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0. Introduction

Let us start with the following result ([8], Theorem 5.3): Let S(k), k>0, be the
S-matrix associated with the Schrédinger operator H=—A4+Q in L?*(R3) with a
short-range potential Q(y). Then we have an asymptotic formula

(0.1) lim k2(F(k)xy, 2, Xi,2)s2
K— o

— _on g lz—»|72Q(y)dy,

where

Flk)= —2nik ' (S(k)-1) (k>0),
0.2) {

Xi.(w)=e k=0 (weS?, ze R?),

I is the identity operator on L?(S?) and (, )s: denotes the inner product of L%(S2).
(0.1) was used in [8] to show the uniqueness of the inverse scattering problem for
general short-range potential Q(y)=0(|y|™*) with u> 1 ([8], Theorem 5.4).

In this work we shall discuss the integral equation

(0.3) g(z)=)~SRJ |z =y17*Q(y)dy

in the following two sections. Here 4 and « are constants such that 4 is a complex
number with 230 and 0<a<3. When a function g(z) is given, we seek the solution
Q(y) which satisfies

(0.4) oI SCU+]v)™  (reR?)

with C>0 and u>3—2. In §1 we shall show a necessary and sufficient condition
on g(z) that the equation (0.3)-(0.4) has a unique solution Q(y). A sufficient
condition for the solvability of (0.3)-(0.4) will be given in §2. For instance we
shall show the following (Theorem 2.4): Let | <a<3 and let
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[ lg(2)| SC(1+|z])¢
[4g(z)|SC(1 +]z])~¢

(0.5)

for all ze R? with C>0, >0, & >2. Then there exists a unique solution Q(y)
of the equation (0.3)-(0.4) and we have

(0.6) Qv =const. | 1r—z14(4g)(2)dz.

The results obtained in § 1 and § 2 will be applied to the inverse scattering prob-
lem in §3. We shall discuss uniqueness and reconstruction of the potential Q(y).
Some characterization of the asymptotic behavior of the S-matrix will be given, too.

1. The equation g = A(|y|~*+Q)

Let us first introduce some notations. Let jt be a real number. Then a function
space A, is defined by

(1.1) A,={feC(RY)[f(y)=0(ly|™) as |y|—> o},
where C(R3) is all continuous functions on R3. Accordingly the estimate
(1.2) If()IsCU+]yDh~* (yeR?)

holds for any f € A, with a constant C>0. Let & =%(R3) be all rapidly decreasing
functions on R3, and let &' =%'(R3) be all linear continuous functionals on &.
The pairing between & and &’ will be denoted by {, >. Further we set

(1.3) Fo=Fo(R¥)={pef/p=0 in a neighborhood of y=0}.
The Fourier transform &#, &, #*, &* are defined by

EN@O =00 o pirya,
(FNE)=(FN(-),

(1.4)
(F*E) ) =2m 2| elrpE)dc,

(F*F)(y)=(F*F)(—p).

Here £y =&y, +&,y2 +&3ys for £=(&y, &5, &3) and y=(yy, ¥3, ¥3)-
Let o and 4 be real and complex numbers, respectively, such that

(1.5) O<a<3 and 4i#0,

and let us consider the integral equation

g(z>=1§ 2=y Q(»)dy (= Ai(ly|-**0Q)(2)).
(1.6) R?

QeA,
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with 3—a<u<3Y. Here fxh means the vonvolution. If Qe 4, with 3—a<u<3
and g(z) is defined by (1.6), then we have

(1.7) geA, 3-q)

which is a consequence of the following well-known theorem.
Lemma 1.1. Let O0<a<3,0<b<3 and a+b>3. Then

(1.8) |yI7*f€ Agsp-3

for any fe A,.

In order to solve the equation (1.6), let us introduce a linear functional A%g € &%
=5'(R}) for s>0 and g € A, with ¢>0.

Definition 1.2. Let g€ A, with ¢>0 and let s>0. Then a linear functional
Asg on F=L(R}) is defined by
(1.9) (g, Gy=| g1} (dy  (Ges).

Asg is well-defined as the element of & as will be shown in the next propo-
sition. Let us introduce the norm | |, s>0, by

(1.10) Gl= £ | G DG+ | IEHIG (@I,

16153
Here B=(B,, B, B3) is a multi-index with |8|=8,+ B,+ B; and
(11D D? = (8]0,)71(2]0¢:7)*(2/085)">.

Obviously the topology induced in &, by the norm | |; is weaker than the proper
topology of &,.

Proposition 1.3. Let ge A, with €>0 and let s>0. Then Asg defined by
Definition 1.2 is an element of & and the estimate

(1.12) IKA%g, G| S Cl (1 +1yD73g1L,1G]s

holds for any Ge &, where || | is the norm of L'(R3) and C, is a constant de-
pending only on s>0.

Proof. Repeating partial integration, we get

(1.13) (F*EFGN () =ily|72yi (F*H;,)(p),

where
(1.14) H; (& G)=s(s+1)(s+2)IE5%,;G(&) +s(s+3)|¢°°2D;G
+25(s —2)[E]574¢;8- P G(E) + 2s(E|72¢- P (D;G)

1) Here and in the sequel we assume #<<3. We are naturally interested in the case that x is larger
than 3-a but is close to 3-a.
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+ (€728, 4G(E) + [<|*4(D;G).
Here D;=0/0¢;, v is the gradient and 4 is the Laplacian. It can be easily seen that
(1.15) (F*H; )(n)ISCIGl,  (reR?)

holds with a constant C, depending only on s. Take ¢;e C(R?), j=0, 1, 2, 3, such
that 0S¢ (YIS 1, 3 ¢())=1, support of ¢y(y) is contained in {y/|y|<2} and the

J
support of ¢,(y) is contained in {y/2|y;/=|yl, [v|Z 1} for each j=1,2,3. Thus we
obtain

3 —
(1.16)  (A%g, GD>=<{¢pog, Z*(IE[G)) + ZI g, ilvI2yj Z¥H; .
=

(1.12) follows from (1.15) and (1.106). Q.E.D.

Let &o:=Fo(R}) be as in (1.3). It will be shown that &g, is dence in &,
with respect to the norm | |s. Let p(&)e C*(R}) such that 0 p(&)<1 and p(&)=
0([&]=1/2), =1 (|¢[=1), and set
(1.17) Pm(E)=p(ms) (m=1, 2, 3,...).

Lemma 1.4. Let s>0 and let | | be as in (1.10). Then we have

(1.18) lim |G — p,,G|,=0

m-=o

for any Ge & ;.

Proof. Noting that p,(&)=1 for |{|=m™!, we can see that

a9 | iee-paeiaes|t e 16ew)do — o
R3 0 JS)
as m—oo. As for the first derivatives we get

(1.20) [ 16121, —p,0)1de

e leriGides| o ier2in,Glas

1gl=
for j=1, 2, 3, where ¢;=max |D;p({)| and we have used the fact that m<|{[™' on

the support of D;p,(&). Thus we get

(1.21) | L IE2D,(G = puGdE — 0 (m— o).
JR3

Similarly it can be seen that

[ 1ermo0102(G - p,G)1dE — 0.
R
(1.22)
| S 1E51G — pnGldE — O
R3
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as m—>oo for any multi-index f with 0=|f| =3, which implies (1.18). Q.E.D.
Let us now give an inversion formula for the equation (1.6)

Proposition 1.5. Let 0<o<3 and let Qe A, with 3—a<p<3. Let g(z) be
defined by (1.6). Then we have ye A,_3-,, and

(1.23) O=(c, ) '\ F*A3 g in &,
i.e.,
(1.24) Q, P> =(c ) KF*A32g, @) (pes),

with a constant
(1.25) ¢, =23 2 (3—a)/2) 1 (2)a)~",
where I'(1) is the I'-function.

Proof. Let {Q,} bc a sequence such that

0,eCi=Cg(R) (n=1,2....),

(1.26) Q. (M)ISCU+[r)™  (reR¥%n=1,2...),
0.(y)—0(r) (reR3 n—- ),

where C>0 is independent of n=1,2,.... Such an approximate sequence can

be constructed by making use of the Friedrichs molifier. If we set
(1.27) gu(:) =2 Iz=rIQ,(n)dr.
o 3

then g,€ A,_(3-, by Lemma 1.1 and g, satisfies

lg,(2) | SCU +|z]) == (zeR3 n=1,2,...),
(1.28)

g.(z) — g(z2) (zeR3, n—> o),
C being independent of n=1, 2,.... Let Ge¥,. Then we have for n=1, 2,....
(1.29) (FG,. G>=(g,, F*G)=i{|r|"**Q,, F*G)

=iKIpI7 O MFFG)Y (0,1 =0,(—1)).
Noting that
(1.30) FHRUE™N () =273 =) [2)F2fy) w73
=h|p|" ¥ in &

for 0<y<3?, and setting y=3—a in (1.30), we get from (1.29)

2) See, e.g., Gel’fand-Shilov [4], p. 194, though the definition of the Fouier transforms in [4] is a
little bit different from the ones used here.
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(1.31) (F g, G>=1b3! (F*(IE]773), 0, %(F*G))
= (21)322b3) KIE13H(FQ,), G,

where we have used the relations

(1.32) F(f*g) (€)= CO)YUFL)E(F9)E)  (f.geP)
and
(1.33) (F0,)(E) = (FQ,)().

Therefore we have
(1.34) Fg,=c, AN FQ,) in

with ¢, given in (1.25). Let p,, be asin (1.17). Since [{[*~%p,,G € Ly =S, for any
Ge &, we have [rom (1.34)

(1.35)  (c,A)"{F g, €720, GO =IEI*3FQ,, [E1*7*p,,G) (GeZ,),
whence follows that
(1.35) (c,A)7KA%72g,, puGd>={FQ,, pul>.

Letting m—oo in (1.36) and taking account of Proposition 1.3 and Lemma 1.4,
we can see that

(1.37) (e, A)(A%2g,, G)=(FQ,, G

for any Ge &¥,. Further we let n—oc in (1.37) and make use of (1.26) and (1.28)
to get

(1.38) (c, ) ' A3 2g=FQ in &%

whence (1.24) directly follows. Q.E.D.
The converse of Proposition 1.5 will be shown in the next proposition.
Proposition 1.6. Let O<a<3 and let 3—a<u<3. LetgeA,_3-q with

(1.39) FX¥A3*ge A,

i.e., there exists he A, such that h=F%A3g in &'. Then

(1.40) Q=(c,A) ' F* A3 g(=(c,2)"'h)

is a solution of the equation (1.6). ¢, is given in (1.25).
Proof. Let Q(y) be defined by (1.40). We have for Ge &,

(1.41) p17*Q, F*G)=LQ, |v|7**(F*G)).

Here we should note that |y|=*x(F *G) € &, because, noting that (1.32) is valid in
&' for f=|y|* and g = F *G, we have from (1.30)
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(1.42) F*(|r|7**(F*G)) = (2n)32b,1E|*3G({) € Lo
From (1.42) and (1.42) we sec that
(1.43) y17%Q, F*G) =(c,A)"(F*A3g, |v|7**(F*G))
=(c,2)7"(2n) 26, A372g, [E1*73G)
=72"Yg, ZH{EPE3G))
=1"g, F*G),
where it should be noted that (27)*/%¢;'b,=b,b;_,=1. Thus we get
(1.44) (F (g —ily|"*Q)}, G>=0

for any G € &, which implies that the support of #{g—A~!(|y|~**Q} is contained
in the origin {0}. Thercfore therc exists a polynomial P(y)=P(y,, y,, )3) such that

(1.45) Flg—/7""r|7**Q)} = P(D)J,

where J is the Dirac é-function and D=(—D,, —iD,, —iD;). For the proof of
(1.45) see, e.g., Schwartz [9], p. 100. Since F*P(D)d=P(y), it can be seen from
(1.45) that

(1.46) g(y)—A(ly|7**Q)(v) = P(y).

Here the left-hand side of (1.46) is o(1) at infinity by Lemma 1.1. and hence we have
P(y)=0. Thus it has been shown htat Q defined by (1.40) is a solution of the
equation (1.6). Q.E.D.

The main result of this section directly follows from Propositions 1.5 and 1.6.

Theorem 1.7. Let O0<a<3. Then the integral equation (1.6) has a unique
solution Qe A, with 3—a<u<3 if and only if
g€A 3-a)

(1.47)
F¥rA32ge A,

Then the solution Q(y) has the form (1.40). Q(v) is real-valued if /. is real and
g(2) is real-valued.

Proof. Now that Propositions 1.5 and 1.6 have been shown, we have only to
show the final statement of the theorem. Let 4 be real and let g(z) be real-valued.
Then, taking the conjugate of (1.6), we can see that the conjugate Q(y) of Q(y) is a
solution of the equation (1.6), and hence the uniqueness of the solution of (1.6) can
be applied to get Q(v)=Q(y), which completcs the proof. Q.E.D.

It can be seen from Theorem 1.7 that the equation (1.6) is solvable if g(z) and
its derivatives decrecase sufficiently rapidly at infinity.

Example 1.8. (i) Let g satisfy
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(] 48) geAu—lnD((—A)'/Z)a

(—A)'2geA,

with | <u<3, where D((—4)!/?) is the domain of the self-adjoint operator (—4)!/2
in L%(R3). Then the equation (1.6) with =2 has a unique solution Q=(2r2/)"".
(—4)'%g.

(ii) Let g(z) be a smooth function such that |Fg|,_,<oo with 0<a<3. Then
the equation (1.6) has a unique solution Q=(c¢,2)~ . F*(|£|3-*g). The proof is easy
by the use of (1.15) in the proof of Proposition 1.3.

(iii) Let us consider the casc that a=1. Then the quation (1.6) has a unique
solution if and only if F*¥A2ge A, and ge A,_, with >2. Since

(1.49) (F*A2y, py={g, —d¢) (pes)

3
we can say that (1.0) with a=1 has a unique solution Q(y)= —(2r24)~!4g if and only
if Age A, and g€ A,,_, with u>2, where dg is defined in the sense of distributions.

2. A sufficient condition for the solvability

The purpose of this section is to show the following theorem which gives a
sufficient condition on g(z) that the equation (1.6) is solvable.

Theorem 2.1. Let O<a<3. Suppose that ge A, with ¢>0 and there exits
a positive number a such that 3—a<s<3 and

2.1) . FrAsg=g,€A,

with s<u<3. Then the integral equation (1.6) has a unique solution
(2.2) . QU =(en | e ) dze Ay,

where A% is as in Definition 1.2 and
d=min (u—s,8),
(2.3
Cas=2T30((3—a)2) (a4 s =3 /2){T (a/2) [ ((6—a—s5)[2)} "

We need some preparations before giving the proof of this theore.
Let g,e A, as in Theorem 2.1 and take a sequence {g; ,} which satisfies

ys,uec?)g’

(2.4) - g, n(2)=CUI+|z)" (ze RY),

gy u(2) = g(2) (e R n-— ),
where the constant C is independent of n=1, 2,... . Set
(2.5) Fow(p)=(F*EP2F g, ,)(r)

foreachn=1,2,.... Since 3—a—s> —3, we have |[{]*7*7(F g, ,N&) € L'(R}), which
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implies that F,(v) is well-defined as a continuous function on R3.
Proposition 2.2. Let F_,(v) be as above. Then we have
Eon=d, | =ity () dv e ds
(2.6) SR
[y, () SC ] p)7O7bnms
with a constant C independent of n=1,2,... and d,,=(2n)"32b,, _3, where b,

is given in (1.30). Further,

2.7 lim Fyu()=d | Ly =20 () dz

n—r

holds for any y € R3.

Proof. First let us note that 0<6—a—s<3. Then we can apply (1.30) with
y=6—0a—s to show

(2.8) Fgm 0> =XIEP*5F G, 0
=b, 43 F |y "7 (F g, NF 0)).
Thus, using (1.32), we have

(2.9) CFow @)= (2m)T33 75570, g H(F*F )

=d1,s<|."|7+x-6’ gs,u*(p> (‘P(V):(P( "',V))
=d1,.\'<|."|1+s—6*gs,u’ (P>a

which is combined with (2.4) to give (2.6). By letting n—o0 in (2.6) and noting (2.4),
(2.7) can be easily derived. ' Q.E.D.

Proposition 2.3. Let I, (v) be as above. Then

(2.10) lim F, ,=F*A3"g in &

son
u—o0

Proof. It sufficies to show

(2.11) lim (F ,, o> =(F*A3"*g, @)

[ade A

for pe%. Let us first consider the case that ¢=#*G with Ge ¥,,. Then
F*(¢|'p) e & for any real 1. Using

(2.12) CFyom 0> =Xg5 FXEPT7G))
and recalling (2.4) and the definition of A%, we have
@13 lim <F,,. =g, F*(1E*G)

=(F* Mg, FXEPTG))
=<g, F*(IEIFIELPG))
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=g, F*(I{P7*G))
={A377g, GY=(F*A>*g, ¢.

Let us next consider the general case, i.e., let us show (2.11) for p € &. Let p,, be as
in (1.17) and set

(2.14) Pu=F*(p.F Q) (m=1, 2,...).

Then ¢, €., and it follows from Lemma 1.4 that

(2.15) l¢—¢ul, — 0

as m—oo for each 1>0. In the relation

(2.16) (F*A2g—F, ,, 03=KF* A 7g—F, ., 9,0 +{F* N3 79, o -0,
—Fu 0= 0.0

the first term of the right-hand side tends to 0 as n— o0 for each m because of (2.12).
By the use of Proposition 1.3 and (2.15) with t=3—a the second term of the right-
hand side is estimated as

Q.17 KF*A7g, p—o|Ses LI+ 1Dl nle —@pls—, — 0
as m—oo. Thus, in order to show (2.11), it is sufficient to prove
(2-18) |<Et.n» (P>| §C|3‘:(I’|3—a ((f’ey)

with a constant C independent of n=1, 2,.... Let us now show (2.18). Since we
can see that

FHEF 0,0 =851, | |2y, () dy

(2.19) =hg,(2) €4,

l’ls,,,(Z)IéC(I-F’ZD"—" (ZERS.’I=I, 2,...)

in quite a similar way to the one used in the proof of (2.6) in Proposition 2.2, (F,,,
@) is calculated as

(2.20) CFow @) =<IEP* " F g, @)
=<¢I*F gy ISP F )
=hs,u FXIEP*F @))={A>"h,,,, F ).
(2.18) follows from (2.19), (2.20) and Proposition 1.3. Q.E.D.
Proof of Theorem 2.1. From Propositions 2.2 and 2.3 we have
(2.21) FrArg=d, (Iy[*HOrg) €Ay piymy

in #’. On the other hand g is assumed to satisfy
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(2.22) geA,

with £>0. Therefore, setting d=min (;t—s, &), we can apply Theorem 1.7 to see that
the equation (1.6) has a unique solution Q=(c,2) '\ F*A32g=(c,A)"'d, |y|*** Cxg,.
Now we have only to note that ¢,/d,  is equal to ¢, defined by (2.3). Q.E.D.

The next theorem is an application of Theorem 2.1.

Theorem 2.4. Let | <a<3. Assume that ge A, with e>0 and AgeQ, with
1>2, where Ag is defined in the sense of distributions. Then the equation (1.6)
has a unique solution Q€ A;_,,; with d=min (u—2, &) which has the form

(2.23) Q()’)= - (C’,,zl)—] SRS |y — | (dg)(z)d:=,
where
(2.24) Cp 2 =413 ((3—)[2) (2= 1)[2){T (2/2)T ((4—0a)/2)}~".

Proof. Since F*(|é|2F @)= — Ao for p e &, we have

(2.25) (F*A%g, 9)=(—4g.¢) (pe2),

le.,

(2.26) F¥A2g=—AgeA, in ¥,

Therefore Theorem 2.1 with s=2 can be applied. Q.E.D.

Remark 2.5. Let >0 in the equation (1.6). Then, under the assumptions
of Theorem 2.4, the solution Q(y)<0 (or Q(y)=0) if g(z) is subharmonic (or super-
harmonic).

3. Some remarks on the inverse scattering problem

19 Let us consider the Schrédinger operator
(3.1 H=—-44+0Q

in R3, where Q is a multiplication operator by a real-valued function Q(y)e€ A4, with
u>1,i.e., Q(y) is a short-range potential. As is well-known, the restriction of the
differential operator H to C§ is essentailly self-adjoint in L2(R3). The (unique)
self-adjoint extension will be denoted again by H.

20 Let us give a brief sketch of scattering theory for H. First the wave oper-
ators
(3.2) Wt=s-1£m eitllg-itlio

t—=toc

are defined as partially isometric operators in L2(R3) (Kuroda [5]). Let E(X) be the
spectral measure associated with H. Then the ranges of W, are known to be E((0,
o))L?(R3) which is also the absolutely continuous subspace of L2(R3) with respect
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to H (Agmon [1], Saitd [7]). By the use of W, the scattering operator S is defined by
(3.3) S=wiw_.

S is a unitary operator on L*R3). Further it can be shown that there exists a
family of unitary operators S(k), k>0, on L2(S?) such that

(3.4) {FSF*)G} (&) ={SUENGUE| - )} (&)
(GeCE(RY), E=¢/(E)).

Here & is the Fourier transform defined by the first relation of (1.4). S(k), k>0,
called the S-matrix associated with H. Set

(3.5) F(k)= —2nmik="(S(k)—1),

I being the identity operator on L3(R3). Then F(k) is a compact operator for each
k>0 (Agmon [1]). If Qe A4, with u>2, then F(k) is a Hilbert-Schmidt operator
on L2(S2) with its Hilbert Schmidt kernel F(k, w, w') (k>0, w, v’ e S?) (Amerein
et al. [2], Saito [8]), i.e.,

(F(k).\')(cu)=g Flk, w, w')x(w)dw’,
s2?
(3.6) )

S S \Fk, o, o) |*dodo’ <o

52 )82

for x € L3(S?). F(k, w, ') is called the scattering amplitude.

30 Usually the inverse scattering problem consists of the attempt to recon-
struct the potential Q()), which is often called the underlying potential, from the
scattering amplitude F(k, w, ’). Let us now replace the scattering amplitude
F(k, o, ®") by the S-matrix S(k) in the above definition of the inversz scattering pro-
blem, because we treat general short-range potentials Q(y)e 4, with u>1 and
F(k) has no Hilbert-Schmidt kernel in general for such a potential. As has been
mentioned in Newton [6], the inverse scattering problem has the following three
separate aspects:

(a) Reconstruction of the underlying potential.

(b) Uniqueness of the underlying potential.

(c) Existence of an underlying potential, or characterization of the class

of S-matricies associated with potentials (in a given class).

49 Let us first consider the problem (a). Newton [6] showed that the underly-
ing potential Q(y) is reconstructed by solving an integral equation which can be
regarded as an extension ol the Marchenko equation in the one-dimensional case.
Here Q(v) has to fulfil some pretty restrictive conditions which are satisfied by, e.g.,
[OMIZCUH +1y])737% and [FOQ(WISC +]|y|)"27¢ with C, ¢>0. Now, using the
results obtained in § | and § 2 and the formula (0.1), we shall show another reconstruc-
tion formula for the underlying potential Q(y) € 4, with y>1. Set

(3.7) g(Z, k) =k2(F(k)xk,z’ xk,z)Sz
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for k>0, ze R3, where x; ((w)=e"*2" and (, )5 is the inner product of L%(S?).

Theorem 3.1. (i) Let S(k), k>0, be the S-matrix for the Schrédinger operator
H=—A4+Q with real Qe A,(1<u<3) and let F(k) be as in (3.5). Then the limit

(3.8) g(2)=lim gz, k= =2x | | 1z=yI0(r)dy

exists for each z € R and g(z) satisfies

geA,_,,
(3.9)

F*A'ged,,
A' being as in the Definition 1.2 with s=1. We have a reconstruction formula
(3.10) O(y)=—@n®)'F*A'g(p).

(ii) We have another expression for Q(y).

(3.11) Q= —(4n3)~' lim F*A'g(-, k) in <.
k—o

Proof. The existence of limit (3.8) is shown in [8] (Theorem 5.3). (3.9) and
(3.10) follows from Theorem 1.7 with «=2 and A= —2n. Since it can be seen
from the proof of Theorem 5.3 of [8] that the estimate

(3.12) 19(z, )| SC(1+|z))~*""  (zeR> k21)

holds with a constant C>0 independent of k=1. (3.12) is combined with (3.8)
to give

@13 lim | G OFHO = 9@ FHEIG) Dz (Ges),

which completes the proof of (3.11). Q.E.D.

We can use the results in §2 to get another reconstruction formula for Q(y).
The following results corresponds to Theorem 2.4.

Theorem 3.2. Let S(k) be as in Theorem 3.1 and g(z) be as in (3.8). Further,
let Age A, with 2>2, where Ag is defined in the sense of distributions. Then we
have

(3.14) 0(y)=@n%)7" | | Iz=rI"(4g)(2)dz.

Proof. We have only to apply Theorem 2.4 with =2 and /= —2r, and note
that ¢, , =47* which follows from (2.24) with a=s=2. Q.E.D.

50 Let us next consider the problem (b); uniqueness of the underlying potential.
Faddeev [3] showed the uniquness of the underlying potential for the potential
Qe A, with u>3. This result was extended to the case that Q belongs to the Robin
class R (Newton [6], §3). Saito [8] showed that the uniquness holds for Qe 4,



320 Yoshimi Saito
with u>1. Now it can be obtained directly from Theorem 1.7 with =2, /= —2n.

Theorem 3.3. Let Q,(y) and Q,(y) belong to A, with u>1 and let S,(k) and
S,(k) be.the S-matricies Hy=—A+Q, and Hy,= —A4+Q,, respectively. If S,(k)=
S,(k) for all k>0 (or more exactly, S,(k,)=S,(k,) for a sequence {k,} such that
k, 1 o as n— ), then Q,(¥)=0Q,(y) for all y e R3.

6° As for the existence problem (c), we can say very little though the existence
of the limit (3.8) gives a necessary condition for the S-matrix. Let us now show
one more result concerning the problem (c). Let us take two families {S(k)/k >0},
j=1, 2, of unitary operators on L%(S?). We shall say that S,(k) is asymptotically
equal to S,(k) with respect to x, ,(w)=e =« if

(3.15) lim k({S30k) = $,(0)} 5y, 4,052 =0,
Theorem 3.4. Let {S(k)/k>0} be a family of unitary opertos on L2*S?).
Then there exists Qe A, with u>1 such that S(k) is asymptotically equal to the S-

matrix Sy(k) associated with the Schrodinger operator H= —A+Q with respect
to x,, if and only if there exists the limit

(3.16) g(z)=lim k2 (F(k)xy, 25 Xy, 2)s2

for each z € R® and ¢(z) satisfies
gEAu—h
(3,17)
F*Alged,,
where F(k)= —2nik='(S(k)—1I). Then the potential Q(y) is determined uniquely by
(3.18) 0(y)=—@n?)~(F*4'g)(y).

Proof. Let us first suppose that S(k) is asymptotically equal to the S-matrix
So(k) associated with the Schrodinger operator H= — 4+ Q with a potential Q(y)e
Ay, u>1. Then it follows from

(319) . El_’rg k({S(k)_SO(k)}xk,z’ xk’z)Sz=0
that
(320) ,{“2 kz({F(k)_FO(k)}xk,:a xk,z)51=0

with Fo(k)= —2nik~1(So(k)—1I). On the other hand, as is shown in Theorem 3.1,
we have

(2D limKEk) ¥y, e )= =21 | | 12=170(v)dy € Ay,
lim

Thus it can be seen from (3.20) and (3.21) that the limit (3.16) exists and is equal
to the right-hand side of (3.21). Therefore Theorem 1.7- with =2 and i=-2=n
can be applied to get (3.17). :
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Let us next assume that the limit (3.16) exists and (3.17) holds. Then it follows
from Theorem 1.7 with a=2, A= —2n that there exists Q € 4, such that

(322 glo)=lim K(FRIx o ¥eds= =20 | | |2=rPQ()dy

holds for each zeR3. Let Sy(k), k>0, be the S-matrix associated with the
Schrodinger H= — A+ Q. Then (3.21) holds with Fo(k)= —2mik~'(S¢(k)—1I), which,
together with (3.22), yields (3.20). (3.19) directly follows from (3.20). Q.E.D.
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