Cauchy problem for non-strictly hyperbolic systems II. Leray-Volevich's systems and well-posendness

By

Kunihiko KAJITANI

(Communicated by Prof. S. Mizohata, Jan. 31, 1981)

Introduction

We consider the Cauchy prolem for non strictly hyperbolic systems with diagonal principal part of constant multiplicity. We shall derive a necessary condition in order that the Cauchy problem for such systems is well posed in C^{∞} class.

We consider the following Cauchy problem in G(x) a neighborhood of $\hat{x} = (\hat{x}_0, \hat{x}_1, ..., \hat{x}_n) \in \mathbb{R}^{n+1}$,

$$\begin{cases} a(x, D)u^{s}(x) + \sum\limits_{t=1}^{N} b_{t}^{s}(x, D)u^{t}(x) = f^{s}(x), \ x \in G(\hat{x}) \cap \{x_{0} > \hat{x}_{0}\}, \\ D_{0}^{h}u^{s}|_{x_{0} = \hat{x}_{0}} = g_{h}^{s}(x'), \ x' \in G(\hat{x}) \cap \{x_{0} = \hat{x}_{0}\}, \quad h \leq m-1, \ s=1,..., \ N. \end{cases}$$

where a(x, D) and $b_i^s(x, D)$ are differential operators of which coefficients are infinitely differential functions defined in a domain $G \subset \mathbb{R}^{n+1}$. We assume here that we can factorize in $G \subset \mathbb{R}^{n+1}$ the principal part of a(x, D), $\hat{a}(x, \xi)$ as follows

(2)
$$\hat{a}(x,\,\xi) = \prod_{l=1}^{r} (\xi_0 - \lambda^{(l)}(x,\,\xi'))^{v^{(l)}},$$

where $v^{(l)}$ are constant integers in $G \times \mathbb{R}^n \setminus 0$, $\lambda^{(l)}$ are C^{∞} -real valued functions and $\lambda^{(l)} \neq \lambda^{(j)}$ on $G \times \mathbb{R}^n \setminus 0$ for $l \neq j$. Moreover we assume that there exist integers n_1, \ldots, n_N such that

$$(3) order b_t^s \le m - 1 + n_t - n_s$$

where $m = \text{order } a = \sum_{l=1}^{r} v^{(l)}$.

We call here a system with above properties (2) and (3) a hyperbolic Leray-Volevich's system with diagonal principal part of constant multiplicity.

Definition 1. The Cauchy problem (1) for a system $\{\delta_t^s a + b_t^s\}$ is said to be well posed at \hat{x} in G, if the following conditions hold

- (E) There exists $G(\hat{x}) \subset G$, a neighborhood of \hat{x} , such that for any f(x) in $C^{\infty}(G(\hat{x}))$ and G_h^s in $C^{\infty}(G(\hat{x})) \cap \{x_0 = x_0\}$, there are functions $u^s(x)$, s = 1, ..., N in $C^{\infty}(G(\hat{x}))$ satisfying (1).
- (U) For any $G(\hat{x}) \subset G$, a neighborhood of \hat{x} , there exists $\widetilde{G}(\hat{x}) \subset G(x)$, a neighborhood of \hat{x} , such that if $u^s(x)(s=1,...,N)$ in $C^{\infty}(G(x))$ satisfy $u^s + \sum b_i^s u^i = 0$ in $\widetilde{G}(\hat{x}) \cap \{x_0 > \hat{x}_0\}$ and supp $u^s \subset \{x_0 > \hat{x}_0\}$, then $u^s = 0$ in $\widetilde{G}(\hat{x}) \cap \{x_0 > \hat{x}_0\}$ (s = 1,...,N).

If the Cauchy problem (1) for a system $\{\delta_t^s a + b_t^s\}$ is well posed at \hat{x} for any $\hat{x} \in G$, it is said to be well posed in G.

Remark. We note that the property of finite propagation speed is not necessary in the definition of the well posedness.

We call ψ a phase function associated to $\lambda(x, \xi')$ a function in $G \times \mathbb{R}^n \setminus 0$, if ψ are real valued C^{∞} -function in $G' \subset G$ such that

$$\psi_{x_0} = \lambda(x, \psi_{x'}) \quad \text{in } G,$$

$$\psi_{x'} \neq 0.$$

We denote by $\psi^{(l)}$ a phase function associated to $\lambda^{(l)}$.

Definition 2. Let $\{\delta_i^s a(x, D) + b_i^s(x, D)\}$ be a Leray-Volveich's system with diagonal principal part of constant multiplicity. It is said that $\{\delta_i^s a + b_i^s\}$ satisfies the Levi's condition in G if there exist integers $n_1^{(l)}, \ldots, n_N^{(l)}$ $(l=1,\ldots,d)$ such that for any phase function $\psi^{(l)}(x)$ and for any $w \in C_0^{\infty}(G)$

(4)
$$e^{-i\rho\psi^{(1)}} \{ \delta_t^s a(x, D) + b_t^s(x, D) \} (e^{i\rho\psi^{(1)}} w)$$

$$= O(\rho^{m-v^{(1)}+n_t^{(1)}-n_s^{(1)}}) \quad (\rho \longrightarrow \infty),$$

for s, t = 1,..., N and l = 1,..., r.

We have proved the following theorem in the part I [2].

Theorem 1. Let $\{\delta_t^s a + b_t^s\}$ be a Leray-Volvich's system with diagonal principal part of constant multiplicity. Then if $\{\delta_t^s a + b_t^s\}$ satisfies the Levi's condition, the Cauchy problem (1) for $\{\delta_t^s a + b_t^s\}$ is well posed in G.

The condition (4) is not necessary. For example, a 2×2 system,

(5)
$$\begin{bmatrix} D_0^2 & 0 \\ 0 & D_0^2 \end{bmatrix} + \begin{bmatrix} D_1 & D_1 \\ -D_1 & -D_1 \end{bmatrix}$$

is well posed in \mathbb{R}^2 . But we can not find the integers such that (4) is valid. Here our aim is to investigate a necessary condition in order that the Cauchy problem for Leray-Volevich's system with principal part of constant multiplicity is well posed.

We assume that the condition (4) is not valid for some \hat{l} . For simplicity we we write $\lambda^{(1)} = \lambda$ and $\nu^{(1)} = \nu$. Then we can decompose

$$\delta_t^s a(x, D) + b_t^s(x, D) = \delta_t^s Q(x, D) q(x, D)^v + B_t^s(x, D)$$

where $q(x, D) = D_0 + i\lambda(x, D')$,

$$Q(x, D) = \prod_{t \in I} (D_0 + i\lambda^{(t)}(x, D'))^{v(t)},$$

and the order of B_t^s satisfies (3). Hence the principal symbol $\hat{Q}(x, \zeta)$ of Q(x, D) satisfies

(6)
$$\hat{Q}(x, \lambda(x, \xi'), \xi') \neq 0$$
 in $G \subset \mathbb{R}^n \setminus 0$.

We rewrite $B_i^s(x, D)$ as follows,

$$B_{t}^{s}(x, D) = \sum_{j=0}^{m_{t}^{s}} \widetilde{B}_{t, j}^{s}(x, D') D_{0}^{j}$$

$$= \sum_{j=0}^{m_{t}^{s}} \widetilde{B}_{t, j}^{s}(x, D') (q(x, D) - i\lambda(x, D'))^{j}$$

$$= \sum_{j=0}^{m_{t}^{s}} B_{t, j}^{s}(x, D') q(x, D)^{j},$$

here $m_t^s = m - 1 + n_t - n_s$. We put

(7)
$$d_{t,j}^{s} = \begin{cases} \text{ order } B_{t,j}^{s}(x, D'), & \text{if } B_{t,j}^{s} \neq 0, \\ -\infty, & \text{if } B_{t,j}^{s} \equiv 0. \end{cases}$$

Then we note

(8)
$$d_{t,j}^{s} \leq m - 1 + n_{t} - n_{s} - j.$$

For a scalar function $\psi(x)$ and a pseudo differential operator P(x, D) of order m, we introduce differential operators $\sigma_j(\psi, P)$ of order j as follows

$$e^{-i\rho\psi}p(x, D)e^{i\rho\psi}f(x)$$

= $\sum_{j>0} \rho^{m-j}\sigma_j(\psi, P)f(x).$

Then the principal part of $\sigma_i(\psi, P)$ is given by

$$\hat{\sigma}_j(\psi, P)(x, \xi) = \sum_{|\alpha|=j} \frac{1}{\alpha!} \hat{P}^{(\alpha)}(x, \psi_x) \xi^{\alpha},$$

where \hat{P} is the principal part of P(x, D) and $P^{(\alpha)}(x, \xi) = \left(\frac{\partial}{\partial \xi}\right)^{\alpha} P(x, \xi)$. In paticular,

$$\hat{\sigma}_0(\psi, P) = \hat{P}(x, \psi_x)$$

$$\hat{\sigma}_1(x, P) = \sum_{j=0}^n \left(\frac{\partial}{\partial \xi_j} \hat{P}\right)(x, \psi_x) \xi_j.$$

Let $\psi(x)$ be a phase function associated to λ and $q(x, D) = D_0 + i\lambda(x, D)$. Then we have

$$\begin{split} e^{-i\rho\psi}q(x,\,D)e^{i\rho\psi} &= \sum_{j\geq 0} \sigma_j(\psi,\,q)\rho^{1-j},\\ &= \sum_{j\geq 0} \sigma_{j+1}(\psi,\,q)\rho^{-j}, \end{split}$$

where $\sigma_0(\psi, q) = -i(\psi_{x_0} - \lambda(x, \psi_{x'})) \equiv 0$

$$\sigma_1(\psi, q) = D_0 - \sum_{i=1}^n \lambda_{\xi_i}(x, \psi_x) D_i.$$

Henceforce we denote $\sigma_1(\psi, q)$ by H(x, D). In general, for a positive integer r.

$$\begin{split} e^{-i\rho\psi}(q(x, D))^r e^{i\rho\psi} &= \sum_{j\geq 0} \rho^{r-j} \sigma_j(\psi, q^r) \\ &= \sum_{j>0} \rho^{-j} \sigma_{r+j}(\psi, q^r), \end{split}$$

where we note that

$$\sigma_j(\psi, q^r) \equiv 0, \quad j = 0, 1, \dots, r - 1,$$

$$\sigma_r(\psi, q^r) = (\sigma_1(\psi, q))^r = H(x, D)^r.$$

Therefore we obtain

(9)
$$e^{-i\rho\psi}Q(x, D)q(x, D)^{\nu}e^{i\rho\psi}$$
$$=\rho^{m-\nu}\sum_{j\geq 0}\sigma_{j+\nu}(\psi, Qq^{\nu})\rho^{-j},$$
$$\sigma_{\nu}(\psi, Qq^{\nu})=\widehat{O}(x, \psi_{\nu})H(x, D)^{\nu},$$

and

(10)
$$e^{-i\rho\psi}B_{l}^{s}e^{i\rho\psi} = \sum_{j=0}^{m_{t}^{s}} (e^{-i\rho\psi}B_{lj}^{s}e^{i\rho\psi})(e^{-i\rho\psi}q^{j}e^{i\rho\psi})$$
$$= \sum_{j=0}^{m_{t}^{l}} \sum_{l\geq 0} \rho^{d_{tj}^{s}-l}\sigma_{l}(\psi, B_{lj}^{s}) \sum_{k\geq 0} \sigma_{k+j}(\psi, q^{j})\rho^{-k}$$
$$= \sum_{i=0}^{m_{s}^{s}} \sum_{p\geq 0} \rho^{d_{tj}^{s}-p} \sum_{l+k=p} \sigma_{l}(\psi, B_{lj}^{s})\sigma_{k+j}(\psi, q^{j}).$$

Let $\phi(x)$ be a scalar function and σ a positive rational number which both are determined later on. Then we have

$$\begin{split} e^{-(i\rho\psi+i\rho\sigma\phi)} P_t^s e^{i\rho\psi+i\rho\sigma\phi} &= \rho^{m-\nu+\nu\sigma} \{ \delta_t^s \hat{Q}(x,\,\psi_x) H(x,\,\phi_x)^\nu + o(1) \} \\ &+ \sum_{j=0}^{m_t^s} \rho^{d_{ij}^s+j\sigma} \{ \hat{B}_{ij}^s(x,\,\psi_x) H(x,\,\phi_x)^j + o(1) \}. \end{split}$$

where $m_t^s = m - 1 + n_t - n_s$. We put

$$m_{tj}^{s}(\sigma) = d_{tj}^{s} + j\sigma,$$

$$m_{s}^{s}(\sigma) = \max_{0 < j < v} m_{sj}^{t}(\sigma),$$

-

$$m_t^s(\sigma) = \max_{0 \le j \le m_t^s} m_{tj}^s(\sigma) \quad (s \ne t),$$

$$g(\sigma) = \max_{1 \le p \le N} \max_{1 \le s_1 < \dots < s_p \le N} \max_{\pi} \sum_{i=1}^{p} \left\{ m_{s\pi(i)}^{s_i}(\sigma) - m + v - \sigma v \right\},$$

where π is taken over all permutations of [1,...,p]. Then we note that $g(\sigma)$ is contineous in [0, 1]. Now we investigate the zeros of the function $g(\sigma)$. To do so, we need a lemma, (so called, Volevich's lemma).

Lemma (Volevich [7]). Let $M_t^s(s, t=1,..., N)$ be N^2 rational numbers. Then there exist rational numbers (l_s, n_s) (s=1,..., N) such that for any (s, t) we have

$$M_i^s \leq l_i - n_s$$

$$\sum_{s=1}^{N} (l_t - n_s) = \max_{\pi} \sum_{s=1}^{N} M_{\pi(s)}^{s},$$

where π is taken over all permutations of [1,...,N]. In particular, if

$$\max_{\pi} \sum_{s=1}^{N} M_{\pi(s)}^{s} = 0$$

is valid, we can take

$$n_s = l_s$$
 $(s = 1, ..., N).$

Now we return to the equation $g(\sigma) = 0$. We at first note that we have g(0) > 0, if the Levi's condition does not hold for l = 1. In fact, if $g(0) \le 0$, applying Volevich's lemma to $\{m_i^s(0) - m + v\}$, (s, t = 1, ..., N), we have $l_1, ..., l_N$ such that $m_i^s(0) \le m - v + l_t - l_s$. Hence noting $d_{i,i}^s \le m_i^s(0)$,

$$d_{t,i}^s \leq m - v + l_t - l_s$$

which is the Levi's condition. Moreover by virture of (8), we have g(1) < 0. Therefore since $g(\sigma)$ is contineuous in [0, 1], we have a solution $\sigma = \sigma^{(1)}$ in (0, 1) of the equations

$$(11) g(\sigma) = 0.$$

Then applying again Volevich's lemma to $\{m_i^s(\sigma^{(1)}) - m - \sigma^{(1)}v + v\}$, we have the rational numbers $(l_1, ..., l_N)$ such that

$$m_t^s(\sigma^{(1)}) \le m - v + \sigma^{(1)}v + l_t - l_s$$

for s, t=1,..., N. We put

We define the characteristic matrix and the characteristic polynomial for $\{P_t^s\}$ as follows

$$A_t^s(x, \psi_x, H) = \delta_t^s \hat{Q}(x, \psi_x) H^r + \sum_{j \in \mathcal{F}_t^s} \hat{B}_{tj}^s(x, \psi_{x'}) H^j,$$

$$h(x, \psi_x, H) = \det \{A_t^s(x, \psi, H)\}.$$

For example, the characteristic matrix for (5) is given by

$$A(x, \psi_x, H) = \begin{vmatrix} H^2 & 0 & \psi_x & \psi_x \\ 0 & H^2 \end{vmatrix} + \begin{vmatrix} \psi_x & \psi_x \\ -\psi_x & -\psi_x \end{vmatrix}.$$

Now we state our main Theorem,

Theorem 2. Assume that the Cauchy problem for $\{p_i^x\}$ is well posed in G. Then for any phase function $\psi(x)$ associated to λ the characteristic polynomial $h(x, \psi_x, H)$ can not have non zero root.

Remark 2. The definition of the characteristic polynomial follows from Mizohata in [3]. Our result is the generalization of the theorem obtained by Mizohata et Ohya [4] and Fraschka and Strang [1], and applicable to derive the necessary condition considered by Petkov [5] and Vaillant [6].

We have announced our above Theorem without proof in [2]. Here we shall give the detailed proof of Theorem 2.

§ 1. Proof of Theorem 2

We assume that the Cauchy problem (1) is well posed in G. We put

$$P = \{P_t^s(x, D)\} = \{\delta_t^s a(x, D) + b_t^s(x, D)\}.$$

Then it follows from the closed graph theorem that for any neighborhood $U(\hat{x})$ of $\hat{x} \in G$, there exist a neighborhood $G(x) \subset U(x)$, a positive integer s_0 and a positive positive constant C such that

$$(1.1) |u|_{0,\overline{G^{+}(\hat{x})}} \le C\{|Pu|_{s_{0},\overline{G^{+}(\hat{x})}} + |u|_{s_{0},\overline{G_{0}(\hat{x})}}\}$$

for any $u = (u_1, ..., u_N) \in C^{\infty}(U(\hat{x}))^N$, where $G^+(\hat{x}) = \{x \in G(x), x_0 > \hat{x}_0\}$, $G_0(\hat{x}) = \{x \in G(\hat{x}), x_0 = \hat{x}_0\}$ and

$$|u|_{s_0, \vec{G}} = \sup_{x \in \vec{G}} \sum_{|\alpha| \le s_0} \sum_{j=1}^{N} |D^{\alpha}u_j(x)|.$$

We shall construct an asymptotic solution of (1) with $f_s = 0$ (s = 1,..., N) which does not satisfy the inequality (1.1).

We assume that the characteristic polynomial $h^{(1)}(x, \psi_x, H) = \det \{A_i^s(x, \psi_x, H)\}$ has non zero root at $x = \hat{x} \in G$ for some phase function $\psi(x)$ with ψ_x , $(\hat{x}) = \hat{\xi}'$. Then there exists an open set $U^{(1)} \subset G$ such that we can factorize

(1.2)
$$h^{(1)}(x, \psi_x, H) = Q^{(1)}(x, H)(H - C^{(1)}(x))^{v(1)}, \text{ in } U^{(1)}$$
$$(Q^{(1)}(x, C^{(1)}(x)) \neq 0 \text{ in } U^{(1)}).$$

Then without loss of generality we may assume

(1.3)
$$\operatorname{Im} C^{(1)}(x) < 0 \quad \text{in } U^{(1)}.$$

In fact, $h^{(1)}(x, -\psi_x, H) = (-1)^{M^{(1)}N}h(x, \psi_x, (-1)^{-\sigma^{(1)}}H)$, $(M^{(1)} = m - v + \sigma v)$. Hence $h(x, -\psi_x, H)$ has a root $(-1)^{\sigma^{(1)}}C^{(1)}(x)$ which imaginary part is negative, if we choose a branch $(-1)^{\sigma^{(1)}}$, because of $0 < \sigma^{(1)} < 1$. Then we define $\phi^{(1)}(x)$ as a solution,

(1.4)
$$\begin{cases} H(x, \phi_x^{(1)}) = C^{(1)}(x), \\ \phi^{(1)}|_{x_0 = \hat{x}_0} = \langle x', \omega' \rangle, \omega' \in \mathbf{R}^n \backslash 0. \end{cases}$$

Then (1.3) implies

(1.5)
$$\operatorname{Im} \phi^{(1)} < 0 \quad \text{in } U \cap \{x_0 > \hat{x}_0\}.$$

Now we return to (9) and (10). We rewrite as follows,

(1.6)
$$e^{-i\rho\psi} P_{i}^{s} e^{i\rho\psi} = \sum_{l\geq 0} \rho^{m-v-l} \sigma_{v+l}(\psi, \delta_{i}^{s} Q q^{v})$$

$$+ \sum_{j=0}^{m_{i}^{s}} \sum_{p\geq 0} \rho^{d_{i,j-p}^{s}} \sum_{l+k=p} \sigma_{l}(\psi, B_{i,j}^{s}) \sigma_{k+j}(\psi, q^{j})$$

$$= \rho^{m-v+\sigma^{(1)}v+l_{i}-l_{s}} \{ \delta_{i}^{s} \hat{Q}(\rho^{-\sigma^{(1)}} H(x, D))^{v}$$

$$+ \sum_{l\in \mathbf{x}^{s}} \hat{B}_{i,j}^{s}(x, \psi_{x'}) (\rho^{-\sigma^{(1)}} H(x, D))^{j} + Q_{i}^{s} (\rho^{(1)}(\rho)) \},$$

where $\sigma^{(1)}$ is a rational number satisfying (11), \sharp_t^s defined by (12), $m_t^s = m - 1 + n_t - n_s$, and

(1.8)
$$Q_t^{s(1)}(\rho) = \sum_{l \ge 1} \rho^{-l - v\sigma^{(1)}} \sigma_{l+v}(\psi, Qq^v) + \sum_{l \ge 0} \sum_{j \notin \mathfrak{s}_s^{s(1)}} \rho^{-l+d_t^s} j^{-(m+v(\sigma^{(1)}-1)+l_t-l_s)} \sigma_{j+l}(\psi, B_{tj}^s q^j).$$

It follows from the theory of elementary divisers that for the characteristic matrix $A^{(1)}(x, H) = A_l^s(x, \psi_x, H)$ there exist two elementary operations $R^{(1)}(x, H)$ and $S^{(1)}(x, H)$ of which elements are polynomials in H, such that

(1.9)
$$R^{(1)}(x, H)A^{(1)}(x, H)S^{(1)}(x, H) = \begin{bmatrix} e_1^{(1)}(x, H) & 0 \\ 0 & e_N^{(1)}(x, H) \end{bmatrix}.$$

where $e_s^{(1)}(x, H)$ (s = 1, ..., N) is a polynomial in H of degree $m_s^{(1)}$ and $e_{s+1}^{(1)}(x, H)/e_s^{(1)}(x, H)$ is also a polynomial in H. Moreover by virtue of (1.2), we have

(1.10)
$$h^{(1)}(x, \psi_x, H) = \prod_{s=1}^{N} e_s^{(1)}(x, H)$$
$$= Q^{(1)}(x, H)(H - C^{(1)}(x))^{v^{(1)}}.$$

Hence we can factorize

$$(1.11) e_s^{(1)}(x, H) = \tilde{e}_s^{(1)}(x, H)(H - C^{(1)}(x))^{v_s^{(1)}}, (\tilde{e}_s^{(1)}(x, C^{(1)}) \neq 0 in U^{(1)}),$$

$$v_s^{(1)} \leq m_s^{(1)}, s = 1, \dots, N.$$

Then the two cases occurs,

(1.12)
$$\begin{cases} \operatorname{case}(i) & \begin{cases} v_s^{(1)} = 0, \ s = 1, \dots, r^{(1)}, \\ v_s^{(1)} > 0, \ s = r^{(1)} + 1, \dots, N, \end{cases} \\ \operatorname{case}(ii) & v_s^{(1)} > 0, \ s = 1, \dots, N. \end{cases}$$

We put

$$\begin{split} A^{(1)}(\rho) &= \{ \rho^{I_t - I_s} A_t^{s^{(1)}}(x, \, \rho^{-\sigma^{(1)}} H(x, \, D)) \} \\ R^{(1)}(\rho) &= \{ \rho^{I_t - I_s} R_t^{s^{(1)}}(x, \, \rho^{-\sigma^{(1)}} H(x, \, D)) \}, \\ S^{(1)}(\rho) &= \{ \rho^{I_t - I_s} S_t^{s^{(1)}}(x, \, \rho^{-\sigma^{(1)}} H(x, \, D)) \}, \\ P^{(0)}(\rho) &= \{ e^{-i\rho\psi} P_t^s e^{i\rho\psi} \}, \end{split}$$

and

$$P^{(1)}(\rho) = e^{-i\rho^{\sigma^{(1)}}\phi^{(1)}}R^{(1)}(\rho)P^{(0)}(\rho)S^{(1)}(\rho)e^{i\rho^{\sigma^{(1)}}\phi^{(1)}}.$$

Then by virtue of (1.9) we have

$$(1.13) R^{(1)}(\rho)A^{(1)}(\rho)S^{(1)}(\rho) = \begin{vmatrix} e_1^{(1)}(x, \rho^{-\sigma^{(1)}}H(x, D)) & 0 \\ 0 & \ddots & \\ e_N^{(1)}(x, \rho^{-\sigma^{(1)}}H(x, D)) \end{vmatrix} + \{\rho^{l_{\ell}-l_s} \sum_{j\geq 1} \rho^{-j\sigma^{(1)}}e_{ij}^{s(1)}(x, D)\},$$

where $e_{i,i}^{s(1)}(x, D)$ is a differential operator and

(1.14) order
$$e_{ij}^{s(1)} \leq j-1$$
, $j=1, 2, ...$

We note by (1.8)

(1.15)
$$R^{(1)}(\rho) \{ \rho^{l_t - l_s} Q_t^{s(1)}(\rho) \} S^{(1)}(\rho)$$

$$= \{ \rho^{l_t - l_s} \sum_{i \ge 1} Q_{tj}^{s(1)}(x, D) \rho^{-j\varepsilon^{(1)}} \},$$

where Q_{tj}^s are differential operators and $(\varepsilon^{(1)})^{-1}$ is the denominator of $\sigma^{(1)}$ and (1.16) order $Q_{tj}^{s(1)} < j\sigma^{(1)-1}\varepsilon^{(1)}$, j = 0, 1, 2, ...

Finally we obtain by (1.6)

$$\begin{split} P^{(1)}(\rho) &= \rho^{M^{(1)}} e^{-i\rho^{\sigma^{(1)}}\phi^{(1)}} R^{(1)}(\rho) (A^{(1)}(\rho) + \{\rho^{l_t - l_s}Q_t^{s(1)}(\rho)\}) S^{(1)}(\rho) e^{i\rho^{\sigma^{(1)}}\phi^{(1)}} \\ &= \rho^{M^{(1)}} \{\delta_t^s e^{-i\rho^{\sigma^{(1)}}\phi^{(1)}} e_s^{(1)}(x, \, \rho^{-\sigma^{(1)}}H(x, \, D)) e^{i\rho^{\sigma^{(1)}}\phi^{(1)}} \} \\ &+ \rho^{M^{(1)}} \{\rho^{l_t - l_s} \sum_{j \geq 1} \rho^{-j\sigma^{(1)}} e^{-i\rho^{\sigma^{(1)}}\phi^{(1)}} e_t^{s(1)} e^{i\rho^{\sigma^{(1)}}\phi^{(1)}} \} \\ &+ \rho^{M^{(1)}} \{\rho^{l_t - l_r} \sum_{j \geq 1} \rho^{-j\varepsilon^{(1)}} e^{-i\rho^{\sigma^{(1)}}\phi^{(1)}} Q_{tj}^{s(1)} e^{i\rho^{\sigma^{(1)}}\phi^{(1)}} \}, \end{split}$$

where $M^{(1)} = m - v + v\sigma^{(1)}$. By (1.11) we have

$$\begin{split} e^{-i\rho\sigma^{(1)}\phi^{(1)}}e_s^{(1)}(x,\,\rho^{-\sigma^{(1)}}H(x,\,D))e^{i\rho\sigma^{(1)}\phi^{(1)}}\\ &=e^{-i\rho\sigma^{(1)}\phi^{(1)}}\tilde{e}_s^{(1)}(x,\,\rho^{-\sigma^{(1)}}H(x,\,D))e^{i\rho\sigma^{(1)}\phi^{(1)}}(H(x,\,D))^{v_s^{(1)}},\\ &=\rho^{-\sigma^{(1)}v_s^{(1)}}\tilde{e}_s^{(1)}(x,\,C^{(1)})H(x,\,D)^{v_s^{(1)}}+\sum\limits_{l\geq v_s^{(1)}+1}\rho^{-l\sigma^{(1)}}e_{sl}^{(1)}(x,\,D), \end{split}$$

where the order of $e_{sl}^{(1)}(x, D) \leq l$, and by (1.14)

$$e^{-i\rho^{\sigma^{(1)}}\phi^{(1)}}e_{ij}^{s(1)}(e^{i\rho^{\sigma^{(1)}}\phi^{(1)}}) = \sum_{l\geq 0} \rho^{\sigma^{(1)}(j-1-l)}\sigma_l(\phi^{(1)}, e_{ij}^{s(1)}),$$

and moreover by (1.16)

$$\begin{split} e^{-i\rho^{\sigma^{(1)}}\phi^{(1)}}Q_{tj}^{s(1)}e^{i\rho^{\sigma^{(1)}}\phi^{(1)}} \\ &= \sum_{l\geq 0} \rho^{(j-1)\varepsilon^{(1)}-l\sigma^{(1)}}\sigma_l(\phi^{(1)},\,Q_{tj}^{s(1)}). \end{split}$$

Thus summing up, we have

$$P_{t}^{s(1)}(\rho) = \rho^{M^{(1)} + l_{t} - l_{s}} \sum_{j \ge 0} \rho^{-j\varepsilon^{(1)}} P_{tj}^{s(1)}(x, D),$$

where

$$\begin{split} P_0^{s(1)} &\equiv 0 \\ d_{ij}^{s(1)} &= \text{order } P_{ij}^{s(1)} < j\sigma^{(1)-1}\varepsilon^{(1)}, \quad j = 1, \dots, \ v_s^{(1)}\sigma^{(1)}\varepsilon^{(1)-1} - 1, \\ \hat{P}_{s\tilde{v}_s^{(1)}\sigma^{(1)}\varepsilon^{(1)-1}}^{s(1)} &= \hat{e}_s(x, C^{(1)})H(x, \, \xi)^{v_s^{(1)}}, \\ d_{ij}^{s(1)} &\leq j\sigma^{(1)}, \quad j \geq v^{(1)}\sigma^{(1)}\varepsilon^{(1)-1} + 1. \end{split}$$

Moreover we note that there occur two cases of (1.12). In the case (i), we must transform $\{P_t^{s(1)}(\rho)\}$. To do so, we need a lemma as follows,

Lemma 1.1. We consider a system of differential operators

$$P(\rho) = \{P_t^s(\rho)\} = \{\rho^{t_t - n_s} \sum_{i \ge 0} \rho^{-j} P_{ij}^s(x, D)\}.$$

We assume

$$P_0 = \{P_{t0}^s\} = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}.$$

Then there exists $T(\rho) = \{T_t^s(\rho)\}\$ such that

$$P(\rho)T(\rho) \equiv T(\rho) \begin{bmatrix} \tilde{P}^{(11)}(\rho) & 0 \\ 0 & \tilde{P}^{(22)}(\rho) \end{bmatrix}, \pmod{\rho^{-\infty}}$$

where

$$T(\rho) = \{ \rho^{n_t - l_s} \sum_{i \ge 0} T^s_{ij}(x, D) \},$$

 $T_0 = I$, (the identity matrix).

Proof. We put

$$P(\rho) = \begin{bmatrix} P^{(11)}(\rho) & P^{(12)}(\rho) \\ P^{(21)}(\rho) & P^{(22)}(\rho) \end{bmatrix},$$

$$T(\rho) = \begin{bmatrix} T^{(11)}(\rho) & T^{(12)}(\rho) \\ T^{(21)}(\rho) & T^{(22)}(\rho) \end{bmatrix}.$$

Then $PT = T\tilde{P}$ implies

(1.17)
$$P^{(11)}T^{(11)} + P^{(12)}T^{(21)} = T^{(11)}\tilde{P}^{(11)},$$

(1.18)
$$P^{(21)}T^{(11)} + P^{(22)}T^{(21)} = T^{(21)}\tilde{P}^{(11)},$$

(1.19)
$$P^{(11)}T^{(12)} + P^{(12)}T^{(22)} = T^{(12)}\tilde{P}^{(22)},$$

(1.20)
$$P^{(21)}T^{(12)} + P^{(22)}T^{(22)} = T^{(22)}\tilde{P}^{(22)}.$$

By (1.17) we have

$$\textstyle \sum \rho^{n_t - n_s - j - l} (\sum_r P_{rj}^{s(1)} T_{il}^{r(1)} + P_{rj}^{s(12)} T_{il}^{r(2)} - T_{rj}^{s(1)} \widetilde{P}_{il}^{r(1)}) = 0$$

which implies

(1.21)
$$\sum_{l=0}^{j} \left(P_{j-l}^{(11)} T_{l}^{(11)} + P_{j-l}^{(12)} T_{l}^{(21)} - T_{j-l}^{(11)} \tilde{P}_{l}^{(11)} \right) = 0,$$

for $j = 0, 1, 2, \dots$ In particular,

$$P_0^{(11)}T_0^{(11)} + P_0^{(12)}T_0^{(21)} - T_0^{(11)}\tilde{P}_0^{(11)} = 0.$$

Since $P_0^{(12)} = 0$, and $P_0^{(11)} = I$, the above equation is valid, if we choose

$$T_0^{(11)} = I,$$

 $\tilde{P}_0^{(11)} = P_0^{(11)} = I$

In general, we have by (1.21)

(1.22)
$$\tilde{P}_{j}^{(11)} = P_{j}^{(11)} + \sum_{l=0}^{j-1} P_{j-l}^{(12)} T_{l}^{(21)}, \quad (j \ge 1),$$

if we put

$$T_{j}^{(11)} = 0,$$

for $j \ge 1$, where $T_0^{(21)}, \dots, T_{j-1}^{(21)}$ are determined later on. Next by (1.18),

$$\sum_{l=0}^{j} \left(P_{j-l}^{(21)} T_{l}^{(11)} + P_{j-l}^{(22)} T_{l}^{(21)} - T_{j-l}^{(21)} \tilde{P}_{l}^{(11)} \right) = 0,$$

for j=0, 1, 2,... Noting that $P_0^{(22)}=0$, $T_l^{(11)}=0 \ (l \ge 1)$ and $\tilde{P}_0^{(11)}=I$, we have

$$(1.23) T_0^{(21)} = 0,$$

$$T_{j}^{(21)} = P_{j}^{(21)} + \sum_{l=0}^{j-1} \left(P_{j-l}^{(22)} T_{l}^{(21)} - T_{j-l}^{(21)} P_{l}^{(11)} \right)$$

for $j \ge 1$. Moreover by (1.19), for $j \ge 0$,

$$\sum_{l=0} \left(P_{j-l}^{(11)} T_l^{(12)} + P_{j-l}^{(12)} T_l^{(22)} - T_{j-l}^{(12)} \widetilde{P}_l^{(22)} \right) = 0.$$

Hence

(1.24)
$$T_{j}^{(12)} = \sum_{l=0}^{j-1} \left(T_{l}^{(12)} P_{j-l}^{(22)} - P_{j-l}^{(11)} T_{l}^{(12)} \right) - P_{j}^{(12)},$$

if we choose

$$\tilde{P}_0^{(22)} = 0,$$
 $T_0^{(22)} = I,$
 $T_0^{(22)} = 0, \quad (l \ge 1).$

Finally by (1.20)

$$\sum_{l=0}^{j} \left(P_{j-l}^{(21)} T_{l}^{(12)} + P_{j-l}^{(22)} T_{l}^{(22)} - T_{j-l}^{(22)} \widetilde{P}_{l}^{(22)} \right) = 0,$$

which implies

(1.25)
$$\tilde{P}_{j}^{(22)} = \sum_{l=0}^{j-1} P_{j-l}^{(21)} T_{l}^{(12)} + P_{j}^{(22)}, \quad (j \ge 1).$$

Remark 1.1. Here we note that since $T_0 = I$, we have $T^{-1}(\rho)$ such that

$$T(\rho)T^{-1}(\rho) \equiv T^{-1}(\rho)T(\rho) \equiv I \pmod{\rho^{-\infty}}$$

Moreover we remark that it follows form the construction of $T(\rho)$ and $\tilde{P}(\rho)$, (1.22), (1.23), (1.24) and (1.25) that if

order
$$P_{sj}^{s} < l_{t} - l_{s} + j\kappa$$
, $j = 0, 1, ..., v_{s}$, $s \neq t$,
order $P_{sj}^{s^{(11)}} \le j\kappa$, $j = 0, 1, ..., v_{s}$,
order $P_{sj}^{s^{(22)}} < j\kappa$, $j = 0, 1, ..., v_{s} - 1$,

and

order
$$P_{sv_s}^{s(22)} = v_s \kappa$$
,

are valid, then the orders of $\tilde{P}_{ij}^{s(ii)}$ (i = 1.2) are also satisfy

$$\begin{split} &\text{order} \quad \widetilde{P}_{ij}^{s(11)} \leq j\kappa, \quad j=0,\ 1,\ldots,\ v_s, \\ &\text{order} \quad \widetilde{P}_{ij}^{s(22)} < j\kappa, \quad j=0,\ 1,\ldots,\ v_s-1, \\ &\text{order} \quad \widetilde{P}_{sv_s}^{s(22)} = v_s\kappa. \end{split}$$

Now for $k \ge 2$ we define the operator $P^{(k)}(\rho)$, the characteristic polynomial $h^{(k)}(x, H)$, the rational number $\sigma^{(k)}$, the phase function $\phi^{(k)}(x)$ and so on. We assume that $P^{(0)}(\rho)$, $P^{(1)}(\rho)$,..., $P^{(k-1)}(\rho)$ are defined as the forms

$$T^{(k-1)}(\rho)^{-1}e^{i\rho^{\sigma(k-1)}}\phi^{(k-1)}R^{(k-1)}(\rho)P^{(k-2)}(\rho)S^{(k-1)}(\rho)e^{i\rho^{\sigma(k-1)}}\phi^{(k-1)}T^{(k-1)}(\rho)$$

$$=\begin{vmatrix} * & 0 \\ 0 & P^{(k-1)}(\rho) \end{vmatrix},$$

$$P^{(k-1)}(\rho) = \left\{ \rho^{I_{t}^{(k-1)} - n_{s}^{(k-1)}} \sum_{j \geq 0} \rho^{-je^{(k-1)}}P_{tj}^{s(k-1)}(x, D), \quad s, t = 1, \dots, N^{(k-1)}, \right.$$

$$d_{tj}^{s(k-1)} = \begin{cases} \text{order } P_{tj}^{s(k-1)}, \quad P_{tj}^{s(k-1)} \neq 0, \\ -\infty, \quad P_{tj}^{s(k-1)} \equiv 0, \end{cases}$$

$$(1.27)_{k-1} \begin{cases} P_{t0}^{s(k-1)} \equiv 0, \quad \text{that is } d_{t0}^{s(k-1)} = -\infty, \\ d_{tj}^{s(k-1)} < je^{(k-1)}/\sigma^{(k-1)}, \quad j = 1, 2, \dots, s \neq t, \\ d_{sj}^{s(k-1)} < je^{(k-1)}/\sigma^{(k-1)}, \quad j < \tau_{s}^{s(k-1)}, \end{cases}$$

$$(1.28)_{k-1} \quad d_{st}^{s(k-1)} \leq je^{(k-1)}/\sigma^{(k-1)}, \quad j \geq \tau_{s}^{(k-1)},$$

$$(1.29)_{k-1} \quad P_{s\tau_{s}^{s(k-1)}}^{s(k-1)}(x, \xi) = \tilde{e}^{(k-1)}(x)H(x, \xi)^{v_{s}^{(k-1)}}, \quad (\tilde{e}^{(k-1)}(x) \neq 0 \quad \text{in } U^{(k-1)}),$$

$$(e^{(k-1)})^{-1}; \text{ the least common denominator of } (\sigma^{(1)}, \dots, \sigma^{(k-1)}),$$

$$\tau_{s}^{(k-1)} = v_{s}^{(k-1)}\sigma^{(k-1)}/e^{(k-1)},$$

$$m_{s}^{s(k-1)}(\sigma) = \max_{0 < j < \tau_{s}^{(k-2)}} m_{s,j}^{s(k-1)}(\sigma),$$

$$m_{t}^{s(k-1)}(\sigma) = \max_{0 < j < \tau_{s}^{(k-2)}} m_{t,j}^{s(k-1)}(\sigma),$$

$$m_{t}^{s(k-1)}(\sigma) = \max_{j > 0} m_{t,j}^{s(k-1)}(\sigma), \quad (s \neq t).$$

For $\sigma = 0$, we put

$$(1.30)'_{k-1} m_t^{s(k-1)}(0) = \max_{\substack{d_{jt}^{s(k-2)} \neq -\infty}} (-j\varepsilon^{(k-2)}).$$

For convenience if $d_{tj}^{s(k-2)} = -\infty$ for all j (for $j < \tau_s^{(k-2)}$, if s = t), we put

$$m_t^{s(k-1)}(0) = -\infty.$$

Then we note that $m_t^{s(k-1)}(\sigma)$ is contineous in $[0, \infty)$, when $m_t^{s(k-1)}(0) \neq -\infty$. We set

$$(1.31)_{k-1} \quad g^{(k-1)}(\sigma) = \max_{1 \le p \le N^{(k-2)}} \max_{1 \le s_1 < \dots < s_p \le N^{(k-2)}} \max_{\pi} \sum_{i=1}^{p} \left\{ m_{s_{\pi(i)}}^{si(k-1)}(\sigma) - (\sigma - \sigma^{(k-2)}) v_{s_i}^{(k-2)} \right\},$$

where π is taken over all permutations of [1, ..., p]. Moreover we put

where
$$\pi$$
 is taken over all permutations of $[1,..., p]$. Moreover we p
$$\begin{cases}
M_i^{s(k-1)}(\sigma) = m_i^{s(k-1)}(\sigma), & (s \neq t), \\
M_s^{s(k-1)}(\sigma) = \max \{m_s^{s(k-1)}(\sigma), (\sigma - \sigma^{(k-2)})v_s^{(k-2)}\} \\
= \max_{0 < j \le \tau_s^{(k-2)}} m_{s_j}^{s(k-1)}(\sigma).
\end{cases}$$

We assume inductively

$$g^{(k-1)}(0) > 0$$

Then the equation

$$(1.33)_{k-1} g^{(k-1)}(\sigma) = 0$$

has a solution $\sigma = \sigma^{(k-1)}$ in $(0, \sigma^{(k-2)})$. In fact, the function $g^{(k-1)}(\sigma)$ is continuous in $[0, \sigma^{(k-1)}]$ and $(1.27)_{k-2}$ implies that $g^{(k-1)}(\sigma^{(k-2)}) < 0$.

We put

$$(1.34)_{k-1} M_t^{s(k-1)} = M_t^{s(k-1)}(\sigma^{(k-1)}) + l_t^{(k-2)} - n_s^{(k-2)}, s, t = 1, ..., N^{(k-1)},$$

where $n_s^{(1)} = l_s^{(1)} - (m - v + \sigma^{(1)}v)$. Then by virtue of Volevich's lemma we have the rational numbers $(l_t^{(k-1)}, n_s^{(k-1)})$ such that

$$M_t^{s(k-1)} \le l_t^{(k-1)} - n_s^{(k-1)}, \quad s, t = 1, ..., N^{(k-1)},$$

$$\sup_{\tau} \sum_{s=1}^{N(k-1)} M_{\pi(s)}^{s}^{(k-1)} = \sum_{s=1}^{N(k-1)} (l_s^{(k-1)} - n_s^{(k-1)}).$$

We define

$$\begin{cases} \sharp_{s}^{s(k-1)} = \{j < \tau_{s}^{(k-1)}; \ m_{sj}^{s(k-1)}(\sigma^{(k-1)}) = l_{s}^{(k-1)} - n_{s}^{(k-1)} - l_{s}^{(k-2)} + n_{s}^{(k-2)} \}, \\ \sharp_{t}^{s(k-1)} = \{j; \ m_{tj}^{s(k-1)}(\sigma^{(k-1)}) = l_{t}^{(k-1)} - n_{s}^{(k-1)} - l_{t}^{(k-2)} + n_{s}^{(k-2)} \} \\ A_{t}^{s(k-1)}(x, \xi) = \delta_{t}^{s} \tilde{e}_{s}^{(k-2)} H(x, \xi)^{v_{s}^{(k-2)}} + \sum_{j \in \#_{t}^{s(k-1)}} \hat{P}_{tj}^{s(k-2)}(x, \xi), \\ h^{(k-1)}(x, \xi) = \det \{A_{t}^{s(k-1)}(x, \xi) \}, \end{cases}$$

where $H(x, \xi) = \xi_0 - \sum_{j=1}^n \lambda_{\xi_j}(x, \psi_x)\xi_j$ and $\hat{P}_{tj}^{s(k-1)}(x, \xi)$ stands for the principal part of $P_{tj}^{s(k-1)}(x, D)$. Then the characteristic matrix $A^{(k-1)}(x, \xi)$ and the characterstic polynomial $h^{(k-1)}(x, \xi)$ are polynomials in only $H(x, \xi)$, which fact will be proved in Lemma 1.2. Therefore we can factorize in an open set $U^{(k-1)} \subset U^{(k-2)}$.

$$(1.36)_{k-1} h^{(k-1)}(x, \zeta) = h^{(k-1)}(x, H) = Q^{(k-1)}(x, H) (H - C^{(k-1)}(x))^{v^{(k-1)}}.$$

$$Q^{(k-1)}(x, C^{(k-1)}) \neq 0 \text{in} U^{(k-1)}.$$

Moreover it follows from the elementary divisor theory that there exist two elementary operations $R^{(k-1)}(x, H)$ and $S^{(k-1)}(x, H)$ for the characteristic matrix $A^{(k-1)}(x, H)$ such that

$$(1,37) R^{(k-1)}A^{(k-1)}S^{(k-1)} = \begin{vmatrix} e_1^{(k-1)}(x,H) & 0 \\ 0 & \vdots & e_{N^{(k-2)}}^{(k-1)}(x,H) \end{vmatrix},$$

where $e_s^{(k-1)}(x, H)(s=1,..., N^{(k-1)})$ is a polynomial in H of degree $m_s^{(k-1)}$ and $e_{s+1}^{(k-1)}/e_s^{(k-1)}$ is also polynomial. Here we may assume that we can factorize in $U^{(k-1)}$,

(1.38)
$$e_s^{(k-1)}(x, H) = \tilde{e}_s^{(k-1)}(x, H) (H - C^{(k-1)}(x))^{v_s^{(k-1)}},$$
$$\tilde{e}^{(k-1)}(x, C^{(k-1)}) \neq 0 \quad \text{in } U^{(k-1)},$$

for $s=1,\ldots, N^{(k-2)}$, where $v_1^{(k-1)} \le \cdots \le v_{N^{(k-2)}}^{(k-1)}$, and $\sum v_s^{(k-1)} = v^{(k-1)}$. Then the following two cases occurs analogously to the case of k=1.

(i)
$$\begin{cases} v_s^{(k-1)} = 0, & s = 1, ..., r^{(k-1)}, \\ v_s^{(k-1)} > 0, & s = r^{(k-1)} + 1, ..., N^{(k-2)}, \end{cases}$$
(ii)
$$v_s^{(k-1)} > 0, & s = 1, ..., N^{(k-2)}$$

We define the phase function $\phi^{(k-1)}$ as follows

(1.40)
$$\begin{cases} H(x, \phi_x^{(k-1)}) = C^{(k-1)}(x) \\ \phi^{(k-1)}|_{x_0 = \hat{x}_0} = \langle x, \omega^{(k-1)} \rangle, \quad \omega^{(k-1)} \in \mathbb{R}^n. \end{cases}$$

We define also

$$R^{(k-1)}(\rho) = \{ \rho^{l_i^{(k-1)} - n_s^{(k-1)}} R_i^{s(k-1)}(x, \, \rho^{-\sigma^{(k-1)}} H(x, \, D)) \},$$

$$A^{(k-1)}(\rho) = \{ \rho^{l_i^{(k-1)} - n_s^{(k-1)}} A_i^{s(k-1)}(x, \, \rho^{-\sigma^{(k-1)}} H(x, \, D)) \},$$

$$S^{(k-1)}(\rho) = \{ \rho^{n_i^{(k-1)} - l_s^{(k-1)}} S_i^{s(k-1)}(x, \, \rho^{-\sigma^{(k-1)}} H(x, \, D)) \}.$$

Then

(1.41)
$$R^{(k-1)}(\rho)A^{(k-1)}(\rho)S^{(k-1)}(\rho)$$

$$= \{\rho^{I_t^{(k-1)} - \eta_s^{(k-1)}} \delta_t^s e_s^{(k-1)}(x, \rho^{-\sigma^{(k-1)}} H(x, D))\}$$

$$+ \{\rho^{I_t^{(k-1)} - \eta_s^{(k-1)}} \sum_{i \ge 1} \rho^{-j\varepsilon^{(k-1)}} e_t^{s(k-1)}(x, D)\},$$

where $e_{ij}^{s(k-1)}(x, D)$ is a differential operator satisfying

(1.42) order
$$e_j^{s(k-1)} < j\varepsilon^{(k-1)}/\sigma^{(k-1)}, j \ge 1$$
.

On the other hand we can rewrite

$$\begin{split} P^{(k-2)}(\rho) &= \big\{ \sum_{j \geq 0} \rho^{l_t^{(k-2)} - n_s^{(k-2)} - j\varepsilon^{(k-2)}} P_{tj}^{s(k-2)}(x, D) \big\} \\ &= \big\{ \sum_j \rho^{m_{tj}^{s((k-1)} (\sigma^{(k-1)}) + l_t^{(k-2)} - n_s^{(k-2)} - \sigma^{(k-1)} d_{tj}^{s(k-2)}} P_{tj}^{s(k-2)}(x, D) \big\} \\ &= A^{(k-1)}(\rho) + \big\{ \rho^{l_t^{(k-1)} - n_s^{(k-1)}} \sum_{\geq 1} \rho^{-j\varepsilon^{(k-1)}} Q_{tj}^{s(k-1)}(x, D) \big\}, \end{split}$$

where

(1.43) order
$$Q_{ij}^{s(k-1)} < j\varepsilon^{(k-1)}/\sigma^{(k-1)}$$
.

Hence

$$(1.44) R^{(k-1)}(\rho) P^{(k-2)}(\rho) S^{(k-1)}(\rho) = R^{(k-1)}(\rho) A^{(k-1)}(\rho) S^{(k-1)}(\rho) + \tilde{Q}^{(k-1)}(\rho)$$

where

$$\begin{split} \widetilde{Q}^{(k-1)}(\rho) &= R^{(k-1)}(\rho) \big\{ \rho^{l_t^{(k-1)} - n_s^{(k-1)}} \sum_{j \geq 1} \rho^{-j\varepsilon^{(k-1)}} Q_{tj}^{s(k-1)} \big\} S^{(k-1)}(\rho) \\ &= \big\{ \rho^{l_t^{(k-1)} - n_s^{(k-1)}} \sum_{j \geq 1} \rho^{-j\varepsilon^{(k-1)}} \widetilde{Q}_j^{s(k-1)}(x, D) \big\}. \end{split}$$

Then we have by (1.43)

(1.45) order
$$\tilde{Q}_{i j}^{s(k-1)} < j \varepsilon^{(k-1)} / \sigma^{(k-1)}$$
.

Therefore we obtain by (1.41) and (1.44),

$$\begin{split} R^{(k-1)}(\rho) P^{(k-2)}(\rho) S^{(k-1)}(\rho) &= \{ \rho^{l_t^{(k-1)} - n_s^{(k-1)}} \delta_t^s e_s^{(k-1)}(x, \, \rho^{-\sigma^{(k-1)}} H(x, \, D) \} \\ &+ \{ \rho^{l_t^{(k-1)} - n_s^{(k-1)}} \sum_{j \geq 1} \, \rho^{-j\varepsilon^{(k-1)}} \tilde{e}_{tj}^{s(k-1)}(x, \, D) \}. \end{split}$$

Then by (1.42) and (1.45) we have

(1.46)
$$\tilde{q}_{tj}^{s(k-1)} = \text{order } \tilde{e}_{tj}^{s(k-1)} < j \varepsilon^{(k-1)} / \sigma^{(k-1)}.$$

Moreover we note by (1.38)

$$(1.47) \qquad e^{-i\rho\sigma^{(k-1)}\phi^{(k-1)}}\tilde{e}_{s}^{(k-1)}(x,\rho^{-\sigma^{(k-1)}}H(x,D))e^{i\rho\sigma^{(k-1)}\phi_{(k-1)}}$$

$$= e^{-i\rho\sigma^{(k-1)}\phi^{(k-1)}}\tilde{e}_{s}^{(k-1)}(x,\rho^{-\sigma^{(k-1)}}H(x,D))$$

$$\times e^{i\rho\sigma^{(k-1)}\phi^{(k-1)}}(\rho^{-\sigma^{(k-1)}}H(x,D))^{v_{s}^{(k-1)}}$$

$$= \tilde{e}_{s}^{(k-1)}(x,H(x,\phi_{x}^{(k-1)})(\rho^{-\sigma^{(k-1)}}H(x,D))^{v_{s}^{(k-1)}}$$

$$+ \sum_{j\geq 1} \rho^{-(j+1)\sigma^{(k-1)}}e_{sj+v_{s}^{(k-1)}}^{(k-1)}(x,D),$$

where

(1.48) order
$$e_{sj+v(k-1)}^{(k-1)} \le v_s^{(k-1)} + j$$
.

Thus we have in the case (ii) of $(1.39)_{k-1}$,

$$(1.49) \quad P^{(k-1)}(\rho) = e^{-i\rho\sigma^{(k-1)}\phi^{(k-1)}}R^{(k-1)}(\rho)P^{(k-2)}(\rho)S^{(k-1)}(\rho)e^{i\rho\sigma^{(k-1)}\phi^{(k-1)}}$$

$$= \{\rho^{l_t^{(k-1)}-n_s^{(k-1)}}\sum_{j\geq 1}\rho^{-(j+1)\sigma^{(k-1)}}e^{(k-1)}_{sj}(x,D)\}$$

$$+ \{\rho^{l_t^{(k-1)}-n_s^{(k-1)}}\sum_{j\geq 1}\rho^{-j\varepsilon^{(k-1)}+(\tilde{q}_t^{s(k-1)}-l)\sigma^{(k-1)}}\sigma_l(\phi^{(k-1)},\tilde{e}_{tj}^{s(k-1)}\}$$

$$= \{\sum_{j}\rho^{l_t^{(k-1)}-n_s^{(k-1)}}\sum_{j\geq 1}\rho^{-j\varepsilon^{(k-1)}}P_{tj}^{s(k-1)}(x,D)\}.$$

Therefore we obtain

$$(1.50) \quad P_{ij}^{s(k-1)}(x, D) = \begin{cases} \sum_{l,p} \sigma_l(\phi^{(k-1)}, \tilde{e}_{lp}^{s(k-1)}), & 0 \le j < v_s^{(k-1)}\sigma^{(k-1)}/\varepsilon(k-1), \\ \sum_{l,p} \sigma_l(\phi^{(k-1)}, \tilde{e}_{lp}^{s(k-1)}) + \delta_t^s e_{sj\varepsilon^{(k-1)}}^{(k-1)}/\sigma(k-1), \\ & i > v^{(k-1)}\sigma^{(k-1)}/\varepsilon(k-1), \end{cases}$$

where the summation is taken over all l and p satisfying

$$(1.51) (l - \tilde{q}_{tp}^{s(k-1)})\sigma^{(k-1)} + p\varepsilon^{(k-1)} = j\varepsilon^{(k-1)},$$

which implies with (1.46)

$$l < i\varepsilon^{(k-1)}/\sigma$$
.

Hence we obtain $(1.27)_{k-1}$. Moreover (1.48) implies $(1.28)_{k-1}$ and $(1.29)_{k-1}$ follows from (1.47). Then we take $N^{(k-1)} = N^{(k-2)}$ in the case (ii) of $(1.39)_{k-1}$.

In the case (i) of $(1.39)_{k-1}$ we must transform the operator by the right side of (1.49) by $T^{(k-1)}(\rho)$ by use of Lemma 1.1. Then $P^{(k-1)}(\rho)$ is of from in (1.25) and has the features $(1.27)_{k-1}$, $(1.28)_{k-1}$ and $(1.29)_{k-1}$ as noted in the Remark 1.1. In the case (ii) we take

$$N^{(k-1)} = N^{(k-2)} - r^{(k-1)}.$$

Thus we have explained all quantities to appear in (1.26). Hence we shall prove inducitvely $(1.33)_k$ and $(1.36)_k$.

Lemma 1.2. For $j \in \sharp_i^{s(k)}$, $\hat{P}_{ij}^{s(k-1)}(x, \xi)$ is a polynomial in only $H(x, \xi)$, if we choose suitably $\omega^{(j-1)} \in R^n \setminus 0$, the direction of the intial deta of the phase function $\phi^{(k-1)}(x)$.

Proof. Since $j \in \sharp_t^{s(k)}$, $j < \tau_s^{(k-1)}$, $s \neq t$. Hence we have by (1.50).

$$\hat{P}_{tj}^{s(k-1)}(x, \, \xi) = \sum_{p} \hat{\sigma}_{l}(\phi^{(k-1)}, \, \tilde{e}_{tp}^{s(k-1)}),$$

where the summation is taken over all p satisfying (1.51) with $l = d_{ij}^{s(k-1)}$. We develop

$$\tilde{e}_{tp}^{s(k-1)}(x, D) = \sum_{q=0}^{\tilde{q}_{tp}^{s(k-1)}} \tilde{e}_{tpq}^{s(k-1)}(x, D') H(x, D)^{q}.$$

Then

$$\sigma_{l}(\phi^{(k-1)}, \tilde{e}_{lp}^{s(k-1)}) = \sum_{l'+l''=l} \sigma_{l'}(\phi^{(k-1)}, \tilde{e}_{lpq}^{s(k-1)}) \sigma_{l''}(\phi^{(k-1)}, H^{q}).$$

Hence

$$\hat{P}_{tj}^{s(k-1)}(x,\,\xi) = \sum_{l'+l''=d_{tj}^{s(k-1)}} \sum_{q} \hat{\sigma}_{l'}(\phi^{(k-1)},\,\tilde{e}_{tp\,q}^{s(k-1)}) \hat{\sigma}_{l''}(\phi^{(k-1)},\,H^q)$$

where the summation is taken over all p as

$$(d_{tj}^{s(k-1)} - \tilde{q}_{tp}^{s(k-1)})\sigma^{(k-1)} + p\varepsilon^{(k-1)} = j\varepsilon^{(k-1)}.$$

Since $\hat{\sigma}_{l''}(\phi^{(k-1)}, H^q) = \binom{p}{l''}H(x, \xi)^{q-l''}$, it sufficies to prove

$$\hat{\sigma}_{l'}(\phi^{(k-1)}, \tilde{e}_{tqp}^{s(k-1)}) \equiv 0$$
 for $l' \neq 0$

Assume that for some p, q and $l' \neq 0$

$$\hat{\sigma}_{l'}(\phi^{(k-1)}, \, \tilde{e}_{tpq}^{s(k-1)})(x, \, \xi)$$

$$= \sum_{|\alpha|=l'} \frac{1}{|\alpha|!} D_{\xi}^{\alpha} \cdot \hat{e}_{tpq}^{s(k-1)}(x, \phi_{x'}^{(k-1)})(\xi')^{\alpha} \neq 0.$$

Then if we choose $\phi_x^{(k-1)} = \omega^{(k-1)}$ $(x_0 = \hat{x}_0)$ suitably, we have

$$\hat{\sigma}_{l'-1}(\phi^{(k-1)}, \, \tilde{e}_{tpq}^{s(k-1)}) \not\equiv 0,$$

which is included in the terms of $\hat{P}_{tj-\sigma^{(k-1)}/\epsilon^{(k-1)}}^{s(k-1)}$. Hence

$$d_{t,j-\sigma^{(k-1)}/\epsilon^{(k-1)}}^{s(k-1)} \ge d_{t,j}^{s(k-1)} - 1,$$

On the other hand, since $j \in \sharp_{i}^{s(k)}$, we have

(1.53)
$$\sigma^{(k)} d_t^{s(k-1)} - j \varepsilon^{(k-1)} = l_t^{(k)} - n_s^{(k)} - (l_t^{(k-1)} - n_s^{(k-1)}),$$

and by the definition of $(l_t^{(k)}, n_s^{(k)})$ we have

$$\sigma^{(k)} d_{t | j - \sigma^{(k-1)}/\varepsilon^{(k-1)}}^{s(k-1)} - (j - \sigma^{(k-1)}/\varepsilon^{(k-1)}) \varepsilon^{(k-1)} \leq l_t^{(k)} - n_s^{(k)} - (l_t^{(k-1)} - n_s^{(k-1)}).$$

Hence we have

$$\sigma^{(k)} d_{t,i-\sigma^{(k-1)}/\epsilon^{(k-1)}}^{s(k-1)} + \sigma^{(k-1)} \leq \sigma^{(k)} d_{t,i}^{s(k)},$$

which contradicts to (1.52), because of $\sigma^{(k)} < \sigma^{(k-1)}$.

Lemma 1.3. If $g^{(k)}(0) > 0$ and $N^{(k)} = N^{(k-1)}$ are valid, then we have positive integers \hat{p} , $1 \le s_1 < \dots < s_{\hat{p}} \le N^{(k)}$ and a permutation $\hat{\pi}$ of $[1, \dots, \hat{p}]$ such that $\sharp_{s\hat{\pi}_{(i)}}^{s_i(k)}$ is not empty for any $i = 1, \dots, \hat{p}$.

Proof. Since $g^{(k)}(0) > 0$, we have a solution $\sigma^{(k)}$ of $(1.33)_k$, that is, by virutue of $(1.31)_k$, we have \hat{p} , $1 \le s_1 < \cdots < s_{\hat{p}} \le N^{(k-1)}$ and $\hat{\pi}$ such that

(1.54)
$$g^{(k)}(\sigma^{(k)}) = \sum_{i=1}^{\hat{p}} \left\{ m_{s\hat{\pi}(i)}^{s_i(k)}(\sigma^{(k)}) - (\sigma^{(k)} - \sigma^{(k-1)}) v_{s_i}^{(k-1)} \right\}$$
$$= 0,$$

We define a permutations π of $[1,..., N^{(k)}]$ as

$$\pi(s) = \begin{cases} s, & \text{if } s \neq s_i \text{ for any } i \leq \hat{p}, \\ s_{\hat{\pi}(i)}, & \text{if } s = s_i \text{ for some } i. \end{cases}$$

Noting that $M_s^{s(k)}(\sigma^{(k)}) = (\sigma^{(k)} - \sigma^{(k-1)}) v_s^{(k-1)}$, we have by (1.34)_k, and (1.54)

$$\begin{split} \sum_{s=1}^{N(k)} M_{\pi(s)}^{s(k)} &= \sum_{s=1}^{N(k)} \left(M_{\pi(s)}^{s(k)} (\sigma^{(k)}) + l_s^{(k-1)} - n_{\pi(s)}^{(k-1)} \right) \\ &= \sum_{i=1}^{\hat{p}} \left\{ m_{s\hat{\pi}(i)}^{s_i(k)} (\sigma^{(k)}) - (\sigma^{(k)} - \sigma^{(k-1)}) v_s^{(k-1)} \right\} \\ &+ \sum_{s=1}^{N(k-1)} \left(\sigma^{(k)} - \sigma^{(k-1)} \right) v_s^{(k-1)} + \sum_{s=1}^{N(k-1)} \left(l_s^{(k-1)} - n_s^{(k-1)} \right) \\ &= \sum_{s=1}^{N(k-1)} \left(l_s^{(k)} - n_s^{(k)} \right). \end{split}$$

On the other hand

$$M_{r}^{s(k)} < l_{r}^{(k)} - n_{r}^{(k)}$$

for any (s, t). Hence in particular we obtain

$$M_{s\hat{\pi}(i)}^{s_i} = m_{s\hat{\pi}(i)}^{s_i}(\sigma^{(k)}) + l_s^{(k-1)} - n_{s\hat{\pi}(i)}^{(k-1)}$$
$$= l_{s_i}^{(k)} - n_{s\hat{\pi}(i)}^{(k)},$$

for $i=1,..., \hat{p}$, which implies that $\sharp_{s(i)}^{s_i(k)}$ is not empty for $i=1,..., \hat{p}$.

Lemma 1.4. Assume that $g^{(k)}(0) > 0$ and that $v^{(k)} = v^{(k-1)}$. The characteristic polynomial $h^{(k)}(x, H)$ has at least a non zero root.

Proof. Since
$$v^{(k)} = \sum v_s^{(k)}$$
 and $v_s^{(k)} \le v_s^{(k-1)}$ for any s , $v^{(k)} = v^{(k-1)}$ implies $v_s^{(k)} = v_s^{(k-1)}$ for all s .

Then it is evident that $h^{(k)}(x, H)$ has only a root $C^{(k)}(x)$, that is,

(1.55)
$$h^{(k)}(x, H) = \hat{Q}^{(k)}(x)(H - C^{(k)})^{v^{(k)}}.$$

Hence the elementary divisors of $\{A_t^{s(k)}(x, H)\}\$ are of forms

(1.56)
$$e_s^{(k)}(x, H) = (H - C^{(k)}(x))^{v_s^{(k)}}, \quad s = 1, ..., N^{(k)}.$$

On the other hand

(1.57)
$$A_t^{s(k)}(x, H) = \delta_t^s \tilde{e}^{(k-1)} H^{v_s^{(k-1)}} + \sum_{j \in \mathcal{F}_t^{s(k)}} \hat{p}_{tj}^{s(k-1)}(x, H).$$

In particular, since $e_1^{(k)}(x, H)$ is the first elementary divisor, $A_t^{1(k)}(x, H)$ can be divided by $e_1^{(k)}(x, H)$. If $C^{(k)}(x) \equiv 0$ and $v_1^{(k)} = v_1^{(k-1)}$, noting $d_{t,j}^{1(k-1)} < v_1^{(k-1)}$ by $(1.27)_{k-1}$, we obtain

$$\sum_{i \in \mathbf{s}^{T(k)}} \hat{p}_{tj}^{1(k-1)}(x, H) \equiv 0, \quad \text{for } t = 1, ..., N^{(k)}.$$

Further by (1.53) we have

$$d_{t,j}^{1(k-1)} \neq d_{t,j}^{1(k-1)}$$
, for $j \neq j'$.

Hence since $P_{ij}^{1(k-1)}$ is homogeneous in H, we have

$$P_{t,i}^{1(k-1)}(x, H) \equiv 0.$$

for $j \in \sharp_t^{1(k)}$ and $t = 1, ..., N^{(k)}$. Repeating this discussion, we obtain

$$\hat{P}_{t,i}^{s(k-1)}(x, H) \equiv 0$$

for $j \in \sharp_t^{s(k)}$ and $s \le t$. This and Lemma 1.3 imply that $\sharp_t^{s(k)}$ is empty for $s \le t$, which contradicts to the hypothesis $g^{(k)}(0) > 0$.

Theorem 1.1. For some finite k, we have $g^{(k)}(0) \le 0$.

Proof. Assume that $g^{(k)}(0) > 0$ for any k. There exists k_0 such that

$$v^{(k)} = v^{(k_0)}$$

for any $k \ge k_0$. In fact, if $v^{(k)} = 1$, it is evident that $N^{(k)} = 1$ and $g^{(k+1)}(0) = -\infty$. It follows from Lemma 1.4 that the characteristic $h^{(k)}(x, H)$ is of form (1.55) with $C^{(k)} \ne 0$ and the first elementary divisor $e_1^{(k)}(x, H)$ has the form (1.56) with s = 1. Moreover in particular $A_1^{(k)}(x, H)$ can be divided by $e_1^{(k)}(x, H)$. Therefore since $v_1^{(k)} = v_1^{(k-1)}$, we have by (1.57),

$$\begin{split} A_1^{1(k)}(x, H) &= \tilde{e}_1^{(k-1)} H^{v_1^{(k-1)}} + \sum_{j \in \mathfrak{s}_1^{1(k)}} P_{1j}^{1(k-1)}(x, H) \\ &= \tilde{e}_1^{(k-1)} (H - C^{(k)})^{v_1^{(k)}} \\ &= \tilde{e}_1^{(k-1)}(x) \sum_{j \in \mathfrak{s}_1^{(k)}} H^l(C^{(k)})^{v_1^{(k)} - l}, \end{split}$$

for $k-1 \ge k_0$. Hence since $C^{(k)} \ne 0$, for any integer $0 \le l < v_1^{(k)}$ there exists $j(l) \in \sharp_1^{1(k)}$ such that $d_1^{1(k-1)} = l$. On the other hand by (1.53) we have $\tilde{l}_1^{(k)}, \ldots, \tilde{l}_{N(k)}^{(k)}$ such that

$$(1.58) d_{i,i}^{s(k-1)} = \tilde{l}_{i}^{(k)} - \tilde{l}_{s}^{(k)} + v_{s}^{(k-1)} (1 - \sigma^{(k-1)} / \sigma^{(k)}) + j\varepsilon^{(k-1)} / \sigma^{(k)},$$

for $j \in \#_1^{1(k)}$. In fact, noting that (1.43) is valid for $j = \tau_s^{(k-1)}$ and that $d_{sj}^{s(k-1)} = v_s^{(k-1)}$ for $j = \tau_s^{(k-1)}$, we have

$$v_s^{(k-1)} = \sigma^{(k)-1} (l_s^{(k)} - n_s^{(k)} - l_s^{(k-1)} + n_s^{(k-1)} + v_s^{(k-1)} \sigma^{(k-1)}).$$

Hence (1.58) is valid, if we put

$$\tilde{l}_s^{(k)} = \sigma^{(k)-1} (l_s^{(k)} - l_s^{(k-1)}).$$

In particular by (1.58)

$$d_{1j}^{1(k-1)} = v^{(k-1)}(1 - \sigma^{(k-1)}/\sigma^{(k)}) + j\varepsilon^{(k-1)}/\sigma^{(k)}.$$

Hence

$$d_{1j(1)}^{(k-1)} = d_{1j(0)}^{(k-1)} = (j(1) - j(0))\varepsilon^{(k-1)}/\sigma^{(k)}$$
= 1

which implies $\varepsilon^{(k)} = \varepsilon^{(k-1)}$. In fact, $\varepsilon^{(k)}$ is the least common denominator of $\sigma^{(k)}$ and $\varepsilon^{(k-1)}$. Thus we obtain

$$\sigma^{(k)} = \varepsilon^{(k_0)} p^{(k)}, \quad \text{for } k \ge k_0,$$

where $p^{(k)}$ is a positive integer. On the other hand it follows from Lemma 1.2 that

$$\sigma^{(k)} > \sigma^{(k+1)} > 0, \quad k \ge k_0$$

which implies

$$(1.59) p^{(k)} > p^{(k+1)} > 0, \quad k \ge k_0$$

Since $p^{(k)}$ is a positive integer, for some finite k, we have

$$p^{(k)} = 0$$

which contradicts to (1.59). Thus we have have prove Theorem 1.1.

Lemma 1.5. Assume that $g^{(k+1)}(0) \le 0$ for some k. Then there exist the rational numbers $p_1, p_2, \ldots, p_{N(k)}$ such that

$$(1.60) P_{t_i}^{s(k)}(x, D) \equiv 0, \quad j < \tau_s^{(k)} + p_t - p_s,$$

where $\tau_s^{(k)} = \sigma^{(k)} v_s^{(k)} / \varepsilon^{(k)}$.

Proof. By the assumption $g^{(k+1)}(0) \le 0$, we have

$$\sum_{i=1}^{p} \left(m_{s_{\pi(i)}}^{s_{i}(k+1)}(0) + \sigma^{(k)} v_{s_{i}}^{(k)} \right) \leq 0$$

for any p and any π . Hence Volevich's lemma implies that there exist $\tilde{p}_1, \ldots, \tilde{p}_{N(k)}$ such that

$$m_t^{s(k+1)}(0) + \sigma^{(k)} v_s^{(k)} \leq \tilde{p}_t - \tilde{p}_s,$$

for any (s, t). Therefore by the definition $(1.30)_{k+1}$ of $m_t^{s(k+1)}(0)$, we have for j such that $d_{t,i}^{s(k)} \neq -\infty$,

$$j \ge \tau_s^{(k)} + p_t - p_s,$$

where $p_s = \tilde{p}_s/\varepsilon(k)$. This implies (1.60).

Lemma 1.6. Assume that $g^{(k+1)}(0) \le 0$ for some k. Then for $j = \tau_s^{(k)} + p_t - p_s$

$$P_{tj}^{s(k)}(x, D) = \sum_{l=0}^{d_{jt}^{s(k)}} P_{tjl}^{s(k)}(x) H(x, D)^{l},$$

where $H(x, D) = D_0 - \sum_i \lambda_{\xi_i}(x, \psi_x), D_i$

Proof. By (1.50) we have

$$P_{ij}^{s(k)}(x, D) = \sum_{l,p} \sigma_l(\phi^{(k)}, \, \hat{c}_{ip}^{s(k)})$$

$$= \sum_{l,p} \sum_{l'=0}^{l} \sum_{q=0}^{\frac{\tilde{s}^{(k)}}{\tilde{g}^{(k)}_{lp}}} \sigma_{l'}(\phi^{(k)}, \, \tilde{e}^{s(k)}_{lpq}) \sigma_{l-l'}(\phi^{(k)}, \, H^q),$$

where the summation is taken over l and p such that

$$(l-\tilde{q}_{ip}^{s(k)})\sigma^{(k)}+p\varepsilon^{(k)}=j\varepsilon^{(k)}.$$

For $j = \tau_s + p_t - p_s$, we have

$$\sigma_{l'}(\phi^{(k)}, \tilde{e}_{tpq}^{s(k)}) \equiv 0 \quad \text{for } l' \neq 0.$$

In fact, assume that for some \hat{l} , p and q,

$$\sigma_l(\phi^{(k)}, \tilde{e}_{lpq}^{s(k)}) \neq 0$$

is valid. Then

$$\sigma_{l-1}(\phi^{(k)}, \, \tilde{e}_{l\,p\,q}^{s(k)}) \neq 0$$

holds, if $\phi_x^{(k)} = \omega^{(k)}(x_0 = \hat{x}_0)$ is chosen suitablely. Then the term

$$\sigma_{l-1}(\phi^{(k)}), \ \tilde{e}_{tpq}^{s(k)})\sigma_{l-1}(\phi^{(k)}, H^q)$$

appears in $P_{tj-\sigma(k)/\varepsilon(k)}^{s(k)}(x, D)$ for $j = \tau_s^{(k)} + p_t - p_s$. This contradicts to (1.60).

Theorem 1.2. Assume that $g^{(k+1)}(0) \le 0$ is valid for some k. Then there exits a asymptotic null solution $\omega(\rho) = (\omega^1(\rho), ..., \omega^{N(k)}(e))$ for $P^{(k)}(\rho) = \{P_t^{s(k)}(\rho)\}$ such that

$$\omega^{s}(\rho) = \omega^{s}(\rho, x) = \sum_{j \ge 0} \rho^{-L_{s}-j\varepsilon^{(k)}} \omega^{s}_{j}(x),$$

$$\sum_{t=1}^{N^{(k)}} P_t^{s(k)}(\rho, x, D) \omega^t(\rho, x) \equiv 0 \pmod{\rho^{-\infty}}.$$

Proof. By virtue of Lemms 1.5 we have

$$\begin{split} P_s^{t(k)}(\rho) &= \sum_{j \ge t_s^{(k)} + p_t - p^s} \rho^{l_t^{(k)} - n_s^{(k)} - j\varepsilon^{(k)}} P_{tj}^{s(k)} \\ &= \sum_{j \ge 0} \rho^{L_t - L_s - j\varepsilon^{(k)}} \tilde{P}_{tj}^s(x, D), \end{split}$$

where $L_t = l_t^{(k)} - \varepsilon^{(k)} p_t$, $\tilde{L}_s = n_s^{(k)} + \varepsilon^{(k)} p_s - \varepsilon^{(k)} \tau_s^{(k)}$, and

$$\tilde{P}_{t,i}^{s}(x, D) = P_{t,i+t_{s}}^{s(k)}(x, D).$$

Then we have

$$\sum_{l} P_{l}^{s(k)}(\rho)\omega^{l}(\rho) = \rho^{-L_{s}} \sum_{j\geq 0} \rho^{-j\varepsilon^{(k)}} \sum_{l=0}^{j} \tilde{P}_{lj-l}^{s}(x, D)\omega_{l}^{l}$$
$$= 0.$$

Hence

(1.61)
$$\sum_{t=1}^{N} \sum_{l=0}^{j} \tilde{P}_{tj-l}^{s}(x, D) \omega_{l}'(x) = 0$$

for j=0, 1, 2,... It follows from Lemma 1.6 that $\tilde{P}_{t0}^{s}(x, D) = P_{tj}^{s(k)}(x, D)(j = \tau s + p_t - p_s)$ are differential operator only in H(x, D) and moverover their orders satisfy $(1.27)_k$ and $(1.29)_k$. Hence we can solve (1.61) inductively with respect to

 $\omega_i^t(x)(t=1,\ldots,N^{(k)})$, if we give the intial deta

(1.62)
$$D_0^l \omega_i^l |_{x_0 = \hat{x}_0} = g_i^l(x^l), \quad l = 0, 1, \dots, v_s^{(k)} - 1.$$

Now we shall turn to prove Theorem 2. It follows from Theorem 1.2 that for any large integer M there exists an integer M_1 such that

$$\omega^s(\rho, x) = \sum_{j=0}^{M_1} \rho^{-L_s - j\varepsilon^{(k)}} \omega_j^s(x)$$

(1.63)
$$\sum_{t=1}^{N(k)} P_t^{s(k)}(\rho, x, D) \omega^t(\rho, x) = (\rho^{-M}),$$

$$(1.64) \omega_{\delta}(x) \neq 0 \text{in } U^{(k)}.$$

Then we define the $N^{(k-1)}$ -vector as

$$\omega^{(k)}(\rho, x) = S^{(k)}(\rho)e^{i\rho^{\sigma(k)}\phi^{(k)}}T^{(k)}(\rho)!(0...0, \omega^{1}(\rho), ..., \omega^{N^{(k)}}(\rho)).$$

In general we put

$$\omega^{(k-l)}(\rho, x) = S^{(k-l)}(\rho)e^{i\rho^{\sigma(k-l)}\phi^{(k-l)}}T^{(k-l)}(\rho)!(\overbrace{0, \dots 0}^{N^{(k-l-1)}-N^{(k-l)}}, \omega^{(k-l+1)}(\rho)),$$

for l=0, 1, ..., k-1. Then we define

$$u(\rho, x) = e^{i\rho\psi}\omega^{(1)}(\rho, x).$$

By (1.63) we have

(1.65)
$$P(x, D)u(\rho, x) = e^{iE(\rho, x)}O(\rho^{-M'})$$

where $E(\rho, x) = \rho \psi(x) + \sum_{l=1}^{k} \rho^{\sigma^{(l)}} \phi^{(l)}$ and $M' = M + M_0$. Then $u(\rho, x)$ violates (1.1), if we take $G(\hat{x}) \subset U^{(k)}$. In fact, by (1.65)

$$(1.66) |Pu|_{s_0,G} + |u|_{s_0,G_0} \le C\{e^{E_0(\rho)}\rho^{-M''} + \rho^{s_0}\},$$

where $M'' = M + M_0 + s_0$ and $E_0(\rho) = \sup_{x \in G^+} -\operatorname{Im} E(\rho, x)$. On the other hand by (1.64) we have

$$|u(\rho)|_{0,G^+} \ge C_0 \rho^{-\delta_0} e^{E_0(\rho)},$$

where C_0 and δ_0 are positive constants. By (1.5) we have

$$E_0(\rho) \longrightarrow \infty, \quad (\rho \longrightarrow \infty)$$

which implies that (1.66) and (1.67) contradict to (1.1), if M and ρ are large. Thus we have proved Theorem 2.

DEPARTMENT OF MATHAMATICO, TSUKUBA UNIVERSITY

References

- [1] H. Flaschka and G. Strang, The correctness of the Cauchy problem, Adv. in Math., 6 (1971), 347-379.
- [2] K. Kajitani, Cauchy problem for non-strictly hyperbolic system, Publ. RIMS. Kyoto Univ., 15 (1979), 519-550.
- [3] S. Mizohata, On Kowalevskian system, Russian Math. Surveys, 29 (1975), 223-235.
- [4] S. Mizohata et Y. Ohya, Sur la condition d'hyperbolicite pour les équations à caractéristiques multiples, Publ. RIMS. Kyoto Univ., 4 (1968), 511-526.
- [5] V. Petkov, Equations et systèms hyperbliques à caractéristiques multiples, Laboratoire d'Analyse Numerique, 1975.
- [6] J. Vaillant, Systèmes hyperboliques à multiplicite constante, Seminaire Goulaouicschwartz, 1978–1979.
- [7] L. R. Volevich, On general systems of differential equations, Soviet Math. Dokl., 1 (1960), 458-461.