) = {B,(#)},cs Is an independent system of d-dimensional Brownian
motions. We will give the definition of a solution of Eg.(2.1).

Definition. A pair (X, B) = (X(t), B(t)),z, defined on a probability
space (2, #, P; #,) is called a solution of (2.1) if the following condi-
tions (1)-(ii1) are satisfied ;

(1) B@)={B;(t)},es is an independent system of d-dimensional .Z,-
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Brownian motions with B(0) =0,

(1) X@)={x,(t)},es is a F,-adapted stochastic process and z,(t) is
continuous in t=0 with probability one for each /€S and

(ii1)  (X(t), B(t)).zo satisfies the stochastic differential equation (2.1)
with probability one.

First, we shall discuss the existence of a solution of Egq.(2.1) under
the following assumption.

Let y= {r.}.es be a positive sequence on S and let L*(y) be the space
of all square y-summable sequences on S, i.e.

L) ={X& R IX][= 2 rile: P<+o0).

Assumption [A] For some positive constant C, it holds that

(2.2) ;srila,-(x;) P<C+1XI1)

and ‘

(2.3) L 71X P=CAHIXIE) for any XEL* (7).
Then we get

Theorem 2.1. Let XEL*(y). Then there exists a solution (X(t), B(t))
of Eq.(2.1) on a probability space (2, %, P; F,) such that

(2.4) P[X(0)=X]=1
and

(2.5) PLX(t) isa L*(y)-valued strongly continuous function of t=0]=1.

Proof. Let {S,} be a sequence of finite subsets of S such that S, /S
as n—>o0, Let us consider the following equation ;

(2.6) z,(t)=ux, &S,
2, (8) =z, + SO @, (@(s))dB: (s) +S;f,.(X" (s))ds, i€,

By Skorohod’s existence theorem of finite dimensional case [12], there
exists a solution (X"(t), B*(t)) = {(7(#), B:(t))}.es on a probability space
(2, F, P*; F) for each n.

Then we can easily see that for each finite T there exists a constant
C’>0 such that
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(2.7) sup B[ sup [[X"(D[F]1<+ o,

and

(2.8) sup E'[[|X" (1) = X" IF]1=C |t =s],  for 0=t, s<T.

Thus, we see

2.9 sup P”[fg}soTlx?(t) | >C]—0, as C—oco, and

(2.10) sl;lphs_lslll:s)hP"[|x','»(t) —x1(s) | >e]—0, as h—0, iES
oSt ST

for any ¢>0. By making use of Skorohod’s argument, we can see that
there exist a sequence {7,}, a sequence of stochastic processes X' (), B )
and a stochastic process (X(t), B(¢)) defined on a probability space (£,
&, P) such that finite dimesional distributions of (X" (¢), B"*(t)) and
(X" (2), B*(t)) coincide and (£;?(t), Bi*(t)) converges to (&;(t), B.(t))
in probability as p—4c0 for any ¢ and {€S. We may assume that the
processes Z;*(t) have continuous trajectories and that B'?(¢) and B(¢t) are
independent systems of d-dimensional Brownian motions.

It is known (cf. N. V. Krylov [4]) that the pair (X"*(z), B"*(¢))
satisfies the finite dimensional stochastic differential equation
2.1 @)=z, i&S,

() =z, + S a (27 (5))dB™ (1) +S‘ [(X(s)ds, €S,
0 [

Since a;(£;?(1)) converges to «,(Z,(t)) in probability, we see that Sta,.
(&:2(5))dBi*(s) converges to S‘(r;(.f:i(s))dﬁi(s) in probability as p—+ oo,
(cf. A. V. Skorohod [12], p. 32).

On the other hand, we can see that {f"’(f("’(t, @)}z Is ~uniformly
integrable with respect to the measure dtx P(d@) on [0, T]1x2 because

S‘ipgod‘ E[If.(X"(t, @) [7]<+oo.

Noting that X', @) converges to X(t, @ in measure with respect to
dt X P(d®) on [0, T]x2 (T<+0), we see that there exists a subsequence
{n,} of {n,} such that X""/(t, ®) converges to X(t, @) almost everywhere

(¢, ®) with respect to dt X P(d®). Taking into consideration of the continuity
of f;(X), we have
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S:dt ELIA(X7 (1. @) —f(X(t, @) [1-0 as p—+ 0.
Thus, we see that the pair (X(¢), B(t)).z, satisfies

2.(0) —xi:S; a,(2,(s))dB,(s) +S;ﬁ(}2(s))ds, €S, a.s.

for each ¢z. The right hand side of this equality has a continuous modi-
fication for each {€S which we denote by £;(¢) —z;. Put
F .= N [o{X(), B(s), s<t+e}VA]
>0

where 4 stands for all subsets of 2 with P-measure 0. Then, it is clear
that (X(£), B(£)),20 is a solution defined on (2, Z, P;F) of Eq.(2.1)

Finally we note that X(Z) is a L*(y) -valued strongly continuous function
of t=0 with probability one. To show this it is sufficient to see that

212 PLZ rsup I @@.9)dB ) '<+0 for any T<eo]=1

and
@213 PIE (| 1£(X©) 1d0r<+ o0 for any T<eol=1,

It follows from (2.7) that
(2. 14) sup E[llX(t)|lf]<+OO for any finite 7.
0=!ST

By using (2.14) and a maximal inequality for martingales, we can sce
(2.15) 32 7. B[ sup |S' a,(£,(5))dB,(s) |']< + 0 for any finite T.

iES 0StST 0
Thus (2.12) is valid. Also, (2.13) follows immediately from (2.14).

Remark 2.1. Suppose that for some constant C>0 |a;(z,) |<C and
|/:(X) |£C hold any x,€ER?, any XE (R*)® and any iES. Then, Assumption
[A] holds for any positive sequence y= {r,;} with X r,<+oo. Moreover,
if sup |z, |<+ oo, there exists a solution of Eq‘(2.1) such that sng

[sup lz,(2) [71< +oo.
0StST

Let K be a compact set of R. A solution (X(¢), B(#)).z, of Eg.(2.1)
defined on (2, #, P; #,) is called L*(y)-valued (K5-valued) if X(¢) €
L*(y) (resp. X(¢t)€K®) for all t=0 almost surely. Theorem 2.1 asserts
the existence of a L*(y)-valued solution under Assumption [A], and it will
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be discussed in §3 the case that Eq.(2.1) has a K°-valued solution.
We will omit the definitions of the pathwise uniqueness of L?(y)-valued
(or K°-valued) solutions and of a L*(y)-valued (or K°-valued) strong
solution because these definitions can be given in the same way as in
the theory of finite dimensional stochastic differential equations. (cf. T.
Yamada & S. Watanabe [13])

Thus, we obtain

Theorem 2.2. The existence of a L*(y)-valued (K*-valued) solution and
the pathwise uniqueness of L*(y)-valued (K-valued) solutions imply the existence
of a unique L*(y)-valued (resp. K°-valued) strong solution.

§ 3. Stochastic differential equations related to stepping stone
models

First, we consider the following stochastic differential equation
(3.1) dan() =3 arm(z,(£))dBr () +f(X())dt i€, 1<n<d,

where B(t) = {(Bj(t), Bi(t),..., B{(t)},es i1s an independent system of
d-dimensional Brownian motions. We denote by L the d-dimensional
d
set {x=(x', 2% ..., 2) ER*; 2*=0 for each k and } »*<1}.
k=1
Let us consider Eg.(3.1) under the following assumptions.

Assumption [B-1] aj"(x), i€S, 1<n, m<d are continuous functions
defined on the set L, uniformly bounded in {€S and 1<n, m<d, and
satisfy the following conditions; for each (€S,

(3.2)  Ja;,cat]™(x)=0 if z=(', ..., 29)€L and 2"=0, and
(3.3) 3 3 [acal™@) =0 if x=(z'..., 29)EL and > 2" =1.

n=1m=1

Assumption [B-2]  f+(X), i€S, 1<n<d are continuous functions
defined on L*, equipped with the product topology, such that

(3.4) sup sup |f;(X) |<4 oo,
ies xerS
(3.5) [1X)=0 if X={z7} €L° and 27=0 €S, 1=n<d,

and

(3.6) SX0=0  if X={(«7} €L and Sar=1.
m=1
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Then under Assumptions [B-1] and [B-2] we obtain

Theorem 3.1. For any XELS, the stochastic differential equation (3.1)
has a solution (X(t), B(t)),, on a probability space (2, F, P; F,) such that

P[X(0)=Xand X(#)EL* forall t=0]=1.

Proof. Let p be the projection mapping from R* onto L, 1. e. for each
z, pr is uniquely determined by 'z —pz|=inf{|lz—y|;yEL}. Set a,(x)=
;(px) and fi(X)=f(0X), where pX={oz},es for X={z.},cs& R)".
Then by Remark 2.1 there exists a solution (X(¢), B(t)).z, on a probability
space (2, F, P; #,) of the following stochastic differential equation,

d =
3.7 dxi(2) = ) a;"(z;(8) )dBr (1) + f7(X(8) )dt
X(0)=XeL?
and it holds that
(3.8) sup IE[ sup |z;(¢) |*]<4 o for each finite 7.
i€ES 0=:!ST
To complete this theorem it suffices to show

PIX() €L’ for all t=0]=1.

For any ¢>0, set u,(y) =3—;}?; (yER"). Then by using Assumptions [B-1]

and [B-2], we sec easily that there exists a positive constant K such that

(3.9 SUE)E (@ @) HESISK i w> e
and
pU-Ea L & B ararte)

—u(l—Zx) Zj]f(X))gK if S ar<l4e.

(3.10)

uM”‘

Applying Ito’s formula we have
(3.1 Efu,(@;(tr7) )1 Su, @) +Kt for any 0<{o<e

where 72, is defined by !,=inf{t=0; 27(¢t) < —d} for each i,n and 4.
So, letting d tend to &, we have P[r;,<t]=0 for any finite ¢ and e>0.
Hence, P[z3(¢) =0 for all t=0]=1 holds.

d
In the same way, setting 7i=inf {t=0; 1 — 3 27(¢) < —¢}, we obtain
n=1
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E[u,(1— i zi(tat) 1<+ oo for any finite t>0.
n=1

Thus, we have P[ix;‘(t)gl for all t=0]=1 for any {ES.

Remark 3.1. The following examples are found in population gene-
tics, which satisfy Assumption [B-1].

(1) [ara]™@) =02 (,,—z")
(2)  [aa]™@) =0 (6, —2") +22" (Vok 3 Vietas
$,9=0

~ S (V,,+V.))  (cf. N. Okada [7])

(3)  [weail™ @) =0 @, —2") +aw" (5 f —f— 1)
to,.82" (cf. K. Sato [10]),

d
where 620, 2= {1*},,<s €L, 2°=1—2", {V,.} osnmss Is nonnegative de-
n=1

finite, 8,20 (0<n<d).

Now, we are in position to discuss the uniqueness of solutions of Eg.
(3.5). We will begin with the case d=1.

Assumption [B-1]" «,(y),iES are real-valued ~1——H61der continuous and

2

uniformly bounded functions, which satisfy

(3.12) a;(0) =a;(1)=0 for each iES.

From now on, the coordinate of a point X&[0, 1]° will be denoted
by X= {z,},es,» where x,ER".

Assumption [B-2]  f,(X), {€S are continuous functions defined on
[0, 1]% and satisfy the following conditions ;

(3.13) there exists a matrix Q= {Q; }. ;es such that Q,;=0 for all7and
7 sup §SQ;,,<+°O, and

(X)) —f(Y) = ngi.iIxj_yjl for any X={z}, Y={y;},
(3.14) f(X)=0 if X={z;}€[0, 1]° and z,=0,

and
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(3.15) £(X)<0 if X={z}€[0, 1]° and z,=1.

Then, Theorem 3.1 implies that under Assumptions [B-1]" and [B-2]
for any X= {z,} €[0, 17°, the stochastic differential equation

(8. 1) dx;(t) =a,(z;(t))dB;(t) + f; (X (2))dt eS8,

where {B;(#)},es is an independent system of 1-dimensional Brownian
motions, has a solution {(X(¢), B(?)), (£, #, P; #,)} such that

P[X(0)=X and X&) [0, 1]° for all £=0]=1.

Furthermore, we obtain

Theorem 3.2. Let XE[0, 11°. Under Assumptions [B-1]" and [B-2]
Eq.(8.1)" has a unigue [0, 1]5-valued strong solution with X(0)=X.

Proof. 1t is sufficient to show that the pathwise uniquencess of Eg.
(3.1)" holds. Let (X(¢), B(#)) and (X' (¢), B(¢)) be two [0, 1]°-valued
solutions of (3.1)" defined on (2, #, P; &#,) with X(0)=X(0)=X.
Choose a sequence of smooth functions on R', {¢,(£)} such that

0=¢,(&) 7 1§] as p—>+0, [4,(§) [S] and {[§1¢,(E)}

is uniformly bounded and converges to 0 as p—+00. Using Ito’s formula
for ¢, and letting p—+ 0, we see that

Ela,0) =20 1= 5 Q. | ELle,9) ~2)05) 11ds

Noting that E[ |z;(t) —z:(t) |]<1 and Assumption [B-2]’, it follows evidently
that E[|x;(¢) —z;(¢) |]=0 for any t=0 and ¢{€S. Thus, the proof is
complete.

In this place, we can state precisely the example whose outline has
already been mentioned at the beginning of § 1.

Example. We put a,.(x)z\/?lﬁx(l—x) for z=[0, 1], and

(X)) =v—(utv)z,+szx,(1—z,)+ 3 x;q9; for X={z;} €0, 1]
jES

Here, u and v are non-negative constant, s is a constant and we assume
that {g;} satisfies

qjigo(i:/:j)' qu.:ov and sup Iij|<+°°'
= jes
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Then, since Assumptions [B-1] and [B-2]" are fulfilled, Theorem 3.2
holds in this case.

Again, we will discuss the d-dimensional case. Our concern at this
moment is to show the pathwise uniqueness of solutions of Eq.(3.1).
However, it is rather difficult to show it without special conditions on
the coefficients of (3.1) because the Lipschitz continuity of a;"(z) cannot
be assumed for our case.

Assumption [B-11" a;(x) = {at"(x)} 1Zn,m<d, are lower triangular
matrices such that

(3.56) a;~a;(x) = {o’x"(0,,, _xm)}ISn,de.iES.IEL

and a,(z), {ES are continuous on L.

Assumption [B-21" {f(X)}, i€S, 1<n<d satisfy Assumption [B-2].
Moreover f%(X) depends only on the first n-coordinates {(z}, ..., 1)} es
of X={(}, ..., 2%9)},cs for each 1<n<d and /€S, and

(3. 17) there exists a matrix Q= {Q, ;}. es such that Q, ;=0 for all7and
i, sup 2 Q; ;<<+0o0, and

i€es jes

lf: (X) _f.(Y) < ésQi.j |‘rj —y;1 for any X= {x-} , Y= {yi} eLs.

Here we note that a;(x) of Assumption [B-1]" is uniquely determined
and satisfies that

(3.18) if x2*=y* for k=1, 2,..., n—1, then
larm (x) —ai™(y) | £20V|2"—y"| for any z and yEL.
(cf. K. Sato [9])

Then we have

Theorem 3.3. Under Assumption [B-1]" and [B-2]", the stochastic
differential equation (3.1) has a unique LS—valued strong solution with X(0) =X
for any X€L®.

Proof. The pathwise uniqueness of solutions of Eg.(3.1) can be
proved by induction on n. First, we can see by Theorem 3.2 that
{£i()};es I1s uniquely determined. Secondly, we assume that {z}(#)} iES,
1<k<n are uniquely determined. Then by (3.18) and the argument
similar to the proof of Theorem 3.2, we can show that {z!*'(¢)} €S



406 Tokuzo Shiga and Akinobu Shimizu

is uniquely determined. Thus, the proof is complete.

Remark 3.2. By Theorem 3.3 we can construct a strongly continuous
Markov semi-group {7.}.z, on C(L®) such that

(3.19) T,g—g=gt T, Ag ds for each g€ Ci(L*),
0

where
2

d
AgX) =3 (5 o8, —a7) -l g(X)

i€ES a,m=1 ar’:a‘r:"
4 0
+ Z—:x f:l( {(.Z';, .’L‘j, e x:‘)}jES) ‘éx_,.g(X))’
C(L*) denotes the set of all continuous functions on L and C%(L®) denotes

the set of all C’-functions on L° which depend only on finitely many
coordinates.

Finally, we will discuss an infinite alleles model. Suppose that we

have infinite number of alleles A,, 4,,..., A,,.... Denote by z7(¢) the
A,-gene frequency in colony 7 at time . We expect that {(z}(¢), xi(¢),
ve, Z3(8), .. ) }ies is a diffusion process on the state space (L.)® with its

infinitesimal genetator

— 2~ — __j; n __a_
Ag(X) =% (3 021 0rnaD) 3080+ 3 Fi(X) 518 (X)
where N is the set of natural numbers.

Here, we restrict our treatment to the case that f7(X) can be expressed
in the form

n

(3.20) (X =§1 pk,,x’,‘.+§sqj,.x} for each n.
Suppose the following conditions on {g,} and {g;} ;
(3.21) 120 (k#n), 3 p,=0 and sup |, [<+oo.
and

(3.22) 220 (#)), 2,9,=0 and suplg, [+ .

In order to construct the above mentioned diffusion process, we
consider the following stochastic differential equation

(3.23) dzi(t) =X ai"@(1), ..., 2()dB;(t) +f1(X())dt i€S, neN
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where B= {(Bi(t),..., B;(¢),...)}.cs is an independent system of infinite
dimensional Brownian motions and {a"(z', ..., 2")},s.s. are continuous

functions on L,= {(z,..., ") ER"; 2*=0 for each % and an"gl} which
k=1

satisfy

(3.24) ”ﬁ,'ma}'* (..., z2ar(z, ..., ") =02 (0, ,—2™)
k=1
for any n, mEN and z=(z', 2%,..., 2",...) EL., Then we have

Theorem 3.4. Suppose that (3.20), (3.21), (3.22) and (3.24) hold.
For any Xe (L.)®, the stochastic differential equation (3.23) has a unique
(L) *-valued strong solution with X(0) =X.

Proof. Note that all the assumptions of Theorem 3.3 are fulfilled
when we restrict our observation to {(z}, z% ..., 2%)},cs. Hence the
stochastic differential equation

dei(t) =3 arm (@l 2 ..., 2)dBr(t) +f,(X(£))dt €S, 1=n<d

has a unique strong solution X*(¢) = (z}(#),..., x4(t)) with given initial
data (z',..., 2%) and satisfies

Plzi()20 (1<n<d), and S a1(t) <1 for all £20]=1.

Thus, Eq.(3.23) has a unique strong solution X (t) = {27(¢)}‘cs ,en satisfying
Plz;(t)=20 (n€EN) and X z:(t) <1 for all t=0]=1.
n=1

To complete the proof it is sufficient to show that

(3. 25) P[> () =1 for all 20 and i€S]=1
Set Z‘(t):l—ix’;(t). Then by (3.20) we can easily see

3.26) ELZ®1=~ T ¥ mE©s+ Ta.{ EZ,6)14s
= 20, E12,)1as

Thus we have E[Z;(¢)]=0 for any /€S and t=0. Also, since we see
easily that Z,(#) is a continuous function of ¢t=0 almost surely, we obtain

(3.25).
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§4. Diffusion processes on ¥'(Z%)

In this section we shall construct diffusion processes on &'(Z) by
means of stochastic differential equations. Also, we shall apply it to
construct a time evolution of an unbounded spin system in statistical
mechanics.

Let Z¢ be the d-dimensional Euclidean lattice space. & (Z?) denotes
the space of all rapidly decreasing (real) sequences on Z¢. We introduce

the Hilbertian norms || ||,, p€Z", on R*
lall= T (il+D®la o= (@), SR
i€Z
Then it is known that & (Z%) is a nuclear space by the sequence of the

norms {|| ||,; p=1, 2,...}.
Let us denote by &#'(Z%) the dual space of #(Z?). Then &' (Z%)

coincides with the set of all tempered sequences on Z°.
For each integer p, define &, by

#,(ZH = (X=(2],_,.ER"; || X]|,<+o0}.

Then, it holds that
(4.1) FL(ZH=NZL,(Z*) and F'(Z*) = F*(Z%).
? ?

Here &'(Z*) is endowed with the strong topology. But we note that a
curve X,, t€[0, o) in &' (Z*) is strongly continuous if and only if it is
weakly continuous. (cf. I. M. Gel' fand-N. Ya. Vilenkin [3])

Let us consider the following stochastic differential equation under
the Assumptions [C-1] and [C-2].

(4.2) dz;(t) = a,(x,(t))dB, (1) + f. (x,(t), X(¢))dt ez,

where X(¢) = {z,(t)} _,. and B(#)={B;()} _,. is an independent system

i i

of one-dimensional Brownian motions on a probability space (2, #, P; #,).

Assumption [C-1] a,, iEZ* are real continuous functions on R* which
satisfy the following conditions ;

(4.3) sup |a;(0) | <400

i€Z

and there exists a constant L such that
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4.4 la; (x) —a;(y) |SL |z —y]|

for any z, yER' and (€ Z°.

Assumption [C-2] f,, i€ Z¢ are real functions defined on R'X &' (Z%)

i

which satisfy the following conditions ;
(4.5)  for any finite subset V of Z¢, f.(x, X), i€ Z‘ are locally

Lipschitz continuos in the variables (z, {z,} jev), where X= {x,} jezdey’(Z“),

(4.6) sup 1£:(0, 0) | <400,

i€EZ

there exists a constant K such that

4.7  (@—y) (filx, X) —fi(y, X)) <K(x—y)* for anyz, yER', XEF'(Z)
and /€ Z* and there exists a positive sequence c¢= {c;} _ & & (Z%) such that

(4. 8) (fite, X) —fix, Y))*< 3] cims (@, —y,)°

jezé
for any X={z;}, Y={y,} €' (Z%), xER", and iEZ°.

Then, under Assumptions [C-1] and [C-2] we have

Theorem 4.1. For any XE %' (Z), the stochastic differential equation
(4.2) hasa unique &' (Z*)-valued strong solution X (t) such that

P[X(0)=X, and X(t) is continuous in t=0]=1.

For the proof we prepare some lemmas.

Lemma 4.1. For X={z}}, Y={y,} €% (Z*) and z, yER',

() 2@ O h0,0)+(K+ 5 Jt+ Teal
and J
(i) sgn@@—3) (i@ X) —£0. V) S QK @ —5)'+2 T oy @,-3)) "

j€z
Proof. 1t is immediate from Assumption [C-2].

Lemma 4.2. Let c={c} _,. be a positive sequence of & (Z*). Then there

exists a positive sequence {K,} 2., a constant K and a positive sequence d= {d.} _ .
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of #L(Z%) such that
(i) 2 (El+D e, ; <K, (lj|+1)™* for any jEZ* and pEN

iez?

and
(i) 2dic,_;<Kd, for any i€ Z°.
d

H=¥4
Proof. We will prove only (ii) since (i) is easy.
Let K> ) ¢; and set d;= i Lem)! .

n
= 5K

convolution of ¢= {¢;}. Then the inequality of (ii) is obvious. Set

d (6)= Y e<*>d, and ¢(0) = Y &<,

jezd jezt

Here c¢** stands for the n-th

where

d
<6, j>=73 6,j, for each 0=(0,..., 6,)ER’
k=1

and j=(j,, ..., j,) €EZ’. Then we see

K

K—¢(6) °

Since é() is a C=-function and .|¢(0) |[<K, it follows that d(6) is also
a C=-function. Thus, d= {d,} €% (Z*) follows from this (cf. Loéve [5],
p- 199)

4.9 dg) =

Lemma 4.3. Let y= {r;} e gd and a= {a;} ol be non-negative sequences on Z*

and let Q=1{Q,}. jezd be a non-negative matrix on Z*x Z*. Let {u,(t)} _ . be

a sequence of non-negative measurable functions defined on a finite interval [0, T].
Suppose that the following condition are satisfied ;

(4. 10) Zdr.-a.-<+°°,
(4.11) 3 1. Q., <Ky, jEZ% hold for some K>0,
(4.12) ¥ 7, supu,(£) < + 00,
iezd 0StST
and
(4. 13) uw,(8) < a,+ ZQ,.,,S'u,(s)ds, ez,
jezd 0

Then it holds that
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(4.14) u,() < X (exp{tQ}).; a; for any i€EZ¢ and tE[0, T]

jez

and

(4.15) >0 7: sup u; (2) e Zdr,.a,..

iez? 0stST jez
Proof. Tt is obvious.

Proof of Theorem 4. 1.

Let Xe %' (Z%). Then X€%_, for some p=d. Let {S,} be a sequence
of finite subsets of Z¢ such as S, /7S (n—>c0).

Consider the following stochastic differential equations ;

(4.16) z:(t) ==, eS8,
u©=e+{ @B +{ f@©. X0 ies,
where X"(t) = {z3(2)}
Then it is easy to see that Eg.(4.16) is uniquely solvable and satisfies

jezd®

(4.17) sup E[ |z3(¢) |’]<4 o0 for any finite T >0 and i€ Z°
0StsST
First, we claim that

(4.18) X3 (li|+1)"*sup E[sup |z;(t) |)]<+ 0 for any finite T>O0.
iez n 0StST
For simplicity, we will show (4.18) under an additional assumption ;
(4.19) sup [la;]|]<<+ o0, where ||le.~||=Sl-lpl la; () |

i€Z YER

By Ito’s formula, we see

(@ (t))2=x?+2S;x1 () a, @} (5) )dB, (5) +S (@, (@7(5))?
+ 227 (s) f; (i (5), X" (s)))ds, ieS

ne

Also, it follows from a maximal inequality for martingales and Lemma
4.1 that

Elsup @16 sei+4({ Bl 0w @16))1as) "+ Bra @)
+2£,(0,0)2+ 2K+ 1)z (s)2+2 ch,._jx;(s)’]ds.

j€Z

Thus, we have

(4.20) E[sup @)1 Sz + T Q,.,.S'E[x;(sy]ds, ic 74, t<T,

jez



412 Tokuzo Shiga and Akinobu Shimizu
where z,=zi+2||a,||+ (|a;|[*+2f,(0, 0)) T and

Q _{QCi—j (Z#))
20,42l e[ +2K+1 (1=7).

Set

w,(8) =E[ sup @@))7], a,=%, and 7,= (|i|+1)7*.

0Sust
Then, noting Lemma 4.2, we see that Lemma 4.3 is applicable for (4. 20)
Hence we obtain (4. 18).

Secondly, we claim that

(4. 21) lim E[ sup ||X"(t) —X"(8)|12,]1=0

n, m=»oo LESFS

for any finite 7>0. Let m>n and /€S,. Then,
a1 ® —a1() = (@ @) ~a,@1())dB, )
+{ e, X6 ~fiars), x6)as

Applying Ito’s formula for {¢,} as in the proof of Theorem 3.2, we get
(4.22)  |z7 (1) —23(2) |
= s (@) ~2) (@@ 9)) ~a,@©)dB,)

+S; sgn @y (s) —z3(5)) (fi(x7 (5), X" (9)) —fi(x7(5), X(s)))ds.

By using Lemma 4.1 and a maximal inequality for martingales,

Bl sup (o7 () —30) <8 E[ (@, (a7 (9)) =, (21())) 1ds

0=ust
+4T§' E[K* @7 (s) ~a1(5))*+ T ey (@5 () —5(5))"Mdbs.

jez
Setting E[ sup (7 (u) —z7(u))*]=Nr"(t), we see
0Sust
(4.23) N0 < sup ELsup @1(0)1]+ Lo, @)+ Q. Ny (9)ds
n ostsT jez 0
for any i€ Z* and t€[0, T], where
1 (€A) {4Tc,._j (i#7)

d Q. .=
0 (eA) " s

1) :{ 8L +4T (K*+c,) (1=J)

Applying Lemma 4.3 for u,(t)=N;y~(t), Q={Q.,} and r,=([/|+1)7*,
we obtain
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429 T i+ DN (D= T (71 DM,
i€Z JES NS,
where

M;(T) = sup E[gssl‘lsg (@3(1))%]

and

1Qll=sup ( X (llfll%ll)Q)

jezd Niezd
Thus noting (4. 18) we get (4.21).
Thirdly, it follows from (4.21) that there exists a &_,~valued strongly

continuous process {X(¢)},z, such that

lim E[ sup [|X"(¢) —X(8)]|2,]=0 for any finite 7>0.

n—>oo 0=tST
Hence for suitable subsequence {n,},

P[ lim sup || X™(¢) —X(¢)||-,=0 for any finite T>0]=1.

koo 0S!ST

Accordingly, it follows easily that (X(¢), B(2)) is a &' (Z?)-valued solution
of Fq.(4.2) and X(¢) is continuous in t=0 in the strong topology of
&’ (Z*) almost surely.

Finally, we will show the uniqueness of solutions. Suppose that (X(¢),
B(t)) and (Y(¢), B(t)) are two &' (Z*)-valued solutions of Eq.(4.2) such
that

P[X(0)=Y(0)=X and X(¢) and Y(f) are continuous in t=0]=1.
By Lemma 4.2 there exists a positive sequence d={d;} _,,of ¥ (Z) and
a constant K such that
(4.25) Y dic,-;<Kd; for any jEZ°.

iez?
For each n€ N, define
U,={Xe% (Z% ; sup |z,d)" |<n}.
i€Z

Then it is easy to see that U, is a open subset of &'(Z¢) in the strong
topology. Let us introduce a sequence of stopping times {r,},

r,=inf{t=0; X)) —X&U, or Y(t) —X&U,}.
By the continuity of X(¢) and Y(¢), we have
(4. 26) P[z,>0]=1.
Also,
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(4.27) EL,(EAR) =2 A T=EL| " (@ (,(6) —a;(2,()))ds]
+E[™ 6,6 =2, (.04, Y©) ~ @05), X(9)))ds ]

= 2 Q| ELossAw) ;7)) 1ds,

jez
where
Ci-j (E+#))
Qi,j:{ ’ .
L’4+K+14¢, (i=j)

Set u,(t) =E[(y,¢/N\7,) —x,(¢/\7,))?] and y,=d, for each i€ Z°.

Then we see that Lemma 4.3 is applicable for (4.27).

Hence, E[(y;(tA7,) —z;(t/\7,))*]1=0 for any neN, i€Z and ¢t>0
Since this implies P[X(¢) =Y (¢) for all t]=1, we complete the proof of
Theorem 4. 1.

Next, we shall apply Theorem 4.1 to construct a time evolution of
an unbounded spin system.

Let @,(x), i€ Z? be C*~functions defined on R' and let @, ;(x, y), i, j€ Z*
be symmetric C*-functions defined on R?. Let us consider the potentials
of the following type.

For each subset V of Z¢

4.28) U, D=5 0@ +y T 0@ a)+ 5 0. w),

where X= {2} _ ER*.

A time evolution associated with the potential functions {Uy},_,, is defined

by the following stochastic differential equation ;
(4.29) de,()) =dB,(®) 5 (B@(0) + 3 0,@(0), 2,0))ds, i€Z"

where B(t) ={B;(t)} is an independent system of 1-dimensional Brownian

motions, q);@):%q),.(x) and 0, (, y)=£—@u(x, .

Assumption [C]° There exist a constant K >0, a positive matrix Q=
{Q,.,,.}”EZ,,, satisfying sup 2, Q;;<<+©°, and a positive sequence c= {c;}

jezd J*i

of &£ (Z%) such that

iezd

(4.30) sup|®;(0) [<+o0 and @"(z)= —K,
d

i€Z
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(4.31) sup ZI(D (0, 0) |[<+o0 and Z 0 .0, ;(x, y,) is uniformly con-

jezd I

vergent in x on each bounded interval for any X= {z,} € %' (Z) and

az
9, . (x, y)=—Q, ,» and

(4.32) 0.,

0*
“azoy dy @u(x M| =ci-

for any z, yeR' and ¢, jE Z°.

Then, under Assumption [C]" we have

Theorem 4.2. Let X& %' (Z%). Then the stochastic differentialequation
(4.29) has a unique &' (Z*)-valued strong solution X(t) such that
P[X(0)=X and X(¢) is continuous in t=0]=1.

Proof. Let
[ X) = =3 (@@ + L 0,@ x)) for X=(z} e (Z).

Then we can easily see that {a;(z) =1, f(z, X,)} satisfies Assumption [C-1]
and [C-2]. Hence it follows from Theorem 4. 1.

Remark 4.1. Denote by X(¢:X) the solution of Eg.(4.29) with the
initial condition X(0)=X. Then we can define a &’ (Z¢)-valued dii_'fusion
process (X(1), PX)xey’/(zd) by E;[f(X@))]=E(f(X(t: X))] for every

bounded measurable function f on &' (Z%).

Let us denote by Z(%'(Z%)) the set of all probability measures on
F (2. pe P (P (Z)) is called a reversible stationary state of (X(¢),
if it satisfies the following condition ;

PX) XE.?’/(Zd)

439 (p@0 B X180 = (@0 ELex()1 720

hold for all bounded measurable functions f and g on &' (Z,).
From now on, we shall suppose Assumption [C] and the following;
(4.34) there exist some constant A satisfying A > >} ¢; and a constant B

i€Z

such that

2@ (x) =Ax*—B for any xR, and i Z.
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Then, we can define Gibbs states associated with the potential functions
{U"}vcz" of (4.28), (cf. G. Royer [8]). In particular, we denote by

@ (D) the set of all Gibbs states associated with {U,} g4 Which are sup-
ported by &'(Z%).

Theorem 4. 3.
(1) %.(D) is not empty,
and
(i) peP(F(Z%) is a reversible stationary state of (X(t), Py)

and only if pe %.(9).

xes” (29’ if

Proof. This theorem is essentially due to H. Doss and G. Royer [2].
Since the reader can consult [2], we will omit the details of the proof.
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