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O. Introduction

Let us start with the following result ([8], Theorem 5.3): Let S(k), k > 0, be the
S-matrix associated with the  Schredinger operator H = - A + Q  in  L2 (R 3 )  with a
short-range potential Q (y ) . Then we have an asymptotic formula

(0.1) fin"' k 2 (Ric)xi,,2, xk,2)s2x-occ

= - - Y I - 2 Q(y )dy ,
R3

where

(0.2)
f  F(k )= -27rik - '(S (k ) -  J )( k  > 0 ) ,

x k,z(w) = e - ik z " (CO e S 2 , z E R 3 ) ,

I  is the identity operator on L2 (S 2 ) and ( , )s2 denotes the inner product of L2 (S 2 ).
(0.1) was used in  [8 ] to  show the uniqueness of the inverse scattering problem for
general short-range potential  Q(y)=O(y1 11) with p > I ([8], Theorem 5.4).

In this work we shall discuss the integral equation

(0.3) g(z )=).5  lz  -  y l - ŒQ(Y)dY

in the following two sec tions. Here Â and a are constants such that Â is a complex
number with Â *0 and 0 < a  < 3 . W h e n  a function g(z) is given, we seek the solution
Q(y) which satisfies

(0.4) 1Q(y)15,-C(1 + lyI) - " (y

with C > 0 and p > 3 - a. I n  § 1 we shall show a necessary and sufficient condition
o n  g(z ) th a t th e  equation (0.3)-(0.4) h a s  a  unique solution Q (y ) . A  sufficient
condition for the solvability of (0.3)-(0.4) will be given in  § 2. For instance we
shall show the following (Theorem 2.4): Let 1 <a < 3 and let
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f Ig(z)15C( 1 +1z1) - '
(0.5)

149(z)15C(1+1=D-'.

fo r a ll z e R3 w ith  C>0, e >0, s'>2. Then there exists a  unique solution Q(y)
of the equation (0.3)-(0.4) and we have

(0.6) Q (y)= const. I y — zI 2 - 4 (.4 )(z )d z .
R3

The results obtained in § 1 and § 2 will be applied to the inverse scattering prob-
lem in  § 3. We shall discuss uniqueness and reconstruction of the potential Q(y).
Some characterization of the asymptotic behavior of the S-matrix will be given, too.

1. The equation g = 2(1y1 - 2 4,Q)

Let us first introduce some n o ta t io n s . L e t  be a real number. Then a function
space A„ is defined by

(1.1) .40= f fe C (R 3 )1f(y)=001 - 0  a s  1)7 1 col,

where C (R 3 )  is all continuous functions on R3 . Accordingly the estimate

(1.2) If(Y)15C(1-1-1.1)D-" (y eR 3 )

holds for any f  e A i , with a constant C > 0 . Let ,99 =9 9 (R3 )  be all rapidly decreasing
functions o n  R3 , and  le t ,95"=„9°'(R 3 ) be all linear continuous functionals on 6 ''.
The pairing between ,V and <V" will be denoted by < , >. Further we set

(1.3) .990=.990(R3)= {(pE9'1(p=0 in a neighborhood of v=0 }.

The Fourier transform ‘F, :0* are defined by

1 (.F f)( ) =(2 70 - " 2e - i 4 Y

R 3

f ( Y ) d . v ,

(.0 1)( ) = (F M -  0,

(F*F )(y )=  (27 ) - 3 1 2 1 ei 4 3T ( )d f ,
R3

(..4r- *F)(y)=(.56- *F)(— y).

H e re  Y=1.1'1 - F  2Y2, + 3Y3

Let a and ). be real and complex numbers, respectively, such that

(1.5) 0 < a < 3  a n d  A00,

and let us consider the integral equation

g (z )= ,1 lz — y1- " Q (Y )d y  (= All y l - *Q)(z )),
(1.6) R3

Q E

(1.4)

for 3 ) and Y25 Y3).
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with 3 — a < fi < 3'). Here f * h  means the vonvolution. If Q E Am w ith  3 —a <p <3
and g(z ) is defined by (1.6), then we have

(1.7) gEAA-(3-Œ),

which is a consequence of the following well-known theorem.

Lemma 1.1. Let 0<a<3, 0 <b<3 and a+ b > 3 .  Then

(1.8) I Yl - a *feAa+b-3

f or any f e A b .

In order to solve the equation (1.6), let us introduce a linear functional A g  E

=„95"(R ) for s >0  and g  A , with e>0.

Definition 1.2. Let g E A  with e>0 and le t s> 0 . Then a  linear functional
Asg on .96'4 =.?( R )  is defined by

(1.9) </lsg ,G >= g(y ){ .0* (IV G )} (y )dy ( G e e ? : ) .e3

A sg is well-defined as the element o f 99 '4 a s  will be shown in the next propo-
sition. Let us introduce the norm I L s > 0 ,  by

(1.10) IGIs=1A3 1 10 115 -3 + 1 P1I-DfiG(Old+1 R 3 11s1G()ieg.

Here /3=(f3,, 132, 133) is a  multi-index with 1fi1=16 1+ fi2 + /33 and

(1.11) Dfl= (.01a1)Pi(a/.02 , )2 (a/a3) 113 .

Obviously the topology induced in by the norm I I s is weaker than the proper
topology of

Proposition 1.3. L et g e As w ith  e > 0  an d  le t  s > 0 .  T hen A sg  defined by
Definition 1.2 is an element of SP'4 and the estimate

(1.12) <A V , 015.C.,11( 1 +1.Y1)- 3 911L,IGIs
holds for any  G E ,9'4, where 11 110  i s  the norm  of  L '(R 3 )  and Cs i s  a constant de-
pending only on s>0 .

P ro o f . Repeating partial integration, we get

(1.13) ( , *(11sG))(y) =ily1 - 2 YT1 ( *115) (y),
where

(1.14) G )= s(s +1)(s +2)11s - 4 .1G (0 + s(s  + 3 )1 0 - 2 D i G

+2 s (s -2 )1 1 s - 4 •V G (0 +2 s1 js - 2 •V (D i G)

I) Here and in the sequel we assume it < 3 .  We are naturally interested in the case that p  is larger
than 3—a but is close to 3—a.
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Here Di = a / k ,  y  is the gradient and A  is the Laplacian. It can be easily seen that

(1.15) 1(,F*HJ, )(Y)1 (y ER 3 )

holds with a constant C. depending only on s .  Take (/).; e C(R 3 ), j= 0, 1, 2, 3, such
that 0:5_ ( y )  I , E  j (y )= 1, support of 0 0 (y ) is contained in  ty/ly1.21 and the
support of C(y ) is contained in {Y/2 1.Yil IY1, IYI 1 1  for each j=1, 2, 3. Thus we
obtain

3

(1.16) <A sg, 0=01) 0 g, ,0- * (10 G )>+ E  <OA, il y1 - 2 .1.j 'Y '"H i >•i=1

(1.12) follows from (1.15) and (1.16). Q. E. D.

Let 99
0 4 = .9'0 (Ri) be as in (1.3). It w ill be shown that SP,D i s  dence in ,9

with respect to  the norm 1 I s .  Let p( )  G C ( R )  such that 0_.t)( _1 and p ( )=-

0 (1 15_1/2), =1 and set

(1.17) Pm ()=P(m ) (m=1, 2, 3,...).

Lem ma 1.4. Let s>0 and let I I s be as in (1.10). Then we have

(1.18) lim IG- PmGIN= 0

f or any G e  %.

P roo f. Noting that p„,( ) = 1 for 1- 1_,T1- 1 , we can see that

m-i
(1.19) d r IG(roe)jdoco --> 0

R 3 . S 2

as m-> c o .  As for the first derivatives we get

(1.20) 1 21Dj(G-PmG)Id(:,`R3

..5ci kfl s - 3 1G1Cgd- 1
141 m 1

141 ,n_i
. -

for j=1, 2, 3, where ei=max ID1P()1 and we have used the fact that on
4

the support of Di p ( 0 .  Thus we get

(1.21) Ifls- 2 ID i (G — p„,G)Icg 0( i n

Similarly it can be seen that

1 5R 3
11' 34- 1fillpfi(G-p,„G)1d, 0,

0
123

(1.22)
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as in-4 co fo r any m u lti- index fi w ith  0 .1[1l w hich  im p lies (1.18). Q. E. D.

Let us now  g ive an invers ion  fo rm u la  fo r the  equation (1.6)

Proposition 1.5. L e t 0 < l< 3  and le t  Q e A , w ith  3—a <p< 3. L e t g(z) be

defined by (1.6). Then we have g e A ,, and

(1.23)

i.e.,

(1.24)

with a constant

(1.25)

Q=  (c 2) -  .5a* g in

<Q, = (c ) '( P > ((p e Y),

c,x = 7 3 -  / 7r3 /2 r( ( 3 — cc)/ 21T(

where FM is the r-function.

P ro o f .  Le t {Q„; be a sequence such that

Q„GC=Ci3:(R 3 ) (n= 2,...),

(1.26) ly lr " (.1) ER 3 , n = l, 2,...),

0„( y) 0(y) (y e R 3 , n - - *  co),

w here  C > 0  is  in d ep en d en t o f  n=1, 2,.... S u ch  a n  approx im ate  sequence can

be constructed by m aking use o f the  Friedrichs molifier. If we set

(1.27) g „(z)=),. 1z — v1- 2 Q„(Y)d.l',
. R 3

then g,,eA„ 3 _„, by  Lem m a I.I and g„ satisfies

(1.28)
{   

g „ ( z )  - -  g ( z ) ( z  e  R 3 ,  n  - - .  co),

Ig„(z)1 —5_ CO +1z1) - - , P+- 3 ) (:: e R 3 , n= I, 2,...),

C be ing  independent o f n= 1, 2,.... L e t  G e,96 '. T hen  w e  h a v e  fo r  n= I, 2,....

(1.29)< .Fg,,, G> = <g „, Y• *G> = .1.<1y1- 2 *Q„, g - *G>

=i1-<1.v1- ' , sô„*(,F*G)> (6„0, ), 2 „(— y)). •

Noting that

(1.30) 5--*(1(fl—')(y)=.2-;"3/2)rt (3—Y)/2/r(2/Y)-111'1-3"

=bj,t'l - 3 ' ' i l l  U "

for 0 < y <3 2 , a n d  setting y=3—Œ  in  (1.30), we get from  (1.29)

2 ) See, e.g., Gel'fand-Shilov [4], p. 194, though the defin ition  o f the Fou ier transforms in [4] is a

little  b it different from the ones used here.



312 Y oshimi Sait6

(1.31) G>=Ab-3-.%<,F*(1c.:1'3), „*(. 0 .- * G)>

=(270 3 1 2 ),bil,<I1 7 - 3 (37-Q„), G>,

where we have used the relations

(1.32) g(f*g)()= (2n)3/2(Ff )()•(,Fg)(0 (f, g EY)

and

(1.33) ( --"6 „ ) ( ) = ( Q„)(").

Therefore we have

(1.34) „=ciAkflx-3(FQ„) in Y '4

with c in (1.25). Let p„, be as in (1.17). Since 113 - 7 PmG E for any
G e,9°,f , we have from (1.34)

(1.35) (c ) - 1 <,*- 9„, kfl3-2P,„G> (GEY 4),

whence follows that

(1.35) (cŒ2)-'<A 3-2g „, p„,G>=<.. Q„, p„,G>.

Letting m—*cc i n  (1.36) and  taking account of Proposition 1.3 and  Lemma 1.4,
we can see that

(1.37) (c )-'<A3-2g „, G> = <,*-"Q„, G>

for any G  9 .  Further we let n-4co in (1.37) and make use of (1.26) and (1.28)
to get

(1.38) (c„.1)-1 A 3 - 2 g =.FQ in

whence (1.24) directly follows. Q. E. D.

The converse of Proposition 1.5 will be shown in the next proposition.

Proposition 1.6. Let 0<Œ<3 a n d  let 3 — a<it  < 3 .  Let g e (3 with

(1.39) *A 3 - 2 gEA ,„

i.e., there exists h e A„ such that h = ‘.17 *A 3 - 2 g in Then

(1.40) Q=(c2 ) )-1.F*A3-2g(=(c)-1h)

is a solution of the equation (1.6). e 7  is  g iven in (1.25).

P r o o f .  Let Q(y) be defined by (1.40). We have for G e Y 0 4

(1.41) <1.171-7*Q, 0- *G> = <Q, lyI - 7 *(.5T- *G)>.

Here we should note that ly1 - 2*(..#*G)E 9 9 , because, noting that (1.32) is valid in
for f = I Y I  and g=.0"*G, we have from (1.30)
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(1.42) = (27r) 312 k1 r 3 G() GYo,f.

From (1.42) and (1.42) we see that

(1.43) <1.1'1-2*Q, .F * G>=-(cM - 1 <., - * A3 - "g, lyl - a*(R*G)>

=(c,),) - 1 (2703 /2 6„<A 3 - '9,

, * {V - "V - 3 G}>

*G>,

where it should be noted that (2703 /2 G 1 b,=b„b 3 = 1 .  Thus we get

(1.44)< . { g =

for any GEY (n , which implies that the support of ..Ftg —.1.- i(lyl - l*Q1 is contained
in the origin {0}. Therefore there exists a polynomial P(y)= P(3, , y 2 , y 3) such that

(1.45) - ) - 1 ( 1 y 1 - 7 4 ,Q ) }  =

where (5 is the D irac (5-function and D=(—D,, -  iD 3 ) . F or the  proof of
(1.45) see, e.g., Schwartz [9], p . 100. Since .,- *P(D)S=P(y), it can be seen from
(1.45) that

(1.46) g(y)-41y1-1*Q)(y)= P(y).

Here the left-hand side of (1.46) is o(1) at infinity by Lemma 1.1. and hence we have
P(y) 0. Thus it has been shown htat Q defined by (1.40) is  a solution of the
equation (1.6). Q. E. D.

The main result of this section directly follows from Propositions 1.5 and 1.6.

Theorem 1.7. L et 0 < a < 3 .  T hen the integral equation (1.6) has a unique
solution Q e A  with 3—cx<p < 3 if  and only  if

(1.47)
{ g e 

e

Then the solution Q(y) has the form  (1.40). Q(y) is real-v alued if  ). is real and
g(z) is real-valued.

P ro o f . Now that Propositions 1.5 and 1.6 have been shown, we have only to
show the final statement of the th eo rem . Let "). be real and let g(z) be real-valued.
Then, taking the conjugate of (1.6), we can see that the conjugate Q(y) of Q(y) is a
solution of the equation (1.6), and hence the uniqueness of the solution of (1.6) can
be applied to get Q(y)=Q(y), which completes the proof.  Q .  E .  D .

It can be seen from Theorem 1.7 that the equation (1.6) is solvable if g(z) and
its derivatives decrecase sufficiently rapidly at infinity.

Example 1.8. (i) Let g satisfy
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geA , , n D(( —P ) 112 ),
(1.48)

( — P )' / 2 g E A ,

with 1< p <3, where -D((—d) 1 / 2 ) is the domain of the self-adjoint operator (_ 4 ) h / 2

in L2 (R 3 ). Then the equation (1.6) with a = 2  has a unique solution Q=(27 2 ).) - '-
( — 4)1/2g .

(ii) Let g(z) be a smooth function such that Li;g1 3 _ < co with 0 < a  < 3 .  Then
the equation (1.6) has a unique solution Q =(c).) - 1 , 7 * (1 13 - '9.). The proof is easy
by the use of (1.15) in the proof of Proposition 1.3.

(iii) Let us consider the case that a= I . Then the quation (1.6) has a unique
solution if and only if */1 2 g e A„ and g E A , ,  2  with p>  2. Since

(1.49) <.F*A2g, (p>-=<g, — zlip> (q e9")
3

we can say that (1.6) with a = 1  has a unique solution Q(y)= —(2n 2 ),r i d g  if and only
if A g E A„ and g E A 0 _, with p > 2, where d g  is defined in the sense of distributions.

2. A sufficient condition for the solvability

The purpose of this section is  to  show the following theorem which gives a
sufficient condition on g(.7.) that the equation (1.6) is solvable.

Theorem 2 .1 .  L e t 0 < a < 3 .  Suppose that g e A ,  w ith  v > 0  a n d  there exits
a  positive number a such that 3— c <s<3 and

(2.1) e?"*Asg=g„EA„

w ith  s< p < 3 .  Then the, integral equation (1.6) lias a unique solution

(2.2) — zrs-6gs(z)dzeA 3„+ ,,
12,

where AS is  as  in  D e fin ition  1.2 and

(2.3) I
5=m in (p— s,c),

e ,=2s7r 3 F((3—c)/2)1 - ((a + s -3 )/2 )1 1 - (a /2 ) “ (6  —a —s)/2)1 - I.

We need some 'preparations before giving the proof of this theore.
Let gs e A„ as in Theorem 2.1 and take a sequence Igs ,„1 which satisfies

(2.4) g ,,„ (z )= C (1 + 1 :Ir" (zeR 3),

g,(z) (z e R 3 , /1 —  cc),

where the constant C is independent of n = 1 , 2, ... . Set

(2.5)

for each n=  I ,  2 ,.... Since 3 -1 — s>  —3, we have L i(R ), which
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implies that F s ,„(y) is well-defined as a continuous function on R3 .

Proposition 2 .2 .  Le t F ( y )  be as above. Then we have

: r s - 6 g,.,,(z)dy G

(2.6)
+071)-(3-+■,-s)

w ith  a  cons tan t C  independent o f n= I, 2,... a n d  d =(270 - 3 1 2 b2 + 5 _ 3 , w here b

is given in  (1.30). Further,

(2.7)
Ut)

F ,  „ ( y ) = d  5R 3 y - z r s 'g , ( z ) d z

holds for any y  c R 3 .

P r o o f .  First let us note  that 0 <6 - - s  < 3 . Then we can apply (1.30) with
y=6 - a - s to  show

(2.8) <F,,„, 49> = <1 13 - 1 - s T >

= (Ffis,n)(g(P)>.

Thus, using (1.32), we have

(2.9) cp>=(271-312<1.-1'11+", g5o5 * ( "1 " g r :  ( P)

= rs-6, gs,"*> ((»;(y)=(1)( Y ) )

= 9>,

which is combined with (2.4) to give (2.6). By letting n-+cx) in (2.6) and noting (2.4),
(2.7) can be easily derived. Q. E. D.

Proposition 2.3. Let F „ (y )  be as above . Then

(2.10) lim Fs ,„-=Y-**A 3 — 'y in

P r o o f .  It sufficies to  show

(2.11) lim „, 9> = 3-2g, cp>

for e .99 . L e t u s  first consider the  case  th a t  9 = . * G  w ith  G e  Y " .  Then
E .99  for any real t. Using

(2.12) <Fs,„, (P>=<gs,

and recalling (2.4) and the definition of A s, we have

(2.13) lim (P> = <g,,, A * (V - 2 G)
n  CO

= < ,*  Asa, g * (IW ' sG)>

.F*(ils1 3—œ—rsG)>
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=<g, ..57-7*( V - 2 G)>

=<A 3 - 1 g,G>=<5-**A 3 - 1g, 9>.

Let us next consider the general case, i.e., let us show (2.11) for 9e Y .  Let p,„ be as
in (1.17) and set

(2.14) (Pm= .F * (/) 3 7 9) (ni= 1, 2,•••)•

Then yo„, e 9' o4 and it follows from Lemma 1.4 that

(2.15) 19 — t

as m cx) for each 1> 0 .  I n  the relation

(2.16) <..97 *4 3 - 2 g — F ,, = A3-'11 — F„,„, 9„,>+<.* A 3 - 7g, 9-- 9„)

-  9„,>
the first term of the right-hand side tends to 0 as n  co for each ni because of (2.12).
By the use of Proposition 1.3 and (2.15) with I =3— a the second term of the right-
hand side is estimated as

(2.17) K.F*A3-'g, 9 — 9m>l 5c3,11( 1 +  y  l) - 3 g4119 — 9.13,

as co. Thus, in order to show (2.11), it is sufficient to prove

(2.18) Kr„„, 9>1.5.CI - 91,1-, e

with a constant C independent of n=1, 2,.... Let us now show (2.18). Since we
can see that

f
" .* (1 1- s • F g )(z )= C 2 7 0 3 1 2 bil, .S. R I.- — .1'

EI h s . n ( z ) ,  ...  c o  4 s i z : s its s ,„(z)  A p _s ,

(z e R 3 , n= 1, 2,...)

in quite a similar way to the one used in the proof of (2.6) in Proposition 2.2, <F,,,,,
9> is calculated as

(2.20) 07,,,,, 9> = < IW —  2—  S , g s o i ,  . . . .4 t p >

= CM- s,Fg.,,,,, k:1 3 - œ . - 9>

= <ha ,„, .0 * (113 - 2 . F 9» = <A 3 - 2 hs,„, -9 7 (0.
(2.18) follows from (2.19), (2.20) and Proposition 1.3. Q. E. D.

Proof of  Theorem:1* .A 3 _Fi r:111d Propositions 2.2 and 2.3 we have

(2.21) 

in 99 '. On the other hand g is assumed to satisfy

(2.19)

1,  12 +s— 6* g  s )  E A 3s
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(2.22) g e

with e> 0. Therefore, setting (5= min (p— s, e), we can apply Theorem 1.7 to see that
the equation (1.6) has a  unique solution Q=((.„).)- „Ft * A 3 -  2  g  =

Now we have only to note that cOE/c1„,, is equal to cOE,, defined by (2.3). Q. E. D.

The next theorem is an application of Theorem 2.1.

Theorem 2.4. Let 1 <a < 3 .  Assume that g E A, w ith e >0  and dg E 12,, with

p>2, where dg  is defined in the sense of distributions. Then the equation (1.6)
has a unique solution Q E  A 3  _ ,+  with (5=min (p-2, e) which has the form

(2.23) Q(Y)= — (e,2/1 ) - 1 - -7 11 - 4  (40(7.)(1.:,
R3

where

(2.24) c2=47c3r((3 —c()/2)r((a— 1)/2) {  r(112)/- ((4 — 0)/2)} '.

P ro o f .  Since A * ( V : 0 - - ( 1 ) ) =  —4  for Q e ,9*, we have

(2.25) <.F* 4 2g, (p>=<— dg, cp> ((pe,V),

i.e.,

(2.26) A2g = — dg e Ai, i n  99 '.

Therefore Theorem 2.1 with s= 2 can be applied. Q. E. D.

Remark 2.5. Let ) > 0  in  th e  equation (1.6). Then, under the  assumptions
of Theorem 2.4, the solution Q(y) 0 (or Q(y) 0) if g(z) is subharmonic (or super-
harmonic).

3. Some remarks on the inverse scattering problem

10 L e t  u s  consider the Schr6dinger operator

(3.1) H = — A +Q

in R3 , where Q is a multiplication operator by a real-valued function Q(y)E /1,4 with
p> 1, i.e., Q (y ) is a  short-range potential. A s is well-known, the restriction of the
differential operator H  to  q c  is essentailly self-adjoint in L 2 (R 3 ). The (unique)
self-adjoint extension will be denoted again by H.

20 L e t  u s  give a brief sketch of scattering theory for H .  First the wave oper-
ators

(3.2) W÷ =s-lirn e""e- 
IT

t - . ±CG

are defined as partially isometric operators in L2 (R 3 ) (Kuroda [5]). Let E().) be the
spectral measure associated with H .  Then the ranges of W± a re  known to be E((0,
œ))L 2 (R 3 ) which is also the absolutely continuous subspace o f L 2 (R 3 ) with respect
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to H (Agmon [I] , Sait5 [7]). By the use of IN, the scattering operator  S is defined by

(3.3) S=

S  is  a unitary operator on L 2 (R 3 ). Further it can  be  show n that there  ex ists a
family of unitary operators S(k), k> 0, on L 2 (S 2 ) such that

(3.4) 1.5r-Sg--*)G1()= {S(1.1)G(11. )1()

( G e C ( R ) ,

Here is the Fourier transform defined by the first relation of (1.4). S(k), k > 0,
called the S-matrix associated with H .  Set

(3.5) F(k)= —27rik - 1 (S(k)— I),

I  being the identity operator on L2 (R 3 ). Then F(k) is a compact operator for each
k > 0 (Agmon [1]). If Q e A , with p > 2, then F (k ) is a Hilbert-Schmidt operator
on L 2 (S2 ) w ith  its Hilbert Schmidt kernel F(k, co, co') (k>0 , co, co' E S2 ) (Amerein
et al. [2], Saitc- [8]), i.e.,

( F (k ).v)(w )=  Ç F (k ,  w , co').v(co')d(o' ,
s 2

(3.6)

1S2 5S2
11 7 (k, (0, co')! 2 dcoduf <oo

for x E L2 (S2 ). F(k, co, co') is called the scattering amplitude.
30 U s u a l ly  the inverse scattering problem consists of the attem pt to recon-

struct the potential Q(y), which is often called the underlying potential, from  the
scattering amplitude F(k, co, co'). Let us n o w  replace the scattering amplitude
F(k, co, w') by the S-matrix S(k) in the above definition of the invers3 scattering pro-
blem , because w e treat general short-range potentials Q(y) e A  p> 1 and
F (k ) has no Hilbert-Schmidt kernel in general for such a potential. As has been
mentioned in Newton [6], the inverse scattering problem  has the following three
separate aspects:

(a) Reconstruction of the underlying potential.
(b) Uniqueness of the underlying potential.
( c )  Existence of an underlying potential, or characterization of the class

of S-matricies associated with potentials (in a given class).
40 Let us first consider the p ro b lem  (a ) . Newton [6] showed that the underly-

ing potential Q(y) is reconstructed by solving an integral equation which can be
regarded as an extension of the Marchenko equation in the one-dimensional case.
Here Q(y) has to fulfil some pretty restrictive conditions which are satisfied by, e.g.,
l'2( ))1- C( 1 + 1.111) - 3 '  and 117 Q(y)1 C(1 +13, 1)- 2 -  w i t h  C, e> O .  Now, using the
results obtained in § 1 and § 2 and the formula (0.1), we shall show another reconstruc-
tion formula for the underlying potential Q(y) c Am w ith p> I .  Set

(3.7) g (z , k )=k 2 (F(k)xk, z , • k,z)s2
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for k>0, z e R 3 ,  where X k ( W ) =  and ( , )s 2 is the inner product o f L2 (S 2 ).

Theorem 3 . 1 .  ( i )  Let S(k), k >0, be the S-inatrix fo r  the Schrlidinger operator

Ii =  —4 +Q  w ith  re a l Q E Ao (1 < p <  3) an d  le t F(k) be as in  (3.5). Then the lim it

(3.8) g(z)=  lim  g (z , — 27r —121-2Q(y)dy
k•-■oc

exists for each z E R3  a n d  g(z) satisfies

g E A„_,,
(3.9)

..9r* A'g eA t „

A ' b e in g  a s  in  th e  D e fin itio n  1.2 w ith  s = 1 .  W e have a reconstruction form ula

(3.10) Q 110= - - (4 n3 ) - 1 . " * A 19 1 ».

(ii) We have another expression for Q(y).

(3.11) Q =  — (47( 3 )- ' lirn  5**A lg( • , k) in

P ro o f .  The existence of limit (3.8) is shown in [8 ] (Theorem 5.3). ( 3 .9 )  and
(3.10) follows from Theorem 1.7 with a =  2  and 2= — 27r. Since it can be seen
from the proof of Theorem 5.3 of [8] that the estimate

(3.12) 19(z, 101—<_C(1 + (ze R 3 , k._1)

holds with a constant C > 0 independent of k  1. ( 3 .1 2 )  is combined with (3.8)
to give

(3.13) lim g(z, k).F *(11G )(z)dz= g (z ).* (1 1 G )(z )d z  ( G e ) ,
k--00( R 3 R 3

which completes the proof of (3.11). Q. E. D.

We can use the results in  § 2 to get another reconstruction formula for Q(y).
The following results corresponds to Theorem 2.4.

Theorem 3.2. Let S(k) be as in  Theorem 3.1 and g(z) be as in ( 3 .8 ) .  Further,

let Ag E A , w ith  2 > 2 , where A g  is defined in  the  sense o f d is tr ib u tio n s . Then we

have

(3.14) Q (y )=  (87r 5 ) - ' lz—y1 - 2 (Ag)(z)dz.
R 3

P r o o f .  We have only to apply Theorem 2.4 with 2 = 2 and 2 =  —27r, and note
that C2 , 2 = 4/r4  which follows from (2.24) w ith  a  s = 2. Q. E. D.

50 L e t u s  next consider the problem (b); uniqueness of the underlying potential.
Faddeev [3] showed th e  uniquness o f the  underlying potential for the  potential
Qe Ao with p > 3. This result was extended to the case that Q belongs to the Robin
class R (Newton [6], § 3). Saito [8 ] showed that the uniquness holds for Qe Ao
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with it >1. Now it can be obtained directly from Theorem 1.7 with OE=2, —27r.

Theorem 3 .3 .  Let Q 1(y) and Q 2 (y) belong to A I, w ith  it>1 and let S i (k) and
S2 (k) be the S-matricies H 1 = —4 +Q, and H2 = — A + Q2, re sp ec tive ly . If S,(k)=-
S2 (k) for a l l  k>0 (or more exactly , S 1(k)=S 2 (k„) for a  sequence {k„} such that
k„T oo as n.-,o4, then Q 1 (y)=Q 2 (y) for a ll y E R 3

.

60 As for the existence problem (c), we can say very little though the existence
of the limit (3.8) gives a  necessary condition for the S-matrix. Let us now show
one more result concerning the problem  (c). Let us take two families {S 1(k)/k >0},
j =  1, 2, of unitary operators on L 2(S2). We shall say that S 1(k) is asymptotically
equal to S2 (k) with respect to xk ,(co)=e -  ik z to  if

(3.15) lirn k1{S210 — SI(k)Ix i,, xk ,./s2= 0 .
k-.00

Theorem 3 .4 .  Let {S(k)/k>0} b e  a f a m i ly  o f u n ita ry  opertos on L 2 (S2 ).
Then there exists QE.4 w ith  p>1 such that S(k) is  asym ptotica lly equal to  the S-

m a tr ix  So (k) associated w ith the Schrödinger opera to r H= -- 4 + Q  w ith  respect
to xk ,z if and o n ly  if there exists the l im it

(3.16) g(z)=1im k 2 (F(k)x,,, z , x k ,z )s 2

for each z E R 3 and g(z) satisfies

g  E A , ,
(3,17)

F*A 'g  EA R ,

where F(k)= —2rtik - 1 (S(k)— I ) .  T h e n  the potentia l Q(y) is determined uniquely by

(3.18) Q (y )=  -  (47r3 )- 1 (F* Al g)(y),

P r o o f .  Let us first suppose that S(k) is asymptotically equp.1 to the S-matrix
So (k) associated with the Schr&linger operator H= —4 +Q with a  potential Q(y)E

p> 1. Then it follows from

Jim k({S(k)— S o (k)} , ck ,z , X k , z ) s2=  0
k-.0o

lim k 2 ({F(k)—Fo (k)}x k  x,,, z )s 2= 0

with F o (k)= —27rik- '(S 0 (k) — I). On the other hand, as is shown in Theorem 3.1,
we have

(3.21)
k—,co
li M  k 2 (F o (k )X k ,z , X k ,z )s 2 =  —2n lz — y1- 2 Q(Y)dy E Ap-i.

R 3

Thus it can be seen from (3.20) and (3.21) that the limit (3.16) exists and is equal
to  the right-hand side o f (3 .21 ). Therefore Theorem 1.7 with a=2 and ).= —27r
can be applied to get (3.17).

(3.19)

that

(3.20)



Inverse problem in potential theory 321

Let us next assume that the limit (3.16) exists and (3.17) holds. Then it follows
from Theorem 1.7 with y=2, 2= —27r that there exists Q e A u such that

(3.22) g(z)= lim k 2 (F(k)xk,z, xk ,z )s2 =  —2mz H2 Q(y)dy

holds for each  z e R 3 . Let So(k), k> 0 ,  b e  th e  S-matrix associated with the
Schrodinger H= — A + Q . Then (3.21) holds with Fo( k ) =  2nik - 1 (S0 (k)— I), which,
together with (3.22), yields (3.20). (3.19) directly follows from (3.20). Q. E. D.

OSAKA CITY UNIVERSITY

References

[ I ] S. Agm on, Spectral properties of Schrödinger operators and scattering theory, Ann. Scuola
Nor. Sup. Pisa (4), 2 (1975), 151-218.

[ 2 ] W. O. Amerein, J. M. Jauch and K. B. S in h a , Scattering Theory in Quantum Mechanics,
Benjamin, Reading, 1977.

[ 3 ] L. D. Faddeev, The uniqueness of solutions for the scattering inverse p rob lem , Vestinik
Leningrad Univ., 7 (1956), 126-130.

[ 4 ] I. M. Gel'fand and G. S h ilo v , Generalized Functions, V o l  I ,  Academic Press, New York
and London, 1964.

[  5 ]  S. T. K u ro d a , On the existence and the unitary property of the scattering operator, Nuovo
Cimenoto, 12 (1959), 431-454.

[ 6 ] R. G. Newton, Inverse Scattering. Il. Three dim ensions. J. Math. Phys., 21 (1980), 1698-
1715.

[ 7 ] Y . S a la \  Spectral and Scattering theory for second-order differential operators with operator-
valued coefficients, Osaka J. Math., 9 (1972), 463-498.

[ 8 ] Y. Saitt), Some properties of the scattering amplitude and the inverse scattering problem,
Osaka J. Math. 19 (1982), 57-78.

[ 9 ] L. Schw artz, TheOrie des Distribution, I, Herman, Paris, 1957.


