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Introduction

We consider the Cauchy prolem for non strictly hyperbolic systems with diagonal
principal part of constant multiplicity. We shall derive a necessary condition in
order that the Cauchy problem for such systems is well posed in C* class.

We consider the following Cauchy problem in G(x) a neigborhood of &=
(R0 R1seeer R,) R, :

a(x, D)ur(x) + ¥ bilx, D)u'(x) =/*(x), ¥€G(2) N {xo> %o},
(1) =
Dhus|omso=95(x"), X €G(R) N {xo=2Re}, h<m—1,s=1,..., N.

where a(x, D) and b§(x, D) are differential operators of which coefficients are infinitely
differential functions defined in a domain G = R"*!,  We assume here that we can
factorize in G R"*! the principal part of a(x, D), a(x, &) as follows

) ax, )= [T (o= 400x, £,

where vt are constant integers in G x R"\0, AV are C®-real valued functions and
AV #£)0G) on Gx R"\0 for [#j. Moreover we assume that there exist integers n,,...,
ny such that

(3) order bi<m—1+n,—n,
r

where m=order a= ) v,
=1

We call here a system with above properties (2) and (3) a hyperbolic Leray-
Volevich’s system with diagonal principal part of constant multiplicity.
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Definition 1. The Cauchy problem (1) for a system {d$a+ b5} is said to be
well posed at £ in G, if the following conditions hold
(E) There exists G(X)= G, a neighborhood of %, such that for any f(x) in C*(G(R)
and g; in C*(G(%) N {xq=xo}), there are functions u'(x), s=1,...., N in C*(G(%))
satisfying (1).
(U) Forany G(£)< G, a neighborhood of £, there exists G(£) = G(x), a neighborhood
of £, such that if us(x)(s=1,..., N) in C®(G(x)) satisfy us+ ¥ bju'=0 in G(%)n
{xo> %o} and supp us < {x,> %o}, then us=0 in G(2) N {x,>%,} (s=1,..., N).

If the Cauchy problem (1) for a system {dia+ b$} is well posed at £ for any
£ €@, it is said to be well posed in G.

Remark. We note that the property of finite propagation speed is not necessary
in the definition of the well posedness.

We call § a phase function associated to A(x, &) a function in G x R™\0, if
are real valued C*-function in G’ =G such that

Weo=2(x, ¥,) inG,
lpx’ #O
We denote by /! a phase function associated to A",

Definition 2. Let {d%a(x, D)+ b§(x, D)} be a Leray-Volveich’s system with
diagonal principal part of constant multiplicity. It is said that {d{a+ b{} satisfies
the Levi’s condition in G if there exist integers n'",..., n{’ (I=1,..., d) such that for
any phase function y("(x) and for any we C§(G)

4) e i M {5sq(x, D) +bi(x, D)} (e "w)
=0(pm-v(')+n§”—n§')) (p N CD),
fors, t=1,...,Nand I=1,..., r.
We have proved the following theorem in the part I [2].

Theorem 1. Let {6sa + b3} be a Leray-Volvich’s system with diagonal principal
part of constannt multiplicity. Then if {8;a+b;} satisfies the Levi’s condition,
the Cauchy problem (1) for {0a+ b}} is well posed in G.

The condition (4) is not necessary. For example, a 2 x 2 system,

D3 0 1 D, D,
N Y
o 3 | -p - D,

is well posed in R2. But we can not find the integers such that (4) is valid. Here
our aim is to investigate a necessary condition in order that the Cauchy problem for
Leray-Volevich’s system with principal part of constant multiplicity is well posed.

We assume that the condition (4) is not valid for some 1. For simplicity we
we write A0 =1 and v("=v. Then we can decompose



Cauchy problem for non-strictly hyperbolic systems 263
dsa(x, D)+ bi(x, D)=063Q(x, D)¢(x, D)*+ Bi(x, D)
where q(x, D)=Dy+i/(x, D'),
O(x, D)=’]—/[1(Do+i).<“(x, D)+,

and the order of B satisfies (3). Hence the principal symbol Q(x, ¢) of Q(x, D)
satisfies

(6) v O(x, Ax, &), E#0 in G R"\0.

We rewrite Bi(x, D) as follows,

Bi(x, D)= z‘o B; ;(x, D')D}
£

=2’ Br.(x. D')(q(x. D) —ii(x, D'))i
= g B; ;(x, D')q(x, D)/,

here mj=m—1+4+n,—n,. We put

order B ;(x, D), if B ;#0,

(7) a4} ;= .

— 0, if B ,;=0.
Then we note
(8) di ; <m—1+n~n,—j.

For a scalar function ¥(x) and a pseudo differential ope'rafor P(x, D) of order
m, we introduce differential operators ¢,(y, P) of order j as follows

e~ ir¥p(x, D)elrf(x)
=3 p"Jo;(Y. P)f(x).
j=0 v
Then the principal part of a,(y, P) is given by

850 PIx. = 3 - PO, )8,

where P is the principal part of P(x, D) and P'*)(x, é):((%-)zP(x, ¢). In paticular,
Go(Yr, P) = P(x, W)
Gi(x, P)= Z <a§ P)(x, V..

Let y(x) be a phase function associated to 2 and q(x, D)=Dy+iX(x, D). Then we
have
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e"""”q(x, D')ei/nﬁ__. z O'j(lI/, (])Pl_j’
720
=3 0;uy, 9)p7,
j=0
where 00(.//7 q) = —i(ll’xo“'{(x, wx')) EO;
g,(Y, g)=Dy— Z‘ b, (X, W) D
=
Henceforce we denote o,(y, q) by H(x, D). In general, for a positive integer r.
e-—i/n//(q(x’ D))reipdl= Z p""jo-j(lllq qr)
Jj=20

=3 p o, q),
Jj=0
wherc we note that
o;(y,q")=0, j=0,1.....,r—1,
o, (¥, q)=(0,(y, q))=H(x, D).

Therefore we obtain
9) e~ invQ(x, D)g(x, D)eirv
=p"r Y 0;4,(Y, Qg%)p 7,
j=20

o, (¥, 0g*)=0(x, Yy )H(x, D)",

and
mi
(]()) e-iwlfgfeiml/ = Jgo (e-iﬂWijeipd/)(e-indtqjeipdt)
m: R . 4
=3 2 plito (¢, Bi)) Y o, gh)p7t
Jj=0120 k=0

Ul

e’

™M

> phir 3oy, B‘fj)“kﬁ('/’s q’).
1¥k=p

0 p20

"
i
Let ¢(x) be a scalar function and ¢ a positive rational number which both are deter-
mined later on. Then we have

e—(i/nl/+ip¢¢)P.’vei,rv//+i,;a¢= P"'”"*"“{éfé(.V, le)H(.\', ¢x)v +0( | )}
M L .
+ _ZO pltic{ By (x, Yo )H(x, @)/ +o(1)].
i=
where ms=m—1+n,—n,. We put

mi;(o)=di;+jo,

ms(o)= max my;(6),
o<j<vw
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mi(o)= max mj;(c) (s#1),

L8
o< j<my

P
g(o)= max max  max Y {m (6)—m+v—ov},
=1

smiy
1<p<N 1<s5; < <5p<N '«

where 7 is taken over all permutations of [I,..., p]. Then we note that g(o) is
contineous in [0, 1]. Now wec invcstigate the zeros of the function g(s). To do
so, we need a lemma, (so called, Volevich’s lemma).

Lemma (Volevich [7]). Let Mi(s, t=1,..., N) be N? rational numbers. Then
there exist rational numbers (I, n,) (s=1,..., N) such that for any (s, t) we have

Ms<l, —n;,

M=

N
(I, —n,) = max Zl M;, ),
n =

s=1

where n is taken over all permutations of [1,..., N]. In particular, if

N
max s; M; =0

n

is valid, we can take
ng=I, (s=1,...,N).

Now we return to the equation g(¢)=0. We at first note that we have g(0)>0,
if the Levi’s condition does not hold for I=1. In fact, if g(0) <0, applying Volevich's
lemma to {m3(0)—m+v}, (s, t=1,..., N), we have [,,..., Iy such that m§(0)<m—
v+1,—1,. Hence noting d§; <mj(0),

d;<m—-v+1 -1,

tj—=

which is the Levi’s condition. Moreover by virture of (8), we have g(1)<0. There-
fore since g(o) is contineuous in [0, 1], we have a solution e=0'" in (0, 1) of the
equations

(1) gl(a)=0.

Then applying again Volevich's lemma to {mi(c'"')—m—¢'Vv+v}, we have the

rational numbers (/,,..., [y) such that
mi(e"y<m—v+oMo+{, -1

fors, t=1,..., N. We put

(12) B3={j;mij(cV)y=m—v+ve"+1 —1j}.

We define the characteristic matrix and the characteristic polynomial for {P§} as
follows
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A‘tg('\.v '//.\'* H)=6IYQA(\’ '/IV)H\+ Z ij('\.~ t//.\")I-ljv

jezf
h(x, Y, H)=det {A(x, ¥, H)}.
For example, the characteristic matrix for (5) is given by
H* 0 Y Ve

A(x, Y, H)= ‘ S+ -
| 0 HZ . | _l//.\‘ _(//xl

Now we state our main Theorem,

" Theorem 2. Assume that the Cauchy problem for {ps} is well posed in G.
Then for any phase function y(x) associated to /. the characteristic polynomial
h(x, Y. H) can not have non zero root.

Remark 2. The definition of the characteristic polynomial follows from
Mizohata in [3]. Our result is the gencralization of the theorem obtained by
Mizohata et Ohya [4] and Fraschka and Strang [1], and applicable to derive the
necessary condition considered by Petkov [5] and Vaillant [6].

We have announced our above Theorem without proof in [2]. Here we shall
give the detailed proof of Theorem 2.

§1. Proof of Theorem 2

We assume that the Cauchy problem (1) is well posed in G.  We put
P={Ps(x, D)}={ofa(x, D)+ b3(x, D)} .

Then it follows from the closed graph theorem that for any neighborhood U(R) of
L e G, there exist a neighborhood G(x)< U(x), a positive integer s, and a positive
positive constant C such that

(lf]) [ulo,676 < C{l Pulspra7iy + 4l sor o)

for any u=(u,..., uy) € C*(UR)Y, where G*(2)={xeG(x), xo>Ro}, Go(R)=
{xe G(R), xo=2R,} and

N
luls,g=sup 3 2 |D*u;(x)|.

xeG |a|<so j=1

We shall construct an asymptotic solution of (1) with f,=0 (s=1,..., N) which
docs not satisfy the inequality (1.1).

We assume that the characteristic polynomial h'"(x, ., H)=det {A%(x, ¥,,
H)} has non zero root at x=%¢e G for some phase function ¥(x) with .. (2)=¢.
Then there exists an open set U(!) =G such that we can factorize :

(1.2) hO(x, Y, H)_=Q“’(x, H)(H—C"’(x))"“’, in U
(@M (x, C(x))#0 in UM).
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Then without loss of generality we may assume
(1.3) ImC""(x)<0 in U,

In  fact, h'"(x, =y, H)=(—DM"Vi(x, Y., (= 1)°H), (MO =m—v+ov).
Hence h(x, —y., H) has a root (—1)"""C")(x) which imaginary part is negative, if
we choose a branch (—1)°"", because of 0<atV< 1. Then we define ¢(!)(x) as a
solution,

H(x, ¢{")=C"(x),
(1.4)

O mze=<X", @), w eR"\0.
Then (1.3) implies '
(1.5) Im¢ <0 in Un {xg> %)

Now we return to (9) and (10). We rewrite as follows,

(1.6) eTiry Pieird = Eo pm e (W, 550qY)
nﬁ(”
+ X X ptith ¥ oY, Bio (W, qY)
j=0 p>0 14k=p

= pmvre vkl (550 (p= D H (x, D))"

+ X, Brte ) (p U HGx DN+ QI (),

ie xS
je#y

where a'!) is a rational number satisfying (11), #5 defined by (12), m$=m—1+n,—n,,
and

(1.8) Q?’“’(p)=1§1 P! Va (W, 0g")

—1+d¥ = (v (e (D —1)+1,—14) K3 j
+z§o Zmp e e (W, BYgY).
g

It follows from the theory of elementary divisers that for the characteristic matrix
AM(x, H)=A%(x. Y., H) there exist two elementary operations R('(x, H) and
St x, H) of which elements are polynomials in H, such that

el (x, H)

o |
0 K

(1.9)  RW(x, HYAM(x, H)S M (x, H)=[ .
e\ (x, H) |

where e{(x, H) (s=1,..., N) is a polynomial in H of degree mi‘i and el (x, H)/
e{V(x, H) is also a polynomial in H. Moreover by virtue of (1.2), we have

(1.10) BO(x, Wy H)= 11 e (x, H)
s=1

=0")(x, H)(H-C®(x))*".

Hence we can factorize
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(1.11)  e\V(x, H)=28"(x, H)(H—C(x))" L@ (x, CUY#£0 in UM,
viD<ml, s=1,..., N.
Then the two cases occurs,
vi=0,s=1,..., r",
case (i)

(1.12) v>0, s=rM41,..., N,

case (ii) v">0,s=1,..., N.
We put
AV (p)={p" 1 A;" (x, p*"H(x, D))}
RM(p)y={p" "R (x, p~@"H(x, D))},
S(p)y={p"~hSi"(x, p~""H(x, D))},
P©(p)={e~io¥ Pieiv¥},
and
PM(p)=e~ir” "¢ RU(p) PO(p)S 1) (p)eirm M,
Then by virtue of (1.9) we have

eV(x, po"H(x, D))

(L.13)  RM(p)A " (p)S M (p)= 0 0

eW(x, p="H(x, D))
+ipth 2 pTr e (. DL
where ef‘j‘ (x, D) is a differential operator and
(1.14) order eV <j—1, j=1,2....
We note by (1.8)
(1.15) RM(p) {p! =0 " (p)} SV (p)
={p!n X 01" (v, Dyp i,
where Qj; are differential operators and (¢'')™' is the denominator of ¢!’ and
(1.16) order Q" <joH-1eh), j=0,1,2,...
Finally we obtain by (1.6)
P (p) = pM e iem 0T ROV (p)(AN(p) + {p! QI (p)}) SV (p)eirn o
=pM(‘){5.’ve—i0" ""”ei”(,x, p~"VH(x, D))eipv‘ ’¢m}

L MO ol S p—ja(‘)e—iﬂ"("¢“’ef(jl)eiﬂ"(”¢“’}
=

M (plle T prieein 4D e )
j21



Cauchy problem for non-strictly hyperbolic systems 269
where MW =m—v+ve''. By (l1.11) we have
e=in® ey p=a W [ (x, D))eirc "
=eie” 403 (x, pm NV H (v, D))eir” "¢ (H (x, D))",

=p“’(”"1”

8 (x, CYH(x, D) + ¥ pleVe)(x, D),
1258+

where the order of e{}’(x, D)</, and by (1.14)

—ipe M e s ipeMay _ (M(j=1- ) (1)
e-ir ¢ efj“(e"’ ¢ )_I;)pa (j—1 l)al(d’ ,efj‘ ),

and moreover by (1.16)
e"'l'”“)‘p(”Qf‘j')e‘."”(“'b“)
=X pUTTIn g (B0, Q).
Thus summing up, we have
PV (p) = pM il 8 oo it PER(x, D),
j=0

where

P§V=0

df‘j”=order P:“j”<ja‘”“'8‘”, j=1,..., vhghgnh-1_1

Pzt’y’a(nnm— =e(x,CM)H (x, é)";”,

d.’s}llsjo-(li’ "ZV(I)G-(HB(I)—I_*_I.

Moreover we note that there occur two cases of (1.12).
In the case (i), we must transform {Ps(!)(p)}. To do so, we need a lemma as follows,

Lemma 1.1. We consider a system of differential operators
P(p)={Pi(p)}={p"™" 2 p~/Pi;(x, D)}.
J
We assume
Lo ]

P0={Pfo}=

Then there exists T(p)={T3(p)} such that

l; F“"(p) 0

P(p)T(p)=T(p)
ﬁ(zz)(p)

}, (mod p~%)

where
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T(p)={pm~'» X Ti;(x, D)},
j=20
To=1, (the identity matrix).

Proof. We put

S PUD(p)  PUD(p)
P(p)= ;

P(Zl)(p) P(ZZ)(p)

, T TUY(p) T2 (p) 7

T(p)= .

Teh(p)  TGD(p)

Then PT=TP implies

(1.17) PULTUL L pUn T2 = TUH U
(1.18) PROHTUL L pAOT2H =T2DHPUL),
(1.19) PunT<12)+p(12)T(2:)=Tuz)p(zz),
(1.20) PRLTU2) 4 pQYT22) = T22)p(22),

By (1.17) we have
> /’"'_"‘"j_'(g PT + Py T — Tf;'“’PT;“’) =0

which implies

'I -~
([.7[) ,g{) (P(jl_ll)T(lll)_l_Pfil_:z')TPI)_ Tfil_ll)Ptll) ).___.0’

for j=0, 1, 2,... . In particular,
| P},‘”T{,‘”+P},‘”T{,“'—Tg“)pf,“)=0.
Since P{!?=0, and P!V =1, the above equation is valid, if we choose
Ty =1,
pbll)zpbll):_l

In general, we have by (1.21)

iz
(1.22) PyU=pPiv+ & PYTRY, (j=1),
if we put

Tf,'”)=0y

for j>1, where TZV,..., T'3!) are determined later on. Next by (1.18),

J
( ( ( 1)) —
,Zb (P(J-Z_II)TI")’i'P(jz-zz)T;z”—sz-ly)Pf' ))_0,



Cauchy problem for non-strictly hyperbolic systems 271
for j=0, 1, 2,.... Noting that P22 =0, T{!V=0(I>1) and P{!" =1, we have
(1.23) T2V =0,

TRV = piav 4 g (PEYTI2V = T2y pIv))
for j>1. Moreover by (1.19), for j >0,
T (PUYT(D 4 PUDTED _ T2 P22 =0,

1=0
Hence
(1.24) TG = ::2; (T{12 P(22) — pUYT(ID) — p(12),
if we choose
p822»=0’
Tazz) =],

TEY=0, (I=1).
Finally by (1.20)
/go (PRYT(D 4 pRIT(D _ T P2y =,
which implies
j—1
(1.25) ﬁ<,22>=:go PRVT(D 4 p@D (1),
Remark 1.1. Here we note that since T, =1, we have T~'(p) such that
T(p)T-Y(p)=T Y (p)T(p)=1 (modp~=).
Moreover we remark that it follows form the construction of T(p) and P(p), (1.22),
(1.23), (1.24) and (1.25) that if
order P};<l —1;+jx, j=0,1,..,v, s#t,
order P3i'"<jx, j=0,1,..., v,
order P <jr, j=0,1,...,v,—1,
and

order Ps@¥ =y .k,

Sus

are valid, then the orders of P;}"’(i=1.2) are also satisfy
order P!’ <jk, j=0,1,..., v,
order P;??¥<jk, j=0,1,...,v,—1,

order Psih=vpx.
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Now for k>2 we define the operator P*)(p), the characteristic polynomial

h(x, H), the rational number ¢‘¥), the phase function ¢*)(x) and so on.
assume that P©)(p), P()(p),..., P*=V(p) are defined as the forms

(1.26)

We

Th=1(p)-teiom ™44~ RIS (p) P2 (p) SE-D(p)etee ™64 DT U1 (p)

* 0

9

0 PUD(p)
P (p)={pl -V S pmiet U psk=D(x D), s, t=1,..., N6,
Jj=0
order Pi-1),  Pslk-V =0,
d-'sg.k_l) =

Ps-V'=0, thatis dift"V=—o0,

-1) =
— 00, P‘:Sk =O,

(1.27)4-y { iV <jek=D gD j=1,2,..., s#t,
difik-l)<j8(k—1)/a-(k—l)’ j<.r§k—l),
(1.28),-;  dgfFV<je gD, j>TdY,

-1)

(1.29),0;  PSCD(x, O =8¢ D()H(x, &) ", (6% D(x)#0 in UKD),

(e®*=1)~1; the least common denominator of (¢V),..., g¥~1),
1._(‘k~1)= vgk—l)a(k—l)/s(k—l)’
’n.‘c&k—l)(a) = adf;’"” _jg(k—Z),

ms*D(g)= max msk-1(a)
(1.30) -, : ) o<jerlkn ’

ms%D(g)=max mi*~V(g) (s#1).
v j>0 .

For 6=0, we put

(1.30)i- D)= max (=jetmh).
dy, +-®
For convenience if di(*~2 = — oo for all j (for j<t{*~?, if s=1), we put
ms*=1(0) = — 0.
Then we note that m$*~1)(g) is contineous in [0, 00), when m§*~1(0)# —c0. We
set
(1.3, g% V(o) .
4 .
= max max max ¥, {mgi%-D(0)— (6 —a D)2},
1<p<SN(k-2) 1<s <o <sp<SN(k-2)  p =1 .
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where 7 is taken over all permutations of [1,..., p]. Moreover we put

MR =D (a)=mi*" " (a), (s#1),
(1.32)4-, _
M*k=Y(g)=max {mi*~V(g), (6 —ok-2)yik=2)}

= max mi V(o).
o<jse* 7

We assume inductively
g =1(0)>0.
Then the equation

(1.33)4-y g% V(0)=0

has a solution 6=0¢*~1 in (0, 6'*~2). In fact, the function g*~1(¢) is continuous
in [0, ¢*~V] and (1.27),_, implies that gt*~1)(g(*~2)) <0,
We put

(1.34) M3=D = M= (g(=D) 4 [(k=2) —p(k=2) g y=1] ... NG*-D,

where n{" =1V —(m—v+0(Dv). Then by virtue of Volevich’s lemma we have the
rational numbers (1=, nk~1) such that

MDD k=D g g [ NKED),

NG x N& " (=0 _ k-1
sup Z] M D = 21 (=D —pk-1)y,
n s= s=

We define
#g(k-—l)= {j<rik—l); mi-(ik—l)(o-(k—l))=1§k-l _nik—l)_lik—z)_'_ngk—z)}’
#.'s(k—l)= {j, nl,l\'fik—l)(a-(k—l)).:lfk—l)_ngk—l)_[}k—2)+n§k—2)} (s#1),
(0 i, =g 2 (s, 08+ 5, P 0,
Jje#]

R~ (x, &) =det {A3k-D(x, £)},

where H(x, {)=¢,— in Jefx, Y)¢; and Pslk=1(x, &) stands for the principal part
of P,“j’“”(x, D). Tl;en the characteristic matrix A4%*~'(x, &) and the character-
stic polynomial ht*=D(x, €) are polynomials in only H(x, &), which fact will be
proved in Lemma 1.2. Therefore we can factorize in an open set U*~D) < Uk-2),

(136)icy  A=D(x, &) =h=D(x, H)=Q"=(x, H)(H—C*=D(x))r* "
Q*-1(x, Ck-D)£0 in UKD,

Moreover it follows from the elementary divisor theory that there exist two elementary
operations R*~D(x, H) and S®*~V(x, H) for the characteristic matrix A*~D(x, H)
such that ‘



274 Kunihiko Kajitani
efkt '(x, H ) 0

(1,37) RE-D 4k=1D§k=1) = 0 ) ’
e;vk(zl-)z)(x, H)

where ek~D(x, H)(s=1,..., N*~1) is a polynomial in H of degree m*=1 and elk71/
e*~1) is also polynomial. Here we may assume that we can factorize in Ut 1),

(1.38) ed=D(x, H) =25V (x, H)(H—C* ()"
é(k—l)(x’ C(k“l));éo in U(k_l),

for s=1,..., N6 where v{*D<...<vifls, and Ty~ =y*=1. Then the
following two cases occurs analogously to the case of k=1.
. VD=0, s=1,..,rkD,
(1)
Y050, s=pkhp] L NE2),
(1.39)1 )
(ii) v V>0, s=1,.., Nk
We define the phase function ¢'*~1) as follows
H(x, p¥V)=Ct1(x)
(1.40)
PE D mpe =X, @Dy, w*DeR"
We define also

RU=(p) = {p!i* = RO, =TV H(x, D))},

A%=D(p) = {pi* "=

S0 (p)={pri* KT S D (x, p0 "V H(x, D))}

”:k-l)

A;%=D(x, p=e“ P H(x, D))},

Then
(1.41) RU=1(p) A+~ (p)S*~1(p)
={p’sk_”_"gk—l)éfegk_“(x, p_a(k-l)H(x, D)}
+ {p':lwl)—,,;“—n Z p_j,.,(k—nef(jk-x)(x, D)},
Jjz1
where e;*~V(x, D) is a differential operator satisfying
(1.42) - order e3* D <jek g j>1.

On the other hand we can rewrite

P&-2(p)={ §0 Pl P =n{ Do jetk oD patk=2)(x | D)}
J

s(k-1) - (k-2) (k-2)_ - s(k-2) -
={§ pmii (gt =1)41¢ —ng atk-1g5s Pf‘," 2)(x, D)}

(k=1)_

= 4G (p)+ (pH" T g pr O, D)),
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wherc
(1.43) order Q51 <jek=D[gk=1),
Hence
(L44)  RU=D(p) PU=D(p)SH=D(p) = RE=D(p) A1 (p)S*~1(p) + 31 (p)

where

Q"‘“”(p) _ R(k_l)(p){p’:k—l)_":k-l) Z p"”(k'”ny‘_')}s("_”(l’)
_ {plruwn_"ik—l) z p_jﬁ(k-ngfl(k_l)(x’ D)}
=
Then we have by (1.43)
(1.45) order Q5= < jg=D/gk-1),

Therefore we obtain by (1.41) and (1.44),
RU=D(p) PA=2(p)S=D(p) = {p!" "= " 5e{k =1 (x, p=* " H(x, D)}

+{p!" Y 5 prietTNE (%, D))

Then by (1.42) and (1.45) we have =

(1.46) g3 =order &%~V < je=D [g =1,
Moreover we note by (1.38)

(147) o™ e kngon (x, pme D (x, D))eir”t by,

=i VUG- (¢ pme U H (% D))

(k-1)

x eto? " Vet D (pma kD gy D)vi
=8'*k=D(x, H(x, §*~V)(p~o* " H(x, D))v_i""’
+J§l p-(/+1)q(k-"ei’;;lzk_”(x, D),
where
(1.48) order e%3lh n<yE14j,
Thus we have in the case (ii) of (1.39),_,,

(1.49)  PU=D(p)y=mion" V60 Rik=1)(p) PU=D)(p) S (k=1 (p)gine "o * ™D

k-1 - . -
={p!" It T pmUt ek (x, D)}
+ {plfk-l)_nik-l) 5 p—h(k,-l)"’(ﬁf(k-l)_l)a(k-vl)al(¢(k—l)’ éffik-l)}

Jj21

={; p,fu-n_,,;k-n Z p—jt(ky‘l)‘P_’g’(ik—l)(x’ D)}
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Therefore we obtain

I,z"; O-I(d)(k—l)’ é;‘}yk—l)), Ogj<v§“‘“a““”/s(k— ])’
(1.50) P3=V(x, D)= i)

PIEACI &) +dtejanlo(k—1),

j=o* ek e(k—1),
where the summation is taken over all / and satisfying
(1.51) (l—ijf;,""')a‘“”"+p£“‘“’=js(’"‘“,
which implies with (1.46) '
I<je*=D/g,
Hence we obtain (1.27),_,. Moreover (1.48) implies (1.28),_, and (1.29),_, follows
from (1.47). Then we take N®*~ = N(*-2) in the case (ii) of (1.39),_,.
In the case (i) of (1.39),_, we must transform the operator by the right side of

(1.49) by T*~1(p) by use of Lemma 1.1. Then P*~1)(p) is of from in (1.25) and

has the features (1.27),_,, (1.28),_, and (1.29),_, as noted in the Remark I.1. In
the case (ii) we take

NG=1) = Nk=2) _ pk=1),

Thus we have explained all quantities to appear in (1.26). Hence we shall
prove inducitvely (1.33), and (1.36),.

Lemma 1.2. For je#®), Pfﬂ-"‘”(x, £) is a polynomial in only H(x, &), if we
choose suitably w1 e R"\0, the direction of the intial deta of the phase function

¢*=I(x).
Proof. Since je#s®, j<tik=1 s#¢t. Hence we have by (1.50).

Pi(x, &) =X 6,(*, &),
p

where the summation is taken over all p satisfying (1.51) with I=d{%*=D. We
develop

~S(k-1)
tp

&k -1(x, D)= Zo gk~ (x, D')H(x, D)".
=

Then

0.’(¢(k—1)’ Ef;’k—l))= iy a,»(q&"“”, 'éff’lfl-l))a-’"(d)(k—li’ H9),

Hence
PO, = X S (¢%), BTN (%Y, HY
. q

s(k-1)
=dy;

where the summation is taken over all p as
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(d.:g'k—l) _ q.;;,k—-l))a-(k—l)+p£(k—l)=j6(_k-—1).
Since 6,.(¢*~V, HY)=(}.)H(x, £)97"", it sufficies to ptove
81 (%D, Bk-0) =0 for I'#0
Assume that for some p, g and I'#0
G (9D, et V) (x, )

— Z _[_Da (k 1)(x, ¢;l;—1))(€')a$0'

o= ol !
Then if we choose ¢~ =w*=1 (x,=2,) suitably, we have
6y (@D, E5lk1)) £0,
which is included in the terms of P{%*7\k 1, ac-n. Hence -
(1.52) dsF b ey 2 dseD — 1,
On the other hand, since j € #5%), we have
(1.53) O'(k)dffik_“ _js(k—l) =1:k) _ngk) _ (lgk—l) —n§“‘“),
and by the definition of (I¥), n{*)) we have A
G‘k’df(j"_;}l-n/e(k-n —(j— ok~ gk=D)gth=1) < J ) _ p(k) _ (Jlk=1) _ pk=1)),

Hence we have

a(k)ds(lf_a(k bt e l)<o-(k)ds(k)

which contradicts to (1.52), because of (k) <g*—1),

Lemma 1.3. If g®(0)>0 and N®=N&-1 gre valid, then we have positive
integers p, 1<s;<:-<s,<N® and a permutation # of [1,..., p] such that #i;,(('::
is not empty for any i=1,..., p.

Proof. Since g¥(0)>0, we have a solution ¢® of (1.33),, that is, by virutue
of (1.31),, we have p, 1 <s;<---<s,<N®*~D and # such that

p
(1.54) g ()= 3 (mil)(e®) — (W gDy}

=0.
We define a permutations n of [1,..., N®®¥] as
s, if s#s; for any i< p,
n(s)=

Siuy, if =5, for'some .

Noting that Ms®)(g(®)) = (g*) —gk=1)yk=1) " we have by (1.34),, and (1.54)
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N(k) 0 N (k) W ( )
T M= T (MR + 10 )

d si(k) ¢ (k) (k) (k=1))y(k—1)
= 3 {mi (o) — (oW =gk D)uk)

NUc-1) ( ) Nk~1) .
+ 2’1 (0% —gk=)ylk=1) 4 Z, ([l(ck-l)__nik-—l))
s= §=

N(k-1)

— Z (I(k)_n(k))_
s=1 s s
On the other hand
Mo <[ — k)
for any (s, t). Hence in particular we obtain

Si — y495i k (k=1) _ ,y(k—1)
sﬁ(n_,nsﬂ“)(a’( ))+ls nsft(”

— ] k) _ 5 (k)
_lsa ”sﬁ(g)ﬂ

for i=1,..., p, which implies that #:/{¥' is not empty for i=1,..., p.

Lemma 1.4. Assume that g**)(0) >0 and that v*¥ =yt~ The characteristic
polynomial h™(x, H) has at least a non zero root.

Proof. Since v(¥) =3 v{¥ and v{¥’ <vk-1 for any s, vk =v(=1 implies
v = ylk-1 for all s.
Then it is evident that h*)(x, H) has only a root C*)(x), that is,
(1.55) h®(x, H)=0®(x)(H—C®)*,
Hence the elementary divisors of {A§*)(x, H)} are of forms
(1.56) W (x, Hy=(H=C® (), s=1,..., N®,
On the other hand

(k-1)

(1.57) A0 (x, H) =88 VH " T iU, H).

N s
Jjesy

In particular, since e{*(x, H) is the first elementary divisor, A!'®)X(x, H) can be divided
by €¥(x, H). If C®(x)=0 and v{¥=v{*~1, noting d!{k~V <v{k=1 by (1.27),_,,
we obtain

Z.“ pr¢-V(x, H)=0, for t=1,...., N'®,

je#,
Further by (1.53) we have
‘d‘l;k—l)#d'l}[c—l)’ for Jj#Ej.

Hence since P}{¥~!) is homogeneous in H, we have
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Pl (x, H)=0.
for je#!™ and t=1,..., N*), Repeating this discussion, we obtain
Ps*-"(x, H)=0

for je#s% and s<t. This and Lemma 1.3 imply that #*) is empty for s<t, which
contradicts to the hypotheis g'*)(0)> 0.

Theorem 1.1. For some finite k, we have g'*(0)<0.

Proof. Assume that g'*)(0)>0 for any k. There exists k, such that

(k) = y(ko)

for any k>kq. In fact, if v®) =1, it is evident that N*)=1 and g*+1)(0)= — c0.
It follows from Lemma 1.4 that the characteristic i®)(x, H) is of form (1.55) with
C* 0 and the first elementary divisor e{¥’(x, H) has the form (1.56) with s=1.
Moreover in particular A1%*)(x, H) can be divided by ¢{*(x, H). Therefore since
Vi) =y{%=D we have by (1.57),

Al (x, )=V H" T 5 PIR(x H)

Jje#y

(k)

- é‘l"_”(H— C v

(k) _

é(]l\—l)(x)z(;vfk))Hl(C(k))v‘ L

for k—1>k,. Hence since C'*'#0. for any integer 0</<v{¥ there exists j(/)e

109 such that d}4;,V=1. On the other hand by (1.53) we have 1{*'..... I{, such
that
(1.58) d;tfik—l)=7:k)_];k)+‘,;k—l)(l _o-(k—l)/o-(k))_'_js(k—lb/a-(k)’

for je#1*. In fact, noting that (1.43) is valid for j=t*=" and that d3*~"=
vik=1) for j=1*=1 wc have

k=1 = GOI= 1 ([ k) k=10 g e 1) g =D gk=10)
Hence (1.58) is valid. if we put
7;’:)=a(k>—l([§k)_l§k—l)).
In particular by (1.58)
d}(jk—l)=‘.(k—l)(l _a(k—li/a(ki)+j8(k—|)/o-(k).
Hence
dilfil = dilfs) = () =)t g )

=1,

which implies ¢*¥)=¢*~1D_ In fact, ¢*) is the least common denominator of o(*)
and ¢*~Y, Thus we obtain
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gBr=gkopt) - for k >k,

where p'*) is a positive integer. On the other hand it follows from Lemma 1.2 that
oM >g*t >0, k>k,

which implies

(1.59)

pRI>pkt S0 k>k,

Since p‘¥) is a positive integer, for some finite k, we have

p"”=0,

which contradicts to (1.59). Thus we have have prove Theorem 1.1.
Lemma 1.5. Assume that g**1(0)<O0 for some k. Then there exist the ratio-
nal numbers py, py,.... Pnay Such that
(1.60)

stk) = Y _
Pifx, D)=0, j<t+p,—p,
where tik) =g pik) [gtk),

Proof. By the assumption g'**"(0) <0, we have

p

i; (mgi*+(0) +a®vik)) <0
for any p and any m.
such that

Hence Volevich’s lemma implies that there exist j,,..., Py,
’nf(k+l)(0) +a(k)v§k)gﬁ' _ﬁs,

for any (s, ). Therefore by the definition (1.30),,, of m**1)(0), we have for j such
that d§'%) # — oo,

J2TR +po=py
where p,= p,/e(k). This implies (1.60).

Lemma 1.6. Assume that g*+¥'"(0)<0 for some k.

Then for j=1t¥ + p,— p,
d;:k)
PYf(x, D)= 3. Pif’(x)H(x, D)',
where H(x, D)=Do— X ;'¢J(x’ ¥.),D;.

Proof. By (1.50) we have
PR (x, D)-=:Z o (b, &5})
P

LS(k)
9

= Z' ‘i o (9, etk
;7 150 4=0

tpq )al—l'(¢(k)a Hq)’
where the summation is taken over / and p such that
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(1= G5 )e ™) + petk) = jgto),
For j=t,+ p,— p,, we have
o (@®), &)=0 for I'#0.
In fact, assume that for some I, p and ¢,
o™, &) #0
is valid. Then
g (@), é‘f;,’f;’) #0
holds, if ¢ =w™®)(x,=2,) is chosen suitablely. Then the term
01-1(9). EiiNo (9%, HY)
appears in P§%) o\ .o(x, D) for j=1%'+p,—p,. This contradicts to (1.60).

Theorem 1.2. Assume that g'**Y(0)<0 is valid for some k. Then there
exitst a asymptotic null solution w(p)=(w'(p),..., w"*“(e)) for P¥)(p)={Ps*)(p)}
such that

wi(p) =wi(p, x)= Y p~Li*Vwy(x),
Jj=20

N (k)

> Pi®(p, x, D)w'(p, x)=0 (mod p~*).
t=1
Proof. By virtue of Lemms 1.5 we have

(k) ()
(k) — - —jetk) pslk)
P; k (p)_ ) Z ph ns Jje P'vjk

. (k
Jze 4 p,—ps

=¥ plobmic®py(x, D),

j20
where L,=1*'—¢g*)p, [ =n'k) +¢*) ps—ekgl%) and
Pij(x, D)= PiR.0 4, (x, D).
Then we have
5 P (p)=p B 2 g Py (3, D)o

=0.
Hence

oo
;O Pji(x, D)wi(x)=0

M=

(1.61)

1t

t=1

for j=0,1,2,.... It follows from Lemma 1.6 that Piy(x, D)=P:¥(x, D)(j=
s+ p,— p,) are differential operator only in H(x, D) and moverover their orders
satisfy (1.27), and (1.29),. Hence we can solve (1.61) inductively with respect to
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oy(x)t=1,..., N®), if we give the intial deta
(1.62) Dyl omge=95(x"), =0, ... v —1.

Now we shall turn to prove Theorem 2. It follows from Theorem 1.2 that for
any large integer M there exists an integer M, such that

M
wi(p, X)= Zf p~ L7t i (x)
j=0

N(K)
(1.63) I PsR)Np, x, DYo'(p. x)=(p~M),
=1
(1.64) ~w§(x)#0 in U%),

Then we define the Nt~ 1)-vector as

N(k-l)—N(kl

0@ (p, x) =SH)(p)eir” ¢ THE(p)(0,...0,w'(p),..., ®¥“(p)).

In general we put

Nk=1-1)_N(-1)

wED(p, x)=Sh(p)eism DT A0 (p) (.20, 01D (p)),
for [=0, 1,..., k—1. Then we define
u(p, x)=ew(p, x).
By (1.63) we have
(1.65) P(x, D)u(p, x)=e'E@:00(p™™")
k
where E(p, x)=pP(x)+ Y. p°"¢p') and M'=M+M, Then u(p, x) violates
=1
(1.1), if we take G(X)c U™, In fact, by (1.65)
(1'66) | Pu‘su,(i + Iulso,(icpS C{eEo(ﬂ)p—M" + pso}’

where M"=M+My+s, and Eq(p)=sup —ImE(p, x). On the other hand by
xeG ¥
(1.64) we have

(1.67) lu(p)]o,G+ > Coptoekor),
where C, and 3, are positive constants. By (1.5) we have
Eog(p) —> o0, (p — 0)

which implies that (1.66) and (1.67) contradict to (1.1), if M and p are large. Thus
we have proved Theorem 2.

DEPARTMENT OF MATHAMATICO,
TsUKUBA UNIVERSITY



(1]
[2]

(31
(41

(51
[61

(71

Cauchy problem for non-strictly hyperbolic systems 283

References

H. Flaschka and G. Strang, The correctness of the Cauchy problem, Adv. in Math,, 6
(1971), 347-379.

K. Kajitani, Cauchy problem for non-strictly hyperbolic system, Publ. RIMS. Kyoto
Univ., 15 (1979), 519-550.

S. Mizohata, On Kowalevskian system, Russian Math. Surveys, 29 (1975), 223-23S.

S. Mizohata et Y. Ohya, Sur la condition d’hyperbolicite pour les équations a caractéristiques
multiples, Publ. RIMS. Kyoto Univ., 4 (1968), 511-526.

V. Petkov, Equations et systéms hyperbliques a caractéristiques multiples, Laboratoire
d’Analyse Numerique, 1975.

J. Vaillant, Systémes hyperboliques 2 multiplicite constante, Seminaire Goulaouic-
schwartz, 1978-1979.

L. R. Volevich, On general systems of differential equations, Soviet Math. Dokl., 1 (1960),
458-461.



