An inverse problem in potential theory and the inverse scattering problem

By
Yoshimi Sartō
(Communicated by Prof. T. Ikebe, March 6, 1981)

0. Introduction

Let us start with the following result ([8], Theorem 5.3): Let $S(k), k>0$, be the S-matrix associated with the Schrödinger operator $H=-\Delta+Q$ in $L^{2}\left(R^{3}\right)$ with a short-range potential $Q(y)$. Then we have an asymptotic formula

$$
\begin{align*}
& \lim _{K \rightarrow \infty} k^{2}\left(F(k) x_{k, z}, x_{k, z}\right)_{S^{2}} \tag{0.1}\\
& \quad=-2 \pi \int_{R^{3}}|z-y|^{-2} Q(y) d y
\end{align*}
$$

where

$$
\begin{cases}F(k)=-2 \pi i k^{-1}(S(k)-I) & (k>0), \tag{0.2}\\ x_{k, z}(\omega)=e^{-i k z(\prime} & \left(\omega \in S^{2}, z \in R^{3}\right)\end{cases}
$$

I is the identity operator on $L^{2}\left(S^{2}\right)$ and $(,)_{S^{2}}$ denotes the inner product of $L^{2}\left(S^{2}\right)$. (0.1) was used in [8] to show the uniqueness of the inverse scattering problem for general short-range potential $Q(y)=O\left(|y|^{-\mu}\right)$ with $\mu>1$ ([8], Theorem 5.4).

In this work we shall discuss the integral equation

$$
\begin{equation*}
g(z)=\lambda \int_{R^{3}}|z-y|^{-\alpha} Q(y) d y \tag{0.3}
\end{equation*}
$$

in the following two sections. Here λ and α are constants such that λ is a complex number with $\lambda \neq 0$ and $0<\alpha<3$. When a function $g(z)$ is given, we seek the solution $Q(y)$ which satisfies

$$
\begin{equation*}
|Q(y)| \leqq C(1+|y|)^{-\mu} \quad\left(y \in R^{3}\right) \tag{0.4}
\end{equation*}
$$

with $C>0$ and $\mu>3-\alpha$. In $\S 1$ we shall show a necessary and sufficient condition on $g(z)$ that the equation (0.3)-(0.4) has a unique solution $Q(y)$. A sufficient condition for the solvability of (0.3)-(0.4) will be given in $\S 2$. For instance we shall show the following (Theorem 2.4): Let $1<\alpha<3$ and let

$$
\left\{\begin{array}{l}
|g(z)| \leqq C(1+|z|)^{-\varepsilon} \tag{0.5}\\
|\Delta g(z)| \leqq C(1+|z|)^{-\varepsilon^{\prime}}
\end{array}\right.
$$

for all $z \in R^{3}$ with $C>0, \varepsilon>0, \varepsilon^{\prime}>2$. Then there exists a unique solution $Q(y)$ of the equation (0.3)-(0.4) and we have

$$
\begin{equation*}
Q(y)=\text { const. } \int_{R^{3}}|y-z|^{\alpha-4}(\Delta g)(z) d z \tag{0.6}
\end{equation*}
$$

The results obtained in $\S 1$ and $\S 2$ will be applied to the inverse scattering problem in §3. We shall discuss uniqueness and reconstruction of the potential $Q(y)$. Some characterization of the asymptotic behavior of the S-matrix will be given, too.

1. The equation $g=\lambda\left(|y|^{-\alpha} * Q\right)$

Let us first introduce some notations. Let μ be a real number. Then a function space A_{μ} is defined by

$$
\begin{equation*}
A_{\mu}=\left\{f \in C\left(R^{3}\right) / f(y)=O\left(|y|^{-\mu}\right) \text { as }|y| \longrightarrow \infty\right\}, \tag{1.1}
\end{equation*}
$$

where $C\left(R^{3}\right)$ is all continuous functions on R^{3}. Accordingly the estimate

$$
\begin{equation*}
|f(y)| \leqq C(1+|y|)^{-\mu} \quad\left(y \in R^{3}\right) \tag{1.2}
\end{equation*}
$$

holds for any $f \in A_{\mu}$ with a constant $C>0$. Let $\mathscr{S}=\mathscr{S}\left(R^{3}\right)$ be all rapidly decreasing functions on R^{3}, and let $\mathscr{S}^{\prime}=\mathscr{S}^{\prime}\left(R^{3}\right)$ be all linear continuous functionals on \mathscr{S}. The pairing between \mathscr{S} and \mathscr{S}^{\prime} will be denoted by \langle,$\rangle . Further we set$

$$
\begin{equation*}
\mathscr{S}_{0}=\mathscr{S}_{0}\left(R^{3}\right)=\{\varphi \in \mathscr{S} / \varphi=0 \quad \text { in a neighborhood of } y=0\} . \tag{1.3}
\end{equation*}
$$

The Fourier transform $\mathscr{F}, \overline{\mathscr{F}}, \mathscr{F}^{*}, \overline{\mathscr{F}}^{*}$ are defined by

$$
\left\{\begin{array}{l}
(\mathscr{F} f)(\xi)=(2 \pi)^{-3 / 2} \int_{R^{3}} e^{-i \xi y} f(y) d y \tag{1.4}\\
(\overline{\mathscr{F}} f)(\xi)=(\mathscr{F} f)(-\bar{\zeta}) \\
\left(\mathscr{F}^{*} F\right)(y)=(2 \pi)^{-3 / 2} \int_{R^{3}} e^{i \xi y} F(\underline{\xi}) a \bar{\xi} \\
\left(\overline{\mathscr{F}}^{*} F\right)(y)=\left(\mathscr{F}^{*} F\right)(-y)
\end{array}\right.
$$

Here $\xi y=\xi_{1} y_{1}+\xi_{2} y_{2}+\xi_{3} y_{3}$ for $\xi=\left(\xi_{1}, \xi_{2}, \xi_{3}\right)$ and $y=\left(y_{1}, y_{2}, y_{3}\right)$.
Let α and λ be real and complex numbers, respectively, such that

$$
\begin{equation*}
0<\alpha<3 \text { and } \lambda \neq 0, \tag{1.5}
\end{equation*}
$$

and let us consider the integral equation

$$
\left\{\begin{array}{l}
g(z)=\lambda \int_{R^{3}}|z-y|^{-\alpha} Q(y) d y \quad\left(=\lambda\left(|y|^{-\alpha} * Q\right)(z)\right) \tag{1.6}\\
Q \in A_{\mu}
\end{array}\right.
$$

with $3-\alpha<\mu<3^{11}$. Here $f * h$ means the vonvolution. If $Q \in A_{\mu}$ with $3-\alpha<\mu<3$ and $g(z)$ is defined by (1.6), then we have

$$
\begin{equation*}
g \in A_{\mu-(3-\alpha)}, \tag{1.7}
\end{equation*}
$$

which is a consequence of the following well-known theorem.
Lemma 1.1. Let $0<a<3,0<b<3$ and $a+b>3$. Then

$$
\begin{equation*}
|y|^{-a_{*}} * f \in A_{a+b-3} \tag{1.8}
\end{equation*}
$$

for any $f \in A_{b}$.
In order to solve the equation (1.6), let us introduce a linear functional $\Lambda^{s} g \in \mathscr{S}_{\xi}^{\prime}$ $=\mathscr{S}^{\prime}\left(R_{\xi}^{3}\right)$ for $s>0$ and $g \in A_{\varepsilon}$ with $\varepsilon>0$.

Definition 1.2. Let $g \in A_{\varepsilon}$ with $\varepsilon>0$ and let $s>0$. Then a linear functional $\Lambda^{s} g$ on $\mathscr{S}_{\xi}=\mathscr{P}\left(R_{\xi}^{3}\right)$ is defined by

$$
\begin{equation*}
\left\langle\Lambda^{s} g, G\right\rangle=\int_{R^{3}} g(y)\left\{\overline{\mathscr{F}}^{*}\left(|\xi|^{s} G\right)\right\}(y) d y \quad\left(G \in \mathscr{S}_{6}\right) \tag{1.9}
\end{equation*}
$$

$\Lambda^{s} g$ is well-defined as the element of $\mathscr{S}_{\xi}^{\prime}$ as will be shown in the next proposition. Let us introduce the norm $\left|\left.\right|_{s}, s>0\right.$, by

$$
\begin{equation*}
|G|_{s}=\sum_{|\beta| \leqq 3} \int_{R^{3}}|\xi|^{s-3+|\beta|}\left|D^{\beta} G(\xi)\right| d \xi+\int_{R^{3}}|\xi|^{s}|G(\xi)| d \xi . \tag{1.10}
\end{equation*}
$$

Here $\beta=\left(\beta_{1}, \beta_{2}, \beta_{3}\right)$ is a multi-index with $|\beta|=\beta_{1}+\beta_{2}+\beta_{3}$ and

$$
\begin{equation*}
D^{\beta}=\left(\partial / \partial \xi_{1}\right)^{\beta_{1}}\left(\partial / \partial \xi_{2}^{\beta}\right)^{2}\left(\partial / \partial \xi_{3}\right)^{\beta_{3}} . \tag{1.11}
\end{equation*}
$$

Obviously the topology induced in \mathscr{S}_{ξ} by the norm $\left|\left.\right|_{s}\right.$ is weaker than the proper topology of \mathscr{S}_{ξ}.

Proposition 1.3. Let $g \in A_{\varepsilon}$ with $\varepsilon>0$ and let $s>0$. Then $\Lambda^{s} g$ defined by Definition 1.2 is an element of $\mathscr{S}_{\xi}^{\prime}$ and the estimate

$$
\begin{equation*}
\left|\left\langle\Lambda^{s} g, G\right\rangle\right| \leqq C_{s}\left\|(1+|y|)^{-3} g\right\|_{L_{1}}|G|_{s} \tag{1.12}
\end{equation*}
$$

holds for any $G \in \mathscr{S}_{\xi}$, where $\left\|\|_{L^{1}}\right.$ is the norm of $L^{1}\left(R^{3}\right)$ and C_{s} is a constant depending only on $s>0$.

Proof. Repeating partial integration, we get

$$
\begin{equation*}
\left(\overline{\mathscr{F}}^{*}\left(\left.|\xi| s\right|^{s} G\right)\right)(y)=i|y|^{-2} y_{l}^{-1}\left(\overline{\mathscr{F}}^{*} H_{j, s}\right)(y), \tag{1.13}
\end{equation*}
$$

where

$$
\begin{align*}
H_{j, s}(\xi, G)= & s(s+1)(s+2)|\xi|^{s-4} \xi_{j} G(\xi)+s(s+3)|\xi|^{s-2} D_{j} G \tag{1.14}\\
& +2 s(s-2)|\xi|^{s-4} \xi_{j} \xi \cdot \nabla G(\xi)+\left.2 s|\xi|\right|^{s-2} \xi \cdot \nabla\left(D_{j} G\right)
\end{align*}
$$

1) Here and in the sequel we assume $\mu<3$. We are naturally interested in the case that μ is larger than $3-\alpha$ but is close to $3-r$.

$$
+\left.s|\xi|\right|^{s-2} \xi_{j} \Delta G(\xi)+|\xi|^{s} \Delta\left(D_{j} G\right) .
$$

Here $D_{j}=\partial / \partial \zeta_{j}, \nabla$ is the gradient and Δ is the Laplacian. It can be easily seen that

$$
\begin{equation*}
\left|\left(\overline{\mathscr{F}} * H_{j, s}\right)\left(y^{\prime}\right)\right| \leqq C_{s}|G|_{s} \quad\left(y \in R^{3}\right) \tag{1.15}
\end{equation*}
$$

holds with a constant C_{s} depending only on s. Take $\phi_{j} \in C\left(R^{3}\right), j=0,1,2,3$, such that $0 \leqq \phi_{j}(y) \leqq 1, \sum_{j} \phi_{j}(y)=1$, support of $\phi_{0}(y)$ is contained in $\{y /|y| \leqq 2\}$ and the support of $\phi_{j}(y)$ is contained in $\left\{y / 2\left|y_{j}\right| \geqq|y|,|y| \geqq 1\right\}$ for each $j=1,2,3$. Thus we obtain

$$
\begin{equation*}
\left.\left\langle\Lambda^{s} g, G\right\rangle=\left\langle\phi_{0} g, \overline{\mathscr{F}}^{*}\left(|\xi|^{s} G\right)\right\rangle+\sum_{j=1}^{3}\left\langle\phi_{j} y, i\right|,\left.\right|^{-2}, y_{j}^{-1} \overline{\mathscr{F}}^{*} H_{j, s}\right\rangle . \tag{1.16}
\end{equation*}
$$

(1.12) follows from (1.15) and (1.16).
Q.E.D.

Let $\mathscr{S}_{0 \xi}=\mathscr{S}_{0}\left(R_{\xi}^{3}\right)$ be as in (1.3). It will be shown that $\mathscr{S}_{0 \xi}$ is dence in \mathscr{S}_{ξ} with respect to the norm $\left|\mid s\right.$. Let $\rho(\xi) \in C^{\infty}\left(R_{\xi}^{3}\right)$ such that $0 \leqq \rho(\xi) \leqq 1$ and $\rho(\xi)=$ $0(|\xi| \leqq 1 / 2),=1(|\xi| \geqq 1)$, and set

$$
\begin{equation*}
\rho_{m}(\xi)=\rho(m \dot{\xi}) \quad(m=1,2,3, \ldots) . \tag{1.17}
\end{equation*}
$$

Lemma 1.4. Let $s>0$ and let $\left|\left.\right|_{s}\right.$ be as in (1.10). Then we have

$$
\begin{equation*}
\lim _{m \rightarrow \infty}\left|G-\rho_{m} G\right|_{s}=0 \tag{1.18}
\end{equation*}
$$

for any $G \in \mathscr{S}_{\xi}$.
Proof. Noting that $\rho_{m}(\xi)=1$ for $|\xi| \geqq m^{-1}$, we can see that

$$
\begin{equation*}
\int_{R^{3}}|\xi|^{s-3}\left|G-\rho_{m} G\right| d \xi \leqq \int_{0}^{m^{-1}} r^{s-1} d r \int_{S_{2}}|G(r \omega)| d \omega \longrightarrow 0 \tag{1.19}
\end{equation*}
$$

as $m \rightarrow \infty$. As for the first derivatives we get

$$
\begin{align*}
& \int_{R^{3}}|\xi|^{s-2}\left|D_{j}\left(G-\rho_{m} G\right)\right| d \xi \tag{1.20}\\
& \quad \leqq c_{j} \int_{|\xi| \leqq m^{-1}}|\xi| s^{s-3}|G| d \xi+\int_{|\xi| \leqq m^{-1}}|\xi|^{s-2}\left|D_{j} G\right| d \xi
\end{align*}
$$

for $j=1,2,3$, where $c_{j}=\max _{\xi}\left|D_{j} \rho(\xi)\right|$ and we have used the fact that $m \leqq|\xi|^{-1}$ on the support of $D_{j} \rho_{m}(\xi)$. Thus we get

$$
\begin{equation*}
\int_{R^{3}}|\xi|^{s-2}\left|D_{j}\left(G-\rho_{m} G\right)\right| d \xi \longrightarrow 0 \quad(m \longrightarrow \infty) \tag{1.21}
\end{equation*}
$$

Similarly it can be seen that

$$
\left\{\begin{array}{l}
\int_{R^{3}}|\xi|^{-s+3+|\beta|}\left|D^{\beta}\left(G-\rho_{m} G\right)\right| d \xi \longrightarrow 0 \tag{1.22}\\
\int_{R^{3}}|\xi|^{s}\left|G-\rho_{m} G\right| d \xi \longrightarrow 0
\end{array}\right.
$$

as $m \rightarrow \infty$ for any multi-index β with $0 \leqq|\beta| \leqq 3$, which implies (1.18).
Q.E.D.

Let us now give an inversion formula for the equation (1.6)
Proposition 1.5. Let $0<\gamma<3$ and let $Q \in A_{\mu}$ with $3-a<\mu<3$. Let $g(z)$ be defined by (1.6). Then we have $g \in A_{\mu-(3-x)}$ and

$$
\begin{equation*}
Q=\left(c_{x} \lambda\right)^{-1} \mathscr{F}^{*} \Lambda^{3-x} g \quad \text { in } \quad \mathscr{S}^{\prime} \tag{1.23}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\langle Q, \varphi\rangle=\left(c_{\alpha} \lambda\right)^{-1}\left\langle\mathscr{F} * \Lambda^{3-x} g, \varphi\right\rangle \quad(\varphi \in \mathscr{P}), \tag{1.24}
\end{equation*}
$$

with a constant

$$
\begin{equation*}
c_{x}=2^{3-x} \pi^{3 / 2} \Gamma((3-\alpha) / 2) \Gamma(2 / \alpha)^{-1} \tag{1.25}
\end{equation*}
$$

where $\Gamma(t)$ is the Γ-function.
Proof. Let $\left\{Q_{n}\right\}$ be a sequence such that

$$
\begin{cases}Q_{n} \in C_{0}^{x}=C_{0}^{x}\left(R^{3}\right) & (n=1,2, \ldots), \tag{1.26}\\ \left|Q_{n}(y)\right| \leqq C(1+|y|)^{-\mu} & \left(y \in R^{3}, n=1,2, \ldots\right), \\ Q_{n}(y) \longrightarrow Q(y) & \left(y \in R^{3}, n \longrightarrow \infty\right),\end{cases}
$$

where $C>0$ is independent of $n=1,2, \ldots$. Such an approximate sequence can be constructed by making use of the Friedrichs molifier. If we set

$$
\begin{equation*}
g_{n}(z)=\lambda \int_{R_{3}}|z-y|^{-\alpha} Q_{n}\left(y^{\prime}\right) d y^{\prime}, \tag{1.27}
\end{equation*}
$$

then $g_{n} \in A_{\mu-(3-\alpha)}$ by Lemma 1.1 and g_{n} satisfies

$$
\begin{cases}\left|g_{n}(z)\right| \leqq C(1+|z|)^{-(\mu+x-3)} & \left(z \in R^{3}, n=1,2, \ldots\right), \tag{1.28}\\ g_{n}(z) \longrightarrow g(z) & \left(z \in R^{3}, n \longrightarrow \infty\right),\end{cases}
$$

C being independent of $n=1,2, \ldots$. Let $G \in \mathscr{S}_{\xi}$. Then we have for $n=1,2, \ldots$.

$$
\begin{align*}
\left\langle\mathscr{F} g_{n}, G\right\rangle & \left.=\left\langle g_{n}, \overline{\mathscr{F}} * G\right\rangle=\lambda\langle |,\left.\right|^{-x} * Q_{n}, \overline{\mathscr{F}}^{*} G\right\rangle \tag{1.29}\\
& \left.=\lambda\langle |,\left.\right|^{-x}, \check{Q}_{n} *\left(\overline{\mathscr{F}}^{*} G\right)\right\rangle \quad\left(\check{Q}_{n}\left(y^{\prime}\right)=Q_{n}(-y)\right) .
\end{align*}
$$

Noting that

$$
\begin{align*}
\mathscr{F}^{*}\left(|\xi|^{-\gamma}\right)\left(y^{\prime}\right) & =2^{-i+(3 / 2)} \Gamma((3-\gamma) / 2) \Gamma(2 / \gamma)^{-1}\left|y^{\prime}\right|^{-3+\gamma} \tag{1.30}\\
& =b_{i}\left|y^{-3+}\right|^{-3+} ; \quad \text { in } \mathscr{J}^{\prime}
\end{align*}
$$

for $0<\gamma<3^{2}$, and setting $\gamma=3-\alpha$ in (1.30), we get from (1.29)
2) See, e.g., Gel'fand-Shilov [4], p. 194, though the definition of the Fouier transforms in [4] is a little bit different from the ones used here.

$$
\begin{align*}
\left\langle\mathscr{F} g_{n}, G\right\rangle & =\lambda b_{3-\alpha}^{-1}\left\langle\mathscr{F}^{*}\left(|\breve{\zeta}|^{x-3}\right), \check{Q}_{n} *(\overline{\mathscr{F}} * G)\right\rangle \tag{1.31}\\
& \left.=\left.(2 \pi)^{3 / 2} \lambda b_{3-\alpha}^{-1}\langle | \zeta\right|^{x-3}\left(\mathscr{F} Q_{n}\right), G\right\rangle,
\end{align*}
$$

where we have used the relations

$$
\begin{equation*}
\overline{\mathscr{F}}(f * g)(\xi)=(2 \pi)^{3 / 2}(\overline{\mathscr{F}} f)(\xi) \cdot(\overline{\mathscr{F}} g)(\xi) \quad(f, g \in \mathscr{S}) \tag{1.32}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(\overline{\mathscr{F}} \check{Q}_{n}\right)(\xi)=\left(\mathscr{F} Q_{n}\right)(\check{\zeta}) \tag{1.33}
\end{equation*}
$$

Therefore we have

$$
\begin{equation*}
\mathscr{F} g_{n}=c_{x} \lambda|\xi|^{x-3}\left(\mathscr{F} Q_{n}\right) \quad \text { in } \mathscr{S}_{\xi}^{\prime} \tag{1.34}
\end{equation*}
$$

with c_{α} given in (1.25). Let ρ_{m} be as in (1.17). Since $|\xi|^{3-x} \rho_{m} G \in \mathscr{S}_{0 \xi} \subset \mathscr{S}_{\xi}$ for any $G \in \mathscr{S}_{\xi}$, we have from (1.34)

$$
\begin{equation*}
\left.\left.\left.\left(c_{x} \lambda\right)^{-1}\left\langle\mathscr{F} g_{n},\right| \xi\right|^{3-x} \rho_{m} G\right\rangle=\left.\langle | \xi\right|^{x-3} \mathscr{F} Q_{n},|\xi|^{3-x} \rho_{m} G\right\rangle \quad\left(G \in \mathscr{S}_{\xi}\right), \tag{1.35}
\end{equation*}
$$

whence follows that

$$
\begin{equation*}
\left(c_{\alpha} \lambda\right)^{-1}\left\langle\Lambda^{3-x} g_{n}, \rho_{m} G\right\rangle=\left\langle\mathscr{F} Q_{n}, \rho_{m} G\right\rangle . \tag{1.35}
\end{equation*}
$$

Letting $m \rightarrow \infty$ in (1.36) and taking account of Proposition 1.3 and Lemma 1.4, we can see that

$$
\begin{equation*}
\left(c_{x} \lambda\right)^{-1}\left\langle\Lambda^{3-x} g_{n}, G\right\rangle=\left\langle\mathscr{F} Q_{n}, G\right\rangle \tag{1.37}
\end{equation*}
$$

for any $G \in \mathscr{S}_{\xi}$. Further we let $n \rightarrow \infty$ in (1.37) and make use of (1.26) and (1.28) to get

$$
\begin{equation*}
\left(c_{\alpha} \lambda\right)^{-1} \Lambda^{3-x} g=\mathscr{F} Q \quad \text { in } \quad \mathscr{S}_{\xi}^{\prime} \tag{1.38}
\end{equation*}
$$

whence (1.24) directly follows.
Q.E.D.

The converse of Proposition 1.5 will be shown in the next proposition.
Proposition 1.6. Let $0<\alpha<3$ and let $3-\alpha<\mu<3$. Let $g \in A_{\mu-(3-\alpha)}$ with

$$
\begin{equation*}
\mathscr{F ^ { * }} \Lambda^{3-x} g \in A_{\mu}, \tag{1.39}
\end{equation*}
$$

i.e., there exists $h \in A_{\mu}$ such that $h=\mathscr{F}^{*} A^{3-x} g$ in \mathscr{S}^{\prime}. Then

$$
\begin{equation*}
Q=\left(c_{x} \lambda\right)^{-1} \mathscr{F} * \Lambda^{3-x} g\left(=\left(c_{x} \lambda\right)^{-1} h\right) \tag{1.40}
\end{equation*}
$$

is a solution of the equation (1.6). c_{α} is given in (1.25).
Proof. Let $Q(y)$ be defined by (1.40). We have for $G \in \mathscr{S}_{0 \xi}$

$$
\begin{equation*}
\left.\left.\left.\langle | y\right|^{-x} * Q, \overline{\mathscr{F}} * G\right\rangle=\left.\langle Q,| y\right|^{-x} *(\overline{\mathscr{F}} * G)\right\rangle \tag{1.41}
\end{equation*}
$$

Here we should note that $|y|^{-x} *\left(\overline{\mathscr{F}}^{*} G\right) \in \mathscr{S}$, because, noting that (1.32) is valid in \mathscr{S}^{\prime} for $f=|y|^{-x}$ and $g=\mathscr{\mathscr { F }}^{*} G$, we have from (1.30)

$$
\begin{equation*}
\overline{\mathscr{F}}^{*}\left(\left|,{ }^{\prime}\right|^{-x} *(\overline{\mathscr{F}} * G)\right)=(2 \pi)^{3 / 2} b_{\chi}|\xi|^{x-3} G(\xi) \in \mathscr{S}_{0 \xi} . \tag{1.42}
\end{equation*}
$$

From (1.42) and (1.42) we sec that

$$
\begin{align*}
\left.\left.\langle | y\right|^{-\alpha} * Q, \overline{\mathscr{F}} * G\right\rangle & \left.=\left.\left(c_{x} \lambda\right)^{-1}\left\langle\mathscr{F} * \Lambda^{3-\alpha} g,\right| y\right|^{-\alpha} *\left(\overline{\mathscr{F}}^{*} G\right)\right\rangle \tag{1.43}\\
& \left.=\left.\left(c_{\alpha} \lambda\right)^{-1}(2 \pi)^{3 / 2} b_{\alpha}\left\langle\Lambda^{3-\alpha} g,\right| \xi\right|^{\alpha-3} G\right\rangle \\
& =\lambda^{-1}\left\langle g, \overline{\mathscr{F}} *\left\{|\xi|^{3-\alpha}|\xi|^{\alpha-3} G\right\}\right\rangle \\
& =\lambda^{-1}\langle g, \overline{\mathscr{F}} * G\rangle,
\end{align*}
$$

where it should be noted that $(2 \pi)^{3 / 2} c_{\alpha}^{-1} b_{\alpha}=b_{\alpha} b_{3-\alpha}=1$. Thus we get

$$
\begin{equation*}
\left\langle\mathscr{F}\left\{g-\lambda \cdot\left(|y|^{-\alpha} * Q\right)\right\}, G\right\rangle=0 \tag{1.44}
\end{equation*}
$$

for any $G \in \mathscr{S}_{0 \xi}$, which implies that the support of $\mathscr{F}\left\{g-\lambda^{-1}\left(|y|^{-\alpha} * Q\right\}\right.$ is contained in the origin $\{0\}$. Thercfore there exists a polynomial $P(y)=P\left(y_{1}, y_{2}, y_{3}\right)$ such that

$$
\begin{equation*}
\mathscr{F}\left\{g-\lambda^{-1}\left(|y|^{-x} * Q\right)\right\}=P(D) \delta, \tag{1.45}
\end{equation*}
$$

where δ is the Dirac δ-function and $D=\left(-D_{1},-i D_{2},-i D_{3}\right)$. For the proof of (1.45) see, e.g., Schwartz [9], p. 100. Since $\mathscr{F}^{*} P(D) \delta=P(y)$, it can be seen from (1.45) that

$$
\begin{equation*}
g(y)-\lambda\left(|y|^{-x} * Q\right)(y)=P(y) . \tag{1.46}
\end{equation*}
$$

Here the left-hand side of (1.46) is $o(1)$ at infinity by Lemma 1.1. and hence we have $P(y) \equiv 0$. Thus it has been shown htat Q defined by (1.40) is a solution of the equation (1.6).
Q. E.D.

The main result of this section directly follows from Propositions 1.5 and 1.6.
Theorem 1.7. Let $0<\alpha<3$. Then the integral equation (1.6) has a unique solution $Q \in A_{\mu}$ with $3-\alpha<\mu<3$ if and only if

$$
\left\{\begin{array}{l}
g \in A_{\mu-(3-\alpha)}, \tag{1.47}\\
\mathscr{F}^{*} \Lambda^{3-\alpha} g \in A_{\mu} .
\end{array}\right.
$$

Then the solution $Q(y)$ has the form (1.40). $Q(y)$ is real-valued if λ is real and $g(z)$ is real-valued.

Proof. Now that Propositions 1.5 and 1.6 have been shown, we have only to show the final statement of the theorem. Let λ be real and let $g(z)$ be real-valued. Then, taking the conjugate of (1.6), we can see that the conjugate $\overline{Q(y)}$ of $Q(y)$ is a solution of the equation (1.6), and hence the uniqueness of the solution of (1.6) can be applied to get $\overline{Q(y)}=Q(y)$, which completes the proof.
Q.E.D.

It can be seen from Theorem 1.7 that the equation (1.6) is solvable if $g(z)$ and its derivatives decrecase sufficiently rapidly at infinity.

Example 1.8. (i) Let g satisfy

$$
\left\{\begin{array}{l}
g \in A_{\mu-1} \cap D\left((-\Delta)^{1 / 2}\right) \tag{1.48}\\
(-\Delta)^{1 / 2} g \in A_{\mu}
\end{array}\right.
$$

with $1<\mu<3$, where $D\left((-\Delta)^{1 / 2}\right)$ is the domain of the self-adjoint operator $(-\Delta)^{1 / 2}$ in $L^{2}\left(R^{3}\right)$. Then the equation (1.6) with $\alpha=2$ has a unique solution $Q=\left(2 \pi^{2} \lambda\right)^{-1}$. $(-\Delta)^{1 / 2} g$.
(ii) Let $g(z)$ be a smooth function such that $|\mathscr{F} g|_{3-\alpha}<\infty$ with $0<\alpha<3$. Then the equation (1.6) has a unique solution $Q=\left(c_{\alpha} \lambda\right)^{-1} \mathscr{F}^{*}\left(|\xi|^{3-x} g\right)$. The proof is easy by the use of (1.15) in the proof of Proposition 1.3.
(iii) Let us consider the case that $\alpha=1$. Then the quation (1.6) has a unique solution if and only if $\mathscr{F}^{*} \Lambda^{2} g \in A_{\mu}$ and $g \in A_{\mu-2}$ with $\mu>2$. Since

$$
\begin{equation*}
\left\langle\mathscr{F}^{*} \Lambda^{2} g, \varphi\right\rangle=\langle g,-\Delta \varphi\rangle \quad(\varphi \in \mathscr{F}) \tag{1.49}
\end{equation*}
$$

we can say that (1.6) with $\alpha=1$ has a unique solution $Q(y)=-\left(2 \pi^{\frac{3}{2}} \lambda\right)^{-1} \Delta g$ if and only if $\Delta g \in A_{\mu}$ and $g \in A_{\mu-2}$ with $\mu>2$, where Δg is defined in the sense of distributions.

2. A sufficient condition for the solvability

The purpose of this section is to show the following theorem which gives a sufficient condition on $g(z)$ that the equation (1.6) is solvable.

Theorem 2.1. Let $0<\alpha<3$. Suppose that $g \in A_{\varepsilon}$ with $\varepsilon>0$ and there exits a positive number a such that $3-\alpha<s<3$ and

$$
\begin{equation*}
\mathscr{F}^{*} \Lambda^{s} g=g_{s} \in A_{\mu} \tag{2.1}
\end{equation*}
$$

with $s<\mu<3$. Then the integral equation (1.6) has a unique solution

$$
\begin{equation*}
Q(y)=\left(c_{x, s^{\prime}} i\right)^{-1} \int_{R^{3}}|y-z|^{x+s-6} g_{s}(z) d z \in A_{3-x+\varepsilon}, \tag{2.2}
\end{equation*}
$$

where A^{s} is as in Definition 1.2 and

$$
\left\{\begin{array}{l}
\delta=\min (\mu-s, \varepsilon), \tag{2.3}\\
c_{\alpha, s}=2^{s} \pi^{3} \Gamma((3-\alpha) / 2) \Gamma((\alpha+s-3) / 2)\{\Gamma(\alpha / 2) \Gamma((6-\alpha-s) / 2)\}^{-1} .
\end{array}\right.
$$

We need some preparations before giving the proof of this theore.
Let $g_{s} \in A_{\mu}$ as in Theorem 2.1 and take a sequence $\left\{g_{s, n}\right\}$ which satisfies

$$
\begin{cases}g_{s, n} \in C_{0}^{\infty} \tag{2.4}\\ g_{s, n}(z)=C(1+|z|)^{-n} & \left(z \in R^{3}\right), \\ g_{s, n}(z) \longrightarrow g_{s}(z) & \left(z \in R^{3}, n \longrightarrow \infty\right)\end{cases}
$$

where the constant C is independent of $n=1,2, \ldots$. Set

$$
\begin{equation*}
F_{s, n}(y)=\left(\mathscr{F}^{*} \mid \check{\zeta}^{3-x-s} \mathscr{F}_{s, n}\right)(y) \tag{2.5}
\end{equation*}
$$

for each $n=1,2, \ldots$. Since $3-\alpha-s>-3$, we have $|\check{\xi}|^{3-x-s}\left(\mathscr{F} g_{s, n}\right)(\xi) \in L^{1}\left(R_{\xi}^{3}\right)$, which
implies that $F_{s, n}(y)$ is well-defined as a continuous function on R^{3}.
Proposition 2.2. Let $F_{s, n}(y)$ be as above. Then we have

$$
\left\{\begin{array}{l}
F_{s, n}\left(, y^{\prime}\right)=d_{x, s} \int_{R^{3}}|y--|^{x+s-6} g_{s, n}(z) d y \in A_{3-x+\mu-s}, \tag{2.6}\\
\left|F_{s, n}(y)\right| \leqq C(1+|y|)^{-(3-\alpha+n-s)}
\end{array}\right.
$$

with a constant C independent of $n=1,2, \ldots$ and $d_{\alpha, s}=(2 \pi)^{-3 / 2} b_{\alpha+s-3}$, where b_{γ} is given in (1.30). Further,

$$
\begin{equation*}
\lim _{n \rightarrow \infty} F_{s, n}(y)=d_{x, s} \int_{R^{3}}|y-z|^{x+s-6} g_{s}(z) d z \tag{2.7}
\end{equation*}
$$

holds for any $y \in R^{3}$.
Proof. First let us note that $0<6-\alpha-s<3$. Then we can apply (1.30) with $\gamma=6-\alpha-s$ to show

$$
\begin{align*}
\left\langle F_{s, n}, \varphi\right\rangle & \left.=\left.\langle | \xi\right|^{3-\alpha-s} \mathscr{F} g_{s, n}, \varphi\right\rangle \tag{2.8}\\
& \left.=\left.b_{x+s-3}\langle\overline{\mathscr{F}}| y\right|^{\alpha+s-6},\left(\mathscr{F} g_{s, n}\right)(\overline{\mathscr{F}} \varphi)\right\rangle .
\end{align*}
$$

Thus, using (1.32), we have

$$
\begin{align*}
\left\langle F_{s, n}, \varphi\right\rangle & =(2 \pi)^{-3 / 2}\langle | .| |^{x+s-6}, g_{s, n} *(\mathscr{F} * \overline{\mathscr{F}} \varphi) \tag{2.9}\\
& =d_{\alpha, s}\left\langle\mid . y^{x+s-6}, g_{s, n} * \check{\varphi}\right\rangle \quad(\check{\varphi}(y)=\varphi(-y)) \\
& \left.=d_{x, s}\langle | .\left.\left.\right|^{x+s-6} *\right|_{s, n}, \varphi\right\rangle,
\end{align*}
$$

which is combined with (2.4) to give (2.6). By letting $n \rightarrow \infty$ in (2.6) and noting (2.4),
(2.7) can be easily derived.
Q.E.D.

Proposition 2.3. Let $F_{s, n}(y)$ be as above. Then

$$
\begin{equation*}
\lim _{u \rightarrow \infty} F_{s, n}=\mathscr{F}^{*} \Lambda^{3-\alpha} g \quad \text { in } \mathscr{S}^{\prime} \tag{2.10}
\end{equation*}
$$

Proof. It sufficies to show

$$
\begin{equation*}
\lim _{u \rightarrow \infty}\left\langle F_{s, n}, \varphi\right\rangle=\left\langle\mathscr{F}^{*} \Lambda^{3-x} g, \varphi\right\rangle \tag{2.11}
\end{equation*}
$$

for $\varphi \in \mathscr{S}$. Let us first consider the case that $\varphi=\overline{\mathscr{F}}^{*} G$ with $G \in \mathscr{S}_{0 \xi}$. Then $\overline{\mathscr{F}}^{*}\left(|\xi|^{t} \varphi\right) \in \mathscr{S}$ for any real t. Using

$$
\begin{equation*}
\left\langle F_{s, n}, \varphi\right\rangle=\left\langle g_{s}, \overline{\mathscr{F}}^{*}\left(|\xi|^{3-x-s} G\right)\right\rangle \tag{2.12}
\end{equation*}
$$

and recalling (2.4) and the definition of Λ^{s}, we have

$$
\begin{align*}
\lim _{n \rightarrow \infty}\left\langle F_{s, n}, \varphi\right\rangle & =\left\langle g_{s}, \overline{\mathscr{F}}^{*}\left(|\xi|^{3-x} G\right)\right. \tag{2.13}\\
& =\left\langle\mathscr{F}^{*} \Lambda^{s} g, \overline{\mathscr{F}}^{*}\left(|\xi|^{3-x-s} G\right)\right\rangle \\
& =\left\langle g, \overline{\mathscr{F}}^{*}\left(|\xi|^{s}|\xi|^{3-\alpha-s} G\right)\right\rangle
\end{align*}
$$

$$
\begin{aligned}
& =\left\langle g, \overline{\mathscr{F}} *\left(|\xi|^{3-x} G\right)\right\rangle \\
& =\left\langle\Lambda^{3-x} g, G\right\rangle=\left\langle\mathscr{F}^{*} \Lambda^{3-x} g, \varphi\right\rangle
\end{aligned}
$$

Let us next consider the general case, i.e., let us show (2.11) for $\varphi \in \mathscr{S}$. Let ρ_{m} be as in (1.17) and set

$$
\begin{equation*}
\rho_{m}=\overline{\mathscr{F}}^{*}\left(\rho_{m} \overline{\mathscr{F}} \varphi\right) \quad(m=1,2, \ldots) . \tag{2.14}
\end{equation*}
$$

Then $\varphi_{m} \in \mathscr{S}_{0 \xi}$ and it follows from Lemma 1.4 that

$$
\begin{equation*}
\left|\varphi-\varphi_{m}\right|_{t} \longrightarrow 0 \tag{2.15}
\end{equation*}
$$

as $m \rightarrow \infty$ for each $t>0$. In the relation

$$
\begin{align*}
\left\langle\mathscr{F}^{*} \Lambda^{3-x} g-F_{s, n}, \varphi\right\rangle=\left\langle\mathscr{F}^{*} \Lambda^{3-x} g-\right. & \left.F_{s, n}, \varphi_{m}\right\rangle+\left\langle\mathscr{F}^{*} \Lambda^{3-x} g, \varphi-\varphi_{m}\right\rangle \tag{2.16}\\
& -\left\langle F_{s, n}, \varphi-\varphi_{m}\right\rangle
\end{align*}
$$

the first term of the right-hand side tends to 0 as $n \rightarrow \infty$ for each m because of (2.12). By the use of Proposition 1.3 and (2.15) with $t=3-\alpha$ the second term of the righthand side is estimated as

$$
\left|\left\langle\mathscr{F}^{*} \Lambda^{3-x} g, \varphi-\varphi_{m}\right\rangle\right| \leqq c_{3-x}\left\|\left(1+\left|y^{\prime}\right|\right)^{-3} g\right\|_{L^{\prime}}\left|\varphi-\varphi_{m}\right|_{3-x} \longrightarrow 0
$$

as $m \rightarrow \infty$. Thus, in order to show (2.11), it is sufficient to prove

$$
\begin{equation*}
\left|\left\langle F_{s, n}, \varphi\right\rangle\right| \leqq C|\overline{\mathscr{F}} \varphi|_{3-\alpha} \quad(\varphi \in \mathscr{S}) \tag{2.18}
\end{equation*}
$$

with a constant C independent of $n=1,2, \ldots$. Let us now show (2.18). Since we can see that

$$
\left\{\begin{align*}
& \mathscr{F}^{*}\left(|\xi|^{-s} \mathscr{F} g_{s, n}\right)(z)=(2 \pi)^{3 / 2} b_{3-s}^{-1} \int_{R^{3}}|z-y|^{s-3} g_{s, n}(y) d y \tag{2.19}\\
& \equiv h_{s, n}(z) \in A_{\mu-s} \\
&\left|h_{s, n}(z)\right| \leqq C(1+|z|)^{s-\mu} \quad\left(z \in R^{3}, n=1,2, \ldots\right)
\end{align*}\right.
$$

in quite a similar way to the one used in the proof of (2.6) in Proposition 2.2, $\left\langle F_{\mathrm{s}, \mathrm{n}}\right.$, $\varphi\rangle$ is calculated as

$$
\begin{align*}
\left\langle F_{s, n}, \varphi\right\rangle & \left.=\left.\langle | \xi\right|^{3-x-s} \mathscr{F} g_{s, n}, \overline{\mathscr{F}} \varphi\right\rangle \tag{2.20}\\
& \left.=\left.\langle | \bar{\zeta}\right|^{-s} \mathscr{F} g_{s, n},|\check{\xi}|^{3-x} \overline{\mathscr{F}} \varphi\right\rangle \\
& =\left\langle h_{s, n}, \overline{\mathscr{F}}^{*}\left(|\xi|^{3-x} \overline{\mathscr{F}} \varphi\right)\right\rangle=\left\langle\Lambda^{3-x} h_{s, n}, \mathscr{F} \varphi\right\rangle .
\end{align*}
$$

(2.18) follows from (2.19), (2.20) and Proposition 1.3.
Q.E.D.

Proof of Theorem 2.1. From Propositions 2.2 and 2.3 we have

$$
\begin{equation*}
\mathscr{F}^{*} \Lambda^{3-x} g=d_{x, s}\left(|y|^{x+s-6} * g_{s}\right) \in A_{3-x+\mu-s} \tag{2.21}
\end{equation*}
$$

in \mathscr{S}^{\prime}. On the other hand g is assumed to satisfy

$$
\begin{equation*}
g \in A_{\varepsilon} \tag{2.22}
\end{equation*}
$$

with $\varepsilon>0$. Therefore, setting $\delta=\min (\mu-s, \varepsilon)$, we can apply Theorem 1.7 to see that the equation (1.6) has a unique solution $Q=\left(c_{\alpha} \lambda\right)^{-1} \mathscr{F} * \Lambda^{3-x} g=\left(c_{\alpha} \lambda\right)^{-1} d_{\alpha, s} \mid y^{x+s-6} * g_{s}$. Now we have only to note that $c_{\alpha} / d_{\alpha, s}$ is equal to $c_{\alpha, s}$ defined by (2.3). \quad Q.E.D.

The next theorem is an application of Theorem 2.1.
Theorem 2.4. Let $1<\alpha<3$. Assume that $g \in A_{\varepsilon}$ with $\varepsilon>0$ and $\Delta g \in Q_{\mu}$ with $\mu>2$, where Δg is defined in the sense of distributions. Then the equation (1.6) has a unique solution $Q \in A_{3-x+\delta}$ with $\delta=\min (\mu-2, \varepsilon)$ which has the form

$$
\begin{equation*}
Q(y)=-\left(c_{\alpha, 2} \lambda\right)^{-1} \int_{R^{3}}|y-z|^{\alpha-4}(\Delta g)(z) d z, \tag{2.23}
\end{equation*}
$$

where

$$
\begin{equation*}
c_{\alpha, 2}=4 \pi^{3} \Gamma((3-\alpha) / 2) \Gamma((\alpha-1) / 2)\{\Gamma(\alpha / 2) \Gamma((4-\alpha) / 2)\}^{-1} . \tag{2.24}
\end{equation*}
$$

Proof. Since $\overline{\mathscr{F}}^{*}\left(|\xi|^{2} \overline{\mathscr{F}} \varphi\right)=-\Delta \varphi$ for $\varphi \in \mathscr{S}$, we have

$$
\begin{equation*}
\left\langle\mathscr{F} * \Lambda^{2} g, \varphi\right\rangle=\langle-\Delta g, \varphi\rangle \quad(\varphi \in \mathscr{S}), \tag{2.25}
\end{equation*}
$$

i.e.,

$$
\begin{equation*}
\mathscr{F}^{*} \Lambda^{2} g=-\Delta g \in A_{\mu} \quad \text { in } \quad \mathscr{S}^{\prime} . \tag{2.26}
\end{equation*}
$$

Therefore Theorem 2.1 with $s=2$ can be applied.
Q.E.D.

Remark 2.5. Let $\lambda>0$ in the equation (1.6). Then, under the assumptions of Theorem 2.4, the solution $Q(y) \leqq 0$ (or $Q(y) \geqq 0$) if $g(z)$ is subharmonic (or superharmonic).

3. Some remarks on the inverse scattering problem

1^{0} Let us consider the Schrödinger operator

$$
\begin{equation*}
H=-\Delta+Q \tag{3.1}
\end{equation*}
$$

in R^{3}, where Q is a multiplication operator by a real-valued function $Q(y) \in A_{\mu}$ with $\mu>1$, i.e., $Q(y)$ is a short-range potential. As is well-known, the restriction of the differential operator H to C_{0}^{∞} is essentailly self-adjoint in $L^{2}\left(R^{3}\right)$. The (unique) self-adjoint extension will be denoted again by H.
2^{0} Let us give a brief sketch of scattering theory for H. First the wave operators

$$
\begin{equation*}
W_{ \pm}=\underset{t \rightarrow \pm \infty}{\mathrm{s}-\lim _{t a}} e^{i t \|} e^{-i t \|_{0}} \tag{3.2}
\end{equation*}
$$

are defined as partially isometric operators in $L^{2}\left(R^{3}\right)$ (Kuroda [5]). Let $E(\lambda)$ be the spectral measure associated with H. Then the ranges of $W_{ \pm}$are known to be $E((0$, $\infty)) L^{2}\left(R^{3}\right)$ which is also the absolutely continuous subspace of $L^{2}\left(R^{3}\right)$ with respect
to H (Agmon [1], Saitō [7]). By the use of $W_{ \pm}$the scattering operator S is defined by

$$
\begin{equation*}
S=W_{+}^{*} W_{-} . \tag{3.3}
\end{equation*}
$$

S is a unitary operator on $L^{2}\left(R^{3}\right)$. Further it can be shown that there exists a family of unitary operators $S(k), k>0$, on $L^{2}\left(S^{2}\right)$ such that

$$
\begin{align*}
\left.\left\{\mathscr{F} S \mathscr{F}^{*}\right) G\right\}(\xi)= & \{S(|\xi|) G(|\xi| \cdot)\}(\tilde{\xi}) \tag{3.4}\\
& \left(G \in C_{0}^{夫}\left(R_{\tilde{\xi}}^{3}\right), \tilde{\xi}=\xi /|\xi|\right) .
\end{align*}
$$

Here \mathscr{F} is the Fourier transform defined by the first relation of (1.4). $\quad S(k), k>0$, called the S-matrix associated with H. Set

$$
\begin{equation*}
F(k)=-2 \pi i k^{-1}(S(k)-I), \tag{3.5}
\end{equation*}
$$

I being the identity operator on $L^{2}\left(R^{3}\right)$. Then $F(k)$ is a compact operator for each $k>0$ (Agmon [1]). If $Q \in A_{\mu}$ with $\mu>2$, then $F(k)$ is a Hilbert-Schmidt operator on $L^{2}\left(S^{2}\right)$ with its Hilbert Schmidt kernel $F\left(k, \omega, \omega^{\prime}\right)\left(k>0, \omega, \omega^{\prime} \in S^{2}\right)$ (Amerein et al. [2], Saitō [8]), i.e.,

$$
\left\{\begin{array}{l}
(F(k) \cdot \mathfrak{x})(\omega)=\int_{S^{2}} F\left(k, \omega, \omega^{\prime}\right) x\left(\omega^{\prime}\right) d \omega^{\prime}, \tag{3.6}\\
\int_{S^{2}} \int_{S^{2}}\left|F\left(k, \omega, \omega^{\prime}\right)\right|^{2} d \omega d \omega^{\prime}<\infty
\end{array}\right.
$$

for $x \in L^{2}\left(S^{2}\right) . \quad F\left(k, \omega, \omega^{\prime}\right)$ is called the scattering amplitude.
3^{0} Usually the inverse scattering problem consists of the attempt to reconstruct the potential $Q(y)$, which is often called the underlying potential, from the scattering amplitude $F\left(k, \omega, \omega^{\prime}\right)$. Let us now replace the scattering amplitude $F\left(k, \omega, \omega^{\prime}\right)$ by the S-matrix $S(k)$ in the above definition of the inverse scattering problem, because we treat general short-range potentials $Q(y) \in A_{\mu}$ with $\mu>1$ and $F(k)$ has no Hilbert-Schmidt kernel in general for such a potential. As has been mentioned in Newton [6], the inverse scattering problem has the following three separate aspects:
(a) Reconstruction of the underlying potential.
(b) Uniqueness of the underlying potential.
(c) Existence of an underlying potential, or characterization of the class of S-matricies associated with potentials (in a given class).
4^{0} Let us first consider the problem (a). Newton [6] showed that the underlying potential $Q(y)$ is reconstructed by solving an integral equation which can be regarded as an extension of the Marchenko equation in the one-dimensional case. Here $Q(y)$ has to fulfil some pretty restrictive conditions which are satisfied by, e.g., $|Q(y)| \leqq C(1+|y|)^{-3-\varepsilon}$ and $|\nabla Q(y)| \leqq C(1+|y|)^{-2-\varepsilon}$ with $C, \varepsilon>0$. Now, using the results obtained in $\S 1$ and $\S 2$ and the formula (0.1), we shall show another reconstruction formula for the underlying potential $Q(y) \in A_{\mu}$ with $\mu>1$. Set

$$
\begin{equation*}
g(z, k)=k^{2}\left(F(k) \cdot x_{k, z}, x_{k, z}\right)_{S^{2}} \tag{3.7}
\end{equation*}
$$

for $k>0, z \in R^{3}$, where $x_{k, z}(\omega)=e^{-i k z(i)}$ and $(,)_{S^{2}}$ is the inner product of $L^{2}\left(S^{2}\right)$.
Theorem 3.1. (i) Let $S(k), k>0$, be the S-matrix for the Schrödinger operator $H=-\Delta+Q$ with real $Q \in A_{\mu}(1<\mu<3)$ and let $F(k)$ be as in (3.5). Then the limit

$$
\begin{equation*}
g(z)=\lim _{k \rightarrow \infty} g(z, k)=-2 \pi \int_{R^{3}}|z-y|^{-2} Q(y) d y \tag{3.8}
\end{equation*}
$$

exists for each $z \in R^{3}$ and $g(z)$ satisfies

$$
\left\{\begin{array}{l}
g \in A_{\mu-1} \tag{3.9}\\
\mathscr{F}^{*} \Lambda^{1} g \in A_{\mu}
\end{array}\right.
$$

Λ^{1} being as in the Definition 1.2 with $s=1$. We have a reconstruction formula

$$
\begin{equation*}
Q(y)=-\left(4 \pi^{3}\right)^{-1} \mathscr{F}^{*} \Lambda^{1} g(y) \tag{3.10}
\end{equation*}
$$

(ii) We have another expression for $Q(y)$.

$$
\begin{equation*}
Q=-\left(4 \pi^{3}\right)^{-1} \lim _{k \rightarrow \infty} \mathscr{F}^{*} \Lambda^{\prime} g(\cdot, k) \quad \text { in } \quad \mathscr{S}^{\prime} . \tag{3.11}
\end{equation*}
$$

Proof. The existence of limit (3.8) is shown in [8] (Theorem 5.3). (3.9) and (3.10) follows from Theorem 1.7 with $\alpha=2$ and $\lambda=-2 \pi$. Since it can be seen from the proof of Theorem 5.3 of [8] that the estimate

$$
\begin{equation*}
|g(z, k)| \leqq C(1+|z|)^{-(\mu-1)} \quad\left(z \in R^{3}, k \geqq 1\right) \tag{3.12}
\end{equation*}
$$

holds with a constant $C>0$ independent of $k \geqq 1$. (3.12) is combined with (3.8) to give

$$
\begin{equation*}
\lim _{k \rightarrow \infty} \int_{R^{3}} g(z, k) \mathscr{F}^{*}(|\xi| G)(z) d z=\int_{R^{3}} g(z) \mathscr{F}^{*}(|\xi| G)(z) d z \quad(G \in \mathscr{S}), \tag{3.13}
\end{equation*}
$$

which completes the proof of (3.11).
Q.E.D.

We can use the results in $\S 2$ to get another reconstruction formula for $Q(y)$. The following results corresponds to Theorem 2.4.

Theorem 3.2. Let $S(k)$ be as in Theorem 3.1 and $g(z)$ be as in (3.8). Further, let $\Delta g \in A_{\mu}$ with $\lambda>2$, where Δg is defined in the sense of distributions. Then we have

$$
\begin{equation*}
Q(y)=\left(8 \pi^{5}\right)^{-1} \int_{R^{3}}|z-y|^{-2}(\Delta g)(z) d z \tag{3.14}
\end{equation*}
$$

Proof. We have only to apply Theorem 2.4 with $\alpha=2$ and $\lambda=-2 \pi$, and note that $c_{2,2}=4 \pi^{4}$ which follows from (2.24) with $\alpha=s=2$.
Q.E.D.
5^{0} Let us next consider the problem (b); uniqueness of the underlying potential. Faddeev [3] showed the uniquness of the underlying potential for the potential $Q \in A_{\mu}$ with $\mu>3$. This result was extended to the case that Q belongs to the Robin class R (Newton [6], §3). Saitō [8] showed that the uniquness holds for $Q \in A_{\mu}$
with $\mu>1$. Now it can be obtained directly from Theorem 1.7 with $\alpha=2, \lambda=-2 \pi$.
Theorem 3.3. Let $Q_{1}(y)$ and $Q_{2}(y)$ belong to A_{μ} with $\mu>1$ and let $S_{1}(k)$ and $S_{2}(k)$ be the S-matricies $H_{1}=-\Delta+Q_{1}$ and $H_{2}=-\Delta+Q_{2}$, respectively. If $S_{1}(k)=$ $S_{2}(k)$ for all $k>0$ (or more exactly, $S_{1}\left(k_{n}\right)=S_{2}\left(k_{n}\right)$ for a sequence $\left\{k_{n}\right\}$ such that $k_{n} \uparrow \infty$ as $\left.n \rightarrow \infty\right)$, then $Q_{1}(y)=Q_{2}(y)$ for all $y \in R^{3}$.
6^{0} As for the existence problem (c), we can say very little though the existence of the limit (3.8) gives a necessary condition for the S-matrix. Let us now show one more result concerning the problem (c). Let us take two families $\left\{S_{j}(k) / k>0\right\}$, $j=1,2$, of unitary operators on $L^{2}\left(S^{2}\right)$. We shall say that $S_{1}(k)$ is asymptotically equal to $S_{2}(k)$ with respect to $x_{k, z}(\omega)=e^{-i k z \omega}$ if

$$
\begin{equation*}
\lim _{k \rightarrow \infty} k\left(\left\{S_{2}(k)-S_{1}(k)\right\} x_{k, z}, x_{k, z}\right)_{S^{2}}=0 . \tag{3.15}
\end{equation*}
$$

Theorem 3.4. Let $\{S(k) / k>0\}$ be a family of unitary opertos on $L^{2}\left(S^{2}\right)$. Then there exists $Q \in A_{\mu}$ with $\mu>1$ such that $S(k)$ is asymptotically equal to the S matrix $S_{0}(k)$ associated with the Schrödinger operator $H=-\Delta+Q$ with respect to $x_{k, z}$ if and only if there exists the limit

$$
\begin{equation*}
g(z)=\lim _{k \rightarrow \infty} k^{2}\left(F(k) x_{k, z}, x_{k, z}\right)_{S^{2}} \tag{3.16}
\end{equation*}
$$

for each $z \in R^{3}$ and $g(z)$ satisfies

$$
\left\{\begin{array}{l}
g \in A_{\mu-1}, \tag{3,17}\\
\mathscr{F}^{*} \Lambda^{1} g \in A_{\mu}
\end{array}\right.
$$

where $F(k)=-2 \pi i k^{-1}(S(k)-I)$. Then the potential $Q(y)$ is determined uniquely by

$$
\begin{equation*}
Q(y)=-\left(4 \pi^{3}\right)^{-1}\left(\mathscr{F}^{*} \Lambda^{1} g\right)(y) . \tag{3.18}
\end{equation*}
$$

Proof. Let us first suppose that $S(k)$ is asymptotically equal to the S-matrix $S_{0}(k)$ associated with the Schrödinger operator $H=-\Delta+Q$ with a potential $Q(y) \in$ $A_{\mu}, \mu>1$. Then it follows from

$$
\begin{equation*}
\lim _{k \rightarrow \infty} k\left(\left\{S(k)-S_{0}(k)\right\} x_{k, z}, x_{k}, z\right)_{s^{2}}=0 \tag{3.19}
\end{equation*}
$$

that

$$
\begin{equation*}
\lim _{k \rightarrow \infty} k^{2}\left(\left\{F(k)-F_{0}(k)\right\} x_{k, z}, x_{k, z}\right)_{S^{2}}=0 \tag{3.20}
\end{equation*}
$$

with $F_{0}(k)=-2 \pi i k^{-1}\left(S_{0}(k)-I\right)$. On the other hand, as is shown in Theorem 3.1, we have

$$
\begin{equation*}
\lim _{k \rightarrow \infty} k^{2}\left(F_{0}(k) x_{k, z}, x_{k, z}\right)_{S^{2}}=-2 \pi \int_{R^{3}}|z-y|^{-2} Q(y) d y \in A_{\mu-1} . \tag{3.21}
\end{equation*}
$$

Thus it can be seen from (3.20) and (3.21) that the limit (3.16) exists and is equal to the right-hand side of (3.21). Therefore Theorem 1.7 with $\alpha=2$ and $\lambda=-2 \pi$ can be applied to get (3.17).

Let us next assume that the limit (3.16) exists and (3.17) holds. Then it follows from Theorem 1.7 with $\alpha=2, \lambda=-2 \pi$ that there exists $Q \in A_{\mu}$ such that

$$
\begin{equation*}
g(z)=\lim _{k \rightarrow \infty} k^{2}\left(F(k) x_{k, z}, x_{k, z}\right)_{S^{2}}=-2 \pi \int_{R^{3}}|z-y|^{-2} Q(y) d y \tag{3.22}
\end{equation*}
$$

holds for each $z \in R^{3}$. Let $S_{0}(k), k>0$, be the S-matrix associated with the Schrodinger $H=-\Delta+Q$. Then (3.21) holds with $F_{0}(k)=-2 \pi i k^{-1}\left(S_{0}(k)-I\right)$, which, together with (3.22), yields (3.20). (3.19) directly follows from (3.20).
Q.E.D.

Osaka City University

References

[1] S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Nor. Sup. Pisa (4), 2 (1975), 151-218.
[2] W. O. Amerein, J. M. Jauch and K. B. Sinha, Scattering Theory in Quantum Mechanics, Benjamin, Reading, 1977.
[3] L. D. Faddeev, The uniqueness of solutions for the scattering inverse problem, Vestinik Leningrad Univ., 7 (1956), 126-130.
[4] I. M. Gel'fand and G. Shilov, Generalized Functions, Vol I, Academic Press, New York and London, 1964.
[5] S. T. Kuroda, On the existence and the unitary property of the scattering operator, Nuovo Cimenoto, 12 (1959), 431-454.
[6] R. G. Newton, Inverse Scattering. II. Three dimensions, J. Math. Phys., 21 (1980), 16981715.
[7] Y. Saitō, Spectral and Scattering theory for second-order differential operators with operatorvalued coefficients, Osaka J. Math., 9 (1972), 463-498.
[8] Y. Saitō, Some properties of the scattering amplitude and the inverse scattering problem, Osaka J. Math. 19 (1982), 57-78.
[9] L. Schwartz, Theórie des Distribution, I, Herman, Paris, 1957.

