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Introduction

In the recent works ([1], [2], [3]) we have developed a spectral theory for
the Schrédinger operators —4+V(x), in an exterior domain 2 of R", with some
real “oscillating” long-range potentials V(x). Roughly speaking, V(x) is called
“oscillating” long-range if it behaves as r=|x|—oo like

0.1 V(x)=0Q1), 0.V(x)=0(r"*) (3,=0/0r) and
2V(x)+aV(x)=0r"1? for some a=0 and 6>0.
For example, the potential

V(x)=%(b, ¢ are non-zero real)

satisfies the above conditions with ¢=b% and §=1.
In this paper we shall modify our previous results to the case of potentials

which consist of the sum of several “oscillating” long-range potentials. Note
that the last condition of (0.1) is not satisfied by the potential

¢1sin byr Co Sin byr
V(x)= +

r v

(b1, b, 1, ¢, are non-zero real) unless b;=b,. So the results of [2] and [3] are

not directly applied to this type of potentials, and it is necessary to make some
modification.

For this purpose we return to the semi-abstract theory developed in the
first half of [2], where we gave a sufficient condition under which the principle
of limiting absorption are justified for the exterior boundary-value problem

[{—A+V(x)—C}u=f(x) in

u or
Bu={ }:O on 08.
v-Pu+d(x)u

0.2)
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Here { is a complex number, v=(v;, ---, v,) is the outer unit normal to the
boundary 02, F is the gradient in R™ and d(x) is a real-valued smooth function
on 08.

The condition is summarized as follows:

Assumption 1 ([2]). There exist real constants §>0, 4; and a real function
7(2) of A>/; such that

0.3) 0<7(2)<min {40, 2}
and the following growth property holds: Let ue H2 . (2) satisfy
(0.4) {(—44+V(x)—Au=0 in 2

with A>/4; If we have the inequality
(0.5) S (L) 8 |y |2 x < oo
B(Rgp)

for some A>7(2)/2 and R,>0, where B(R)={xef; | x| >R}, then u must
identically vanish in 0.

Assumption 2 ([2]). Let
(0.6) II;={{=1+ireC; 2>4; and ==0}.

and let K* be a compact set in /7;. Then there exists an R;=R,([{*)> R, and
a complex-valued function k(x, {)=~k(x, A+ir) which is continuous in (x, {)e
B(R,)X K* and satisfies the following conditions: for any (x, ) B(R,)X K*

A1) V@—Cak(x, O+ b, O— kG, O S0,
(A2-2) lk(x, OI=C,,
(A2-3) FIm k(x, 2+it)=Cs,
(A2-4) Re k(x, £)— —"“Tl_@—gc,r-l.
'd
(A2-5) |(F —%0)k(x, | SCor™ 179 (¥=x/]x]).

Here C,=C;{K=)>0(j=1~5) and B=p(K*)>0 is chosen as follows:

(A2-6) 7()/2< <2 for any (=AitireK* and B=I1.

We shall show that the above assumptions can be verified for a class of
potentials consisting of the sum of several “oscillating” long-range potentials.

The main results of this paper will be summarized in § 1 in three theorems.
Theorem 1 which asserts the growth property of solutions of (0.4) is a conse-
quence of [1]. Theorem 2 summarizes results concerning the principle of limit-
ing absorption. We shall prove it in §2. Theorem 3 summarizes results con-
cerning spectral representations for the selfadjoint realization of —44+V(x) in
the Hilbert space L*£2). An outline of the proof will be given in §3 (we can
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follow the same line of proof of [3]). Finally, in §4 we shall give several
examples.

§1. Conditions and results

Let £ be an infinite domain in R™ with smooth compact boundary 082 lying
inside some sphere S(R,)={x; |x|=R,}. We consider in £ the Schrédinger
operator —4+V(x), where 4 is the Laplacian and V(x) is a potential function
of the form

Ly V()= Vi) +Vi(x)= Jﬁ V()4 V().

Vs(x) is a short-range potential and the V,;(x) are “oscillating” long-range poten-

tials. More precisely, we assume :

(V1) Vi(x) is a real-valued function belonging to a Stummel class Qu(p>0)
and V(x) is a real-valued bounded measurable function in £2. Moreover,
the unique continuation property holds for both —4+V(x) and —4+V(x).

(V2) For some 0<4,<1(/=0, 1, 2) and 0<¢;=1(j=1, -+, m),

(i) Visx)=00r-),

(i) 8,V (x)=00r""),

(iif) RV () +a )V (x)=00r -1}

(iv) F—30,)V1(x)=0(r"1"%),

(v) 7 —%8,)0,V(x)=0(r"1-%),

(vi) V7 —208,)-(F —0,)V1;(x)=0(r"1"%2),

(vid Vi(x)=0(r %)

as r=|x|—oo, where the a;(»)(j=1, ---, m) are non-negative functions of »> R,

satisfying

(1.2) a:(N)Za ()= - Zan()20,

(1.3 a,(r)=00r""), a§<r>=%aj<r>=o<r-w>
e

and aj(r)= Trz—aj(r)=0(r-l-f’1+5;)
with 7;=max {0, 1+06,—e¢;—min{e;}} and p; such that ;=48 and p;>1—e¢;.

Remark 1.1. (V2-i) is stronger than the corresponding condition required
in [2] and [3] (cf., (0.1)). (V2-vi) is used only to show (e) of Theorem 3
stated below (cf., [3]).

Lemma 1.1. If d, and {e;} satisfy max{e;} —min{e;} <1—a1, 0<dy, ¢;=1, and

a;(r)=00"%**J), aj#)=00r"1") and a}(r)=00r"2),
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a;(r) satisfies the condition (1.3).
Proof. Obvious from 2—2e;=143d:—¢;—min{e;}, 1201, 1>1—¢; and 2>1
+51—€j. g.e. d.

Lemma 1.2. (cf., [2]; Remark 85). If 8: and {e;} are as above, and
a;(N=00"2*%5) and aj(r), a}(r)=0(@"1"%1+%),
a(r) satisfies the condition (1.3).

Proof. Obvious from 2—2¢;21+40d,—¢;—min{e;}, 1+6:—e;=06, and 1+0:—¢;
>1—e¢;. q.e.d.

In the following we put d=min{d,, d;, 6.} and

a¥=lim sup a;(r) (=0).

Then we have by (1.2)

%
1\%
v

a¥

v

a a¥>=0.

For Vii(x) satisfying (V2-i) and (V2-ii) we put
(1.4) E(r):%linrljoup VT VA()} :%linrl_.sup B,V (r>0).

Then obviously (cf., [2]; Lemma 8.2) E(7)=lim V,(x)=0 and we have for 0<
ré?’y

(15) 0= E@=E()=L max limsup{ S 70,V1,(x)}
7 1stsm 700 j=1

5

P2 lirgsup {ro. Vi (x)} <oo.

L
2

The following theorem is already proved in [1] (Theorems 1, 2 and Remark 2).

Theorem 1. Suppose that V(x) satisfies (V1), (V2-i), (V2-ii) and (V2-vii).
Then we have :

(@) Let 2>E®2) and usHL(2) be a not identically vanishing solution of
{—=4+V(x)—Au=0 in 2. Then for any § such that

0<7<2 and EQ)ZE({H)<Z,
we have

lim R-1+772

S lu(x)|*dx=co .
R-oo Ry<izI<R

(b) Any selfadjoint realization of —A+V(x) in L¥L2) has no eigenvalue in
(E(2), o).

We put for ¢>0

(1.6) A,= 1 max lim sup{ lE raerj(x)}-I—ia’l"
Jj=1

min {40’, 2} 1slsm  r-co 4
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and
1
H§={C=2ii‘c; i>A; and —é—(l—za’l“);rgO}.

For ¢ell; let

__ &
(L7 7= "F—g oy
(18) 2()-Vi(x)= i nVisx) .

Lemma 1.3. Let K* be any compact set of Il;. Then there exist R,=
R(K*)>R, and C=C(K*)>1 such that

0= +Im {{—7(r)-Vi(x)} =C,
C'=Re{{—n(r)-Vi(x)} =C
for any (x, {)e B(R,) X K*.
Proof. 1t follows from (1.7) and (1.8) that

4a,(NVi(x) _}

Im C— () V(o) =Im {1+ & 14— a,(n)][*

aj(r)Vlj<x)

Re {{—n(r)-Vi(x)} =Re{— Wx)‘,i Re gt —a )

Here by (V2-i), (1.5) and (1.6),

(L9) lim V1,(x)=0  and ReC>%a;“_2_ limsup a,(r) for any ;.

1
4
Thus, noting the boundedness of a (), we have the assertion of the lemma.

q.e.d.
Let 7(2), 2> A4;, be defined by

0 if 4;=0
(L10) r<z>={ 24,

8

Lemma 1.4. We have for any 2> A,
0<7(2)<min {46, 2},

. 1 . l 1,
EG@)= 7o) max lug gup{ ]Z=)1 rarVu(x)}Jr 14

< (st D<A,

Proof. The first assertion is obvious from the definition of y(2). If 4;=0,

L
the second assertion is also obvious since a¥=0 and lim sup{ zlra,vlj(n}:o
=

T—00

(I=1, ---, m). On the other hand, if 4;>0, we have noting (1.6)
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1
r(z) (2 max lim sup { 2,70 V‘f} tyaof
As+2 1 0,1 1 .
= <A5—Zal)+za’f§§(/15-rl)
The lemma is proved. g.e.d.

For pe R and GC £, let L%(G) denote the space of all functions f(x) such
that

7= (1)) f) 2 x <o

If =0 or G=4, the subscript ¢ or G will be omitted. Let k(x, ), (x, O)e
B(R,)X K*, be defined by

e, vl =0 () Vi(x)}
(1.11) k(x, )=—ivVE—n(r)-Vi(x) + 5T A=) Vi)

where R,=R,() and we take the branch Im 4/~ =0.

Definition. For solutions ue€ H%.(2) of (0.2) with {1, the outgoing (+)
[or incoming (—)] radiation condition at infinity is defined by

(1.12). UE L wyo(2) and Orutk(x, Yue Liiip(B(R,)),

where a=a({), f=pB() is a pair of positive constants such that

(L13) 0<aspsl, 57(ReD<P<2 and as2—p.

A solution u of (0.2) which also satisfies the radiation condition (1.12), [or
(1.12)_7 is called an outgoing [incoming] solution.

We are now ready to state two theorems concerning the principle of limiting
absorption and spectral representations for the Schrédinger operator —4-4V(x).

Theorem 2. Suppose that V(x} satisfies (V1), (V2-1)~(V2-v) and (V2-vii).
Then we have :
(a) Let K* be a compact set of II5, let y(K*)=max 7(1) (1=Re(), and let
CEK*®

a=a(K*), B=B(K") be a pair satisfying (1.13) with y(2) replaced by y(K=). Then
for any {=2A+ire K= and f& L,p,:(2), (0.2) has a unique outgoing [incoming]
solution u=u(x, A+it)=R;,.;-f, which also satisfies the inequalities

lullc-1-ar/e= C"f"(uﬂ)/z,
IFu+xk(x, 20 ull 148728 SClflaxzie,

where C=C(K*)>0 and R,=R,(K*)=R,K*) are independent of f.
(b) Let R¥: Lijsu(2)— L1 3,:(R2) be the adjoint of R:. Then

R¥...f=R;.i:f for [ELlis(2).
(©) wu=R.f is continuous in L1y 12(82) with respect to ({, fYE =X L, 551.(2).
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(d) Let L be the selfadjoint operator in L¥£2) dejined by
D(L)={ucH¥Q); Bulsp=0}
{ Lu=—du+V(x)u for uea(L),

and let {&(2); A€ R} be its spectral measure. Then for any Borel set e&(A;, ),
FE Ltipo(R) and g€ Lhyay1o(2) (a, B is chosen as above with K*=&) we have

1

(€O, 9= | ({Rivo— Ri-it f, £)d2,

where (, ) denotes the inner product in L¥2), or more generally, the duality
between L2 i py15(82) and L¥iayi2(82). Namely, the part of L in &((A;, o0))L¥2)
is absolutely continuous with respect to the Lebesgue measure.

Theorem 3. Suppose that V(x) satisfies (V1) and (V2) with 0,>1/2(1=1, 2).
Then we have:

(a) For any ¢>0 and A= A;+e there exist bounded linear operators F.(A):
LY 425 2(2)— LAS™)(S™ "= {x; | x|=1}) such that each F.(A)f€ L*(S™ ") depends
continuously on (A, f)E(As+e, 00)X Lt125,:(82), and the following relations hold :

(F-Df, F-Dehrscsn-v= 5 Rasaf = Ra-of, £),

©@f, 9= (Ff, F-DPuxcsn-nd2, e€ste, o).

(b) The operators Fu: Lhies;(82) = L*(As+e, )X S™ 1) defined by
[Z.f]A, )=[F.DfINX) can be uniquely extended by continuity to partial isome-
tric operators from L¥2) into L*((As+e, 00) X S™ ') with initial set
E(As+e, ) L*(2).

(¢) For any bounded Borel function b(2) on (A;+e, ), the following rela-
tion holds:

F.o(L)=bDF . .

(d) Let *: L¥(;4¢, 00)XS™ 1= L¥) be the adjoint operators of F..
Then each F* admits the representation

Q‘i‘fzstronglimSN F_ (D DdA in L¥Q)
N —oo A5+s

for any fe L¥(ds+¢, 00)xX S™ 1), where F.(A)*: LAS™ - LE, ,5,(Q) is the
adjoint of F.(2).

() Let 6=min{o, 26,—1}. Then each F. maps E(As+e, ) LX) onto
L¥((A5+e, c0)XS™ ), that is, F. restricted on &(As+e, )LNQ) is a unitarv
operator.

Remark 1.2. In [3] we neglect the fact that the construction of F.(2)
depends in general on «. So the above is a correction of [3]. Note that for
two e, ¢’>0and 2> A;+-max {e, ¢}, the corresponding operators F_(2) and F.(2)
are unitary equivalent to each other in L*S""?),
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§2. Proof of Theorem 2

As we see in [2] (Theorems 1~-5), all the assertions of Theorem 2 hold true
under Assumptions 1 ([2]) and 2 ([2]) stated in the introduction of this article.
So to complete the proof, we have only to check that these assumptions are
satisfied by 43 7(2) and k(x, {) given in the previous section.

Assumption 1 ([2]) directly follows from Theorem 1 and the definition of
As and 7(2). In fact, let 2> 4; and u satisfy (0.4) and (0.5) for some B>7(4)/2
(without loss of generality we can assume $=1). Then we have

R—1+7'(1)/2$ [u(x)lzdxéR—ﬂﬂ’(X)/zS r“*ﬁlu(x)lzdx

Ry<ITi<R Ry<IZI<R

—0 as R—oo.

Since 7=7(1) satisfies the condition of Theorem 1 (a) by Lemma 1.4, this and
Theorem 1 (a) lead u=0.

Next let us verify Assumption 2 ([2]) for k(x, {) restricted in (x, {)€ B(R,) X
K*, where K* is any compact set in IT;, and R,=R,(K*) is what is given in
Lemma 1.3. We choose 7(K*) and B(K*) as in (a) of Theorem 2. Then (A2-6)
is obviously satisfied by this f=p(K*). Further, the continuity of k(x,{) in
(x, )€ B(R,)XK* is easily known by Lemma 1.3. So it remains only to verify
(A2-1)~(A2-5).

For this purpose we prepare a lemma.

Lemma 2.1. There exist some constant C>0 such that for any (x, {)€ B(R,)
X K* we have

|9V () (L= 0a) V() SCr172 (G, k=1, -+, m),
[0, {n(r)-Vi(x)} | =Cr7?,
102 {n () Vi;(x0)} +1i(na NV (x)| £Cr 178,
|(P—%0,) {n(r)- Vi(x)} | SCr 272,
|7 —%6,)0, {n(r)- Vi(x)} | =Cr-1-2.,

Proof. The above inequalities respectively follow from (V2-i)~(V2-v) if we
note that

7i{(r)=01), 1=7,r)=0"77), pjr)=0(""4) and
07 (r)=00r1-01%3) 4 0(r~215)=0(r ~1-9+¢J) g.e.d.

Now, (A2-2) and (A2-3) easily follow from Lemma 1.3 and Lemma”2.1 since
we have

—0, {n(r)- Vi(x)} ‘
4{{—n(r)- Vi(x)}

— 0, {n(r) - Vi(x)} ]
4{C—7(r) - Vilx)} 1°

|Cx, O < IVE=7@ Vi) [+ 75 4]

+1m k(x, £)=+RevT=7(7 V() ¥ Im|
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Note that
iV —%x0:)(n-Vy) —( —%03,)0,(n V1)

V' —xo,)k(x, O=

W Vi 4C—7-V)
By VT —E3)(y- V)
4C—7- Vo '

Then (A2-5) also follows from Lemma 2.1.
Next we prove (A2-1). It follows from (1.11) that (cf., Appendix of [2])

V()—C+d,k+ ":1 bk
T —0x(n- V) (n—1)(n—3) 5{0(np-V}*
_V1 77 V1+ 4(C—7]'V1) + 47’2 16(C'—7]‘V1)2 "I‘Vs.
Since we have

Viey- Vit | 35 ca—n)vi—ain,va)

AC—nV) — Al—7-Vy)

—f,§14(1_’/f)77kV1jV1k]
and
LA =9pV1;—0Kn;Vi)=—{0Kn; V1) + ;0,1 V13},

(A2-1) follows from Lemma 2.1 and (V2-vii).
Lastly, we prove (A2-4).

—ar("]‘ Vl)
C—7]'V1

Re k(x, C)—u:—l—{Re[

5 \ |+ Lt mve= v 2T

4
Since 28>7 by definition and Im+v/{—%-V:=0, we have only to show that there
exists an R,=R,(K*)=R, such that

@1 Re[M)—]+lgo for any (x, O)€ B(R)XK* .
C""?'Vl ¥
We have
r|{—n-Vi|? —0{n- V1) T
S {Re| E—n Vs 1+
_ |C—=n-Vi|? C—=(r/7)0(n-V)—n-V,
BTE Re| Ty Vs |

1 LRel& roValx) e
=1 Rl & iy I

1=Re{—%§1m;vu+§ar(n-V1>»75‘v“1—2 Re [y Vil+17-Vil}.

Noting K*&II;, we can choose a constant ¢>0 to satisfy
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2.2) e(3+¢)(1+e) ' <min A—4,

SR /ey TR0

We fix such an e. Since {=At+ireK*&ll; satisfies (1/2)A—(1/4)a¥)=7=0,
there exists an Ry= R (K*)=R, such that for any (x, {)e B(R;) X K*,

1
@3 O<Re 7= (1/4>am<r> =Re i oy =
1 1+
e <
= T {—/Yaxr) T 2—1/Da¥
2.4) 15| <e,

where in the last inequality (2.4) we have used (1.7), Lemmas 1.3, 2.1 and the
fact that p;>1—e¢; in (1.3). Note here

lim sup max Z r0,V1(x)=max lim sup }_, 7o, Vix).

T 1slsm j=1 1slsm 71—

Then we see that there exists an R,=R(K*)=R; such that for any x< B(R,)

(2.5) max Z‘, 7, Vi (x)= max lim supZ ro Vl,(x)-i-re mm (A—(1/da?).

1slsm j=1 slsm T

(2.3), (2.5) and Abel’s theorem imply that (cf., also (1.5))

1 1
C—1/8a:(r) rlséi,?_:fa Viix)

1 U rarVU(x)
2.6) 7Re{ by

& T=(/Dayr) J=Re

1+e :
S Gtimany L msep 5 ra,Vye)-re min (2t}

Since

1 max lim sup Z rd, Vi(x) < (,H—/L; )

7 1sism T—o0

by Lemma 1.4, we have from (2.4), (2.6) and (2.2)

1 m r0.Vi{x)
1—Re{ 8 TR

{1 A+ A tt/2at
22—(1/2)a¥

bicir

v

}(1+e)—e(3+s);o

for any (x, )€ B(Rs)X K*. This proves (2.1), and we have (A2-4).

Remark 2.1. The condition (1.2) on {a;(»)} is used only to show (2.6)
(Abel’s theorem). Note that Assumptions 1 and 2 can be verified without (1.2)
if we replace Ajsee (1.6)) by the following

~ 1

- i 1 ¥
A= 43, 2] g}lllrﬁwsoup{rarl/u(x)}—l— 1 max {a%}}.

Here, in general, 4;< 4,
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§3. Sketch of proof of Theorem 3

On the bases of the principle of limiting absorption (Theorem 2), we can
prove Theorem 3 by the same argument as in [3]. Here, in this section, we
shall sketch an outline of the proof.

First we restrict ourselves to the case V(x)=0. Then A;=4.,, since we
have assumed 0,>1/2 (=1, 2) in (V2) (we can choose d,=1 in this case). For
feL¥ ) and 2> Ai+e(e>0), let Ry ;.40f be the outgoing [incoming] solution
of (0.2) with V(x)=Vi(x) and {=2470. We choose R,=R,(¢)> R, so large that

A=) Vi(x)=2C>0 for (x, A€ B(R;)X(A15+¢, ),

and define the function p(x, A+i0)=p(x, 1+70; &) as follows:

3.1 o(x, ziz‘o>=g'k(sf, 2-i0)ds

=i VI ViGEs + "5 log r+—plog 1= n(r)- V(o).

n—1
2
Then as we see in Propositions 1.2 and 2.1 of [3], there exists a sequence 7,

=7,(4, f)—oo(as p—oo) such that

{%e"“lf'l *OTR aeiof N7 p >}

strongly converges in L*S™'). We define the operator &F,;.()=%:.(4, ¢):
L¥(2)— L¥S™) as follws:

(3.2) F1,.(2)f=strong limjln: eP Ut A=IOLR, L f1(rpe) in LYS™Y).

p-oo

Then <, .(4) is independent of the choice of {r,}, and becomes a bounded ope-
rator from L%) to L*S™ ') which depends continuously on A> As,+¢ ([3],
Lemma 2.4). Further, we have for fe L¥®2) and 2> 4.,, ([3], Proposition 1.3)

33 12,2 Vrcsnen= 5 (Ro,zsaf —Ruaciof, 1.

By wuse of this Zi.(2), the operator F.(A): L%.,z5,:(2)— LAS* ) (6=
min {d,, d1, 35} ) will be defined by

(34) F.(A=F1.D{1=V R}, 2>Aste(=Z4din+e).

In order to verify that (3.4) is well defined as a bounded operator from L2 s 5(£2)
to L*%S"'), we have to show that for any 2> A;+¢, &, .(2) can be extended to
a bounded operator from L% ,z,,,(£2) to L¥S™"!), where B is any constant satis-
fying (1.13). This is possible by (3.3) and Theorem 2 (a) with V(x)=V,(x).

Now, as is proved in Theorems 2.1 and 3.1 of [3], we can have the assertions
(a)~(d) of Theorem 3 with this F.(2).

To establish the assertion (e), we follow the argument of the proof of
Theorem 4.1 of [3]. Namely, if fE L¥(As+€, 00)x S""1) is orthogonal to the
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range of F., we can have for any smooth ¢& L*S""?),

(35) (fQ, ), Procsn-y=0 a.e. A>Aj+e,

where §=min {5, 46,—2}. Note that to obtain (3.5) we have used the following
relation satisfied by any f& Lip/(82), = L*(S™ ") and A> A;+e:

(3.6) (F1,. (DS, ¢)L2(S"‘1):Liﬂ<'\71:ep(rp"lim)[Rl,ziiof](rp'), P

T >L2(S7l'1)

(cf., [3]; Lemma 3.2 and Proposition 1.4).

§4. Examples
I. We consider potentials of the form

.1 V)= 8 €S L6010y near infinity,

j=1 rei

where b;, ¢; are non-zero real, 0<ep<e¢n1= - =e:=1 and 0<g,=1. If ¢,=

€r+1= '+ =&p4p, the order of summation is chosen like [by|=|brs1l= - = [bpspl.
We put
c;sin brei
Vlj(x)= Vlj(f’): *]—F]— , CZj(T): €§b§l’_2+2£j .

Then it follows that
Vigr)=0(r-*9),

EjbjCj CcoSs bj?’ej

1(N= +0(r=17)=00r""),

—e3bic; sin brei
’,Z—-Sj

Vir)y= +0(r-8)=—ar)V.(r)+0(r"?).

Thus, choosing di=1—e:+e, and d,=1, we see that Vi (r) satisfies (V2-i)~
(V2-iii) and a;(r) satisfies (1.2) and (1.3) (see Lemma 1.1). Note that in this
case, (V2-iv)~(V2-vi) are trivially satisfied by Vi(r). Since é=é=min{d,, 1—
&1+en) and

lirrrxj,oup rVi(r)=e;lbjc;l,

it follows from (1.4), (1.5) and (1.6) that

1 m
4.2) E@2)= > Z’x e;lbse;l,
~ 1 S 1 212 1} —2+2¢
4.3) A5:Aéémgsjlbjcjl+151bllrl_’rgr et

Namely, we have the following results for the potential (4.1): (E(2), o) is con-
tained in the continuous spectrum of L=—44V(x) (Theorem 1). (4; co) is
contained in the absolutely continuous spectrum of L (Theorem 2). If 1/2>¢,—¢en,
for any ¢>0 there exists a unitary operator &.(depending on &) from &((4;+e,
o)) LA() onto L2((A;+e, 00)x S™ ) which diagonalizes L (Theorem 3).
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In (4.3) we have used the fact that e;=max{e;} and |b:|=max{|b:|; ex=¢1}.

Remark 4.1. If ¢,=1, then we have

— 1. 1 L 1.
A"’AB“—m_—MB—Z}g‘ &ilbjc;|+ b1
(cf., [2]; Example 1I-1). On the other hand, if ¢;<1 for any j, we have
1 m
Aa‘———A*S ZEijjCji

°= min{40, 2} =
(cf., [2]; Example III).

II. We consider a more general case:
44) Vix)= 3 ¢,00) sin byri-+0(r-%)
£

near infinity, where b;, ¢; and d, are as given above and c;(x) is a real-valued
function such that

4.5) Ple(x)=00r"t"5)({=0, 1, 2).
We put

Vix)=c,(x)sin brsi, ajr)=elbir2+%i.

Then, choosing d,=1—e1+¢, and d,=e,, we see that Vi;(x) satisfies (V2-i)~
(V2-vi) and a(r) satisfies (1.2) and (1.3). In this case, we have d=min{d,, en}
and

(4.6) E(2)§ E ilbslels er=limsup|ric,(x)],

1

(47) /15_ m

Z} ejlb; ]c}"+ e2b? lim r2+%1,

Namely, Theorems 1 and 2 hold with the above E(2) and A; respectively. In
order to apply Theorem 3 we have to assume

52:5m>1/20

Then we see that for any >0 there exists a partial isometric operator &.
(depending on ¢) from &((As+e, ) LAR2) to L*(As+¢, o0)x S* 1) which diago-
nalizes L, and maps &((Aj+e, o0))LA(2) onto L¥(Aj+e, c0)XxXS* 1), where
1
5 <
A= — s min {45, 2} ;

with §=min {6, 26,— 1} =min {6,, 2e n—1}.

4.8) Z el b;lc¥+ 1 efbt lim r-2+eer

Remark 4.2. In general A3=/; However, if d,—=¢,=3/4, we have A;=
A; (cf., [3]; Corollary 5.1).

III. The above results can be applied to potentials of the form

4.9 V(x)=c(x) sinPbrs+0(r"1-%) (b0, 0<5, <1, 0<e<1)
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near infinity, where c¢(x) is a real-valued function satisfying
(4.10) Vle(x)=0r"*t"¢) (=0, 1, 2).

In fact,
sin? bre=co+ kZIi)l {ci sin kbr¢+d, cos kbre}

for suitable constants c,, ¢, and d,(k=1, -, p). So, if we put

Vifx)=c(x){cp-jersin (p—j+Dbr4d p-ji1 cos (p—j+Dbr} (=1, ---, p),
{ Vien(x)=coc(x),

aj(n=eXp—j+1)*r***(j=1, -, p),
{ ap1(r)=0,

V;,-(x)(j=i, -+, p+1) satisfies (V2-1)~(V2-vi) and a,;(r) (j=1, -+, p+1) satisfies
(1.2) and (1.3).

Remark 4.3. Potentials of the form
V(x)=cu sin (log r)+cor~* sin br*+0(r~*~%)

(bcic,#0, 0<e=<1) are not covered by our theory (see V2-i), though each po-
tential sin(logr) or r *sinbr® is in the framework of our “oscillating” long-
range potentials ([2], [3]).
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