Radiation conditions and spectral theory for 2-body Schrödinger operators with "oscillating" long-range potentials III

By
Kiyoshi Mochizuki and Jun Uchiyama

(Received July 11, 1980)

Introduction

In the recent works ([1], [2], [3]) we have developed a spectral theory for the Schrödinger operators $-\Delta+V(x)$, in an exterior domain Ω of \boldsymbol{R}^{n}, with some real "oscillating" long-range potentials $V(x)$. Roughly speaking, $V(x)$ is called "oscillating" long-range if it behaves as $r=|x| \rightarrow \infty$ like

$$
\begin{align*}
& V(x)=0(1), \partial_{r} V(x)=0\left(r^{-1}\right)\left(\partial_{r}=\partial / \partial r\right) \text { and } \tag{0.1}\\
& \partial_{r}^{2} V(x)+a V(x)=0\left(r^{-1-\delta}\right) \text { for some } a \geqq 0 \text { and } \delta>0 .
\end{align*}
$$

For example, the potential

$$
V(x)=\frac{c \sin b r}{r}(b, c \text { are non-zero real })
$$

satisfies the above conditions with $a=b^{2}$ and $\delta=1$.
In this paper we shall modify our previous results to the case of potentials which consist of the sum of several "oscillating" long-range potentials. Note that the last condition of (0.1) is not satisfied by the potential

$$
V(x)=\frac{c_{1} \sin b_{1} r}{r}+\frac{c_{2} \sin b_{2} r}{r}
$$

($b_{1}, b_{2}, c_{1}, c_{2}$ are non-zero real) unless $b_{1}=b_{2}$. So the results of [2] and [3] are not directly applied to this type of potentials, and it is necessary to make some modification.

For this purpose we return to the semi-abstract theory developed in the first half of [2], where we gave a sufficient condition under which the principle of limiting absorption are justified for the exterior boundary-value problem

$$
\left\{\begin{array}{l}
\{-\Delta+V(x)-\zeta\} u=f(x) \text { in } \Omega \tag{0.2}\\
B u=\left\{\begin{array}{c}
u \text { or } \\
\nu \cdot \nabla u+d(x) u
\end{array}\right\}=0 \text { on } \partial \Omega .
\end{array}\right.
$$

Here ζ is a complex number, $\nu=\left(\nu_{1}, \cdots, \nu_{n}\right)$ is the outer unit normal to the boundary $\partial \Omega, \nabla$ is the gradient in \boldsymbol{R}^{n} and $d(x)$ is a real-valued smooth function on $\partial \Omega$.

The condition is summarized as follows:
Assumption 1 ([2]). There exist real constants $\delta>0, \Lambda_{\dot{\delta}}$ and a real function $\gamma(\lambda)$ of $\lambda>\Lambda_{\dot{o}}$ such that

$$
\begin{equation*}
0<\gamma(\lambda)<\min \{4 \delta, 2\} \tag{0.3}
\end{equation*}
$$

and the following growth property holds: Let $u \in H_{\mathrm{loc}}^{2}(\bar{\Omega})$ satisfy

$$
\begin{equation*}
\{-\Delta+V(x)-\lambda\} u=0 \text { in } \Omega \tag{0.4}
\end{equation*}
$$

with $\lambda>\Lambda_{\dot{j}}$. If we have the inequality

$$
\begin{equation*}
\int_{B\left(R_{0}\right)}(1+r)^{-1+\beta}|u|^{2} d x<\infty \tag{0.5}
\end{equation*}
$$

for some $\beta>\gamma(\lambda) / 2$ and $R_{0}>0$, where $B\left(R_{0}\right)=\left\{x \in \Omega ;|x|>R_{0}\right\}$, then u must identically vanish in Ω.

Assumption 2 ([2]). Let

$$
\begin{equation*}
\Pi_{\hat{\delta}}^{ \pm}=\left\{\zeta=\lambda \pm i \tau \in C ; \lambda>\Lambda_{\bar{\delta}} \text { and } \tau \geqq 0\right\} . \tag{0.6}
\end{equation*}
$$

and let $K^{ \pm}$be a compact set in $\Pi_{\delta}^{ \pm}$. Then there exists an $R_{1}=R_{1}\left(K^{ \pm}\right)>R_{0}$ and a complex-valued function $k(x, \zeta)=k(x, \lambda \pm i \tau)$ which is continuous in $(x, \zeta) \in$ $B\left(R_{1}\right) \times K^{ \pm}$and satisfies the following conditions: for any $(x, \zeta) \in B\left(R_{1}\right) \times K^{ \pm}$

$$
\begin{equation*}
\left|V(x)-\zeta+\partial_{r} k(x, \zeta)+\frac{n-1}{r} k(x, \zeta)-k(x, \zeta)^{2}\right| \leqq C_{1} r^{-1-\delta} \tag{A2-1}
\end{equation*}
$$

$$
\begin{gather*}
|k(x, \zeta)| \leqq C_{2}, \tag{A2-2}\\
\mp \operatorname{Im} k(x, \lambda \pm i \tau) \geqq C_{3}, \tag{A2-3}\\
\operatorname{Re} k(x, \zeta)-\frac{n-1-\beta}{2 r} \geqq C_{4} r^{-1} . \tag{A2-4}\\
\left|\left(\nabla-\tilde{x} \partial_{r}\right) k(x, \zeta)\right| \leqq C_{5} r^{-1-\delta}(\tilde{x}=x /|x|) . \tag{A2-5}
\end{gather*}
$$

Here $C_{j}=C_{j}\left(K^{ \pm}\right)>0(j=1 \sim 5)$ and $\beta=\beta\left(K^{ \pm}\right)>0$ is chosen as follows:

$$
\begin{equation*}
\gamma(\lambda) / 2<\beta<2 \delta \quad \text { for any } \quad \zeta=\lambda \pm i \tau \in K^{ \pm} \quad \text { and } \quad \beta \leqq 1 . \tag{A2-6}
\end{equation*}
$$

We shall show that the above assumptions can be verified for a class of potentials consisting of the sum of several "oscillating" long-range potentials.

The main results of this paper will be summarized in $\S 1$ in three theorems. Theorem 1 which asserts the growth property of solutions of (0.4) is a consequence of [1]. Theorem 2 summarizes results concerning the principle of limiting absorption. We shall prove it in $\S 2$. Theorem 3 summarizes results concerning spectral representations for the selfadjoint realization of $-\Delta+V(x)$ in the Hilbert space $L^{2}(\Omega)$. An outline of the proof will be given in $\S 3$ (we can
follow the same line of proof of [3]). Finally, in $\S 4$ we shall give several examples.

§ 1. Conditions and results

Let Ω be an infinite domain in \boldsymbol{R}^{n} with smooth compact boundary $\partial \Omega$ lying inside some sphere $S\left(R_{0}\right)=\left\{x ;|x|=R_{0}\right\}$. We consider in Ω the Schrödinger operator $-\Delta+V(x)$, where Δ is the Laplacian and $V(x)$ is a potential function of the form

$$
\begin{equation*}
V(x)=V_{1}(x)+V_{s}(x)=\sum_{j=1}^{m} V_{1 j}(x)+V_{s}(x) \tag{1.1}
\end{equation*}
$$

$V_{s}(x)$ is a short-range potential and the $V_{1 j}(x)$ are "oscillating" long-range potentials. More precisely, we assume:
(V1) $V_{1}(x)$ is a real-valued function belonging to a Stummel class $Q_{\mu}(\mu>0)$ and $V_{s}(x)$ is a real-valued bounded measurable function in Ω. Moreover, the unique continuation property holds for both $-\Delta+V(x)$ and $-\Delta+V_{1}(x)$.
(V2) For some $0<\delta_{l} \leqq 1(l=0,1,2)$ and $0<\varepsilon_{j} \leqq 1(j=1, \cdots, m)$,

$$
\begin{gather*}
V_{1 j}(x)=0\left(r^{-\varepsilon_{j}}\right) \tag{i}\\
\partial_{r} V_{1 j}(x)=0\left(r^{-1}\right) \tag{ii}
\end{gather*}
$$

$$
\begin{equation*}
\partial_{r}^{2} V_{1 j}(x)+a_{j}(r) V_{1 j}(x)=0\left(r^{-1-\delta_{1}}\right) \tag{iii}
\end{equation*}
$$

(iv)

$$
\left(\nabla-\tilde{x} \partial_{r}\right) V_{1 j}(x)=0\left(r^{-1-\delta_{2}}\right)
$$

(v)

$$
\left(\nabla-\tilde{x} \partial_{r}\right) \partial_{r} V_{1 j}(x)=0\left(r^{-1-\delta_{1}}\right)
$$

$$
\begin{equation*}
\left(\nabla-\tilde{x} \partial_{r}\right) \cdot\left(\nabla-\tilde{x} \partial_{r}\right) V_{1 j}(x)=0\left(r^{-1-2 o_{2}}\right) \tag{vi}
\end{equation*}
$$

(vii)

$$
V_{s}(x)=0\left(r^{-1-\delta_{0}}\right)
$$

as $r=|x| \rightarrow \infty$, where the $a_{j}(r)(j=1, \cdots, m)$ are non-negative functions of $r>R_{0}$ satisfying
and

$$
\begin{gather*}
a_{1}(r) \geqq a_{2}(r) \geqq \cdots \geqq a_{m}(r) \geqq 0 \tag{1.2}\\
a_{j}(r)=0\left(r^{-\tau_{j}}\right), \quad a_{j}^{\prime}(r)=\frac{d}{d r} a_{j}(r)=0\left(r^{-\mu_{j}}\right) \tag{1.3}\\
a_{j}^{\prime \prime}(r)=\frac{d^{2}}{d r^{2}} a_{j}(r)=0\left(r^{-1-\delta_{1}+\varepsilon_{j}}\right)
\end{gather*}
$$

with $\tau_{j}=\max \left\{0,1+\delta_{1}-\varepsilon_{j}-\min \left\{\varepsilon_{j}\right\}\right\}$ and μ_{j} such that $\mu_{j} \geqq \delta_{1}$ and $\mu_{j}>1-\varepsilon_{j}$.
Remark 1.1. (V2-i) is stronger than the corresponding condition required in [2] and [3] (cf., (0.1)). (V2-vi) is used only to show (e) of Theorem 3 stated below (cf., [3]).

Lemma 1.1. If δ_{1} and $\left\{\varepsilon_{j}\right\}$ satisfy $\max \left\{\varepsilon_{j}\right\}-\min \left\{\varepsilon_{j}\right\} \leqq 1-\delta_{1}, 0<\delta_{1}, \varepsilon_{j} \leqq 1$, and

$$
a_{j}(r)=0\left(r^{-2+2 \varepsilon_{j}}\right), \quad a_{j}^{\prime}(r)=0\left(r^{-1}\right) \quad \text { and } \quad a_{j}^{\prime \prime}(r)=0\left(r^{-2}\right)
$$

$a_{j}(r)$ satisfies the condition (1.3).
Proof. Obvious from $2-2 \varepsilon_{j} \geqq 1+\delta_{1}-\varepsilon_{j}-\min \left\{\varepsilon_{j}\right\}, 1 \geqq \delta_{1}, 1>1-\varepsilon_{j}$ and $2>1$ $+\delta_{1}-\varepsilon_{j}$.
q. e. d.

Lemma 1.2. (cf., [2]; Remark 8.5). If δ_{1} and $\left\{\varepsilon_{j}\right\}$ are as above, and

$$
a_{j}(r)=0\left(r^{-2+2 \varepsilon_{j}}\right) \quad \text { and } \quad a_{j}^{\prime}(r), a_{j}^{\prime \prime}(r)=0\left(r^{-1-\delta_{1}+\varepsilon_{j}}\right),
$$

$a_{j}(r)$ satisfies the condition (1.3).
Proof. Obvious from $2-2 \varepsilon_{j} \geqq 1+\delta_{1}-\varepsilon_{j}-\min \left\{\varepsilon_{j}\right\}, 1+\delta_{1}-\varepsilon_{j} \geqq \delta_{1}$ and $1+\delta_{1}-\varepsilon_{j}$ $>1-\varepsilon_{j}$.
q. e.d.

In the following we put $\delta=\min \left\{\delta_{0}, \delta_{1}, \delta_{2}\right\}$ and

$$
a_{j}^{*}=\lim _{r \rightarrow \infty} \sup _{j}(r)(\geqq 0) .
$$

Then we have by (1.2)

$$
a_{1}^{*} \geqq a_{2}^{*} \geqq \cdots \geqq a_{m}^{*} \geqq 0 .
$$

For $V_{1 j}(x)$ satisfying (V2-i) and (V2-ii) we put

$$
\begin{equation*}
E(\gamma)=\frac{1}{\gamma} \lim _{r \rightarrow \infty} \sup \left\{r \partial_{r} V_{1}(x)+\gamma V_{1}(x)\right\}=\frac{1}{\gamma} \lim _{r \rightarrow \infty} \sup \left\{r \partial_{r} V_{1}(x)\right\}(\gamma>0) . \tag{1.4}
\end{equation*}
$$

Then obviously (cf., [2]; Lemma 8.2) $E(\gamma) \geqq \lim _{r \rightarrow \infty} V_{1}(x)=0$ and we have for $0<$ $\gamma \leqq 2$,

$$
\begin{align*}
& 0 \leqq E(2) \leqq E(\gamma) \leqq \frac{1}{\gamma} \max _{1 \leq i \leq m} \lim _{r \rightarrow \infty} \sup \left\{\sum_{j=1}^{l} r \partial_{r} V_{1 j}(x)\right\} \tag{1.5}\\
& \leqq \frac{1}{\gamma} \sum_{j=1}^{m} \lim _{r \rightarrow \infty} \sup \left\{r \partial_{r} V_{1 j}(x)\right\}<\infty .
\end{align*}
$$

The following theorem is already proved in [1] (Theorems 1, 2 and Remark 2).
Theorem 1. Suppose that $V(x)$ satisfies (V1), (V2-i), (V2-ii) and (V2-vii). Then we have:
(a) Let $\lambda>E(2)$ and $u \in H_{\mathrm{loc}}^{2}(\bar{\Omega})$ be a not identically vanishing solution of $\{-\Delta+V(x)-\lambda\} u=0$ in Ω. Then for any $\tilde{\gamma}$ such that

$$
0<\tilde{\gamma}<2 \text { and } E(2) \leqq E(\tilde{\gamma})<\lambda,
$$

we have

$$
\lim _{R \rightarrow \infty} R^{-1+\tilde{\gamma} / 2} \int_{R_{0}<x \mid<R}|u(x)|^{2} d x=\infty .
$$

(b) Any selfadjoint realization of $-\Delta+V(x)$ in $L^{2}(\Omega)$ has no eigenvalue in ($E(2), \infty)$.

We put for $\sigma>0$

$$
\begin{equation*}
\Lambda_{\sigma}=\frac{1}{\min \{4 \sigma, 2\}} \max _{1 \leqslant l \leq m} \limsup _{r \rightarrow \infty}\left\{\sum_{j=1}^{i} r \partial_{r} V_{1 j}(x)\right\}+\frac{1}{4} a_{1}^{*} \tag{1.6}
\end{equation*}
$$

and

$$
\Pi_{\delta}^{ \pm}=\left\{\zeta=\lambda \pm i \tau ; \lambda>\Lambda_{\delta} \quad \text { and } \quad \frac{1}{2}\left(\lambda-\frac{1}{4} a_{1}^{*}\right) \geqq \tau \geqq 0\right\} .
$$

For $\zeta \in \Pi_{\partial}^{ \pm}$let

$$
\begin{gather*}
\eta_{j}(r)=\frac{4 \zeta}{4 \zeta-a_{j}(r)} \text { and } \tag{1.7}\\
\eta(r) \cdot V_{1}(x)=\sum_{j=1}^{m} \eta_{j}(r) V_{1 j}(x) . \tag{1.8}
\end{gather*}
$$

Lemma 1.3. Let $K^{ \pm}$be any compact set of $\Pi_{\delta}^{ \pm}$. Then there exist $R_{2}=$ $R_{2}\left(K^{ \pm}\right)>R_{0}$ and $C=C\left(K^{ \pm}\right)>1$ such that

$$
\begin{aligned}
& 0 \leqq \pm \operatorname{Im}\left\{\zeta-\eta(r) \cdot V_{1}(x)\right\} \leqq C, \\
& C^{-1} \leqq \operatorname{Re}\left\{\zeta-\eta(r) \cdot V_{1}(x)\right\} \leqq C
\end{aligned}
$$

for any $(x, \zeta) \in B\left(R_{2}\right) \times K^{ \pm}$.
Proof. It follows from (1.7) and (1.8) that

$$
\begin{gathered}
\operatorname{Im}\left\{\zeta-\eta(r) \cdot V_{1}(x)\right\}=\operatorname{Im} \zeta\left\{1+\sum_{j=1}^{m} \frac{4 a_{j}(r) V_{1 j}(x)}{\left|4 \zeta-a_{j}(r)\right|^{2}}\right\}, \\
\operatorname{Re}\left\{\zeta-\eta(r) \cdot V_{1}(x)\right\}=\operatorname{Re} \zeta-V_{1}(x)-\sum_{j=1}^{m} \operatorname{Re} \frac{a_{j}(r) V_{1 j}(x)}{4 \zeta-a_{j}(r)} .
\end{gathered}
$$

Here by (V2-i), (1.5) and (1.6),

$$
\begin{equation*}
\lim _{r \rightarrow \infty} V_{1 j}(x)=0 \quad \text { and } \quad \operatorname{Re} \zeta>\frac{1}{4} a_{1}^{*} \geqq \frac{1}{4} \lim _{r \rightarrow \infty} \sup _{j}(r) \text { for any } j . \tag{1.9}
\end{equation*}
$$

Thus, noting the boundedness of $a_{j}(r)$, we have the assertion of the lemma.
q.e.d.

Let $\gamma(\lambda), \lambda>\Lambda_{\delta}$, be defined by

$$
r(\lambda)=\left\{\begin{array}{ccc}
\delta & \text { if } & \Lambda_{\delta}=0 \tag{1.10}\\
\frac{2 \Lambda_{\delta}}{\Lambda_{\delta}+\lambda} \min \{4 \delta, 2\} & \text { if } & \Lambda_{\delta}>0 .
\end{array}\right.
$$

Lemma 1.4. We have for any $\lambda>\Lambda_{\delta}$

$$
\begin{aligned}
& 0<\gamma(\lambda)<\min \{4 \delta, 2\}, \\
& E(\gamma(\lambda)) \leqq \frac{1}{\gamma(\lambda)} \max _{1 \leq l \leq m} \lim _{r \rightarrow \infty} \sup \left\{\sum_{j=1}^{l} r \partial_{r} V_{1 j}(x)\right\}+\frac{1}{4} a_{1}^{*} \\
& \leqq \frac{1}{2}\left(\Lambda_{\delta}+\lambda\right)<\lambda .
\end{aligned}
$$

Proof. The first assertion is obvious from the definition of $\gamma(\lambda)$. If $\Lambda_{\dot{i}}=0$, the second assertion is also obvious since $a_{1}^{*}=0$ and $\limsup _{r \rightarrow \infty}\left\{\sum_{j=1}^{l} r \partial_{r} V_{1 j}(x)\right\}=0$ $(l=1, \cdots, m)$. On the other hand, if $\Lambda_{\delta}>0$, we have noting (1.6)

$$
\begin{aligned}
& \frac{1}{r(\lambda)} \max _{1 s l s m} \lim \sup _{r \rightarrow \infty}\left\{\sum_{j=1}^{l} r \partial_{r} V_{1 j}\right\}+\frac{1}{4} a_{1}^{*} \\
& \quad=\frac{\Lambda_{\delta}+\lambda}{2 \Lambda_{\dot{\delta}}}\left(\Lambda_{\delta}-\frac{1}{4} a_{1}^{*}\right)+\frac{1}{4} a_{1}^{*} \leqq \frac{1}{2}\left(\Lambda_{\delta}+\lambda\right) .
\end{aligned}
$$

The lemma is proved.
q. e. d.

For $\mu \in \boldsymbol{R}$ and $G \subset \Omega$, let $L_{\mu}^{2}(G)$ denote the space of all functions $f(x)$ such that

$$
\|f\|_{\mu, G}^{2}=\int_{G}(1+r)^{2 \mu}|f(x)|^{2} d x<\infty .
$$

If $\mu=0$ or $G=\Omega$, the subscript μ or G will be omitted. Let $k(x, \zeta),(x, \zeta) \in$ $B\left(R_{2}\right) \times K^{ \pm}$, be defined by

$$
\begin{equation*}
k(x, \zeta)=-i \sqrt{\zeta-\eta(r) \cdot V_{1}(x)}+\frac{n-1}{2 r}+\frac{-\partial_{r}\left\{\eta(r) \cdot V_{1}(x)\right\}}{4\left\{\zeta-\eta(r) \cdot V_{1}(x)\right\}}, \tag{1.11}
\end{equation*}
$$

where $R_{2}=R_{2}(\zeta)$ and we take the branch $\operatorname{Im} \sqrt{ } \geqq 0$.
Definition. For solutions $u \in H_{\mathrm{loc}}^{2}(\bar{\Omega})$ of (0.2) with $\zeta \in \Pi_{\delta}^{ \pm}$, the outgoing (+) [or incoming (-] radiation condition at infinity is defined by

$$
\begin{equation*}
u \in L_{(-1-\alpha) / 2}^{2}(\Omega) \quad \text { and } \quad \partial_{r} u+k(x, \zeta) u \in L_{(-1+\beta) / 2}^{2}\left(B\left(R_{2}\right)\right), \tag{1.12}
\end{equation*}
$$

where $\alpha=\alpha(\zeta), \beta=\beta(\zeta)$ is a pair of positive constants such that

$$
\begin{equation*}
0<\alpha \leqq \beta \leqq 1, \frac{1}{2} \gamma(\operatorname{Re} \zeta)<\beta<2 \delta \quad \text { and } \quad \alpha \leqq 2 \delta-\beta \tag{1.13}
\end{equation*}
$$

A solution u of (0.2) which also satisfies the radiation condition (1.12)+ [or (1.12)_] is called an outgoing [incoming] solution.

We are now ready to state two theorems concerning the principle of limiting absorption and spectral representations for the Schrödinger operator $-\Delta+V(x)$.

Theorem 2. Suppose that $V(x)$ satisfies (V1), (V2-i)~(V2-v) and (V2-vii). Then we have:
(a) Let $K^{ \pm}$be a compact set of $\Pi_{\delta}^{ \pm}$, let $\gamma\left(K^{ \pm}\right)=\max _{\zeta \in K^{ \pm}} \gamma(\lambda)(\lambda=\operatorname{Re} \zeta)$, and let $\alpha=\alpha\left(K^{ \pm}\right), \beta=\beta\left(K^{ \pm}\right)$be a pair satisfying (1.13) with $\gamma(\lambda)$ replaced by $\gamma\left(K^{\star}\right)$. Then for any $\zeta=\lambda \pm i \tau \in K^{\star}$ and $f \in L_{(1+\beta) / 2}^{2}(\Omega)$, (0.2) has a unique outgoing [incoming] solution $u=u(x, \lambda \pm i \tau)=R_{\lambda \pm i-} f$, which also satisfies the inequalities

$$
\begin{gathered}
\|u\|_{(-1-\alpha) / 2} \leqq C\|f\|_{(1+\beta) / 2}, \\
\|\Gamma u+\tilde{x} k(x, \lambda \pm i \tau) u\|_{(-1+\beta) / 2, B\left(R_{3}\right)} \leqq C\|f\|_{(1+\xi) / 2},
\end{gathered}
$$

where $C=C\left(K^{*}\right)>0$ and $R_{3}=R_{3}\left(K^{\star}\right) \geqq R_{2}\left(K^{*}\right)$ are independent of f.
(b) Let $R_{:}^{*}: L_{(1+1) / 2}^{2}(\Omega) \rightarrow L_{(-1-\beta) / 2}^{2}(\Omega)$ be the adjoint of $R_{:}$. Then

$$
R_{i=i \div}^{*} f=R_{\text {; ;ir }} f \quad \text { for } \quad f \in L_{(1+\beta) / 2}^{2}(\Omega) \text {. }
$$

(c) $u=R ; f$ is continuous in $L_{(-1-\alpha) / 2}^{2}(\Omega)$ with respect to $(\zeta, f) \in K^{ \pm} \times L_{(1+\hat{\beta}) / 2}^{2}(\Omega)$.
(d) Let L be the selfadjoint operator in $L^{2}(\Omega)$ defined by

$$
\left\{\begin{array}{l}
\mathscr{D}(L)=\left\{u \in H^{2}(\Omega) ;\left.B u\right|_{\partial \Omega}=0\right\} \\
L u=-\Delta u+V(x) u \quad \text { for } \quad u \in \mathscr{D}(L),
\end{array}\right.
$$

and let $\{\mathcal{E}(\lambda) ; \lambda \in \boldsymbol{R}\}$ be its spectral measure. Then for any Borel set $e \Subset\left(\Lambda_{\hat{\delta}}, \infty\right)$, $f \in L_{(1+\beta) / 2}^{2}(\Omega)$ and $g \in L_{(1+\alpha) / 2}^{2}(\Omega)$ (α, β is chosen as above with $\left.K^{ \pm}=\bar{e}\right)$ we have

$$
(\mathcal{E}(e) f, g)=\frac{1}{2 \pi i} \int_{e}\left(\left\{R_{\lambda+i 0}-R_{\lambda-i 0}\right\} f, g\right) d \lambda,
$$

where (,) denotes the inner product in $L^{2}(\Omega)$, or more generally, the duality between $L_{(-1-\alpha) / 2}^{2}(\Omega)$ and $L_{(1+\alpha) / 2}^{2}(\Omega)$. Namely, the part of L in $\mathcal{E}\left(\left(\Lambda_{\dot{\delta}}, \infty\right)\right) L^{2}(\Omega)$ is absolutely continuous with respect to the Lebesgue measure.

Theorem 3. Suppose that $V(x)$ satisfies (V1) and (V2) with $\delta_{l}>1 / 2(l=1,2)$. Then we have:
(a) For any $\varepsilon>0$ and $\lambda \geqq \Lambda_{\delta}+\varepsilon$ there exist bounded linear operators $\mathscr{F}_{ \pm}(\lambda)$: $L_{(1+2 \delta) / 2}^{2}(\Omega) \rightarrow L^{2}\left(S^{n-1}\right)\left(S^{n-1}=\{x ;|x|=1\}\right)$ such that each $\mathscr{F}_{ \pm}(\lambda) f \in L^{2}\left(S^{n-1}\right)$ depends continuously on $(\lambda, f) \in\left(\Lambda_{\dot{\delta}}+\varepsilon, \infty\right) \times L_{(1+2 \delta) / 2}^{2}(\Omega)$, and the following relations hold:

$$
\begin{gathered}
\left(\mathscr{F}_{ \pm}(\lambda) f, \mathscr{F}_{ \pm}(\lambda) g\right)_{L^{2}(S n-1)}=\frac{1}{2 \pi i}\left(R_{\lambda+i 0} f-R_{\lambda-i 0} f, g\right), \\
(\mathcal{E}(e) f, g)=\int_{e}\left(\mathscr{F}_{ \pm}(\lambda) f, \mathscr{I}_{ \pm}(\lambda) g\right)_{L^{2}(S n-1)} d \lambda, e \Subset\left(\Lambda_{\dot{\delta}}+\varepsilon, \infty\right) .
\end{gathered}
$$

(b) The operators $\mathscr{F}_{ \pm}: L_{(1+2 \delta) / 2}^{2}(\Omega) \rightarrow L^{2}\left(\left(\Lambda_{\delta}+\varepsilon, \infty\right) \times S^{n-1}\right)$ defined by $\left[\mathscr{F}_{ \pm} f\right](\lambda, \tilde{x})=\left[\mathscr{F}_{ \pm}(\lambda) f\right](\tilde{x})$ can be uniquely extended by continuity to partial isometric operators from $L^{2}(\Omega)$ into $L^{2}\left(\left(\Lambda_{\dot{j}}+\varepsilon, \infty\right) \times S^{n-1}\right)$ with initial set $\mathcal{E}\left(\left(\Lambda_{\dot{\partial}}+\varepsilon, \infty\right)\right) L^{2}(\Omega)$.
(c) For any bounded Borel function $b(\lambda)$ on $\left(\Lambda_{\dot{\delta}}+\varepsilon, \infty\right)$, the following relation holds:

$$
\mathscr{F}_{ \pm} b(L)=b(\lambda) \mathscr{F}_{ \pm} .
$$

(d) Let $\mathscr{F}_{ \pm}^{*}: L^{2}\left(\left(\Lambda_{i}+\varepsilon, \infty\right) \times S^{n-1}\right) \rightarrow L^{2}(\Omega)$ be the adjoint operators of $\mathscr{F}_{ \pm}$. Then each \mathscr{F}^{*} admits the representation

$$
\mathscr{F}_{*}^{*} \hat{f}=\underset{N \rightarrow \infty}{\operatorname{strong}} \lim \int_{\Lambda_{\hat{0}^{+\varepsilon}}}^{N} \mathscr{F}_{ \pm}(\lambda)^{*} \hat{f}(\lambda) d \lambda \text { in } L^{2}(\Omega)
$$

for any $\hat{f} \in L^{2}\left(\left(\Lambda_{\dot{j}}+\varepsilon, \infty\right) \times S^{n-1}\right)$, where $\mathscr{F}_{ \pm}(\lambda)^{*}: L^{2}\left(S^{n-1}\right) \rightarrow L_{(-1-2 \bar{n}) / 2}^{2}(\Omega)$ is the adjoint of $\mathscr{F}_{ \pm}(\lambda)$.
(e) Let $\tilde{\delta}=\min \left\{\hat{o}, 2 \tilde{o}_{2}-1\right\}$. Then each $\mathscr{F}_{ \pm}$maps $\mathcal{E}\left(\left(A_{\dot{\delta}}+\varepsilon, \infty\right)\right) L^{2}(\Omega)$ onto $L^{2}\left(\left(\Lambda_{\tilde{\delta}}+\varepsilon, \infty\right) \times S^{n-1}\right)$, that is, $\mathscr{F}_{ \pm}$restricted on $\mathcal{E}\left(\left(\Lambda_{\tilde{\delta}}+\varepsilon, \infty\right)\right) L^{2}(\Omega)$ is a unitary operator.

Remark 1.2. In [3] we neglect the fact that the construction of $\mathscr{F}_{ \pm}(\lambda)$ depends in general on ε. So the above is a correction of [3]. Note that for two $\varepsilon, \varepsilon^{\prime}>0$ and $\lambda>A_{i}+\max \left\{\varepsilon, \varepsilon^{\prime}\right\}$, the corresponding operators $\mathscr{F}_{=}(\lambda)$ and $\mathscr{F}_{ \pm}^{\prime}(\lambda)$ are unitary equivalent to each other in $L^{2}\left(S^{n-1}\right)$.

§ 2. Proof of Theorem 2

As we see in [2] (Theorems 1~5), all the assertions of Theorem 2 hold true under Assumptions 1 ([2]) and 2 ([2]) stated in the introduction of this article. So to complete the proof, we have only to check that these assumptions are satisfied by $\Lambda_{\tilde{j}}, \gamma(\lambda)$ and $k(x, \zeta)$ given in the previous section.

Assumption 1 ([2]) directly follows from Theorem 1 and the definition of Λ_{δ} and $\gamma(\lambda)$. In fact, let $\lambda>\Lambda_{\bar{\delta}}$ and u satisfy (0.4) and (0.5) for some $\beta>\gamma(\lambda) / 2$ (without loss of generality we can assume $\beta \leqq 1$). Then we have

$$
\begin{gathered}
R^{-1+\gamma(\lambda) / 2} \int_{R_{0}<|x|<R}|u(x)|^{2} d x \leqq R^{-\beta+\gamma(\lambda) / 2} \int_{R_{0}<|x|<R} r^{-1+\beta}|u(x)|^{2} d x \\
\rightarrow 0 \text { as } R \rightarrow \infty .
\end{gathered}
$$

Since $\tilde{\gamma}=\gamma(\lambda)$ satisfies the condition of Theorem 1 (a) by Lemma 1.4, this and Theorem 1 (a) lead $u=0$.

Next let us verify Assumption $2([2])$ for $k(x, \zeta)$ restricted in $(x, \zeta) \in B\left(R_{2}\right) \times$ $K^{ \pm}$, where $K^{ \pm}$is any compact set in $\Pi_{\partial}^{ \pm}$, and $R_{2}=R_{2}\left(K^{ \pm}\right)$is what is given in Lemma 1.3. We choose $\gamma\left(K^{ \pm}\right)$and $\beta\left(K^{ \pm}\right)$as in (a) of Theorem 2. Then (A2-6) is obviously satisfied by this $\beta=\beta\left(K^{ \pm}\right)$. Further, the continuity of $k(x, \zeta)$ in $(x, \zeta) \in B\left(R_{2}\right) \times K^{ \pm}$is easily known by Lemma 1.3. So it remains only to verify (A2-1)~(A2-5).

For this purpose we prepare a lemma.
Lemma 2.1. There exist some constant $C>0$ such that for any $(x, \zeta) \in B\left(R_{2}\right)$ $\times K^{ \pm}$we have

$$
\begin{gathered}
\left|\eta_{j}(r) V_{1 j}(x)\left\{1-\eta_{k}(r)\right\} V_{1 k}(x)\right| \leqq C r^{-1-\delta}(j, k=1, \cdots, m), \\
\left|\partial_{r}\left\{\eta(r) \cdot V_{1}(x)\right\}\right| \leqq C r^{-1}, \\
\left|\partial_{r}^{2}\left\{\eta_{j}(r) V_{1 j}(x)\right\}+\eta_{j}(r) a_{j}(r) V_{1 j}(x)\right| \leqq C r^{-1-\delta}, \\
\left|\left(\nabla-\tilde{x} \partial_{r}\right)\left\{\eta(r) \cdot V_{1}(x)\right\}\right| \leqq C r^{-1-\delta}, \\
\left|\left(\nabla-\tilde{x} \partial_{r}\right) \partial_{r}\left\{\eta(r) \cdot V_{1}(x)\right\}\right| \leqq C r^{-1-\delta} .
\end{gathered}
$$

Proof. The above inequalities respectively follow from (V2-i) $\sim(\mathrm{V} 2-\mathrm{v})$ if we note that

$$
\begin{aligned}
& \eta_{j}(r)=0(1), 1-\eta_{j}(r)=0\left(r^{--j}\right), \eta_{j}^{\prime}(r)=0\left(r^{-\mu_{j}}\right) \quad \text { and } \\
& \eta_{j}^{\prime \prime}(r)=0\left(r^{-1-\delta_{1}+\varepsilon_{j}}\right)+0\left(r^{-2 \mu_{j}}\right)=0\left(r^{-1-\delta+\varepsilon_{j}}\right)
\end{aligned}
$$

Now, (A2-2) and (A2-3) easily follow from Lemma 1.3 and Lemma 2.1 since we have

$$
\begin{aligned}
& |k(x, \zeta)| \leqq\left|\sqrt{\zeta-\eta(r) \cdot V_{1}(x)}\right|+\frac{n-1}{2 r}+\left|\frac{-\partial_{r}\left\{\eta(r) \cdot V_{1}(x)\right\}}{4\left\{\zeta-\eta(r) \cdot V_{1}(x)\right\}}\right|, \\
& \mp \operatorname{Im} k(x, \zeta)= \pm \operatorname{Re} \sqrt{\zeta-\eta(r) \cdot V_{1}(x)} \mp \operatorname{Im}\left[\frac{-\partial_{r}\left\{\eta(r) \cdot V_{1}(x)\right\}}{4\left\{\zeta-\eta(r) \cdot V_{1}(x)\right\}}\right] .
\end{aligned}
$$

Note that

$$
\begin{aligned}
\left(\nabla-\tilde{x} \partial_{r}\right) k(x, \zeta)= & \frac{i\left(\nabla-\tilde{x} \partial_{r}\right)\left(\eta \cdot V_{1}\right)}{2 \sqrt{\zeta-\eta \cdot V_{1}}}+\frac{-\left(\nabla-\tilde{x} \partial_{r}\right) \partial_{r}\left(\eta \cdot V_{1}\right)}{4\left(\zeta-\eta \cdot V_{1}\right)} \\
& -\frac{\partial_{r}\left(\eta \cdot V_{1}\right)\left(\nabla-\tilde{x} \partial_{r}\right)\left(\eta \cdot V_{1}\right)}{4\left(\zeta-\eta \cdot V_{1}\right)^{2}} .
\end{aligned}
$$

Then (A2-5) also follows from Lemma 2.1.
Next we prove (A2-1). It follows from (1.11) that (cf., Appendix of [2])

$$
\begin{aligned}
V(x) & -\zeta+\partial_{r} k+\frac{n-1}{r} k-k^{2} \\
& =V_{1}-\eta \cdot V_{1}+\frac{-\partial_{r}^{2}\left(\eta \cdot V_{1}\right)}{4\left(\zeta-\eta \cdot V_{1}\right)}+\frac{(n-1)(n-3)}{4 r^{2}}-\frac{5\left\{\partial_{r}\left(\eta \cdot V_{1}\right)\right\}^{2}}{16\left(\zeta-\eta \cdot V_{1}\right)^{2}}+V_{s} .
\end{aligned}
$$

Since we have

$$
\begin{aligned}
V_{1}-\eta \cdot V_{1}+\frac{-\partial_{r}^{2}\left(\eta \cdot V_{1}\right)}{4\left(\zeta-\eta \cdot V_{1}\right)}= & \frac{1}{4\left(\zeta-\eta \cdot V_{1}\right)}\left[\sum_{j=1}^{m}\left\{4 \zeta\left(1-\eta_{j}\right) V_{1 j}-\partial_{r}^{2}\left(\eta_{j} V_{1 j}\right)\right\}\right. \\
& \left.-\sum_{j, k=1}^{m} 4\left(1-\eta_{j}\right) \eta_{k} V_{1 j} V_{1 k}\right]
\end{aligned}
$$

and

$$
4 \zeta\left(1-\eta_{j}\right) V_{1 j}-\partial_{r}^{2}\left(\eta_{j} V_{1 j}\right)=-\left\{\partial_{r}^{2}\left(\eta_{j} V_{1 j}\right)+\eta_{j} a_{j}(r) V_{1 j}\right\},
$$

(A2-1) follows from Lemma 2.1 and (V2-vii).
Lastly, we prove (A2-4).

$$
\operatorname{Re} k(x, \zeta)-\frac{n-1-\beta}{2 r}=\frac{1}{4}\left\{\operatorname{Re}\left[\frac{-\partial_{r}\left(\eta \cdot V_{1}\right)}{\zeta-\eta \cdot V_{1}}\right]+\frac{\gamma}{r}\right\}+\operatorname{Im} \sqrt{\zeta-\eta \cdot V_{1}}+\frac{2 \beta-\gamma}{4 r} .
$$

Since $2 \beta>\gamma$ by definition and $\operatorname{Im} \sqrt{\zeta-\eta \cdot V_{1} \geqq} 0$, we have only to show that there exists an $R_{4}=R_{4}\left(K^{\ddagger}\right) \geqq R_{2}$ such that

$$
\begin{equation*}
\operatorname{Re}\left[\frac{-\partial_{r}\left(\eta \cdot V_{1}\right)}{\zeta-\eta \cdot V_{1}}\right]+\frac{\gamma}{r} \geqq 0 \quad \text { for any } \quad(x, \zeta) \in B\left(R_{4}\right) \times K^{ \pm} . \tag{2.1}
\end{equation*}
$$

We have

$$
\begin{aligned}
& \begin{aligned}
\frac{r\left|\zeta-\eta \cdot V_{1}\right|^{2}}{\gamma|\zeta|^{2}} & \left\{\operatorname{Re}\left[\frac{-\partial_{r}\left(\eta \cdot V_{1}\right)}{\zeta-\eta \cdot V_{1}}\right]+\frac{\gamma}{r}\right\} \\
= & \frac{\left|\zeta-\eta \cdot V_{1}\right|^{2}}{|\zeta|^{2}} \operatorname{Re}\left[\frac{\zeta-(r / \gamma) \partial_{r}\left(\eta \cdot V_{1}\right)-\eta \cdot V_{1}}{\zeta-\eta \cdot V_{1}}\right] \\
= & 1-\frac{1}{\gamma} \operatorname{Re}\left\{\sum_{j=1}^{m} \frac{r \partial_{r} V_{1 j}(x)}{\zeta-(1 / 4) a_{j}(r)}\right\}+|\zeta|^{-2} I ;
\end{aligned} \\
& I=\operatorname{Re}\left\{-\frac{\bar{\zeta}}{\gamma} \sum_{j=1}^{m} r \eta_{j}^{\prime} V_{1 j}+\frac{r}{\gamma} \partial_{r}\left(\eta \cdot V_{1}\right) \overline{\eta \cdot V_{1}}-2 \operatorname{Re}\left[\bar{\zeta} \eta \cdot V_{1}\right]+\left|\eta \cdot V_{1}\right|^{2}\right\} .
\end{aligned}
$$

Noting $K^{ \pm} \Subset \Pi_{\delta}^{ \pm}$, we can choose a constant $\varepsilon>0$ to satisfy

$$
\begin{equation*}
\varepsilon(3+\varepsilon)(1+\varepsilon)^{-1} \leqq \min _{\zeta \in K^{ \pm}} \frac{\lambda-\Lambda_{\delta}}{2 \lambda-(1 / 2) a_{1}^{*}} \quad(\lambda=\operatorname{Re} \zeta) . \tag{2.2}
\end{equation*}
$$

We fix such an ε. Since $\zeta=\lambda \pm i \tau \in K^{ \pm} \Subset \Pi_{o}^{ \pm}$satisfies $(1 / 2)\left(\lambda-(1 / 4) a_{1}^{*}\right) \geqq \tau \geqq 0$, there exists an $R_{5}=R_{5}\left(K^{ \pm}\right) \geqq R_{4}$ such that for any $(x, \zeta) \in B\left(R_{5}\right) \times K^{ \pm}$,

$$
\begin{align*}
& 0<\operatorname{Re} \frac{1}{\zeta-(1 / 4) a_{m}(r)} \leqq \operatorname{Re} \frac{1}{\zeta-(1 / 4) a_{m-1}(r)} \leqq \cdots \tag{2.3}\\
& \cdots \leqq \operatorname{Re} \frac{1}{\zeta-(1 / 4) a_{1}(r)} \leqq \frac{1+\varepsilon}{\lambda-(1 / 4) a_{1}^{*}}, \\
&|\zeta|^{-2}|I|<\varepsilon, \tag{2.4}
\end{align*}
$$

where in the last inequality (2.4) we have used (1.7), Lemmas $1.3,2.1$ and the fact that $\mu_{j}>1-\varepsilon_{j}$ in (1.3). Note here

$$
\limsup _{r \rightarrow \infty} \max _{1 \leq l \leq m} \sum_{j=1}^{l} r \partial_{r} V_{1 j}(x)=\max _{1 \leq l \leq m} \limsup _{r \rightarrow \infty} \sum_{j=1}^{l} r \partial_{r} V_{1 j}(x) .
$$

Then we see that there exists an $R_{6}=R_{6}\left(K^{ \pm}\right) \geqq R_{5}$ such that for any $x \in B\left(R_{6}\right)$

$$
\begin{equation*}
\max _{1 \leq\lfloor\leq m} \sum_{j=1}^{l} r \partial_{r} V_{1 j}(x) \leqq \max _{1 \leq l \leq m} \lim _{r \rightarrow \infty} \sup _{j=1}^{l} \sum_{j=1} r \partial_{r} V_{1 j}(x)+\gamma \varepsilon \min _{\zeta \in K^{ \pm}}\left(\lambda-(1 / 4) a_{1}^{*}\right) . \tag{2.5}
\end{equation*}
$$

(2.3), (2.5) and Abel's theorem imply that (cf., also (1.5))

$$
\begin{align*}
& \frac{1}{\gamma} \operatorname{Re}\left\{\sum_{j=1}^{m} \frac{r \partial_{r} V_{1 j}(x)}{\zeta-(1 / 4) a_{j}(r)}\right\} \leqq \operatorname{Re} \frac{1}{\zeta-(1 / 4) a_{1}(r)} \frac{1}{\gamma} \max _{1 \leq l s m} \sum_{j=1}^{l} r \partial_{r} V_{1 j}(x) \tag{2.6}\\
& \leqq \frac{1+\varepsilon}{\left(\lambda-(1 / 4) a_{1}^{*}\right) \gamma}\left\{\max _{1 \leq \leq m} \limsup _{r \rightarrow \infty} \sum_{j=1}^{l} r \partial_{r} V_{1 j}(x)+\gamma \varepsilon \min _{\zeta \in K^{ \pm}}\left(\lambda-\frac{1}{4} a_{1}^{*}\right)\right\} .
\end{align*}
$$

Since

$$
\frac{1}{r} \max _{1 \leq l \leq m} \lim _{r \rightarrow \infty} \sup _{j=1}^{i} r \partial_{r} V_{1 j}(x) \leqq \frac{1}{2}\left(\lambda+\Lambda_{\delta}-\frac{1}{2} a_{1}^{*}\right)
$$

by Lemma 1.4, we have from (2.4), (2.6) and (2.2)

$$
\begin{aligned}
& 1-\frac{1}{r} \operatorname{Re}\left\{\sum_{j=1}^{m} \frac{r \partial_{r} V_{1 j}(x)}{\zeta-(1 / 4) a_{j}(r)}\right\}+|\zeta|^{-2} I \\
& \quad \geqq\left\{1-\frac{\lambda+\Lambda_{\delta}-(1 / 2) a_{1}^{*}}{2 \lambda-(1 / 2) a_{1}^{*}}\right\}(1+\varepsilon)-\varepsilon(3+\varepsilon) \geqq 0
\end{aligned}
$$

for any $(x, \zeta) \in B\left(R_{6}\right) \times K^{ \pm}$. This proves (2.1), and we have (A2-4).
Remark 2.1. The condition (1.2) on $\left\{a_{j}(r)\right\}$ is used only to show (2.6) (Abel's theorem). Note that Assumptions 1 and 2 can be verified without (1.2) if we replace $\Lambda_{\hat{\delta}}$ (see (1.6)) by the following

$$
\tilde{\Lambda}_{\bar{i}}=\frac{1}{\min \{4 \tilde{\delta}, 2\}} \sum_{j=1}^{m} \lim _{r \rightarrow \infty} \sup \left\{r \partial_{r} V_{1 j}(x)\right\}+\frac{1}{4} \max \left\{a_{j}^{*}\right\} .
$$

Here, in general, $\Lambda_{\hat{o}} \leqq \tilde{\Lambda}_{\hat{\delta}}$.

§ 3. Sketch of proof of Theorem 3

On the bases of the principle of limiting absorption (Theorem 2), we can prove Theorem 3 by the same argument as in [3]. Here, in this section, we shall sketch an outline of the proof.

First we restrict ourselves to the case $V_{s}(x)=0$. Then $\Lambda_{\dot{j}}=\Lambda_{1 / 2}$ since we have assumed $\delta_{l}>1 / 2(l=1,2)$ in (V2) (we can choose $\delta_{0}=1$ in this case). For $f \in L_{1}^{2}(\Omega)$ and $\lambda>\Lambda_{1 / 2}+\varepsilon(\varepsilon>0)$, let $R_{1, \lambda \pm i 0} f$ be the outgoing [incoming] solution of (0.2) with $V(x)=V_{1}(x)$ and $\zeta=\lambda \pm i 0$. We choose $R_{7}=R_{7}(\varepsilon)>R_{0}$ so large that

$$
\lambda-\eta(r) \cdot V_{1}(x) \geqq C>0 \quad \text { for } \quad(x, \lambda) \in B\left(R_{7}\right) \times\left(\Lambda_{1 / 2}+\varepsilon, \infty\right),
$$

and define the function $\rho(x, \lambda \pm i 0)=\rho(x, \lambda \pm i 0 ; \varepsilon)$ as follows:

$$
\begin{align*}
& \rho(x, \lambda \pm i 0)=\int^{r} k(s \tilde{x}, \lambda \pm i 0) d s \tag{3.1}\\
& \quad=\mp i \int_{R_{\tau}}^{r} \sqrt{\lambda-\eta(s) \cdot V_{1}(s \tilde{x})} d s+\frac{n-1}{2} \log r+\frac{1}{4} \log \left\{\lambda-\eta(r) \cdot V_{1}(x)\right\} .
\end{align*}
$$

Then as we see in Propositions 1.2 and 2.1 of [3], there exists a sequence r_{p} $=r_{p}(\lambda, f) \rightarrow \infty($ as $p \rightarrow \infty)$ such that

$$
\left\{\frac{1}{\sqrt{\pi}} e^{\rho\left(r_{p} \cdot \lambda \pm i 0\right)}\left[R_{1, \lambda \pm i 0} f\right]\left(r_{p} \cdot\right)\right\}
$$

strongly converges in $L^{2}\left(S^{n-1}\right)$. We define the operator $\mathscr{F}_{1, \pm}(\lambda)=\mathscr{F}_{1, \pm}(\lambda, \varepsilon)$: $L_{1}^{2}(\Omega) \rightarrow L^{2}\left(S^{n-1}\right)$ as follws:

$$
\begin{equation*}
\mathscr{F}_{1, \pm}(\lambda) f=\operatorname{strong} \underset{p \rightarrow \infty}{\lim } \frac{1}{\sqrt{\pi}} e^{\rho\left(r_{p} \cdot \lambda \pm i 0\right)}\left[R_{1, \lambda \pm i 0} f\right]\left(r_{p} \cdot\right) \text { in } L^{2}\left(S^{n-1}\right) . \tag{3.2}
\end{equation*}
$$

Then $\mathscr{I}_{1, \pm}(\lambda)$ is independent of the choice of $\left\{r_{p}\right\}$, and becomes a bounded operator from $L_{1}^{2}(\Omega)$ to $L^{2}\left(S^{n-1}\right)$ which depends continuously on $\lambda>\Lambda_{1 / 2}+\varepsilon$ ([3], Lemma 2.4). Further, we have for $f \in L_{1}^{2}(\Omega)$ and $\lambda>\Lambda_{1 / 2}$ ([3], Proposition 1.3)

$$
\begin{equation*}
\left\|\mathscr{F}_{1, \pm}(\lambda) f\right\|_{L^{2}(S n-1)}^{2}=\frac{1}{2 \pi i}\left(R_{1, \lambda+i 0} f-R_{1, \lambda-i 0} f, f\right) \tag{3.3}
\end{equation*}
$$

By use of this $\mathscr{F}_{1, \pm}(\lambda)$, the operator $\mathscr{F}_{ \pm}(\lambda): L_{(1+2 \bar{\delta}) / 2}^{2}(\Omega) \rightarrow L^{2}\left(S^{n-1}\right)(\delta=$ $\left.\min \left\{\delta_{0}, \partial_{1}, \delta_{2}\right\}\right)$ will be defined by

$$
\begin{equation*}
\mathscr{F}_{ \pm}(\lambda)=\mathscr{F}_{1, \pm}(\lambda)\left\{1-V_{s} R_{\lambda \pm i 0}\right\}, \quad \lambda>\Lambda_{j}+\varepsilon\left(\geqq \Lambda_{1 / 2}+\varepsilon\right) . \tag{3.4}
\end{equation*}
$$

In order to verify that (3.4) is well defined as a bounded operator from $L_{(1+2 \delta) / 2}^{2}(\Omega)$ to $L^{2}\left(S^{n-1}\right)$, we have to show that for any $\lambda>\Lambda_{\dot{j}}+\varepsilon, \mathscr{F}_{1, \pm}(\lambda)$ can be extended to a bounded operator from $L_{(1+\beta) / 2}^{2}(\Omega)$ to $L^{2}\left(S^{n-1}\right)$, where β is any constant satisfying (1.13). This is possible by (3.3) and Theorem 2 (a) with $V(x)=V_{1}(x)$.

Now, as is proved in Theorems 2.1 and 3.1 of [3], we can have the assertions (a) $\sim(\mathrm{d})$ of Theorem 3 with this $\mathscr{I}_{ \pm}(\lambda)$.

To establish the assertion (e), we follow the argument of the proof of Theorem 4.1 of [3]. Namely, if $\hat{f} \in L^{2}\left(\left(\Lambda_{\dot{\delta}}+\varepsilon, \infty\right) \times S^{n-1}\right)$ is orthogonal to the
range of $\mathscr{F}_{ \pm}$, we can have for any smooth $\phi \in L^{2}\left(S^{n-1}\right)$,

$$
\begin{equation*}
(\hat{f}(\lambda, \cdot), \phi)_{L^{2}(S n-1)}=0 \quad \text { a. e. } \quad \lambda>\Lambda_{\tilde{\delta}}+\varepsilon, \tag{3.5}
\end{equation*}
$$

where $\tilde{\delta}=\min \left\{\delta, 4 \delta_{2}-2\right\}$. Note that to obtain (3.5) we have used the following relation satisfied by any $f \in L_{(1+\beta) / 2}^{2}(\Omega), \phi \in L^{2}\left(S^{n-1}\right)$ and $\lambda>\Lambda_{i}+\varepsilon$:

$$
\begin{equation*}
\left(\mathscr{F}_{1, \pm}(\lambda) f, \phi\right)_{L^{2}(S n-1)}=\lim _{p \rightarrow \infty}\left(\frac{1}{\sqrt{\pi}} e^{\rho\left(r_{p}, \lambda \pm i 0\right)}\left[R_{1, \lambda \pm i 0} f\right]\left(r_{p} \cdot\right), \phi\right)_{L^{2}(S n-1)} \tag{3.6}
\end{equation*}
$$

(cf., [3]; Lemma 3.2 and Proposition 1.4).

§4. Examples

I. We consider potentials of the form

$$
\begin{equation*}
V(x)=\sum_{j=1}^{m} \frac{c_{j} \sin b_{j} r^{\varepsilon_{j}}}{r^{\varepsilon} j}+0\left(r^{-1-\delta_{0}}\right) \text { near infinity, } \tag{4.1}
\end{equation*}
$$

where b_{j}, c_{j} are non-zero real, $0<\varepsilon_{m} \leqq \varepsilon_{m-1} \leqq \cdots \leqq \varepsilon_{1} \leqq 1$ and $0<\delta_{0} \leqq 1$. If $\varepsilon_{k}=$ $\varepsilon_{k+1}=\cdots=\varepsilon_{k+p}$, the order of summation is chosen like $\left|b_{k}\right| \geqq\left|b_{k+1}\right| \geqq \cdots \geqq\left|b_{k+p}\right|$. We put

$$
V_{1 j}(x)=V_{1 j}(r)=\frac{c_{j} \sin b_{j} r_{j}^{\varepsilon_{j}}}{r_{j}^{\varepsilon}}, \quad a_{j}(r)=\varepsilon_{j}^{2} b_{j}^{2} r^{-2+2 \varepsilon_{j}} .
$$

Then it follows that

$$
\begin{gathered}
V_{1 j}(r)=0\left(r^{-\varepsilon_{j}}\right), \\
V_{1 j}^{\prime}(r)=\frac{\varepsilon_{j} b_{j} c_{j} \cos b_{j} r^{\varepsilon_{j}}}{r}+0\left(r^{\left.-1-\varepsilon_{j}\right)}\right)=0\left(r^{-1}\right), \\
V_{1 j}^{\prime \prime}(r)=\frac{-\varepsilon_{j}^{2} b_{j}^{2} c_{j} \sin b_{j} r^{\varepsilon_{j}}}{r^{2-s_{j}}}+0\left(r^{-2}\right)=-a_{j}(r) V_{1 j}(r)+0\left(r^{-2}\right) .
\end{gathered}
$$

Thus, choosing $\delta_{1}=1-\varepsilon_{1}+\varepsilon_{m}$ and $\delta_{2}=1$, we see that $V_{1 j}(r)$ satisfies (V2-i)~ (V2-iii) and $a_{j}(r)$ satisfies (1.2) and (1.3) (see Lemma 1.1). Note that in this case, (V2-iv) $\sim(V 2-v i)$ are trivially satisfied by $V_{1 j}(r)$. Since $\delta=\tilde{\delta}=\min \left\{\delta_{0}, 1-\right.$ $\left.\varepsilon_{1}+\varepsilon_{m}\right\}$ and

$$
\lim _{r \rightarrow \infty} \sup _{r \rightarrow \infty} V_{1 j}^{\prime}(r)=\varepsilon_{j}\left|b_{j} c_{j}\right|,
$$

it follows from (1.4), (1.5) and (1.6) that

$$
\begin{gather*}
E(2) \leqq \frac{1}{2} \sum_{j=1}^{m} \varepsilon_{j}\left|b_{j} c_{j}\right|, \tag{4.2}\\
\Lambda_{\tilde{\delta}}=\Lambda_{\tilde{\delta}} \leqq \frac{1}{\min \{4 \delta, 2\}} \sum_{j=1}^{m} \varepsilon_{j}\left|b_{j} c_{j}\right|+\frac{1}{4} \varepsilon_{1}^{2} b_{1}^{2} \lim _{r \rightarrow \infty} r^{-2+2 \varepsilon_{1}} \tag{4.3}
\end{gather*}
$$

Namely, we have the following results for the potential (4.1): $(E(2), \infty)$ is contained in the continuous spectrum of $L=-\Delta+V(x)$ (Theorem 1). $\left(\Lambda_{\delta}, \infty\right)$ is contained in the absolutely continuous spectrum of L (Theorem 2). If $1 / 2>\varepsilon_{1}-\varepsilon_{m}$, for any $\varepsilon>0$ there exists a unitary operator $\mathscr{F}_{ \pm}$(depending on ε) from $\mathcal{E}\left(\left(\Lambda_{\dot{\delta}}+\varepsilon\right.\right.$, $\infty) L^{2}(\Omega)$ onto $L^{2}\left(\left(\Lambda_{\dot{\partial}}+\varepsilon, \infty\right) \times S^{n-1}\right)$ which diagonalizes L (Theorem 3).

In (4.3) we have used the fact that $\varepsilon_{1}=\max \left\{\varepsilon_{j}\right\}$ and $\left|b_{1}\right|=\max \left\{\left|b_{k}\right| ; \varepsilon_{k}=\varepsilon_{1}\right\}$.
Remark 4.1. If $\varepsilon_{1}=1$, then we have

$$
\Lambda_{\bar{o}}=\Lambda_{\tilde{\delta}} \leqq \frac{1}{\min \{4 \delta, 2\}} \sum_{j=1}^{m} \varepsilon_{j}\left|b_{j} c_{j}\right|+\frac{1}{4} b_{1}^{2}
$$

(cf., [2]; Example II-1). On the other hand, if $\varepsilon_{j}<1$ for any j, we have

$$
\Lambda_{\bar{o}}=\Lambda_{\dot{\delta}} \leqq \frac{1}{\min \{4 \delta, 2\}} \sum_{j=1}^{m} \varepsilon_{j}\left|b_{j} c_{j}\right|
$$

(cf., [2]; Example III).
II. We consider a more general case:

$$
\begin{equation*}
V(x)=\sum_{j=1}^{m} c_{j}(x) \sin b_{j} r^{s}+0\left(r^{-1-\delta_{0}}\right) \tag{4.4}
\end{equation*}
$$

near infinity, where b_{j}, ε_{j} and δ_{0} are as given above and $c_{j}(x)$ is a real-valued function such that

$$
\begin{equation*}
\nabla^{l} c_{j}(x)=0\left(r^{-l-\varepsilon_{j}}\right)(l=0,1,2) . \tag{4.5}
\end{equation*}
$$

We put

$$
V_{1 j}(x)=c_{j}(x) \sin b_{j} r^{\varepsilon j}, \quad a_{j}(r)=\varepsilon_{j}^{2} b_{j}^{2} r^{-2+2 \varepsilon_{j}} .
$$

Then, choosing $\delta_{1}=1-\varepsilon_{1}+\varepsilon_{m}$ and $\delta_{2}=\varepsilon_{m}$, we see that $V_{1 j}(x)$ satisfies (V2-i)~ (V2-vi) and $a_{j}(r)$ satisfies (1.2) and (1.3). In this case, we have $\delta=\min \left\{\delta_{0}, \varepsilon_{m}\right\}$ and

$$
\begin{gather*}
E(2) \leqq \frac{1}{2} \sum_{j=1}^{m} \varepsilon_{j}\left|b_{j}\right| c_{j}^{*} ; c_{j}^{*}=\limsup _{r \rightarrow \infty}\left|r^{\varepsilon} c_{c_{j}}(x)\right|, \tag{4.6}\\
\Lambda_{j} \leqq \frac{1}{\min \{4 \delta, 2\}} \sum_{j=1}^{m} \varepsilon_{j}\left|b_{j}\right| c_{j}^{*}+\frac{1}{4} \varepsilon_{1}^{2} b_{1}^{2} \lim _{r \rightarrow \infty} r^{-2+2 \varepsilon_{1}} . \tag{4.7}
\end{gather*}
$$

Namely, Theorems 1 and 2 hold with the above $E(2)$ and $\Lambda_{\tilde{\delta}}$, respectively. In order to apply Theorem 3 we have to assume

$$
\delta_{2}=\varepsilon_{m}>1 / 2
$$

Then we see that for any $\varepsilon>0$ there exists a partial isometric operator $\mathscr{F}_{ \pm}$ (depending on ε) from $\mathcal{E}\left(\left(\Lambda_{\dot{\delta}}+\varepsilon, \infty\right)\right) L^{2}(\Omega)$ to $L^{2}\left(\left(\Lambda_{\dot{\delta}}+\varepsilon, \infty\right) \times S^{n-1}\right)$ which diagonalizes L, and maps $\mathcal{E}\left(\left(\Lambda_{\dot{\delta}}+\varepsilon, \infty\right)\right) L^{2}(\Omega)$ onto $L^{2}\left(\left(\Lambda_{\tilde{\delta}}+\varepsilon, \infty\right) \times S^{n-1}\right)$, where

$$
\begin{equation*}
\Lambda_{\tilde{\delta}} \leqq \frac{1}{\min \{4 \tilde{\tilde{o}}, 2\}} \sum_{j=1}^{m} \varepsilon_{j}\left|b_{j}\right| c_{j}^{*}+\frac{1}{4} \varepsilon_{1}^{2} b_{1}^{2} \lim _{r \rightarrow \infty} r^{-2+2 \varepsilon_{1}} \tag{4.8}
\end{equation*}
$$

with $\tilde{\delta}=\min \left\{\delta, 2 \delta_{2}-1\right\}=\min \left\{\hat{o}_{0}, 2 \varepsilon_{m}-1\right\}$.
Remark 4.2. In general $\Lambda_{\tilde{\delta}} \geqq \Lambda_{\dot{\delta}}$. However, if $\delta_{2}=\varepsilon_{m} \geqq 3 / 4$, we have $\Lambda_{\tilde{\delta}}=$ Λ_{δ} (cf., [3]; Corollary 5.1).
III. The above results can be applied to potentials of the form

$$
\begin{equation*}
V(x)=c(x) \sin ^{p} b r^{\varepsilon}+0\left(r^{-1-\delta_{0}}\right) \quad\left(b \neq 0,0<\delta_{0} \leqq 1,0<\varepsilon \leqq 1\right) \tag{4.9}
\end{equation*}
$$

near infinity, where $c(x)$ is a real-valued function satisfying

$$
\begin{equation*}
\nabla^{l} c(x)=0\left(r^{-l-\varepsilon}\right)(l=0,1,2) . \tag{4.10}
\end{equation*}
$$

In fact,

$$
\sin ^{p} b r^{\varepsilon}=c_{0}+\sum_{k=1}^{p}\left\{c_{k} \sin k b r^{\varepsilon}+d_{k} \cos k b r^{\varepsilon}\right\}
$$

for suitable constants c_{0}, c_{k} and $d_{k}(k=1, \cdots, p)$. So, if we put

$$
\begin{aligned}
& \left\{\begin{array}{l}
V_{1 j}(x)=c(x)\left\{c_{p-j+1} \sin (p-j+1) b r^{\varepsilon}+d_{p-j+1} \cos (p-j+1) b r^{\varepsilon}\right\}(j=1, \cdots, p), \\
V_{1(p+1)}(x)=c_{0} c(x),
\end{array}\right. \\
& \left\{\begin{array}{l}
a_{j}(r)=\varepsilon^{2}(p-j+1)^{2} b^{2} r^{-2+2 \varepsilon}(j=1, \cdots, p), \\
a_{p+1}(r)=0,
\end{array}\right.
\end{aligned}
$$

$V_{1 j}(x)(j=1, \cdots, p+1)$ satisfies (V2-i) $\sim(V 2-\mathrm{vi})$ and $a_{j}(r)(j=1, \cdots, p+1)$ satisfies (1.2) and (1.3).

Remark 4.3. Potentials of the form

$$
V(x)=c_{1} \sin (\log r)+c_{2} r^{-5} \sin b r^{8}+0\left(r^{-1-\delta_{0}}\right)
$$

($b c_{1} c_{2} \neq 0,0<\varepsilon \leqq 1$) are not covered by our theory (see V2-i), though each potential $\sin (\log r)$ or $r^{-\varepsilon} \sin b r^{\varepsilon}$ is in the framework of our "oscillating" longrange potentials ([2], [3]).

Department of Mathematics
Faculty of Science
Shinshu University,
Department of Mathematics Kyoto University of Industrial Arts and Textile Fibres

References

[1] K. Mochizuki and J. Uchiyama, On eigenvalues in the continuum of 2-body or many-body Schrödinger operators, Nagoya Math. J., 70 (1978), 125-141.
[2] -, Radiation conditions and spectral theory for 2-body Schrödinger operators with "oscillating" long-range potentials I - the principle of limiting absorption-, J. Math. Kyoto Univ., 18 (1978), 377-408.
[3] , Radiation conditions and spectral theory for 2-body Schrödinger operators with "oscillating" long-range potentials II -spectral representation-, J. Math. Kyoto Univ., 19 (1979), 47-70.

