An inverse problem in potential theory and the inverse scattering problem

By

Yoshimi SAITŌ

(Communicated by Prof. T. Ikebe, March 6, 1981)

0. Introduction

Let us start with the following result ([8], Theorem 5.3): Let S(k), k>0, be the S-matrix associated with the Schrödinger operator $H=-\Delta+Q$ in $L^2(R^3)$ with a short-range potential Q(y). Then we have an asymptotic formula

(0.1)
$$\lim_{K \to \infty} k^2 (F(k) x_{k,z}, x_{k,z})_{S^2}$$
$$= -2\pi \int_{\mathbb{R}^3} |z - y|^{-2} Q(y) dy,$$

where

(0.2)
$$\begin{cases} F(k) = -2\pi i k^{-1} (S(k) - I) & (k > 0), \\ x_{k,z}(\omega) = e^{-ikz\omega} & (\omega \in S^2, z \in R^3), \end{cases}$$

I is the identity operator on $L^2(S^2)$ and $(,)_{S^2}$ denotes the inner product of $L^2(S^2)$. (0.1) was used in [8] to show the uniqueness of the inverse scattering problem for general short-range potential $Q(y) = O(|y|^{-\mu})$ with $\mu > 1$ ([8], Theorem 5.4).

In this work we shall discuss the integral equation

(0.3)
$$g(z) = \lambda \int_{\mathbb{R}^3} |z - y|^{-\alpha} Q(y) dy$$

in the following two sections. Here λ and α are constants such that λ is a complex number with $\lambda \neq 0$ and $0 < \alpha < 3$. When a function g(z) is given, we seek the solution Q(y) which satisfies

$$|O(v)| \le C(1+|v|)^{-\mu} \qquad (v \in R^3)$$

with C > 0 and $\mu > 3 - \alpha$. In § 1 we shall show a necessary and sufficient condition on g(z) that the equation (0.3)-(0.4) has a unique solution Q(y). A sufficient condition for the solvability of (0.3)-(0.4) will be given in § 2. For instance we shall show the following (Theorem 2.4): Let $1 < \alpha < 3$ and let

$$\begin{cases}
|g(z)| \leq C(1+|z|)^{-\varepsilon} \\
|\Delta g(z)| \leq C(1+|z|)^{-\varepsilon'}
\end{cases}$$

for all $z \in R^3$ with C > 0, $\varepsilon > 0$, $\varepsilon' > 2$. Then there exists a unique solution Q(y) of the equation (0.3)–(0.4) and we have

(0.6)
$$Q(y) = \text{const.} \int_{\mathbb{R}^3} |y - z|^{x-4} (\Delta g)(z) dz.$$

The results obtained in § 1 and § 2 will be applied to the inverse scattering problem in § 3. We shall discuss uniqueness and reconstruction of the potential Q(y). Some characterization of the asymptotic behavior of the S-matrix will be given, too.

1. The equation $g = \lambda(|\gamma|^{-\alpha} * Q)$

Let us first introduce some notations. Let μ be a real number. Then a function space A_{μ} is defined by

(1.1)
$$A_n = \{ f \in C(R^3) / f(y) = O(|y|^{-\mu}) \text{ as } |y| \longrightarrow \infty \},$$

where $C(R^3)$ is all continuous functions on R^3 . Accordingly the estimate

$$|f(y)| \le C(1+|y|)^{-\mu} \qquad (y \in R^3)$$

holds for any $f \in A_{\mu}$ with a constant C > 0. Let $\mathscr{S} = \mathscr{S}(R^3)$ be all rapidly decreasing functions on R^3 , and let $\mathscr{S}' = \mathscr{S}'(R^3)$ be all linear continuous functionals on \mathscr{S} . The pairing between \mathscr{S} and \mathscr{S}' will be denoted by $\langle \cdot, \cdot \rangle$. Further we set

(1.3)
$$\mathscr{S}_0 = \mathscr{S}_0(R^3) = \{ \varphi \in \mathscr{S} / \varphi = 0 \text{ in a neighborhood of } v = 0 \}.$$

The Fourier transform \mathcal{F} , $\bar{\mathcal{F}}$, \mathcal{F}^* , $\bar{\mathcal{F}}^*$ are defined by

(1.4)
$$\begin{cases} (\mathscr{F}f)(\xi) = (2\pi)^{-3/2} \int_{\mathbb{R}^3} e^{-i\xi y} f(y) dy, \\ (\bar{\mathscr{F}}f)(\xi) = (\mathscr{F}f)(-\xi), \\ (\mathscr{F}^*F)(y) = (2\pi)^{-3/2} \int_{\mathbb{R}^3} e^{i\xi y} F(\xi) d\xi, \\ (\bar{\mathscr{F}}^*F)(y) = (\mathscr{F}^*F)(-y). \end{cases}$$

Here $\xi y = \xi_1 y_1 + \xi_2 y_2 + \xi_3 y_3$ for $\xi = (\xi_1, \xi_2, \xi_3)$ and $y = (y_1, y_2, y_3)$. Let α and λ be real and complex numbers, respectively, such that

$$(1.5) 0 < \alpha < 3 \text{ and } \lambda \neq 0,$$

and let us consider the integral equation

(1.6)
$$\begin{cases} g(z) = \lambda \int_{R^3} |z - y|^{-\alpha} Q(y) dy & (= \lambda (|y|^{-\alpha} * Q)(z)), \\ Q \in A_{\mu} \end{cases}$$

with $3-\alpha < \mu < 3^{1}$. Here f*h means the vonvolution. If $Q \in A_{\mu}$ with $3-\alpha < \mu < 3$ and g(z) is defined by (1.6), then we have

$$(1.7) g \in A_{\mu-(3-\alpha)},$$

which is a consequence of the following well-known theorem.

Lemma 1.1. Let 0 < a < 3, 0 < b < 3 and a + b > 3. Then

$$|y|^{-a} * f \in A_{a+b-3}$$

for any $f \in A_h$.

In order to solve the equation (1.6), let us introduce a linear functional $\Lambda^s g \in \mathcal{S}'_{\xi} = \mathcal{S}'(R^3_{\xi})$ for s > 0 and $g \in A_{\varepsilon}$ with $\varepsilon > 0$.

Definition 1.2. Let $g \in A_{\varepsilon}$ with $\varepsilon > 0$ and let s > 0. Then a linear functional $A^{s}g$ on $\mathscr{S}_{\varepsilon} = \mathscr{S}(R^{3}_{\varepsilon})$ is defined by

(1.9)
$$\langle \Lambda^s g, G \rangle = \int_{\mathbb{R}^3} g(y) \{ \bar{\mathscr{F}}^*(|\xi|^s G) \}(y) dy \qquad (G \in \mathscr{S}_{\xi}).$$

 $\Lambda^s g$ is well-defined as the element of \mathscr{S}'_{ξ} as will be shown in the next proposition. Let us introduce the norm $|\cdot|_s$, s>0, by

(1.10)
$$|G|_{s} = \sum_{|\beta| \le 3} \int_{R^{3}} |\xi|^{s-3+|\beta|} |D^{\beta}G(\xi)| d\xi + \int_{R^{3}} |\xi|^{s} |G(\xi)| d\xi.$$

Here $\beta = (\beta_1, \beta_2, \beta_3)$ is a multi-index with $|\beta| = \beta_1 + \beta_2 + \beta_3$ and

$$(1.11) D^{\beta} = (\partial/\partial \xi_1)^{\beta_1} (\partial/\partial \xi_2)^{\beta_2} (\partial/\partial \xi_3)^{\beta_3}.$$

Obviously the topology induced in \mathscr{S}_{ξ} by the norm $|\ |_s$ is weaker than the proper topology of \mathscr{S}_{ξ} .

Proposition 1.3. Let $g \in A_{\varepsilon}$ with $\varepsilon > 0$ and let s > 0. Then $\Lambda^s g$ defined by Definition 1.2 is an element of $\mathscr{S}'_{\varepsilon}$ and the estimate

$$|\langle \Lambda^s g, G \rangle| \leq C_s ||(1+|y|)^{-3} g||_{L_1} |G|_s$$

holds for any $G \in \mathcal{S}_{\xi}$, where $\| \|_{L^1}$ is the norm of $L^1(\mathbb{R}^3)$ and C_s is a constant depending only on s > 0.

Proof. Repeating partial integration, we get

$$(1.13) \qquad (\bar{\mathcal{F}}^*(|\xi|^s G))(y) = i|y|^{-2} y_l^{-1} (\bar{\mathcal{F}}^* H_{i,s})(y),$$

where

(1.14)
$$H_{j,s}(\xi, G) = s(s+1)(s+2)|\xi|^{s-4}\xi_j G(\xi) + s(s+3)|\xi|^{s-2} D_j G$$
$$+ 2s(s-2)|\xi|^{s-4}\xi_j \xi \cdot \mathcal{V}G(\xi) + 2s|\xi|^{s-2}\xi \cdot \mathcal{V}(D_j G)$$

¹⁾ Here and in the sequel we assume $\mu < 3$. We are naturally interested in the case that μ is larger than $3-\alpha$ but is close to $3-\alpha$.

$$+ s|\xi|^{s-2}\xi_j \Delta G(\xi) + |\xi|^s \Delta (D_j G).$$

Here $D_i = \partial/\partial \xi_i$, ∇ is the gradient and Δ is the Laplacian. It can be easily seen that

$$(1.15) |(\overline{\mathscr{F}}^*H_{i,s})(y)| \leq C_s |G|_s (y \in R^3)$$

holds with a constant C_s depending only on s. Take $\phi_j \in C(R^3)$, j = 0, 1, 2, 3, such that $0 \le \phi_j(y) \le 1$, $\sum_j \phi_j(y) = 1$, support of $\phi_0(y)$ is contained in $\{y/|y| \le 2\}$ and the support of $\phi_j(y)$ is contained in $\{y/2|y_j| \ge |y|, |y| \ge 1\}$ for each j = 1, 2, 3. Thus we obtain

$$(1.16) \qquad \langle \Lambda^s g, G \rangle = \langle \phi_0 g, \bar{\mathscr{F}}^*(|\xi|^s G) \rangle + \sum_{j=1}^3 \langle \phi_j g, i | y|^{-2} y_j^{-1} \bar{\mathscr{F}}^* H_{j,s} \rangle.$$

O. E. D.

Let $\mathscr{S}_{0\xi} = \mathscr{S}_0(R_{\xi}^3)$ be as in (1.3). It will be shown that $\mathscr{S}_{0\xi}$ is dence in \mathscr{S}_{ξ} with respect to the norm | | s |. Let $\rho(\xi) \in C^{\infty}(R_{\xi}^3)$ such that $0 \le \rho(\xi) \le 1$ and $\rho(\xi) = 0$ ($|\xi| \le 1/2$), $|\xi| \ge 1$, and set

(1.17)
$$\rho_m(\xi) = \rho(m\xi) \qquad (m=1, 2, 3,...).$$

Lemma 1.4. Let s>0 and let $|\cdot|_s$ be as in (1.10). Then we have

$$\lim_{m \to \infty} |G - \rho_m G|_s = 0$$

for any $G \in \mathcal{S}_{\varepsilon}$.

Proof. Noting that $\rho_m(\xi) = 1$ for $|\xi| \ge m^{-1}$, we can see that

$$(1.19) \qquad \int_{\mathbb{R}^3} |\xi|^{s-3} |G - \rho_m G| d\xi \leq \int_0^{m-1} r^{s-1} dr \int_{S_2} |G(r\omega)| d\omega \longrightarrow 0$$

as $m \to \infty$. As for the first derivatives we get

(1.20)
$$\int_{\mathbb{R}^{3}} |\xi|^{s-2} |D_{j}(G - \rho_{m}G)| d\xi$$

$$\leq c_{j} \int_{|\xi| \leq m^{-1}} |\xi|^{s-3} |G| d\xi + \int_{|\xi| \leq m^{-1}} |\xi|^{s-2} |D_{j}G| d\xi$$

for j=1, 2, 3, where $c_j = \max_{\xi} |D_j \rho(\xi)|$ and we have used the fact that $m \leq |\xi|^{-1}$ on the support of $D_j \rho_m(\xi)$. Thus we get

(1.21)
$$\int_{\mathbb{R}^3} |\xi|^{s-2} |D_j(G - \rho_m G)| d\xi \longrightarrow 0 (m \longrightarrow \infty).$$

Similarly it can be seen that

(1.22)
$$\begin{cases} \int_{\mathbb{R}^3} |\xi|^{s-3+|\beta|} |D^{\beta}(G-\rho_m G)| d\xi \longrightarrow 0, \\ \int_{\mathbb{R}^3} |\xi|^{s} |G-\rho_m G| d\xi \longrightarrow 0 \end{cases}$$

as $m \to \infty$ for any multi-index β with $0 \le |\beta| \le 3$, which implies (1.18). Q. E. D.

Let us now give an inversion formula for the equation (1.6)

Proposition 1.5. Let $0 < \alpha < 3$ and let $Q \in A_{\mu}$ with $3 - a < \mu < 3$. Let g(z) be defined by (1.6). Then we have $g \in A_{\mu - (3-\alpha)}$ and

$$Q = (c_{\tau}\lambda)^{-1} \mathscr{F}^* \Lambda^{3-\alpha} g \quad \text{in} \quad \mathscr{S}',$$

i.e.,

$$(1.24) \qquad \langle Q, \varphi \rangle = (c_{\alpha}\lambda)^{-1} \langle \mathscr{F}^* \Lambda^{3-\alpha} g, \varphi \rangle \qquad (\varphi \in \mathscr{S}),$$

with a constant

(1.25)
$$c_{x} = 2^{3-\alpha} \pi^{3/2} \Gamma((3-\alpha)/2) \Gamma(2/\alpha)^{-1},$$

where $\Gamma(t)$ is the Γ -function.

Proof. Let $\{Q_n\}$ be a sequence such that

$$\begin{cases}
Q_n \in C_0^{\infty} = C_0^{\infty}(R^3) & (n = 1, 2, ...), \\
|Q_n(y)| \leq C(1 + |y|)^{-\mu} & (y \in R^3, n = 1, 2, ...), \\
Q_n(y) \longrightarrow Q(y) & (y \in R^3, n \longrightarrow \infty),
\end{cases}$$

where C>0 is independent of n=1, 2, ... Such an approximate sequence can be constructed by making use of the Friedrichs molifier. If we set

(1.27)
$$g_n(z) = \lambda \int_{R_n} |z - y|^{-\alpha} Q_n(y) \, dy,$$

then $g_n \in A_{\mu-(3-\alpha)}$ by Lemma 1.1 and g_n satisfies

(1.28)
$$\begin{cases} |g_n(z)| \leq C(1+|z|)^{-(\mu+\alpha-3)} & (z \in R^3, n=1, 2,...), \\ g_n(z) \longrightarrow g(z) & (z \in R^3, n \longrightarrow \infty), \end{cases}$$

C being independent of $n=1, 2, \ldots$ Let $G \in \mathcal{S}_{\varepsilon}$. Then we have for $n=1, 2, \ldots$

(1.29)
$$\langle \mathscr{F}g_n, G \rangle = \langle g_n, \bar{\mathscr{F}}^*G \rangle = \lambda \langle |y|^{-\alpha} *Q_n, \bar{\mathscr{F}}^*G \rangle$$
$$= \lambda \langle |y|^{-\alpha}, \check{Q}_n *(\bar{\mathscr{F}}^*G) \rangle \qquad (\check{Q}_n(y) = Q_n(-y)).$$

Noting that

(1.30)
$$\mathscr{F}^*(|\xi|^{-\gamma})(y) = 2^{-\gamma + (3/2)} \Gamma((3-\gamma)/2) \Gamma(2/\gamma)^{-1} |y|^{-3+\gamma}$$

$$= b_{\gamma} |y|^{-3+\gamma} \quad \text{in} \quad \mathscr{S}'$$

for $0 < \gamma < 3^2$, and setting $\gamma = 3 - \alpha$ in (1.30), we get from (1.29)

²⁾ See, e.g., Gel'fand-Shilov [4], p. 194, though the definition of the Fouier transforms in [4] is a little bit different from the ones used here.

(1.31)
$$\langle \mathcal{F}g_n, G \rangle = \lambda b_{3-z}^{-1} \langle \mathcal{F}^*(|\zeta|^{z-3}), \check{Q}_n * (\bar{\mathcal{F}}^*G) \rangle$$
$$= (2\pi)^{3/2} \lambda b_{3-z}^{-1} \langle |\zeta|^{z-3} (\mathcal{F}O_n), G \rangle,$$

where we have used the relations

$$(1.32) \qquad \bar{\mathscr{F}}(f*g)(\xi) = (2\pi)^{3/2}(\bar{\mathscr{F}}f)(\xi) \cdot (\bar{\mathscr{F}}g)(\xi) \qquad (f, g \in \mathscr{S})$$

and

$$(\bar{\mathscr{F}}\check{Q}_n)(\xi) = (\mathscr{F}Q_n)(\xi).$$

Therefore we have

(1.34)
$$\mathscr{F}g_n = c_{\tau}\lambda |\xi|^{x-3} (\mathscr{F}Q_n) \quad \text{in} \quad \mathscr{S}'_{\varepsilon}$$

with c_{α} given in (1.25). Let ρ_m be as in (1.17). Since $|\xi|^{3-\alpha}\rho_m G \in \mathcal{S}_{0\xi} \subset \mathcal{S}_{\xi}$ for any $G \in \mathcal{S}_{\varepsilon}$, we have from (1.34)

$$(1.35) \qquad (c_x \lambda)^{-1} \langle \mathscr{F} g_n, |\xi|^{3-\alpha} \rho_m G \rangle = \langle |\xi|^{\alpha-3} \mathscr{F} O_n, |\xi|^{3-\alpha} \rho_m G \rangle \qquad (G \in \mathscr{S}_x),$$

whence follows that

$$(c_{\alpha}\lambda)^{-1}\langle \Lambda^{3-\alpha}g_n, \rho_m G \rangle = \langle \mathscr{F}Q_n, \rho_m G \rangle.$$

Letting $m \to \infty$ in (1.36) and taking account of Proposition 1.3 and Lemma 1.4, we can see that

$$(c_{\alpha}\lambda)^{-1}\langle \Lambda^{3-\alpha}q_{\alpha}, G \rangle = \langle \mathscr{F}Q_{\alpha}, G \rangle$$

for any $G \in \mathcal{S}_{\xi}$. Further we let $n \to \infty$ in (1.37) and make use of (1.26) and (1.28) to get

$$(c_{\alpha}\lambda)^{-1}\Lambda^{3-\alpha}g = \mathcal{F}Q \qquad \text{in} \quad \mathscr{S}'_{\xi}$$

whence (1.24) directly follows.

Q. E. D.

The converse of Proposition 1.5 will be shown in the next proposition.

Proposition 1.6. Let $0 < \alpha < 3$ and let $3 - \alpha < \mu < 3$. Let $g \in A_{\mu-(3-\alpha)}$ with

$$(1.39) \mathscr{F}^* \Lambda^{3-\alpha} g \in A_n,$$

i.e., there exists $h \in A_{\mu}$ such that $h = \mathcal{F}^*A^{3-\alpha}g$ in \mathcal{S}' . Then

(1.40)
$$Q = (c_{x}\lambda)^{-1} \mathscr{F}^{*} \Lambda^{3-x} g (= (c_{x}\lambda)^{-1} h)$$

is a solution of the equation (1.6). c_n is given in (1.25).

Proof. Let Q(y) be defined by (1.40). We have for $G \in \mathcal{S}_{0\xi}$

$$(1.41) \qquad \langle |v|^{-\alpha} * Q, \ \bar{\mathscr{F}} * G \rangle = \langle Q, |v|^{-\alpha} * (\bar{\mathscr{F}} * G) \rangle.$$

Here we should note that $|y|^{-\alpha}*(\bar{\mathscr{F}}^*G) \in \mathscr{S}$, because, noting that (1.32) is valid in \mathscr{S}' for $f = |y|^{-\alpha}$ and $g = \bar{\mathscr{F}}^*G$, we have from (1.30)

(1.42)
$$\bar{\mathscr{F}}^*(|y|^{-\alpha}*(\bar{\mathscr{F}}^*G)) = (2\pi)^{3/2}b_{\alpha}|\xi|^{\alpha-3}G(\xi) \in \mathscr{S}_{0\xi}.$$

From (1.42) and (1.42) we see that

(1.43)
$$\langle |y|^{-\alpha} *Q, \ \bar{\mathscr{F}} *G \rangle = (c_{\alpha} \lambda)^{-1} \langle \mathscr{F} *A^{3-\alpha} g, \ |y|^{-\alpha} *(\bar{\mathscr{F}} *G) \rangle$$

$$= (c_{\alpha} \lambda)^{-1} (2\pi)^{3/2} b_{\alpha} \langle A^{3-\alpha} g, \ |\xi|^{\alpha-3} G \rangle$$

$$= \lambda^{-1} \langle g, \ \bar{\mathscr{F}} *\{|\xi|^{3-\alpha} |\xi|^{\alpha-3} G\} \rangle$$

$$= \lambda^{-1} \langle g, \ \bar{\mathscr{F}} *G \rangle,$$

where it should be noted that $(2\pi)^{3/2}c_{\alpha}^{-1}b_{\alpha}=b_{\alpha}b_{\beta-\alpha}=1$. Thus we get

$$\langle \mathcal{F}\{g-\lambda(|y|^{-\alpha}*Q)\}, G\rangle = 0$$

for any $G \in \mathcal{S}_{0\xi}$, which implies that the support of $\mathcal{F}\{g - \lambda^{-1}(|y|^{-\alpha} * Q)\}$ is contained in the origin $\{0\}$. Therefore there exists a polynomial $P(y) = P(y_1, y_2, y_3)$ such that

$$\mathscr{F}\left\{g-\lambda^{-1}(|v|^{-\alpha}*Q)\right\} = P(D)\delta,$$

where δ is the Dirac δ -function and $D = (-D_1, -iD_2, -iD_3)$. For the proof of (1.45) see, e.g., Schwartz [9], p. 100. Since $\mathscr{F}^*P(D)\delta = P(y)$, it can be seen from (1.45) that

(1.46)
$$g(y) - \lambda(|y|^{-\alpha} *Q)(y) = P(y).$$

Here the left-hand side of (1.46) is o(1) at infinity by Lemma 1.1. and hence we have $P(y) \equiv 0$. Thus it has been shown hat Q defined by (1.40) is a solution of the equation (1.6). Q. E. D.

The main result of this section directly follows from Propositions 1.5 and 1.6.

Theorem 1.7. Let $0 < \alpha < 3$. Then the integral equation (1.6) has a unique solution $Q \in A_n$ with $3 - \alpha < \mu < 3$ if and only if

(1.47)
$$\begin{cases} g \in A_{\mu-(3-\alpha)}, \\ \mathscr{F}^* \Lambda^{3-\alpha} g \in A_{\mu}. \end{cases}$$

Then the solution Q(y) has the form (1.40). Q(y) is real-valued if λ is real and g(z) is real-valued.

Proof. Now that Propositions 1.5 and 1.6 have been shown, we have only to show the final statement of the theorem. Let λ be real and let g(z) be real-valued. Then, taking the conjugate of (1.6), we can see that the conjugate $\overline{Q(y)}$ of Q(y) is a solution of the equation (1.6), and hence the uniqueness of the solution of (1.6) can be applied to get $\overline{Q(y)} = Q(y)$, which completes the proof. Q. E. D.

It can be seen from Theorem 1.7 that the equation (1.6) is solvable if g(z) and its derivatives decrease sufficiently rapidly at infinity.

Example 1.8. (i) Let g satisfy

(1.48)
$$\begin{cases} g \in A_{\mu-1} \cap D((-\triangle)^{1/2}), \\ (-\triangle)^{1/2}g \in A_{\mu} \end{cases}$$

with $1 < \mu < 3$, where $D((-\Delta)^{1/2})$ is the domain of the self-adjoint operator $(-\Delta)^{1/2}$ in $L^2(R^3)$. Then the equation (1.6) with $\alpha = 2$ has a unique solution $Q = (2\pi^2\lambda)^{-1} \cdot (-\Delta)^{1/2}g$.

- (ii) Let g(z) be a smooth function such that $|\mathscr{F}g|_{3-\alpha} < \infty$ with $0 < \alpha < 3$. Then the equation (1.6) has a unique solution $Q = (c_{\alpha}\lambda)^{-1}\mathscr{F}^*(|\xi|^{3-\alpha}g)$. The proof is easy by the use of (1.15) in the proof of Proposition 1.3.
- (iii) Let us consider the case that $\alpha = 1$. Then the quation (1.6) has a unique solution if and only if $\mathscr{F}^*A^2g \in A_n$ and $g \in A_{n-2}$ with $\mu > 2$. Since

$$(1.49) \qquad \langle \mathcal{F}^* \Lambda^2 g, \varphi \rangle = \langle g, -\Delta \varphi \rangle \qquad (\varphi \in \mathcal{S})$$

we can say that (1.6) with $\alpha = 1$ has a unique solution $Q(y) = -(2\pi^{\frac{3}{2}}\lambda)^{-1}\Delta g$ if and only if $\Delta g \in A_{\mu}$ and $g \in A_{\mu-2}$ with $\mu > 2$, where Δg is defined in the sense of distributions.

2. A sufficient condition for the solvability

The purpose of this section is to show the following theorem which gives a sufficient condition on g(z) that the equation (1.6) is solvable.

Theorem 2.1. Let $0 < \alpha < 3$. Suppose that $g \in A_{\varepsilon}$ with $\varepsilon > 0$ and there exits a positive number a such that $3 - \alpha < s < 3$ and

$$\mathscr{F}^* \Lambda^s g = g \in A_u$$

with $s < \mu < 3$. Then the integral equation (1.6) has a unique solution

(2.2)
$$Q(y) = (c_{x,s}\lambda)^{-1} \int_{R^3} |y-z|^{x+s-6} g_s(z) dz \in A_{3-x+\varepsilon},$$

where Λ^s is as in Definition 1.2 and

(2.3)
$$\begin{cases} \delta = \min (\mu - s, \varepsilon), \\ c_{\alpha, s} = 2^{s} \pi^{3} \Gamma((3 - \alpha)/2) \Gamma((\alpha + s - 3)/2) \{ \Gamma(\alpha/2) \Gamma((6 - \alpha - s)/2) \}^{-1}. \end{cases}$$

We need some preparations before giving the proof of this theore.

Let $g_s \in A_\mu$ as in Theorem 2.1 and take a sequence $\{g_{s,n}\}$ which satisfies

(2.4)
$$\begin{cases} g_{s,n} \in C_0^{\infty}, \\ g_{s,n}(z) = C(1+|z|)^{-\mu} & (z \in R^3), \\ g_{s,n}(z) \longrightarrow g_s(z) & (z \in R^3, n \longrightarrow \infty), \end{cases}$$

where the constant C is independent of n = 1, 2, ... Set

$$(2.5) F_{s,n}(y) = (\mathscr{F}^*|\zeta|^{3-\alpha-s}\mathscr{F}g_{s,n})(y)$$

for each $n=1, 2, \ldots$ Since $3-\alpha-s>-3$, we have $|\xi|^{3-\alpha-s}(\mathscr{F}g_{s,n})(\xi)\in L^1(R^3_{\xi})$, which

implies that $F_{s,n}(y)$ is well-defined as a continuous function on \mathbb{R}^3 .

Proposition 2.2. Let $F_{s,n}(y)$ be as above. Then we have

(2.6)
$$\begin{cases} F_{s,n}(y) = d_{x,s} \int_{R^3} |y - z|^{x+s-6} g_{s,n}(z) dy \in A_{3-\alpha+\mu-s}, \\ |F_{s,n}(y)| \le C(1+|y|)^{-(3-\alpha+\mu-s)} \end{cases}$$

with a constant C independent of n=1, 2,... and $d_{\alpha,s}=(2\pi)^{-3/2}b_{\alpha+s-3}$, where b_{γ} is given in (1.30). Further,

(2.7)
$$\lim_{n \to \infty} F_{s,n}(y) = d_{x,s} \int_{\mathbb{R}^3} |y - z|^{x+s-6} g_s(z) dz$$

holds for any $v \in \mathbb{R}^3$.

Proof. First let us note that $0 < 6 - \alpha - s < 3$. Then we can apply (1.30) with $y = 6 - \alpha - s$ to show

(2.8)
$$\langle F_{s,n}, \varphi \rangle = \langle |\xi|^{3-x-s} \mathscr{F} g_{s,n}, \varphi \rangle$$

$$= b_{\gamma+s-3} \langle \bar{\mathscr{F}} | y |^{x+s-6}, (\mathscr{F} g_{s,n}) (\bar{\mathscr{F}} \varphi) \rangle.$$

Thus, using (1.32), we have

(2.9)
$$\langle F_{s,n}, \varphi \rangle = (2\pi)^{-3/2} \langle |y|^{z+s-6}, g_{s,n} * (\mathcal{F}^* \bar{\mathcal{F}} \varphi)$$

$$= d_{x,s} \langle |y|^{z+s-6}, g_{s,n} * \check{\varphi} \rangle \qquad (\check{\varphi}(y) = \varphi(-y))$$

$$= d_{x,s} \langle |y|^{z+s-6} * g_{s,n}, \varphi \rangle,$$

which is combined with (2.4) to give (2.6). By letting $n \to \infty$ in (2.6) and noting (2.4), (2.7) can be easily derived. Q. E. D.

Proposition 2.3. Let $F_{s,n}(y)$ be as above. Then

(2.10)
$$\lim_{n\to\infty} F_{s,n} = \mathscr{F}^* \Lambda^{3-\alpha} g \quad \text{in} \quad \mathscr{S}'.$$

Proof. It sufficies to show

(2.11)
$$\lim_{u \to \infty} \langle F_{s,n}, \varphi \rangle = \langle \mathscr{F}^* \Lambda^{3-\alpha} g, \varphi \rangle$$

for $\varphi \in \mathscr{S}$. Let us first consider the case that $\varphi = \bar{\mathscr{F}}^*G$ with $G \in \mathscr{S}_{0\xi}$. Then $\bar{\mathscr{F}}^*(|\xi|^t \varphi) \in \mathscr{S}$ for any real t. Using

(2.12)
$$\langle F_{s,n}, \varphi \rangle = \langle g_s, \bar{\mathscr{F}}^*(|\xi|^{3-x-s}G) \rangle$$

and recalling (2.4) and the definition of Λ^s , we have

(2.13)
$$\lim_{n \to \infty} \langle F_{s,n}, \varphi \rangle = \langle g_s, \bar{\mathscr{F}}^*(|\xi|^{3-\alpha}G)$$
$$= \langle \mathscr{F}^* \Lambda^s g, \bar{\mathscr{F}}^*(|\xi|^{3-\alpha-s}G) \rangle$$
$$= \langle g, \bar{\mathscr{F}}^*(|\xi|^s |\xi|^{3-\alpha-s}G) \rangle$$

$$= \langle g, \, \overline{\mathscr{F}}^*(|\xi|^{3-\alpha}G) \rangle$$
$$= \langle \Lambda^{3-\alpha}g, \, G \rangle = \langle \mathscr{F}^*\Lambda^{3-\alpha}g, \, \varphi \rangle.$$

Let us next consider the general case, i.e., let us show (2.11) for $\varphi \in \mathcal{S}$. Let ρ_m be as in (1.17) and set

(2.14)
$$\varphi_m = \bar{\mathscr{F}}^*(\rho_m \bar{\mathscr{F}}\varphi) \qquad (m=1, 2,...).$$

Then $\varphi_m \in \mathcal{S}_{0\xi}$ and it follows from Lemma 1.4 that

$$(2.15) |\varphi - \varphi_m|_t \longrightarrow 0$$

as $m \to \infty$ for each t > 0. In the relation

(2.16)
$$\langle \mathcal{F}^* \Lambda^{3-z} g - F_{s,n}, \varphi \rangle = \langle \mathcal{F}^* \Lambda^{3-z} g - F_{s,n}, \varphi_m \rangle + \langle \mathcal{F}^* \Lambda^{3-z} g, \varphi - \varphi_m \rangle$$

$$- \langle F_{s,n}, \varphi - \varphi_m \rangle$$

the first term of the right-hand side tends to 0 as $n \to \infty$ for each m because of (2.12). By the use of Proposition 1.3 and (2.15) with $t = 3 - \alpha$ the second term of the right-hand side is estimated as

$$(2.17) |\langle \mathcal{F}^* \Lambda^{3-\alpha} g, \varphi - \varphi_m \rangle| \leq c_{3-\alpha} ||(1+|y|)^{-3} g||_{L^1} |\varphi - \varphi_m|_{3-\alpha} \longrightarrow 0$$

as $m \to \infty$. Thus, in order to show (2.11), it is sufficient to prove

$$(2.18) |\langle F_{s,n}, \varphi \rangle| \le C |\bar{\mathscr{F}}\varphi|_{3-\alpha} (\varphi \in \mathscr{S})$$

with a constant C independent of n = 1, 2, ... Let us now show (2.18). Since we can see that

(2.19)
$$\begin{cases} \mathscr{F}^*(|\xi|^{-s}\mathscr{F}g_{s,n})(z) = (2\pi)^{3/2}b_{3-s}^{-1} \int_{R^3} |z-y|^{s-3}g_{s,n}(y)dy \\ \equiv h_{s,n}(z) \in A_{\mu-s}, \\ |h_{s,n}(z)| \leq C(1+|z|)^{s-\mu} \quad (z \in R^3, n=1, 2, ...) \end{cases}$$

in quite a similar way to the one used in the proof of (2.6) in Proposition 2.2, $\langle F_{s,n}, \varphi \rangle$ is calculated as

Q.E.D.

(2.20)
$$\langle F_{s,n}, \varphi \rangle = \langle |\xi|^{3-x-s} \mathcal{F} g_{s,n}, \bar{\mathcal{F}} \varphi \rangle$$

$$= \langle |\xi|^{-s} \mathcal{F} g_{s,n}, |\xi|^{3-x} \bar{\mathcal{F}} \varphi \rangle$$

$$= \langle h_{s,n}, \bar{\mathcal{F}}^* (|\xi|^{3-x} \bar{\mathcal{F}} \varphi) \rangle = \langle \Lambda^{3-x} h_{s,n}, \mathcal{F} \varphi \rangle.$$

(2.18) follows from (2.19), (2.20) and Proposition 1.3.

Proof of Theorem 2.1. From Propositions 2.2 and 2.3 we have

$$(2.21) \mathscr{F}^* \Lambda^{3-\alpha} g = d_{\pi,s}(|y|^{\alpha+s-6} * g_s) \in A_{3-\alpha+n-s}$$

in \mathcal{S}' . On the other hand g is assumed to satisfy

$$(2.22) g \in A_{\varepsilon}$$

with $\varepsilon > 0$. Therefore, setting $\delta = \min (\mu - s, \varepsilon)$, we can apply Theorem 1.7 to see that the equation (1.6) has a unique solution $Q = (c_{\alpha}\lambda)^{-1} \mathscr{F}^* \Lambda^{3-\alpha} g = (c_{\alpha}\lambda)^{-1} d_{\alpha,s} |y|^{\alpha+s-6} *g_s$. Now we have only to note that $c_{\alpha}/d_{\alpha,s}$ is equal to $c_{\alpha,s}$ defined by (2.3). Q. E. D.

The next theorem is an application of Theorem 2.1.

Theorem 2.4. Let $1 < \alpha < 3$. Assume that $g \in A_{\varepsilon}$ with $\varepsilon > 0$ and $\Delta g \in Q_{\mu}$ with $\mu > 2$, where Δg is defined in the sense of distributions. Then the equation (1.6) has a unique solution $Q \in A_{3-x+\delta}$ with $\delta = \min(\mu - 2, \varepsilon)$ which has the form

(2.23)
$$Q(y) = -(c_{\alpha,2}\lambda)^{-1} \int_{\mathbb{R}^3} |y-z|^{\alpha-4} (\Delta g)(z) dz,$$

where

$$(2.24) c_{\alpha,2} = 4\pi^3 \Gamma((3-\alpha)/2) \Gamma((\alpha-1)/2) \{ \Gamma(\alpha/2) \Gamma((4-\alpha)/2) \}^{-1}.$$

Proof. Since $\bar{\mathscr{F}}^*(|\xi|^2\bar{\mathscr{F}}\varphi) = -\Delta\varphi$ for $\varphi \in \mathscr{S}$, we have

(2.25)
$$\langle \mathcal{F}^* \Lambda^2 g, \varphi \rangle = \langle -\Delta g, \varphi \rangle \quad (\varphi \in \mathcal{S}),$$

i.e.,

$$\mathscr{F}^* \Lambda^2 g = -\Delta g \in A_u \quad \text{in} \quad \mathscr{S}'.$$

Therefore Theorem 2.1 with s=2 can be applied.

Q. E. D.

Remark 2.5. Let $\lambda > 0$ in the equation (1.6). Then, under the assumptions of Theorem 2.4, the solution $Q(y) \le 0$ (or $Q(y) \ge 0$) if g(z) is subharmonic (or superharmonic).

3. Some remarks on the inverse scattering problem

1º Let us consider the Schrödinger operator

$$(3.1) H = -\Delta + O$$

in R^3 , where Q is a multiplication operator by a real-valued function $Q(y) \in A_{\mu}$ with $\mu > 1$, i.e., Q(y) is a short-range potential. As is well-known, the restriction of the differential operator H to C_0^{∞} is essentially self-adjoint in $L^2(R^3)$. The (unique) self-adjoint extension will be denoted again by H.

 2^0 Let us give a brief sketch of scattering theory for H. First the wave operators

(3.2)
$$W_{\pm} = \text{s-}\lim_{t \to +\infty} e^{it H_0} e^{-it H_0}$$

are defined as partially isometric operators in $L^2(R^3)$ (Kuroda [5]). Let $E(\lambda)$ be the spectral measure associated with H. Then the ranges of W_{\pm} are known to be $E((0, \infty))L^2(R^3)$ which is also the absolutely continuous subspace of $L^2(R^3)$ with respect

to H (Agmon [1], Saitō [7]). By the use of W_+ the scattering operator S is defined by

$$(3.3) S = W_{+}^*W_{-}.$$

S is a unitary operator on $L^2(\mathbb{R}^3)$. Further it can be shown that there exists a family of unitary operators S(k), k>0, on $L^2(\mathbb{S}^2)$ such that

(3.4)
$$\{\mathscr{F}S\mathscr{F}^*\}G\}(\xi) = \{S(|\xi|)G(|\xi| \cdot)\}(\tilde{\xi})$$

$$(G \in C_0^{\infty}(R^{\frac{3}{2}}), \ \tilde{\xi} = \xi/|\xi|).$$

Here \mathscr{F} is the Fourier transform defined by the first relation of (1.4). S(k), k>0, called the S-matrix associated with H. Set

(3.5)
$$F(k) = -2\pi i k^{-1} (S(k) - I),$$

I being the identity operator on $L^2(R^3)$. Then F(k) is a compact operator for each k>0 (Agmon [1]). If $Q \in A_\mu$ with $\mu>2$, then F(k) is a Hilbert-Schmidt operator on $L^2(S^2)$ with its Hilbert Schmidt kernel $F(k, \omega, \omega')$ $(k>0, \omega, \omega' \in S^2)$ (Amerein et al. [2], Saitō [8]), i.e.,

(3.6)
$$\begin{cases} (F(k)x)(\omega) = \int_{S^2} F(k, \omega, \omega') x(\omega') d\omega', \\ \int_{S^2} \int_{S^2} |F(k, \omega, \omega')|^2 d\omega d\omega' < \infty \end{cases}$$

for $x \in L^2(S^2)$. $F(k, \omega, \omega')$ is called the scattering amplitude.

Usually the inverse scattering problem consists of the attempt to reconstruct the potential Q(y), which is often called the underlying potential, from the scattering amplitude $F(k, \omega, \omega')$. Let us now replace the scattering amplitude $F(k, \omega, \omega')$ by the S-matrix S(k) in the above definition of the inverse scattering problem, because we treat general short-range potentials $Q(y) \in A_{\mu}$ with $\mu > 1$ and F(k) has no Hilbert-Schmidt kernel in general for such a potential. As has been mentioned in Newton [6], the inverse scattering problem has the following three separate aspects:

- (a) Reconstruction of the underlying potential.
- (b) Uniqueness of the underlying potential.
- (c) Existence of an underlying potential, or characterization of the class of S-matricies associated with potentials (in a given class).
- 40 Let us first consider the problem (a). Newton [6] showed that the underlying potential Q(y) is reconstructed by solving an integral equation which can be regarded as an extension of the Marchenko equation in the one-dimensional case. Here Q(y) has to fulfil some pretty restrictive conditions which are satisfied by, e.g., $|Q(y)| \le C(1+|y|)^{-3-\epsilon}$ and $|\nabla Q(y)| \le C(1+|y|)^{-2-\epsilon}$ with $C, \epsilon > 0$. Now, using the results obtained in § 1 and § 2 and the formula (0.1), we shall show another reconstruction formula for the underlying potential $Q(y) \in A_{\mu}$ with $\mu > 1$. Set

(3.7)
$$g(z, k) = k^2 (F(k) x_{k,z}, x_{k,z})_{S^2}$$

for k>0, $z\in R^3$, where $x_{k,z}(\omega)=e^{-ikz\omega}$ and $(,)_{S^2}$ is the inner product of $L^2(S^2)$.

Theorem 3.1. (i) Let S(k), k>0, be the S-matrix for the Schrödinger operator $H=-\Delta+Q$ with real $Q\in A_{\mu}(1<\mu<3)$ and let F(k) be as in (3.5). Then the limit

(3.8)
$$g(z) = \lim_{k \to \infty} g(z, k) = -2\pi \int_{\mathbb{R}^3} |z - y|^{-2} Q(y) dy$$

exists for each $z \in R^3$ and g(z) satisfies

(3.9)
$$\begin{cases} g \in A_{\mu-1}, \\ \mathscr{F}^* \Lambda^1 g \in A_{\mu}, \end{cases}$$

 A^{t} being as in the Definition 1.2 with s=1. We have a reconstruction formula

(3.10)
$$Q(y) = -(4\pi^3)^{-1} \mathscr{F}^* \Lambda^1 g(y).$$

(ii) We have another expression for Q(y).

(3.11)
$$Q = -(4\pi^3)^{-1} \lim_{k \to \infty} \mathcal{F}^* \Lambda^1 g(\cdot, k) \quad \text{in} \quad \mathscr{S}'.$$

Proof. The existence of limit (3.8) is shown in [8] (Theorem 5.3). (3.9) and (3.10) follows from Theorem 1.7 with $\alpha = 2$ and $\lambda = -2\pi$. Since it can be seen from the proof of Theorem 5.3 of [8] that the estimate

$$(3.12) |g(z,k)| \le C(1+|z|)^{-(\mu-1)} (z \in \mathbb{R}^3, k \ge 1)$$

holds with a constant C>0 independent of $k \ge 1$. (3.12) is combined with (3.8) to give

(3.13)
$$\lim_{k\to\infty}\int_{\mathbb{R}^3}g(z,k)\mathscr{F}^*(|\xi|G)(z)dz = \int_{\mathbb{R}^3}g(z)\mathscr{F}^*(|\xi|G)(z)dz \quad (G\in\mathscr{S}),$$

which completes the proof of (3.11).

Q.E.D.

We can use the results in § 2 to get another reconstruction formula for Q(y). The following results corresponds to Theorem 2.4.

Theorem 3.2. Let S(k) be as in Theorem 3.1 and g(z) be as in (3.8). Further, let $\Delta g \in A_{\mu}$ with $\lambda > 2$, where Δg is defined in the sense of distributions. Then we have

(3.14)
$$Q(y) = (8\pi^5)^{-1} \int_{\mathbb{R}^3} |z - y|^{-2} (\Delta g)(z) dz.$$

Proof. We have only to apply Theorem 2.4 with $\alpha = 2$ and $\lambda = -2\pi$, and note that $c_{2,2} = 4\pi^4$ which follows from (2.24) with $\alpha = s = 2$. Q. E. D.

5° Let us next consider the problem (b); uniqueness of the underlying potential. Faddeev [3] showed the uniqueness of the underlying potential for the potential $Q \in A_{\mu}$ with $\mu > 3$. This result was extended to the case that Q belongs to the Robin class R (Newton [6], § 3). Saitō [8] showed that the uniqueness holds for $Q \in A_{\mu}$

with $\mu > 1$. Now it can be obtained directly from Theorem 1.7 with $\alpha = 2$, $\lambda = -2\pi$.

Theorem 3.3. Let $Q_1(y)$ and $Q_2(y)$ belong to A_μ with $\mu > 1$ and let $S_1(k)$ and $S_2(k)$ be the S-matricies $H_1 = -\Delta + Q_1$ and $H_2 = -\Delta + Q_2$, respectively. If $S_1(k) = S_2(k)$ for all k > 0 (or more exactly, $S_1(k_n) = S_2(k_n)$ for a sequence $\{k_n\}$ such that $k_n \uparrow \infty$ as $n \to \infty$), then $Q_1(y) = Q_2(y)$ for all $y \in R^3$.

 6^{0} As for the existence problem (c), we can say very little though the existence of the limit (3.8) gives a necessary condition for the S-matrix. Let us now show one more result concerning the problem (c). Let us take two families $\{S_{j}(k)/k>0\}$, j=1, 2, of unitary operators on $L^{2}(S^{2})$. We shall say that $S_{1}(k)$ is asymptotically equal to $S_{2}(k)$ with respect to $x_{k,z}(\omega)=e^{-ikz\omega}$ if

(3.15)
$$\lim_{k \to \infty} k(\{S_2(k) - S_1(k)\} x_{k,z}, x_{k,z})_{S^2} = 0.$$

Theorem 3.4. Let $\{S(k)/k>0\}$ be a family of unitary opertos on $L^2(S^2)$. Then there exists $Q \in A_{\mu}$ with $\mu > 1$ such that S(k) is asymptotically equal to the S-matrix $S_0(k)$ associated with the Schrödinger operator $H = -\Delta + Q$ with respect to $x_{k,z}$ if and only if there exists the limit

(3.16)
$$g(z) = \lim_{k \to \infty} k^2 (F(k) x_{k,z}, x_{k,z})_{S^2}$$

for each $z \in R^3$ and g(z) satisfies

(3,17)
$$\begin{cases} g \in A_{\mu-1}, \\ \mathscr{F}^* \Lambda^1 g \in A_{\mu}, \end{cases}$$

where $F(k) = -2\pi i k^{-1}(S(k) - I)$. Then the potential Q(y) is determined uniquely by

(3.18)
$$Q(y) = -(4\pi^3)^{-1} (\mathscr{F}^* \Lambda^1 g)(y).$$

Proof. Let us first suppose that S(k) is asymptotically equal to the S-matrix $S_0(k)$ associated with the Schrödinger operator $H = -\Delta + Q$ with a potential $Q(y) \in A_u$, $\mu > 1$. Then it follows from

(3.19)
$$\lim_{k \to \infty} k(\{S(k) - S_0(k)\} x_{k,z}, x_{k,z})_{S^2} = 0$$

that

(3.20)
$$\lim_{k \to \infty} k^2 (\{F(k) - F_0(k)\} x_{k,z}, x_{k,z})_{S^2} = 0$$

with $F_0(k) = -2\pi i k^{-1} (S_0(k) - I)$. On the other hand, as is shown in Theorem 3.1, we have

(3.21)
$$\lim_{k \to \infty} k^2 (F_0(k) x_{k,z}, x_{k,z})_{S^2} = -2\pi \int_{\mathbb{R}^3} |z - y|^{-2} Q(y) dy \in A_{\mu-1}.$$

Thus it can be seen from (3.20) and (3.21) that the limit (3.16) exists and is equal to the right-hand side of (3.21). Therefore Theorem 1.7 with $\alpha = 2$ and $\lambda = -2\pi$ can be applied to get (3.17).

Let us next assume that the limit (3.16) exists and (3.17) holds. Then it follows from Theorem 1.7 with $\alpha = 2$, $\lambda = -2\pi$ that there exists $Q \in A_{\mu}$ such that

(3.22)
$$g(z) = \lim_{k \to \infty} k^2 (F(k) x_{k,z}, x_{k,z})_{S^2} = -2\pi \int_{\mathbb{R}^3} |z - y|^{-2} Q(y) dy$$

holds for each $z \in R^3$. Let $S_0(k)$, k > 0, be the S-matrix associated with the Schrodinger $H = -\Delta + Q$. Then (3.21) holds with $F_0(k) = -2\pi i k^{-1} (S_0(k) - I)$, which, together with (3.22), yields (3.20). (3.19) directly follows from (3.20). Q. E. D.

OSAKA CITY UNIVERSITY

References

- [1] S. Agmon, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola Nor. Sup. Pisa (4), 2 (1975), 151-218.
- [2] W. O. Amerein, J. M. Jauch and K. B. Sinha, Scattering Theory in Quantum Mechanics, Benjamin, Reading, 1977.
- [3] L. D. Faddeev, The uniqueness of solutions for the scattering inverse problem, Vestinik Leningrad Univ., 7 (1956), 126-130.
- [4] I. M. Gel'fand and G. Shilov, Generalized Functions, Vol I, Academic Press, New York and London, 1964.
- [5] S. T. Kuroda, On the existence and the unitary property of the scattering operator, Nuovo Cimenoto, 12 (1959), 431-454.
- [6] R. G. Newton, Inverse Scattering. II. Three dimensions, J. Math. Phys., 21 (1980), 1698–1715.
- [7] Y. Saitō, Spectral and Scattering theory for second-order differential operators with operatorvalued coefficients, Osaka J. Math., 9 (1972), 463-498.
- [8] Y. Saitō, Some properties of the scattering amplitude and the inverse scattering problem, Osaka J. Math. 19 (1982), 57-78.
- [9] L. Schwartz, Theórie des Distribution, I, Herman, Paris, 1957.