Radiation conditions and spectral theory for 2-body Schrödinger operators with "oscillating" long-range potentials III

By

Kiyoshi Mochizuki and Jun Uchiyama

(Received July 11, 1980)

Introduction

In the recent works ([1], [2], [3]) we have developed a spectral theory for the Schrödinger operators $-\Delta + V(x)$, in an exterior domain Ω of \mathbb{R}^n , with some real "oscillating" long-range potentials V(x). Roughly speaking, V(x) is called "oscillating" long-range if it behaves as $r = |x| \to \infty$ like

(0.1)
$$V(x)=0 (1), \ \partial_r V(x)=0 (r^{-1}) \ (\partial_r=\partial/\partial r) \quad \text{and}$$

$$\partial_r^2 V(x)+a \ V(x)=0 (r^{-1-\delta}) \quad \text{for some} \quad a \ge 0 \quad \text{and} \quad \delta>0.$$

For example, the potential

$$V(x) = \frac{c \sin br}{r}$$
 (b, c are non-zero real)

satisfies the above conditions with $a=b^2$ and $\delta=1$.

In this paper we shall modify our previous results to the case of potentials which consist of the sum of several "oscillating" long-range potentials. Note that the last condition of (0.1) is not satisfied by the potential

$$V(x) = \frac{c_1 \sin b_1 r}{r} + \frac{c_2 \sin b_2 r}{r}$$

 (b_1, b_2, c_1, c_2) are non-zero real) unless $b_1=b_2$. So the results of [2] and [3] are not directly applied to this type of potentials, and it is necessary to make some modification.

For this purpose we return to the semi-abstract theory developed in the first half of [2], where we gave a sufficient condition under which the principle of limiting absorption are justified for the exterior boundary-value problem

(0.2)
$$\begin{cases} \{-\Delta + V(x) - \zeta\} u = f(x) & \text{in } \Omega \\ Bu = \begin{cases} u & \text{or} \\ v \cdot \nabla u + d(x) u \end{cases} = 0 & \text{on } \partial\Omega. \end{cases}$$

Here ζ is a complex number, $\nu=(\nu_1, \dots, \nu_n)$ is the outer unit normal to the boundary $\partial\Omega$, \overline{V} is the gradient in R^n and d(x) is a real-valued smooth function on $\partial\Omega$.

The condition is summarized as follows:

Assumption 1 ([2]). There exist real constants $\delta > 0$, Λ_{δ} and a real function $\gamma(\lambda)$ of $\lambda > \Lambda_{\delta}$ such that

$$(0.3) 0 < \gamma(\lambda) < \min \{4\delta, 2\}$$

and the following growth property holds: Let $u \in H^2_{\mathrm{loc}}(\bar{\Omega})$ satisfy

(0.4)
$$\{-\Delta + V(x) - \lambda\} u = 0 \text{ in } \Omega$$

with $\lambda > \Lambda_{\delta}$. If we have the inequality

(0.5)
$$\int_{B(R_0)} (1+r)^{-1+\beta} |u|^2 dx < \infty$$

for some $\beta > \gamma(\lambda)/2$ and $R_0 > 0$, where $B(R_0) = \{x \in \Omega ; |x| > R_0\}$, then u must identically vanish in Ω .

Assumption 2 ($\lceil 2 \rceil$). Let

(0.6)
$$\Pi_{\delta}^{\pm} = \{ \zeta = \lambda \pm i\tau \in C : \lambda > \Lambda_{\delta} \text{ and } \tau \ge 0 \}.$$

and let K^{\pm} be a compact set in Π_{δ}^{\pm} . Then there exists an $R_1 = R_1(K^{\pm}) > R_0$ and a complex-valued function $k(x, \zeta) = k(x, \lambda \pm i\tau)$ which is continuous in $(x, \zeta) \in B(R_1) \times K^{\pm}$ and satisfies the following conditions: for any $(x, \zeta) \in B(R_1) \times K^{\pm}$

(A2-1)
$$|V(x) - \zeta + \partial_{\tau} k(x, \zeta) + \frac{n-1}{r} k(x, \zeta) - k(x, \zeta)^{2}| \leq C_{1} r^{-1-\delta},$$

$$(A2-2) |k(x,\zeta)| \le C_2.$$

$$(A2-3) \qquad \mp \operatorname{Im} k(x, \lambda \pm i\tau) \ge C_3,$$

(A2-4) Re
$$k(x, \zeta) - \frac{n-1-\beta}{2r} \ge C_4 r^{-1}$$
.

$$(A2-5) \qquad |(\nabla - \tilde{x}\partial_r)k(x,\zeta)| \leq C_5 r^{-1-\delta} (\tilde{x} = x/|x|).$$

Here $C_i = C_i(K^{\pm}) > 0$ $(j=1 \sim 5)$ and $\beta = \beta(K^{\pm}) > 0$ is chosen as follows:

(A2-6)
$$\gamma(\lambda)/2 < \beta < 2\delta$$
 for any $\zeta = \lambda \pm i\tau \in K^{\pm}$ and $\beta \le 1$.

We shall show that the above assumptions can be verified for a class of potentials consisting of the sum of several "oscillating" long-range potentials.

The main results of this paper will be summarized in § 1 in three theorems. Theorem 1 which asserts the growth property of solutions of (0.4) is a consequence of [1]. Theorem 2 summarizes results concerning the principle of limiting absorption. We shall prove it in § 2. Theorem 3 summarizes results concerning spectral representations for the selfadjoint realization of $-\Delta + V(x)$ in the Hilbert space $L^2(\Omega)$. An outline of the proof will be given in § 3 (we can

follow the same line of proof of [3]). Finally, in § 4 we shall give several examples.

§ 1. Conditions and results

Let Ω be an infinite domain in R^n with smooth compact boundary $\partial \Omega$ lying inside some sphere $S(R_0) = \{x \; ; \; |x| = R_0\}$. We consider in Ω the Schrödinger operator $-\Delta + V(x)$, where Δ is the Laplacian and V(x) is a potential function of the form

(1.1)
$$V(x) = V_1(x) + V_s(x) = \sum_{j=1}^m V_{1j}(x) + V_s(x).$$

 $V_s(x)$ is a short-range potential and the $V_{1j}(x)$ are "oscillating" long-range potentials. More precisely, we assume:

- (V1) $V_1(x)$ is a real-valued function belonging to a Stummel class $Q_{\mu}(\mu > 0)$ and $V_s(x)$ is a real-valued bounded measurable function in Ω . Moreover, the unique continuation property holds for both $-\Delta + V(x)$ and $-\Delta + V_1(x)$.
- (V2) For some $0 < \delta_l \le 1 (l=0, 1, 2)$ and $0 < \varepsilon_j \le 1 (j=1, \dots, m)$,

$$(i) V_{1i}(x) = 0(r^{-\varepsilon_i}),$$

$$\partial_r V_{1,i}(x) = 0(r^{-1}),$$

(iii)
$$\partial_{\tau}^{2}V_{1j}(x) + a_{j}(r)V_{1j}(x) = 0(r^{-1-\delta_{1}})$$

$$(\overline{V} - \widetilde{x} \partial_{\tau}) V_{1,i}(x) = 0(r^{-1-\delta_2}).$$

$$(\nabla - \tilde{x} \partial_r) \partial_r V_{1,i}(x) = 0(r^{-1-\delta_1}).$$

$$(vi) \qquad (\nabla - \tilde{x} \partial_r) \cdot (\nabla - \tilde{x} \partial_r) V_{1,i}(x) = 0(r^{-1-2\sigma_2}),$$

$$(vii) V_s(x) = 0(r^{-1-\delta_0})$$

as $r=|x|\to\infty$, where the $a_j(r)(j=1,\cdots,m)$ are non-negative functions of $r>R_0$ satisfying

$$(1.2) a_1(r) \ge a_2(r) \ge \cdots \ge a_m(r) \ge 0,$$

(1.3)
$$a_j(r) = 0(r^{-\tau_j}), \quad a'_j(r) = \frac{d}{dr} a_j(r) = 0(r^{-\mu_j})$$

and
$$a_{j}''(r) = \frac{d^{2}}{dr^{2}} a_{j}(r) = 0 (r^{-1-\delta_{1}+\varepsilon_{j}})$$

with $\tau_j = \max\{0, 1 + \delta_1 - \varepsilon_j - \min\{\varepsilon_j\}\}\$ and μ_j such that $\mu_j \ge \delta_1$ and $\mu_j > 1 - \varepsilon_j$.

Remark 1.1. (V2-i) is stronger than the corresponding condition required in [2] and [3] (cf., (0.1)). (V2-vi) is used only to show (e) of Theorem 3 stated below (cf., [3]).

Lemma 1.1. If
$$\hat{o}_1$$
 and $\{\varepsilon_j\}$ satisfy $\max\{\varepsilon_j\} - \min\{\varepsilon_j\} \leq 1 - \hat{o}_1$, $0 < \hat{o}_1$, $\varepsilon_j \leq 1$, and $a_j(r) = 0(r^{-2+2\varepsilon_j})$, $a_j'(r) = 0(r^{-1})$ and $a_j''(r) = 0(r^{-2})$.

 $a_i(r)$ satisfies the condition (1.3).

Proof. Obvious from $2-2\varepsilon_j \ge 1+\delta_1-\varepsilon_j-\min\{\varepsilon_j\}$, $1\ge \delta_1$, $1>1-\varepsilon_j$ and $2>1+\delta_1-\varepsilon_j$. q. e. d.

Lemma 1.2. (cf., [2]; Remark 8.5). If δ_1 and $\{\varepsilon_j\}$ are as above, and

$$a_{i}(r) = 0(r^{-2+2\varepsilon j})$$
 and $a'_{i}(r)$, $a''_{i}(r) = 0(r^{-1-\delta_{1}+\varepsilon_{j}})$,

 $a_j(r)$ satisfies the condition (1.3).

Proof. Obvious from $2-2\varepsilon_j \ge 1+\delta_1-\varepsilon_j-\min\{\varepsilon_j\}$, $1+\delta_1-\varepsilon_j \ge \delta_1$ and $1+\delta_1-\varepsilon_j > 1-\varepsilon_j$.

In the following we put $\delta = \min \{\delta_0, \delta_1, \delta_2\}$ and

$$a_j^* = \limsup_{r \to \infty} a_j(r) (\geq 0)$$
.

Then we have by (1.2)

$$a_1^* \ge a_2^* \ge \cdots \ge a_m^* \ge 0$$
.

For $V_{1j}(x)$ satisfying (V2-i) and (V2-ii) we put

(1.4)
$$E(\gamma) = \frac{1}{\gamma} \limsup_{r \to \infty} \left\{ r \partial_r V_1(x) + \gamma V_1(x) \right\} = \frac{1}{\gamma} \limsup_{r \to \infty} \left\{ r \partial_r V_1(x) \right\} (\gamma > 0).$$

Then obviously (cf., [2]; Lemma 8.2) $E(\gamma) \ge \lim_{r \to \infty} V_1(x) = 0$ and we have for $0 < \gamma \le 2$,

$$(1.5) \qquad 0 \leq E(2) \leq E(\gamma) \leq \frac{1}{\gamma} \max_{1 \leq l \leq m} \limsup_{r \to \infty} \left\{ \sum_{j=1}^{l} r \partial_r V_{1j}(x) \right\}$$

$$\leq \frac{1}{\gamma} \sum_{j=1}^{m} \limsup_{r \to \infty} \{r \partial_r V_{1j}(x)\} < \infty.$$

The following theorem is already proved in [1] (Theorems 1, 2 and Remark 2).

Theorem 1. Suppose that V(x) satisfies (V1), (V2-i), (V2-ii) and (V2-vii). Then we have:

(a) Let $\lambda > E(2)$ and $u \in H^2_{loc}(\bar{\Omega})$ be a not identically vanishing solution of $\{-\Delta + V(x) - \lambda\}u = 0$ in Ω . Then for any $\tilde{\gamma}$ such that

$$0 < \tilde{r} < 2$$
 and $E(2) \leq E(\tilde{r}) < \lambda$,

we have

$$\lim_{R\to\infty} R^{-1+\widetilde{\gamma}/2} \int_{R_0<|x|< R} |u(x)|^2 dx = \infty.$$

(b) Any selfadjoint realization of $-\Delta + V(x)$ in $L^2(\Omega)$ has no eigenvalue in $(E(2), \infty)$.

We put for $\sigma > 0$

(1.6)
$$\Lambda_{\sigma} = \frac{1}{\min\{4\sigma, 2\}} \max_{1 \le l \le m} \limsup_{r \to \infty} \left\{ \sum_{j=1}^{l} r \partial_{\tau} V_{1j}(x) \right\} + \frac{1}{4} a_{1}^{*}$$

and

$$\boldsymbol{\varPi}_{\delta}^{\pm} \!=\! \left\{ \! \zeta \!=\! \lambda \!\pm\! i\tau \; ; \; \lambda \!\!>\! \boldsymbol{\varLambda}_{\delta} \quad \text{and} \quad \! \frac{1}{2} \! \left(\lambda \!-\! \frac{1}{4} a_1^* \right) \!\! \geq \!\! \tau \! \geq \!\! 0 \right\}.$$

For $\zeta \in \Pi_{\delta}^{\pm}$ let

(1.7)
$$\eta_j(r) = \frac{4\zeta}{4\zeta - a_j(r)} \quad \text{and} \quad$$

(1.8)
$$\eta(r) \cdot V_1(x) = \sum_{j=1}^m \eta_j(r) V_{1j}(x).$$

Lemma 1.3. Let K^{\pm} be any compact set of Π_{δ}^{\pm} . Then there exist $R_2 = R_2(K^{\pm}) > R_0$ and $C = C(K^{\pm}) > 1$ such that

$$0 \leq \pm \operatorname{Im} \{ \zeta - \eta(r) \cdot V_1(x) \} \leq C$$
,

$$C^{-1} \leq \operatorname{Re} \{ \zeta - \eta(r) \cdot V_1(x) \} \leq C$$

for any $(x, \zeta) \in B(R_2) \times K^{\pm}$.

Proof. It follows from (1.7) and (1.8) that

$$\operatorname{Im} \{ \zeta - \eta(r) \cdot V_1(x) \} = \operatorname{Im} \zeta \left\{ 1 + \sum_{j=1}^{m} \frac{4a_j(r) V_{1j}(x)}{|4\zeta - a_j(r)|^2} \right\},\,$$

Re
$$\{\zeta - \eta(r) \cdot V_1(x)\}$$
 = Re $\zeta - V_1(x) - \sum_{j=1}^{m} \text{Re} \frac{a_j(r)V_{1j}(x)}{4\zeta - a_j(r)}$.

Here by (V2-i), (1.5) and (1.6),

(1.9)
$$\lim_{r\to\infty} V_{1j}(x) = 0 \quad \text{and} \quad \operatorname{Re} \zeta > \frac{1}{4} a_1^* \ge \frac{1}{4} \limsup_{r\to\infty} a_j(r) \quad \text{for any } j.$$

Thus, noting the boundedness of $a_j(r)$, we have the assertion of the lemma.

q. e. d.

Let $\gamma(\lambda)$, $\lambda > \Lambda_{\delta}$, be defined by

(1.10)
$$\gamma(\lambda) = \begin{cases} \delta & \text{if } \Lambda_{\delta} = 0 \\ \frac{2\Lambda_{\delta}}{\Lambda_{\delta} + \lambda} \min\{4\delta, 2\} & \text{if } \Lambda_{\delta} > 0. \end{cases}$$

Lemma 1.4. We have for any $\lambda > \Lambda_{\delta}$

$$0 < \gamma(\lambda) < \min\{4\delta, 2\}$$
,

$$\begin{split} E(\gamma(\lambda)) & \leq \frac{1}{\gamma(\lambda)} \max_{1 \leq l \leq m} \limsup_{r \to \infty} \left\{ \sum_{j=1}^{l} r \partial_r V_{1j}(x) \right\} + \frac{1}{4} a_1^* \\ & \leq \frac{1}{2} (A_{\delta} + \lambda) < \lambda \,. \end{split}$$

Proof. The first assertion is obvious from the definition of $\gamma(\lambda)$. If $\Lambda_{\delta}=0$, the second assertion is also obvious since $a_1^*=0$ and $\limsup_{r\to\infty} \left\{ \sum_{j=1}^{l} r \partial_r V_{1j}(x) \right\} = 0$ $(l=1, \dots, m)$. On the other hand, if $\Lambda_{\delta}>0$, we have noting (1.6)

$$\begin{split} \frac{1}{\gamma(\lambda)} \max_{1 \leq l \leq m} & \limsup_{r \to \infty} \Big\{ \sum_{j=1}^{l} r \partial_r V_{1j} \Big\} + \frac{1}{4} a_1^* \\ &= \frac{\varLambda_{\delta} + \lambda}{2\varLambda_{\delta}} \Big(\varLambda_{\delta} - \frac{1}{4} a_1^* \Big) + \frac{1}{4} a_1^* \leq \frac{1}{2} (\varLambda_{\delta} + \lambda) \,. \end{split}$$

The lemma is proved.

q. e. d.

For $\mu \in \mathbb{R}$ and $G \subset \Omega$, let $L^2_{\mu}(G)$ denote the space of all functions f(x) such that

$$||f||_{\mu,G}^2 = \int_G (1+r)^{2\mu} |f(x)|^2 dx < \infty.$$

If $\mu=0$ or $G=\Omega$, the subscript μ or G will be omitted. Let $k(x,\zeta)$, $(x,\zeta)\in B(R_2)\times K^{\pm}$, be defined by

(1.11)
$$k(x, \zeta) = -i\sqrt{\zeta - \eta(r) \cdot V_1(x)} + \frac{n-1}{2r} + \frac{-\partial_r \{\eta(r) \cdot V_1(x)\}}{4\{\zeta - \eta(r) \cdot V_1(x)\}},$$

where $R_2 = R_2(\zeta)$ and we take the branch Im $\sqrt{\geq} 0$.

Definition. For solutions $u \in H^2_{loc}(\bar{\Omega})$ of (0.2) with $\zeta \in \Pi^{\pm}_{\delta}$, the outgoing (+) [or incoming (-)] radiation condition at infinity is defined by

$$(1.12)_{\pm} \qquad u \in L^{2}_{(-1-\alpha)/2}(\Omega) \quad \text{and} \quad \partial_{\tau} u + k(x, \zeta) u \in L^{2}_{(-1+\beta)/2}(B(R_{2})),$$

where $\alpha = \alpha(\zeta)$, $\beta = \beta(\zeta)$ is a pair of positive constants such that

(1.13)
$$0 < \alpha \le \beta \le 1, \frac{1}{2} \gamma(\operatorname{Re} \zeta) < \beta < 2\delta \quad \text{and} \quad \alpha \le 2\delta - \beta.$$

A solution u of (0.2) which also satisfies the radiation condition $(1.12)_+$ [or $(1.12)_-$] is called an outgoing [incoming] solution.

We are now ready to state two theorems concerning the principle of limiting absorption and spectral representations for the Schrödinger operator $-\Delta + V(x)$.

Theorem 2. Suppose that V(x) satisfies (V1), (V2-i) \sim (V2-v) and (V2-vii). Then we have:

(a) Let K^{\pm} be a compact set of Π_{δ}^{\pm} , let $\gamma(K^{\pm}) = \max_{\zeta \in K^{\pm}} \gamma(\lambda)$ ($\lambda = \text{Re } \zeta$), and let $\alpha = \alpha(K^{\pm})$, $\beta = \beta(K^{\pm})$ be a pair satisfying (1.13) with $\gamma(\lambda)$ replaced by $\gamma(K^{\pm})$. Then for any $\zeta = \lambda \pm i\tau \in K^{\pm}$ and $f \in L^{2}_{(1+\beta)/2}(\Omega)$, (0.2) has a unique outgoing [incoming] solution $u = u(x, \lambda \pm i\tau) = R_{\lambda \pm i\tau} f$, which also satisfies the inequalities

$$||u||_{(-1-\alpha)/2} \le C||f||_{(1+\beta)/2}$$
,

$$\|\Gamma u + \tilde{x} k(x, \lambda \pm i\tau) u\|_{(-1+\beta)/2, B(R_q)} \le C \|f\|_{(1+\beta)/2}$$

where $C=C(K^{\pm})>0$ and $R_3=R_3(K^{\pm})\geq R_2(K^{\pm})$ are independent of f.

(b) Let $R_{\xi}^*: L^2_{(1+\alpha)/2}(\Omega) \to L^2_{(-1-\beta)/2}(\Omega)$ be the adjoint of R_{ξ} . Then

$$R_{\lambda+i\tau}^* f = R_{\lambda+i\tau} f$$
 for $f \in L^2_{(1+\theta)/2}(\Omega)$.

(c) $u = R_{\zeta}f$ is continuous in $L^2_{(-1-\alpha)/2}(\Omega)$ with respect to $(\zeta, f) \in K^{\pm} \times L^2_{(1+\beta)/2}(\Omega)$.

(d) Let L be the selfadjoint operator in $L^2(\Omega)$ defined by

$$\left\{ \begin{array}{l} \mathcal{D}(L) = \{u \in H^2(\Omega) \; ; \; Bu \mid_{\partial \Omega} = 0\} \\ Lu = -\Delta u + V(x)u \qquad \textit{for} \quad u \in \mathcal{D}(L) \; , \end{array} \right.$$

and let $\{\mathcal{E}(\lambda); \lambda \in R\}$ be its spectral measure. Then for any Borel set $e \equiv (\Lambda_{\delta}, \infty)$, $f \in L^2_{(1+\beta)/2}(\Omega)$ and $g \in L^2_{(1+\alpha)/2}(\Omega)$ (α , β is chosen as above with $K^{\pm} = \bar{e}$) we have

$$(\mathcal{E}(e)f, g) = \frac{1}{2\pi i} \int_{e} (\{R_{\lambda+i0} - R_{\lambda-i0}\}f, g) d\lambda,$$

where (,) denotes the inner product in $L^2(\Omega)$, or more generally, the duality between $L^2_{(-1-\alpha)/2}(\Omega)$ and $L^2_{(1+\alpha)/2}(\Omega)$. Namely, the part of L in $\mathcal{E}((\Lambda_{\delta}, \infty))L^2(\Omega)$ is absolutely continuous with respect to the Lebesgue measure.

Theorem 3. Suppose that V(x) satisfies (V1) and (V2) with $\delta_l > 1/2(l=1, 2)$. Then we have:

(a) For any $\varepsilon > 0$ and $\lambda \ge \Lambda_{\delta} + \varepsilon$ there exist bounded linear operators $\mathcal{F}_{\pm}(\lambda)$: $L^2_{(1+2\delta)/2}(\Omega) \to L^2(S^{n-1})(S^{n-1} = \{x \; ; \; |x| = 1\})$ such that each $\mathcal{F}_{\pm}(\lambda)f \in L^2(S^{n-1})$ depends continuously on $(\lambda, f) \in (\Lambda_{\delta} + \varepsilon, \infty) \times L^2_{(1+2\delta)/2}(\Omega)$, and the following relations hold:

$$(\mathcal{F}_{\pm}(\lambda)f, \,\mathcal{F}_{\pm}(\lambda)g)_{L^{2}(S^{n-1})} = \frac{1}{2\pi i} (R_{\lambda+i0}f - R_{\lambda-i0}f, \,g),$$

$$(\mathcal{E}(e)f, g) = \int_{e} (\mathcal{F}_{\pm}(\lambda)f, \mathcal{F}_{\pm}(\lambda)g)_{L^{2}(S^{n-1})} d\lambda, \ e \equiv (\Lambda_{\delta} + \varepsilon, \infty).$$

- (b) The operators $\mathcal{F}_{\pm}: L^2_{(1+2\delta)/2}(\Omega) \to L^2((\Lambda_{\delta}+\varepsilon, \infty) \times S^{n-1})$ defined by $[\mathcal{F}_{\pm}f](\lambda, \tilde{\chi}) = [\mathcal{F}_{\pm}(\lambda)f](\tilde{\chi})$ can be uniquely extended by continuity to partial isometric operators from $L^2(\Omega)$ into $L^2((\Lambda_{\delta}+\varepsilon, \infty) \times S^{n-1})$ with initial set $\mathcal{E}((\Lambda_{\delta}+\varepsilon, \infty))L^2(\Omega)$.
- (c) For any bounded Borel function $b(\lambda)$ on $(\Lambda_{\delta} + \varepsilon, \infty)$, the following relation holds:

$$\mathcal{F}_+b(L)=b(\lambda)\mathcal{F}_+$$
.

(d) Let \mathcal{G}_{\pm}^* : $L^2((A_{\hat{o}}+\varepsilon,\infty)\times S^{n-1})\to L^2(\Omega)$ be the adjoint operators of \mathcal{G}_{\pm} . Then each \mathcal{G}_{\pm}^* admits the representation

$$\mathcal{F}_{\pm}^* \hat{f} = \operatorname{strong}_{N \to \infty} \lim_{N \to \infty} \int_{\Lambda_{R+1}}^{N} \mathcal{F}_{\pm}(\lambda)^* \hat{f}(\lambda) d\lambda \quad \text{in} \quad L^2(\Omega)$$

for any $\hat{f} \in L^2((\Lambda_{\delta} + \varepsilon, \infty) \times S^{n-1})$, where $\mathcal{F}_{\pm}(\lambda)^* : L^2(S^{n-1}) \to L^2_{(-1-2\delta)/2}(\Omega)$ is the adjoint of $\mathcal{F}_{\pm}(\lambda)$.

- (e) Let $\tilde{\delta}=\min\{\hat{o}, 2\hat{o}_2-1\}$. Then each \mathcal{F}_{\pm} maps $\mathcal{E}((\Lambda_{\tilde{\delta}}+\varepsilon, \infty))L^2(\Omega)$ onto $L^2((\Lambda_{\tilde{\delta}}+\varepsilon, \infty)\times S^{n-1})$, that is, \mathcal{F}_{\pm} restricted on $\mathcal{E}((\Lambda_{\tilde{\delta}}+\varepsilon, \infty))L^2(\Omega)$ is a unitary operator.
- **Remark 1.2.** In [3] we neglect the fact that the construction of $\mathcal{F}_{\pm}(\lambda)$ depends in general on ε . So the above is a correction of [3]. Note that for two ε , $\varepsilon' > 0$ and $\lambda > \Lambda_{\delta} + \max\{\varepsilon, \varepsilon'\}$, the corresponding operators $\mathcal{F}_{\pm}(\lambda)$ and $\mathcal{F}'_{\pm}(\lambda)$ are unitary equivalent to each other in $L^2(S^{n-1})$.

§ 2. Proof of Theorem 2

As we see in [2] (Theorems 1 \sim 5), all the assertions of Theorem 2 hold true under Assumptions 1 ([2]) and 2 ([2]) stated in the introduction of this article. So to complete the proof, we have only to check that these assumptions are satisfied by Λ_{δ} , $\gamma(\lambda)$ and $k(x, \zeta)$ given in the previous section.

Assumption 1 ([2]) directly follows from Theorem 1 and the definition of Λ_{δ} and $\gamma(\lambda)$. In fact, let $\lambda > \Lambda_{\delta}$ and u satisfy (0.4) and (0.5) for some $\beta > \gamma(\lambda)/2$ (without loss of generality we can assume $\beta \leq 1$). Then we have

$$R^{-1+\gamma(\lambda)/2} \int_{R_0 < |x| < R} |u(x)|^2 dx \le R^{-\beta+\gamma(\lambda)/2} \int_{R_0 < |x| < R} r^{-1+\beta} |u(x)|^2 dx$$

$$\to 0 \quad \text{as} \quad R \to \infty.$$

Since $\tilde{\gamma} = \gamma(\lambda)$ satisfies the condition of Theorem 1 (a) by Lemma 1.4, this and Theorem 1 (a) lead u = 0.

Next let us verify Assumption 2 ([2]) for $k(x, \zeta)$ restricted in $(x, \zeta) \in B(R_2) \times K^{\pm}$, where K^{\pm} is any compact set in H^{\pm}_{δ} , and $R_2 = R_2(K^{\pm})$ is what is given in Lemma 1.3. We choose $\gamma(K^{\pm})$ and $\beta(K^{\pm})$ as in (a) of Theorem 2. Then (A2-6) is obviously satisfied by this $\beta = \beta(K^{\pm})$. Further, the continuity of $k(x, \zeta)$ in $(x, \zeta) \in B(R_2) \times K^{\pm}$ is easily known by Lemma 1.3. So it remains only to verify (A2-1) \sim (A2-5).

For this purpose we prepare a lemma.

Lemma 2.1. There exist some constant C>0 such that for any $(x, \zeta) \in B(R_2) \times K^{\pm}$ we have

Proof. The above inequalities respectively follow from $(V2-i)\sim(V2-v)$ if we note that

$$\eta_j(r) = 0(1), 1 - \eta_j(r) = 0(r^{-\tau_j}), \ \eta'_j(r) = 0(r^{-\mu_j}) \text{ and}$$

$$\eta''_j(r) = 0(r^{-1-\delta_1+\varepsilon_j}) + 0(r^{-2\mu_j}) = 0(r^{-1-\delta+\varepsilon_j}).$$
q. e. d.

Now, (A2-2) and (A2-3) easily follow from Lemma 1.3 and Lemma 2.1 since we have

$$\begin{aligned} |k(x,\zeta)| &\leq |\sqrt{\zeta - \eta(r) \cdot V_1(x)}| + \frac{n-1}{2r} + \left| \frac{-\partial_r \{\eta(r) \cdot V_1(x)\}}{4 \{\zeta - \eta(r) \cdot V_1(x)\}} \right|, \\ &\mp \operatorname{Im} k(x,\zeta) = \pm \operatorname{Re} \sqrt{\zeta - \eta(r) \cdot V_1(x)} \mp \operatorname{Im} \left[\frac{-\partial_r \{\eta(r) \cdot V_1(x)\}}{4 \{\zeta - \eta(r) \cdot V_1(x)\}} \right]. \end{aligned}$$

Note that

$$\begin{split} (\overline{V} - \widetilde{x} \partial_{\tau}) k(x, \zeta) &= \frac{i(\overline{V} - \widetilde{x} \partial_{\tau})(\eta \cdot V_{1})}{2\sqrt{\zeta - \eta \cdot V_{1}}} + \frac{-(\overline{V} - \widetilde{x} \partial_{\tau})\partial_{\tau}(\eta \cdot V_{1})}{4(\zeta - \eta \cdot V_{1})} \\ &- \frac{\partial_{\tau}(\eta \cdot V_{1})(\overline{V} - \widetilde{x} \partial_{\tau})(\eta \cdot V_{1})}{4(\zeta - \eta \cdot V_{1})^{2}}. \end{split}$$

Then (A2-5) also follows from Lemma 2.1.

Next we prove (A2-1). It follows from (1.11) that (cf., Appendix of [2])

$$V(x) - \zeta + \partial_{\tau} k + \frac{n-1}{r} k - k^{2}$$

$$= V_{1} - \eta \cdot V_{1} + \frac{-\partial_{\tau}^{2}(\eta \cdot V_{1})}{4(\zeta - \eta \cdot V_{1})} + \frac{(n-1)(n-3)}{4r^{2}} - \frac{5 \left\{\partial_{\tau}(\eta \cdot V_{1})\right\}^{2}}{16(\zeta - \eta \cdot V_{1})^{2}} + V_{s}.$$

Since we have

$$\begin{split} V_{1} - \eta \cdot V_{1} + \frac{-\partial_{r}^{2}(\eta \cdot V_{1})}{4(\zeta - \eta \cdot V_{1})} &= \frac{1}{4(\zeta - \eta \cdot V_{1})} \left[\sum_{j=1}^{m} \left\{ 4\zeta(1 - \eta_{j})V_{1j} - \partial_{r}^{2}(\eta_{j}V_{1j}) \right\} - \sum_{j,k=1}^{m} 4(1 - \eta_{j})\eta_{k}V_{1j}V_{1k} \right] \end{split}$$

and

$$4\zeta(1-\eta_{j})\boldsymbol{V}_{1j}-\partial_{r}^{2}(\eta_{j}\boldsymbol{V}_{1j})=-\left\{\partial_{r}^{2}(\eta_{j}\boldsymbol{V}_{1j})+\eta_{j}\boldsymbol{a}_{j}(r)\boldsymbol{V}_{1j}\right\},$$

(A2-1) follows from Lemma 2.1 and (V2-vii).

Lastly, we prove (A2-4).

$$\operatorname{Re} k(x,\zeta) - \frac{n-1-\beta}{2r} = \frac{1}{4} \left\{ \operatorname{Re} \left[\frac{-\partial_r (\eta \cdot V_1)}{\zeta - \eta \cdot V_1} \right] + \frac{\gamma}{r} \right\} + \operatorname{Im} \sqrt{\zeta - \eta \cdot V_1} + \frac{2\beta - \gamma}{4r}.$$

Since $2\beta > \gamma$ by definition and $\text{Im}\sqrt{\zeta - \eta \cdot V_1} \ge 0$, we have only to show that there exists an $R_4 = R_4(K^{\pm}) \ge R_2$ such that

(2.1)
$$\operatorname{Re}\left[\frac{-\partial_r(\eta \cdot V_1)}{\zeta - \eta \cdot V_1}\right] + \frac{\gamma}{r} \ge 0 \quad \text{for any} \quad (x, \zeta) \in B(R_4) \times K^{\pm}.$$

We have

$$\begin{split} \frac{r|\zeta-\eta\cdot V_1|^2}{\gamma|\zeta|^2} & \Big\{ \mathrm{Re}\Big[\frac{-\partial_r(\eta\cdot V_1)}{\zeta-\eta\cdot V_1}\Big] + \frac{\gamma}{r} \Big\} \\ &= \frac{|\zeta-\eta\cdot V_1|^2}{|\zeta|^2} \, \mathrm{Re}\Big[\frac{\zeta-(r/\gamma)\partial_r(\eta\cdot V_1) - \eta\cdot V_1}{\zeta-\eta\cdot V_1}\Big] \\ &= 1 - \frac{1}{\gamma} \, \mathrm{Re}\Big\{ \sum_{j=1}^m \frac{r\partial_r V_{1j}(x)}{\zeta-(1/4)a_j(r)} \Big\} + |\zeta|^{-2}I \,; \\ I &= \mathrm{Re}\Big\{ -\frac{\bar{\zeta}}{\gamma} \sum_{j=1}^m r \eta_j' V_{1j} + \frac{r}{\gamma} \, \partial_r(\eta\cdot V_1) \, \overline{\eta\cdot V_1} - 2 \, \mathrm{Re}\left[\bar{\zeta}\,\eta\cdot V_1\right] + |\eta\cdot V_1|^2 \Big\} \,. \end{split}$$

Noting $K^{\pm} \subseteq \Pi_{\delta}^{\pm}$, we can choose a constant $\varepsilon > 0$ to satisfy

(2.2)
$$\varepsilon(3+\varepsilon)(1+\varepsilon)^{-1} \leq \min_{\zeta \in K^{\pm}} \frac{\lambda - \Lambda_{\delta}}{2\lambda - (1/2)a_{1}^{*}} \quad (\lambda = \operatorname{Re} \zeta).$$

We fix such an ε . Since $\zeta = \lambda \pm i\tau \in K^{\pm} \subset \Pi_{\delta}^{\pm}$ satisfies $(1/2)(\lambda - (1/4)a_1^*) \ge \tau \ge 0$, there exists an $R_5 = R_5(K^{\pm}) \ge R_4$ such that for any $(x, \zeta) \in B(R_5) \times K^{\pm}$,

(2.3)
$$0 < \operatorname{Re} \frac{1}{\zeta - (1/4)a_{m}(r)} \le \operatorname{Re} \frac{1}{\zeta - (1/4)a_{m-1}(r)} \le \cdots$$

$$\cdots \le \operatorname{Re} \frac{1}{\zeta - (1/4)a_{1}(r)} \le \frac{1+\varepsilon}{\lambda - (1/4)a_{1}^{*}},$$

$$|\zeta|^{-2}|I| < \varepsilon,$$

where in the last inequality (2.4) we have used (1.7), Lemmas 1.3, 2.1 and the fact that $\mu_j > 1 - \varepsilon_j$ in (1.3). Note here

$$\limsup_{r\to\infty} \max_{1\leq l\leq m} \sum_{j=1}^l r\partial_r V_{1j}(x) = \max_{1\leq l\leq m} \limsup_{r\to\infty} \sum_{j=1}^l r\partial_r V_{1j}(x).$$

Then we see that there exists an $R_6 = R_6(K^{\pm}) \ge R_5$ such that for any $x \in B(R_6)$

(2.5)
$$\max_{1 \le l \le m} \sum_{j=1}^{l} r \partial_r V_{1j}(x) \le \max_{1 \le l \le m} \limsup_{r \to \infty} \sum_{j=1}^{l} r \partial_r V_{1j}(x) + \gamma \varepsilon \min_{r \in K^{\pm}} (\lambda - (1/4)a_1^*).$$

(2.3), (2.5) and Abel's theorem imply that (cf., also (1.5))

$$(2.6) \qquad \frac{1}{\gamma} \operatorname{Re} \left\{ \sum_{j=1}^{m} \frac{r \partial_{r} V_{1j}(x)}{\zeta - (1/4) a_{j}(r)} \right\} \leq \operatorname{Re} \frac{1}{\zeta - (1/4) a_{1}(r)} \frac{1}{\gamma} \max_{1 \leq l \leq m} \sum_{j=1}^{l} r \partial_{r} V_{1j}(x)$$

$$\leq \frac{1 + \varepsilon}{(\lambda - (1/4) a_{1}^{*}) \gamma} \left\{ \max_{1 \leq l \leq m} \limsup_{r \to \infty} \sum_{j=1}^{l} r \partial_{r} V_{1j}(x) + \gamma \varepsilon \min_{\zeta \in K^{\pm}} \left(\lambda - \frac{1}{4} a_{1}^{*}\right) \right\}.$$

Since

$$\frac{1}{r} \max_{1 \le l \le m} \limsup_{r \to \infty} \sum_{j=1}^{l} r \partial_r V_{1j}(x) \le \frac{1}{2} \left(\lambda + \Lambda_{\delta} - \frac{1}{2} a_1^* \right)$$

by Lemma 1.4, we have from (2.4), (2.6) and (2.2)

$$1 - \frac{1}{\gamma} \operatorname{Re} \left\{ \sum_{j=1}^{m} \frac{r \partial_{\tau} V_{1j}(x)}{\zeta - (1/4) a_{j}(r)} \right\} + |\zeta|^{-2} I$$

$$\geq \left\{ 1 - \frac{\lambda + \Lambda_{\delta} - (1/2) a_{1}^{*}}{2\lambda - (1/2) a_{1}^{*}} \right\} (1 + \varepsilon) - \varepsilon (3 + \varepsilon) \geq 0$$

for any $(x, \zeta) \in B(R_6) \times K^{\pm}$. This proves (2.1), and we have (A2-4).

Remark 2.1. The condition (1.2) on $\{a_j(r)\}$ is used only to show (2.6) (Abel's theorem). Note that Assumptions 1 and 2 can be verified without (1.2) if we replace $\Lambda_{\delta}(\text{see }(1.6))$ by the following

$$\widetilde{A}_{\delta} = \frac{1}{\min\{4\delta, 2\}} \sum_{j=1}^{m} \limsup_{r \to \infty} \{r \widehat{\sigma}_{r} V_{1j}(x)\} + \frac{1}{4} \max\{a_{j}^{*}\}.$$

Here, in general, $\Lambda_{\delta} \leq \tilde{\Lambda}_{\delta}$.

§ 3. Sketch of proof of Theorem 3

On the bases of the principle of limiting absorption (Theorem 2), we can prove Theorem 3 by the same argument as in [3]. Here, in this section, we shall sketch an outline of the proof.

First we restrict ourselves to the case $V_s(x)=0$. Then $\Lambda_\delta=\Lambda_{1/2}$ since we have assumed $\delta_l>1/2$ (l=1,2) in (V2) (we can choose $\delta_0=1$ in this case). For $f\in L^2_1(\Omega)$ and $\lambda>\Lambda_{1/2}+\varepsilon(\varepsilon>0)$, let $R_{1,\lambda\pm i0}f$ be the outgoing [incoming] solution of (0.2) with $V(x)=V_1(x)$ and $\zeta=\lambda\pm i0$. We choose $R_7=R_7(\varepsilon)>R_0$ so large that

$$\lambda - \eta(r) \cdot V_1(x) \ge C > 0$$
 for $(x, \lambda) \in B(R_7) \times (\Lambda_{1/2} + \varepsilon, \infty)$,

and define the function $\rho(x, \lambda \pm i0) = \rho(x, \lambda \pm i0; \varepsilon)$ as follows:

(3.1)
$$\rho(x, \lambda \pm i0) = \int_{0}^{\tau} k(s\tilde{x}, \lambda \pm i0) ds$$

$$= \mp i \int_{R_7}^r \sqrt{\lambda - \eta(s) \cdot V_1(s\tilde{x})} ds + \frac{n-1}{2} \log r + \frac{1}{4} \log \{\lambda - \eta(r) \cdot V_1(x)\}.$$

Then as we see in Propositions 1.2 and 2.1 of [3], there exists a sequence $r_p = r_p(\lambda, f) \rightarrow \infty$ (as $p \rightarrow \infty$) such that

$$\left\{\frac{1}{\sqrt{\pi}}e^{\rho(r_{p^{\bullet},\lambda\pm i0})}[R_{1,\lambda\pm i0}f](r_{p^{\bullet}})\right\}$$

strongly converges in $L^2(S^{n-1})$. We define the operator $\mathcal{F}_{1,\pm}(\lambda) = \mathcal{F}_{1,\pm}(\lambda, \varepsilon)$: $L^2_1(\Omega) \to L^2(S^{n-1})$ as follws:

(3.2)
$$\mathcal{F}_{1,\pm}(\lambda)f = \operatorname{strong lim} \frac{1}{\sqrt{\pi}} e^{\rho (r_p \cdot \lambda \pm i0)} [R_{1,\lambda \pm i0} f](r_p \cdot) \quad \text{in} \quad L^2(S^{n-1}).$$

Then $\mathcal{G}_{1,\pm}(\lambda)$ is independent of the choice of $\{r_p\}$, and becomes a bounded operator from $L^2_1(\Omega)$ to $L^2(S^{n-1})$ which depends continuously on $\lambda > \Lambda_{1/2} + \varepsilon$ ([3], Lemma 2.4). Further, we have for $f \in L^2_1(\Omega)$ and $\lambda > \Lambda_{1/2}$ ([3], Proposition 1.3)

(3.3)
$$\|\mathcal{F}_{1,\pm}(\lambda)f\|_{L^{2}(S^{n-1})}^{2} = \frac{1}{2\pi i} (R_{1,\lambda+i0}f - R_{1,\lambda-i0}f, f).$$

By use of this $\mathcal{F}_{1,\pm}(\lambda)$, the operator $\mathcal{F}_{\pm}(\lambda)$: $L^2_{(1+2\delta)/2}(\Omega) \to L^2(S^{n-1})(\delta = \min\{\delta_0, \ \delta_1, \ \delta_2\})$ will be defined by

$$(3.4) \qquad \mathcal{F}_{\pm}(\lambda) = \mathcal{F}_{1,\pm}(\lambda) \left\{ 1 - V_s R_{\lambda \pm i0} \right\}, \quad \lambda > \Lambda_{\delta} + \varepsilon (\geq \Lambda_{1/2} + \varepsilon).$$

In order to verify that (3.4) is well defined as a bounded operator from $L^2_{(1+2\delta)/2}(\Omega)$ to $L^2(S^{n-1})$, we have to show that for any $\lambda > \Lambda_{\delta} + \varepsilon$, $\mathcal{F}_{1,\pm}(\lambda)$ can be extended to a bounded operator from $L^2_{(1+\beta)/2}(\Omega)$ to $L^2(S^{n-1})$, where β is any constant satisfying (1.13). This is possible by (3.3) and Theorem 2 (a) with $V(x) = V_1(x)$.

Now, as is proved in Theorems 2.1 and 3.1 of [3], we can have the assertions (a) \sim (d) of Theorem 3 with this $\mathcal{F}_{\pm}(\lambda)$.

To establish the assertion (e), we follow the argument of the proof of Theorem 4.1 of [3]. Namely, if $\hat{f} \in L^2((\Lambda_{\delta} + \varepsilon, \infty) \times S^{n-1})$ is orthogonal to the

range of \mathcal{F}_{\pm} , we can have for any smooth $\phi \in L^2(S^{n-1})$,

$$(\hat{f}(\lambda, \cdot), \phi)_{L^{2}(S^{n-1})} = 0 \quad \text{a. e.} \quad \lambda > \Lambda_{\delta} + \varepsilon,$$

where $\tilde{\delta} = \min\{\delta, 4\delta_2 - 2\}$. Note that to obtain (3.5) we have used the following relation satisfied by any $f \in L^2_{(1+\beta)/2}(\Omega)$, $\phi \in L^2(S^{n-1})$ and $\lambda > \Lambda_\delta + \varepsilon$:

(3.6)
$$(\mathcal{F}_{1,\pm}(\lambda)f, \phi)_{L^{2}(S^{n-1})} = \lim_{p \to \infty} \left(\frac{1}{\sqrt{\pi}} e^{\rho (r_{p}, \lambda \pm i0)} [R_{1,\lambda \pm i0}f](r_{p}, \phi) \right)_{L^{2}(S^{n-1})}$$

(cf., $\lceil 3 \rceil$; Lemma 3.2 and Proposition 1.4).

§ 4. Examples

I. We consider potentials of the form

(4.1)
$$V(x) = \sum_{j=1}^{m} \frac{c_j \sin b_j r^{\epsilon_j}}{r^{\epsilon_j}} + 0(r^{-1-\delta_0}) \text{ near infinity,}$$

where b_j , c_j are non-zero real, $0 < \varepsilon_m \le \varepsilon_{m-1} \le \cdots \le \varepsilon_1 \le 1$ and $0 < \delta_0 \le 1$. If $\varepsilon_k = \varepsilon_{k+1} = \cdots = \varepsilon_{k+p}$, the order of summation is chosen like $|b_k| \ge |b_{k+1}| \ge \cdots \ge |b_{k+p}|$. We put

$$V_{1j}(x) = V_{1j}(r) = \frac{c_j \sin b_j r^{\varepsilon_j}}{r^{\varepsilon_j}}, \quad a_j(r) = \varepsilon_j^2 b_j^2 r^{-2+2\varepsilon_j}.$$

Then it follows that

$$\begin{split} V_{1j}(r) &= 0(r^{-\varepsilon_j}) \;, \\ V'_{1j}(r) &= \frac{\varepsilon_j b_j c_j \cos b_j r^{\varepsilon_j}}{r} + 0(r^{-1-\varepsilon_j}) = 0(r^{-1}) \;, \\ V''_{1j}(r) &= \frac{-\varepsilon_j^2 b_j^2 c_j \sin b_j r^{\varepsilon_j}}{r^{2-\varepsilon_j}} + 0(r^{-2}) = -a_j(r) V_{1j}(r) + 0(r^{-2}) \;. \end{split}$$

Thus, choosing $\delta_1=1-\varepsilon_1+\varepsilon_m$ and $\delta_2=1$, we see that $V_{1j}(r)$ satisfies (V2-i)~ (V2-iii) and $a_j(r)$ satisfies (1.2) and (1.3) (see Lemma 1.1). Note that in this case, (V2-iv)~(V2-vi) are trivially satisfied by $V_{1j}(r)$. Since $\delta=\tilde{\delta}=\min\{\delta_0, 1-\varepsilon_1+\varepsilon_m\}$ and

$$\limsup_{r\to\infty} rV'_{1j}(r) = \varepsilon_j |b_j c_j|,$$

it follows from (1.4), (1.5) and (1.6) that

$$(4.2) E(2) \leq \frac{1}{2} \sum_{j=1}^{m} \varepsilon_j |b_j c_j|,$$

$$(4.3) \Lambda_{\delta} = \Lambda_{\widetilde{\delta}} \leq \frac{1}{\min\{4\delta, 2\}} \sum_{j=1}^{m} \varepsilon_{j} |b_{j}c_{j}| + \frac{1}{4} \varepsilon_{1}^{2} b_{1}^{2} \lim_{r \to \infty} r^{-2+2\varepsilon_{1}}.$$

Namely, we have the following results for the potential (4.1): $(E(2), \infty)$ is contained in the continuous spectrum of $L=-\mathcal{L}+V(x)$ (Theorem 1). $(\Lambda_{\delta}, \infty)$ is contained in the absolutely continuous spectrum of L (Theorem 2). If $1/2 > \varepsilon_1 - \varepsilon_m$, for any $\varepsilon > 0$ there exists a unitary operator \mathscr{F}_{\pm} (depending on ε) from $\mathscr{E}((\Lambda_{\delta}+\varepsilon,\infty))L^2(\Omega)$ onto $L^2((\Lambda_{\delta}+\varepsilon,\infty)\times S^{n-1})$ which diagonalizes L (Theorem 3).

In (4.3) we have used the fact that $\varepsilon_1 = \max\{\varepsilon_j\}$ and $|b_1| = \max\{|b_k|; \varepsilon_k = \varepsilon_1\}$.

Remark 4.1. If $\varepsilon_1 = 1$, then we have

$$\Lambda_{\delta} = \Lambda_{\delta} \leq \frac{1}{\min\{4\delta, 2\}} \sum_{j=1}^{m} \varepsilon_{j} |b_{j}c_{j}| + \frac{1}{4} b_{1}^{2}$$

(cf., [2]; Example II-1). On the other hand, if $\varepsilon_i < 1$ for any j, we have

$$\Lambda_{\delta} = \Lambda_{\delta} \leq \frac{1}{\min\{4\delta, 2\}} \sum_{j=1}^{m} \varepsilon_{j} |b_{j}c_{j}|$$

(cf., [2]; Example III).

II. We consider a more general case:

(4.4)
$$V(x) = \sum_{j=1}^{m} c_j(x) \sin b_j r^{\epsilon_j} + 0(r^{-1-\delta_0})$$

near infinity, where b_j , ε_j and δ_0 are as given above and $c_j(x)$ is a real-valued function such that

(4.5)
$$\nabla^{l} c_{i}(x) = 0 (r^{-l-\varepsilon_{i}}) (l=0, 1, 2).$$

We put

$$V_{1j}(x) = c_j(x) \sin b_j r^{\varepsilon_j}, \quad a_j(r) = \varepsilon_j^2 b_j^2 r^{-2+2\varepsilon_j}.$$

Then, choosing $\delta_1=1-\varepsilon_1+\varepsilon_m$ and $\delta_2=\varepsilon_m$, we see that $V_{1j}(x)$ satisfies (V2-i) \sim (V2-vi) and $a_j(r)$ satisfies (1.2) and (1.3). In this case, we have $\delta=\min\{\delta_0, \varepsilon_m\}$ and

(4.6)
$$E(2) \leq \frac{1}{2} \sum_{i=1}^{m} \varepsilon_{j} |b_{j}| c_{j}^{*}; c_{j}^{*} = \limsup_{r \to \infty} |r^{\varepsilon_{j}} c_{j}(x)|,$$

Namely, Theorems 1 and 2 hold with the above E(2) and Λ_{δ} , respectively. In order to apply Theorem 3 we have to assume

$$\delta_2 = \varepsilon_m > 1/2$$
.

Then we see that for any $\varepsilon>0$ there exists a partial isometric operator \mathcal{F}_{\pm} (depending on ε) from $\mathcal{E}((\Lambda_{\delta}+\varepsilon,\infty))L^{2}(\Omega)$ to $L^{2}((\Lambda_{\delta}+\varepsilon,\infty)\times S^{n-1})$ which diagonalizes L, and maps $\mathcal{E}((\Lambda_{\delta}+\varepsilon,\infty))L^{2}(\Omega)$ onto $L^{2}((\Lambda_{\delta}+\varepsilon,\infty)\times S^{n-1})$, where

(4.8)
$$\Lambda_{\tilde{\delta}} \leq \frac{1}{\min\{4\tilde{\delta}, 2\}} \sum_{j=1}^{m} \varepsilon_{j} |b_{j}| c_{j}^{*} + \frac{1}{4} \varepsilon_{1}^{2} b_{1}^{2} \lim_{r \to \infty} r^{-2+2\varepsilon_{1}}$$

with $\tilde{\delta} = \min \{\delta, 2\delta_2 - 1\} = \min \{\delta_0, 2\varepsilon_m - 1\}$.

Remark 4.2. In general $\Lambda_{\delta} \ge \Lambda_{\delta}$. However, if $\delta_2 = \varepsilon_m \ge 3/4$, we have $\Lambda_{\delta} = \Lambda_{\delta}$ (cf., [3]; Corollary 5.1).

III. The above results can be applied to potentials of the form

$$(4.9) V(x) = c(x) \sin^p b r^{\varepsilon} + 0(r^{-1-\delta_0}) (b \neq 0, 0 < \delta_0 \leq 1, 0 < \varepsilon \leq 1)$$

near infinity, where c(x) is a real-valued function satisfying

(4.10)
$$\nabla^{l}c(x)=0(r^{-l-\varepsilon})$$
 ($l=0, 1, 2$).

In fact.

$$\sin^p br^{\epsilon} = c_0 + \sum_{k=1}^p \{c_k \sin kbr^{\epsilon} + d_k \cos kbr^{\epsilon}\}$$

for suitable constants c_0 , c_k and $d_k(k=1, \dots, p)$. So, if we put

$$\left\{ \begin{array}{l} V_{1j}(x) = c(x) \left\{ c_{p-j+1} \sin{(p-j+1)} b r^{\varepsilon} + d_{p-j+1} \cos{(p-j+1)} b r^{\varepsilon} \right\} (j=1, \cdots, p), \\ V_{1(p+1)}(x) = c_0 c(x), \\ \\ a_j(r) = \varepsilon^2 (p-j+1)^2 b^2 r^{-2+2\varepsilon} (j=1, \cdots, p), \\ \\ a_{p+1}(r) = 0, \end{array} \right.$$

 $V_{1j}(x)$ $(j=1, \dots, p+1)$ satisfies $(V2-i)\sim(V2-vi)$ and $a_j(r)$ $(j=1, \dots, p+1)$ satisfies (1.2) and (1.3).

Remark 4.3. Potentials of the form

$$V(x)=c_1\sin(\log r)+c_2r^{-\varepsilon}\sin br^{\varepsilon}+0(r^{-1-\delta_0})$$

 $(bc_1c_2\neq 0, 0<\varepsilon\leq 1)$ are not covered by our theory (see V2-i), though each potential $\sin(\log r)$ or $r^{-\epsilon}\sin br^{\epsilon}$ is in the framework of our "oscillating" long-range potentials ([2], [3]).

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE SHINSHU UNIVERSITY,

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY OF INDUSTRIAL ARTS AND TEXTILE FIBRES

References

- [1] K. Mochizuki and J. Uchiyama, On eigenvalues in the continuum of 2-body or many-body Schrödinger operators, Nagoya Math. J., 70 (1978), 125-141.
- [2] ——, Radiation conditions and spectral theory for 2-body Schrödinger operators with "oscillating" long-range potentials I —the principle of limiting absorption—, J. Math. Kyoto Univ., 18 (1978), 377-408.
- [3] ——, Radiation conditions and spectral theory for 2-body Schrödinger operators with "oscillating" long-range potentials II —spectral representation—, J. Math. Kyoto Univ., 19 (1979), 47-70.