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Existence of dualizing complexes
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(Communicated by Prof. Nagata, Oct. 8, 1982)

Duality on Gorenstein rings and canonical modules of Cohen Macaulay rings
are generalized if we consider a complex instead of rings or modules, and such
a complex, called dualizing complex, is introduced by Grothendieck [7].

If a ring A is a homomorphic image of a Gorenstein ring, then A has a
dualizing complex as is well known [5, Chapter V § 10], but other good sufficient
condition of existence of dualizing complex is not known.

On the other hand Sharp showed in [21, (3.8) Theorem] that if a ring A
has a dualizing complex, then A is an acceptable ring; that is (1) universally
catenary, (2) formal fibers are Gorenstein and (3) for any finitely generated
A-algebra B, the Gorenstein locus of Spec B is open.

Again, it follows that if A has a dualizing complex, then A has a canonical
module as the initial non-zero homology module of the complex.

The purpose of this note is to investigate how extent the converse holds.
We show the following ;

If (S,) holds, then acceptable rings with canonical modules have dualizing
complexes (Theorem 5.2, Remark 5.3). Here both of the acceptability and the
existence of canonical modules are important. Really, there exists an acceptable
ring with no canonical modules (§ 6, Example 1) and also exists a non-acceptable
ring with canonical modules (§6, Example 2).

If (S,) does not hold but the ring is local, then slightly stronger condition
on existence of canonical modules is necessary for us (Theorem 5.5).

All rings are assume to be commutative ring with identity and, except
section 3, noetherian. The terminologies and notations of [5], [13] and [16] are
used freely.

§1. Fundamental dualizing complexes.
Let A be a noetherian ring. A complex I  of A-modules is called a funda-
mental dualizing complex [cf. 227 if

(i) I* ¢G€Z) are injective A-modules
(ii) I’ is a bounded complex

Research partially supported by the Grant-in-Aid for Encouragement of Young Scientist
A-57740048 from the Ministry of Education.



28 T. Ogoma

(iii) H¥I') ((€Z) are finite A-modules
(iv) BI'= D E(A/p)

i€EZ yESpec 4

where E(A/p) denote the injective envelope of A-module A/p.

A fundamental dualizing complex is a dualizing complex [cf. 7, Chapter V,
Proposition 2.5] and A has a fundamental dualizing complex if A has a dualizing
complex in the sence of Sharp. [8, Theorem 3.6] (If dim A< oo, dualizing complex
in the sence of Grothendieck and of Sharp coincide.)

Let X be a noetherian scheme. A sheaf of complex J° of Oyx-modules is a
fundamental dualizing complex if there exists an affine open covering {U;} of X
such that I'(U;, ') is a fundamental dualizing complex of I'(U;, ©x) for all i.
Since X is noetherian, 4" is bounded.

Lemma 1.1. Let 9 and 4 be fundamental dualizing complexes on a connected
noetheian scheme X. Then there exists an integer t and an invertible sheaf L on
X such that there exists an isomorphism

I=IT11QoyL .

Proof. By [7, Chapter V, Theorem 3.17], there exists an invertible sheaf £
on X and an integer ¢ such that Yom( 4", 4) is quasi isomorphic to .L[t] in the
derived category. Then Hom(4'@-L[t], J°) is quasi isomorphic to @x. Consider
the section s of Hom(F'®.L[t], J) corresponds to 1 of Ox. Since J° is an
injective complex, s is represented locally by the section of degree zero in
Hom(F'QRL[], ) itself. Moreover, we see easily that the sections of degree
negative in Hom(F'QL[t], J) are zero because 4 @L[t] and 4 are fundamental
dualizing complexes.

Therefore s is represented by the section f in Hom(4 QL[t], 4) globaly.
Since f is an isomorphism of complexes locally by [8, Theorem 4.2], we see
that f is the required isomorphism.

Lemma 1.2, Let I be an injective complex of A-modules. Suppose one of
the following conditions holds;

(1) Homyu(A/p, I') is a fundamental dualizing complex of A/p for any minimal
prime b of A.

(2) There exists a finite A-algebra A’ (AC A’) such that Hom4(A’, I') is a funda-
mental dualizing complex of A’ and Hom4(A'/ A, I') has finite homology modules.

Then I’ is a fundamental dualizing complex of A.

Proof. We see easily that @Ii= @ E(A/p) by the assumption in both

i€Z pESpec 4
cases, so it is sufficient to show that /" has finite homology modules. Now in
case (2) this is a direct consequence of the exact sequence

00— A— A — A'/JA—0

and the injectivity of the complex I".
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Now we show the Lemma in case (1). Note that for any prime q, there exists a
minimal prime p such that pSq. Hence Hom 4(A/q, I )=Hom,,(A/q, Hom4(A/p, "))
is a fundamental dualizing complex of A/qy.

Let 0=q;N --- Nq, be a normal primary decomposition of 0. We prove the
Lemma by inducation on n. If n=1, then there exists a sequence of A-modules

0=M,CM,C ---CMp=A

such that M;/M,;_, is isomorphic to a submodule of A/p by [5, Lemma 5.11.1]
where p is the unique associated prime of A. Hence we see inductively that
Hom(M;, I') has finite homology modules because

Hom 4(M;/M;-,, I'Y=Hom ,,(M;/M;_,, HomA/p, I"))

has finite homology modules.

Suppose n>1. By induction phypothesis Hom4(A/a, /') and Hom4(A/qn., I7)
are dualizing complexes of A/a and A/q, respectively where a=q;MN - Nqp-1.
Then from the exact sequence

00— a—>A—>A/a—0

we see that /I has finite homology modules because a is a finite A/q,-module
and hence
Hom 4(a, I )=Homy,,,(a, Hom4(A4/q,, 1))

has finite homology modules.

Lemma 1.3. Let (A, m) be a local ring with depth A=1 and let I' be a
fundamental dualizing complex of A. If I"=E(A/wm), then d"':I*'—=]" js
surjective.

Proof. Consider the exact sequence
I"t'—J"—»g—0.

Then € is an A-module of finite length because &=H™I") is a finite A-module
and Supp €& Supp I*= {m}.
On the other hand we have exact sequence

0 — Hom(e, E) — Hom(/™, E) —> Hom(I""!, E)

where E=E(A/m). Now(I/", E)=~A by [12, Theorem 3.7] and depth A=1 because
A is a flat A-algebra. Hence Hom(g, E)=0 and £€=0, that is d"! is surjective.

§2. Extension to a neighborhood.

The purpose of this section is to prove the following,
Theorem 2.1. Let X be a noetherian scheme with bounded complex I such

that Cohen Macaulay locus of any closed subscheme Y of X is open in Y and I,
is a fundamental dualizing complex of Ox.. for all x€X. If non-zero initial
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homology module of Hom(Oy, I°) is a coherent Oy-module for any irreducible com-
ponent V of X, then 4 is a fumdamental dualizing complex on X.

Since the assertion is local, we may assume that X=Spec A for a ring A
and it is sufficient to show that I'=I"(X, ') is a fundamental dualizing complex
of A. Note that since I, is a dualizing complex of A, for p=Spec A by assump-
tion, A is universally catenary and formal fibers are Gorenstein by [7, Chapter
V, p. 300]. Before proving the Theorem, we need some preliminaries.

Let Z be a subset of Spec A closed under specialization. For an A-module
M, let S be the set of non zero-divisor for M in A. Then Z-transform T(Z, M)
of M is an A-module

T(Z, M)={xeMs|V(M: 4x)EZ}

where V(a) denote the closed set defined by the ideal a of A and M: ,x=
{acAlaxeM}. [cf. 10] From now on, we mean by Z=Z(A) the set

{peSpec Alht p=2}.

Lemma 2.2. Let A be an integral domain with field of fractions L
and let f:L— Ei%E(A/n) be an A-homomorphism with Ker f=M where H=
e
{peSpec A|htp=1}. Then we have M= M, and N N,=T(Z, N) for any
YEH

ren

A-submodule N of L.

Proof. Let x= [\ M, and put f(x)=(a")yen. Then since E(A/p),=E(A/p),
peEH

f(x),=0 means a’=0. Hence f(x)=0 and xeM. The second equality follows
from the definition and the equation (N: x),=N;: x.

Proposition 2.3. Let A be an integral domain such that X=Spec A is as in
the Theorem 2.1. Let M be a torsion free finite A-module. Then N=T(Z, M)
is a finite A-module.

Proof. Since ME A™ for some integer n, we may assume M=A. Since A
is universally catenary, A, is quasi-unmixed by [19, Theorem 3.1]. Moreover
associated primes of A, are minimal because formal fibers are Gorenstein.
Hence we see that T(V(pA,), M,) is a finite A,-module for peAss N/M=
{p=Spec A; depth A,=1, ht p=2} by [4, Proposition 1.1]. Moreover Ass N/M is
aYfinite set by [10, Lemma 4.5] because Cohen Macaulay locus is an open set by
assumption. Therefore N is a finite A-module by [10, Theorem 3.17.

Lemma 2.4, The Theorem 2.1 holds if dim A<2.

Proof. By Lemma 1.2 (1), we may assume A is a domain. Let A’=T(Z, A),
then A’ is a finite A-module by Proposition 2.3 and is a Cohen Macaulay ring
because A’ is (S,) of dim A’<2. Now J =Hom,(A’, I') is a fundamental dualizing
complex, because J, is a fundamental dualizing complex for peSpec A’ and the
unique non-zero homology module is a finite A’-module Hom4(A’, K) where K is
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the initial non-zero homology module of I".

On the other hand, the conductor ¢ of A’ over A is height 2, hence A/c¢ is
artinian. Hence Hom4(A/c, I7) is a dualizing complex of A/c and I is a dualizing
complex of A by Lemma 1.2 (2).

For an A-module M and peSpec A, we denote by pi(p, M) the number
dim, o, Ext4(x(p), M,), which corresponds to the number of copies of E,(A/p)
appear in the 7-th degree of the minimal injective resolution of M [cf. 3].

Lemma 2.5. Let A—B be a Gorenstein homomorphism and E=E(A/p) be
injective envelope of A-module A/p for p=Spec A. Then for P=Spec B, we have
' 1 if BNA=p and ht B/pB=:

15(PB, EQ4B)= 0

otherwise.

Proof. Let EQ4B—I" be the minimal injective resolution of B-module EQ4B.
Since Supp [ is contained in the closed set V(pB), we see uh(B, EQ4B)=0 if
Py (G€2).

On the other hand, since a multiplication of an element x in A—p raise up
to an automorphism of E, and hence of I', we see that uk(B, EQ.B)=0 if
PBNARp. Therefore we may assume that A is a local ring with maximal ideal

. Now since
Exty(B/pB, EQ4B)=Exti(A/p, EYR4+B=0

for />0 because B is a flat A-algebra, Hom(B/pB, I') is a minimal injective
resolution of
Hompy(B/pB, EQ4B)=Hom(A/p, EYQ,B=B/pB

as B/pB-module. The Lemma follows from the assumption that B/pB is
Gorenstein [3, (4.1) Theorem].

Now consider a ring B=A[X s the localization of the polynomial ring AL X]
by the multiplicatively closed set S generated by the polynomials f such that
ht¢(f)=3 for the content ideal ¢(f) of f. Then the homomorphism A—B is
Gorenstein. Take a minimal injective resolution /¢ of B-module I‘®,B and
consider a complex /' associated to the resolution /™ of I'®QB,. (See Proposition
2.8 at the end of this section.)

Then we see that /3 is a fundamental dualizing complex of By for 8 =Spec B.
Really J3 is quasi-isomorphic to I'®,Bg and has finite homology modules. On
the other hand we have GB Ji= @ E(B/LQ) and that Jy is bounded complex
by Lemma 2.5. ' AeSpecPy

Therefore J* is a fundamental dualizing complex of B by Lemma 2.4.

Let p be a prime ideal of height one in A. Then we see that Homg(B/pB, J'¥)
is a minimal injective resolution of

Homp(B/pB, I'Q4B)=Hom4(A/p, Q4B
and hence Homg(B/pB, J') and Homg(B/pB, I'Q.B)=Hom,(A/p, I YQ®4+B have
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isomorphic homology modules. Now non-zero initial homology module L of
Hompg(B/pB, J) is a finite B-module and we have L=K® B with non-zero initial
homology module K of Hom,(A/p, ).

Let M be a finite A-submodule of K such that MR B=KX,B. Then we
see that M,=K, for any q=Spec A such that qDp and htq/p=1 because A,— B,
is faithfully flat. Hence we see that K=T(Z, M) is a finite A/p-module by
Lemma 2.2 and Proposition 2.3 where Z=Z(A/p). So we have proved the
following

Lemma 2.6. The non-zero initial homology module of Hom(A/p, I') is a
finite A/p-module for any peSpec A s.t. ht p=1.

Proof of the Theorem 2.1.

It is sufficient to prove that I has finite homology modules. Since [’ is
bounded, A has finite Krull dimension and we prove the Theorem by induction
on dim A=n. Moreover we may assume that A is a domain by Lemma 1.2.
The case n<2 is already proved in Lemma 2.4.

Suppose n=3 and consider the ideal ¢c=(\p where Wz.g Ass H¥(I")— {0}.

pEW
If A, is Cohen Macaulay for peSpec A4, then the dualizing complex I, of A, is
exact except a “initial” degree and hence the closed set V(c) defined by c is
contained in non Cohen Macaulay locus and htc=1.
Take x=c¢, x+0. Now we have the exact sequence

x
0 —> Hom (A/xA, I')— " — " —> 0.

Since non-zero initial homology module of Hom(A/p, I') is a finite A-module for
any minimal prime p of xA by Lemma 2.6, we have by induction phypothesis
that Hom(A/xA, I') has homology modules finite. Therefore we see that W is a
finite set because x<c.

Then considering x* instead of x, we may assume that the maps x:H*I")
—H{I") (eZ except an “initial” degree) are zero-maps by the following Lemma
2.7. Hence we see that I" has finite homology modules.

Lemma 2.7. Let M be an A-module such that Mg is a finite As-module where
S=A— \J v If x& [\ b, then there exists an integer t such that x*: M—M

pPEASS M YEAss M
is a zero-map.
Proof. Since Mg is a finite Ag-module and x& [\ p, there exists an
rEAss M
integer ¢ such that x‘: Ms—Mg is a zero-map. Since M is an A-submodule of
Mg by the definition of S, we see that x*: M—M is a zero map.

Finally in this section, we prove a general proposition on a resolution of
complexes, which is postponed. We call the obtained complex (I', d) in the
following as a complex associated to a resolution I” of K'. Here it is not
necessary K to be bounded below [c.f. 7, chp. I, Lemma 4.6] nor a ring A to
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be noetherian.

Proposition 2.8. Let (K', 0) be a complex of A-modules and let I’V be injec-
tive resolutions of A-modules K. Then I has a complex structure (I', d) which
is quasi-isomorphic to K'.

Proof. Let di7:I%7—]**J be maps defined by the resolution of K7. We define
A-homomorphisms d§7: [*7— IZ:% Tk-bi++bgnch that diedi v i=—d-di 7 (k=1)
by induction on %k (k=0) where d=i2(df"'+d£'f). (We understand d is defined
only where the component maps have] already been defined.)

In case k=0, take d¥7 such that the diagrams

o/

Ki —%—> [+

rl ,l are commutative.

0§ ———> J0.5+41
dg

Suppose k=1 and that di’ are defined for 0=</<k. Then for 1=/<k, we
have
ded(I*-1)=d(di VI +di NIV )=(d-di-Vi+dodi- 1)1 )

= (@ftodiI—dSed i (I =0.

Now we have

k+1

dodlze,j(lk,j)gd(lzi;)]k-l,jﬂ-i-t)(_:_ JhH1-L G141

~
e

and since we have
dedbiedt=Vi([* 2 )=—dodedi " I(I*1)C—d-d kZ_)lI”"""*‘”):O
=0
in case k=1 by induction phypothesis or if £2=0
dody (K )=d@/(K))=d 1+ +d3 )@ (K ) S d3 I (K )+ (K )=0,

there exist A-homomorphisms d%*''/ which make the diagrams

Iegjpe-ng — 22 i k+1-1,J4140
Ik-H Jj

are commutative, where ¢,,; are maps induced by —d-d%7. (In case k=0, we
understand [-'/=K).
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Thus di7 are defined for all i N and j€Z and hence d is defined. We
have already seen that d-d=0. Hence (I', d) with [*= 3> I%“7forma complex.

i+j=n
Remaining assertion follows from the well-known theory on spectral sequences.
In fact, define a filtration by F z’(I):jz,“l'f. Then since this filtration is
2p

regular, the spectral sequence is convergent and the chain map K'—I" which,
we see easily, defines an isomorphis of spectral sequences, is a quasi-isomorphism.
§3. Decomposition of injective modules.

Let C be a category. A commutative diagram C — C, is called a pull back

Cz—‘_’co
if for any commutative diagram X — C, there exists a unique morphism X—C
C,— G,
such that C,+«—- C commutes. This C is uniquely determined up to isomorphisms
1 '
X '—’Cl

and we denote it by C,X¢,Ce.
Dually push out Dy—— D, is defined and we denote D=D, 1l p D..
! )

Dg_’D
Let A be a ring and # be the category of A-modules. Then pull back and

® %
push out exist in #. Really let M1—1>Mo and Mg——2>M0 be A-module homo-

o1
morphism, then the kernel of MIEBMZ——I—Z>M0 is the pull back M;X y M, 1If

¢, and ¢, are homomorphisms of rings M,, M, and M,, then it is easy to see
that Ker(p,—¢,) above is also a pull back in the category of rings.

Similarly let Ny—N, and N,—N, be A-module homomorphisms then the
cokernel of N;—N.,@PN; is the push out N, 1 y N..

The ring we consider in this section is itself the pull back of two rings.
The important examples of such rings are the following

Lemma 3.1. Let A be a ring and let a, and a, be ideals of A such that
aNa,=0. Then we have A=A;X 4,A: where A;=A/a; (i=0, 1, 2) and ay=0a,+0a..

Proof. By canonical surjections we have a commutative diagram A —A,.

o s Az_’}lo
Suppose there exists anothér commutative diagram B —— A, for some ring B.
f. |
Ay—> 4,

Then for any be B, there exists a unique element a in A such that
fi(b)=(amod a,) and f,(b)=(a mod a,).

Really take a, and a, in A such that
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fib)=(a;mod @) and fy(b)=(a.moda,).

Then a,—a,<a, because the classes of f(b) and f,(b) in A, coincide. Hence
there exists c¢;€aq;, and c,=a, such that a,—a,=c,+c¢,. Put a=a,—c,=a,+cs.
The uniqueness follows from a;MN\a,=0. Define a map g: B—A by g(b)=a as
above. It is easy to see that g is a ring homomorphism.

Lemma 3.2. Let A be a ring and A’ be a finite A-subalgebra of the total
ring of quotients with conductor ¢. Then A=A/cX 4, A"

Proof. As in Lemma 3.1, it is sufficient to show that for a diagram

B —1>A/c and for be B, there exists a unique element ¢ in A such that
£
A'— A’ /c
fib)=(amod¢) and fyb)=a.
Really, since (f,(b) mod ¢)=f,(b)e A/c and cC A, we have f,(b)eA. Put a=f.(b).

Now we consider the decomposition with respect to A; of injective A;X 4, Az~
modules.

Lemma 3.3. Let A,—A, and A,—A, be homomorphisms of rings. Let M
and N be A=A, X 4yA, modules and put
M;=HomA;, M) and N;=Hom,(A4; N) (=0, 1, 2).
Then we have
Hom (M, 1 y M, N)=Hom M\, N)X tom 4 ry xrHom4(M:, N)
=Hom 1,(Ms, N:)X tom , g, v HOM 4,(Ma, No).

. 1 .
Proof. From the push out diagram M, — M, we have a commutative

P l l(ﬁl
M, — MLy M,

diagram Hom 4(M, 1L y,M,, N) — Hom(M;, N)

i
Hom 4(M,, N) — Hom 4(M,, N).

To show the first equality, it is sufficient to prove that for f,eHom(M,, N)
and f,eHomg(M,, N) such that f,o@,=f,°¢, there exists a unique f in
Hom (M, 1Ly M., N) such that

f°¢1:f1 and f°</’2:fz .
But this follows from the definition of M,1 y,M,. The second equality follows
from the isomorphisms

Hom 4(M;, N)=H0mAL.(Mi, Hom 4(A;, N)):Hom_,‘i(Mi, Ny).
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Lemma 3.4. Let (A, m) be a local ring and A’ be a finite A-algebra. Let
E=E(A/m) be an injective envelope of A-module A/m and put E’=Hom,(A’, E).
Then we have

Homu(E’, EN=A'=A'Q.A.
Proof. Since A’ is a finite A-algebra, it is a semilocal ring, say with
maximal ideals %, -, %,. Then since A'=A; XX Aq, by [16, (17.7)], it is
t
sufficient to show by [12, Theorem 3.7] that E’'= @1 E} where E;} is an injective

envelope of the Ag, module A’/%;. Now since E’ is an injective A’-module
with support in V(mA’), it is sufficient to show that Hom,(A’/R;, E)=A"/R,.

Really we have
Hom 4 (A’/R:, E')=Hom, (A’/R;, Hom4(A’, E))=Hom(A'/%;, E)

=Hom (A'/%;, Hom«(A/m, E))=Hom4A'/R:;, A/m)=A"/R..
Lemma 3.5. Let A=A, X 4,A; be noetherian ring with finite A-algebras A;

(6=0,1,2). Then A,=B,Xp,B, and A,,:BIXBOBZ for peSpec A where B;=
AiQ 44,

Proof. These assertions follow from the flatness of the localization and
completion as A-modules and the isomorphisms

B®.A,=B; (=01, 2).

Theorem 3.6. Let A,—A, and A,— A, be homomorphisms of noetherian rings
such that A, and A, are finite A-algebras with A=A, X 4,A,. Let E=E(A/Y) be
the injective envelope of A/p as an A-module for peSpec A. Then we have
E=F 1 g E, where E;=Hom,(A;, E) (=0, 1, 2).

Proof. Consider the exact sequence

/)
0—K-—FElgE,—E-—C—0

where @ is the map induced by E, — E, which comes from A — A,. From

4] ||

Eg‘_—-’ E AZ_’ AO

2
this we have the exact sequence

0*
0 —> Hom,(C, E) —> Hom,(E, E) —>

—> Hom(E L g E,, E) —> Hom (K, E) —> 0.
Now we have

Hom 4(E, L g E», E)=Hom,(E;, E1)Xtom 4, 5o 5o HOM A, (E2, E)
:BIXI‘;OBQZA;;
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by Lemma 3.3, Lemma 3.4 and Lemma 3.5. Moreover the identity 1 in
Hom,(E, E)=A4, is mapped by 6* to the identity.

Really 6*(1)=0eHom4(E, Lz E,, E) and 6 is induced from ;€Hom(E;, E)
=Homy,(E;, E;) (=1, 2) by definition. Now for e;eHom,(A4;, E), we have
Ai(e;)eHom 4(A;, E) if we regard A; as A;-homomorphism. Then for a;€ A; we
have

(Aile))a)=4Aaie)=(a;e;)1)=ei(a;)EE

and 4; corresponds to the identity of Hom,,(E;, E;) (1=1, 2).
Therefore we have Hom(C, E)=Hom(K, E)=0 and since C and K are A,
modules, we see that C=K=0.

Corollary 3.7. Let A=A;X4,A: be as in Lemma 3.1 or Lemma 3.2. If
A; has a fundamental dualizing complex I; (i=1, 2) such that there exists an
isomorphism
Hom 4, (Ao, I;)=Hom 4,(A,, I5)

as chain complexes, then A has a fundamental dualizing complex I .

Proof. We identity the two fundamental dualizing complexes on A4, by the
above isomorphisms, which we denote by I;. Put I*=I{1 21} (k€Z). Then
we see that I* is an injective A-module by Theorem 3.6. Now we have

Hom 4(I*, I***)=Hom 4,(I%, I'fH)XHoonug,1§+1)H0m,42(1§, 15

by Lemma 3.3 and the differentials d% and d% of I, and I, define an A-homo-
morphism d*:I*—I**' such that (', d) is a chain complex. Then I  is a
fundamental dualizing complex by Lemma 1.2.

§4. Canoincal modules.

Let R be a complete local ring. Then by the Cohen’s structure theorem [16,
(31.3)] R is a homomorphic image of a regular local ring, say T. We say an
R-module K is a canonical module of R if K is isomorphic to Ext3 "(R, T) where
n=dim T and »=dim R. (See [9, Vortrag 5] for original definition) It is easy
to see that K is the non-zero initial homology module of the dualizing complex
of R. If a local ring R is not necessary complete, we say an R-module K is a
canonical module if K®zR is a canonical module of the completion R of R.

Now we state the proposition of Aoyama [1, Proposition 2] by the condition
upon the ring itself. The key Lemma to get this is the following

Lemma 4.1. Let (A, m) be a local ring with canonical module K. If A is
(S,), then dim A=dim A/ for any minimal prime P of A.

Proof. Let p be a prime 1deal of A such that dim A/p=dim A. Since
K’=Hom,(A/p, K) is a canonical module of A/p and since any minimal prime P
of pA is an associated prime of the canonical module K'®4A of A/pA, we see
that dim A/RB=dim A/pA=dim A [6, Proposition 6.6 (5)]. Hence A/p is quasi-
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unmixed and A/p is universally catenary. [16, (34.6)]
We show that dim A/p=dim A for any associated prime p of A. Let

be a primary decomposition of 0 of A, then +/q; are minimal prime of A because
A is (S,) and we may assume dim A/q;=dim A if and only if 1=/<t.

¢ n
We want to show that t=n. Suppose t<n and put a=(\q;, b= [ q;. Let
i=1 j=

=t+1

1t be a minimal prime of a+Db, then htn=1. Now from the exact sequence
00— A—> A/aPA/b — A/(a+D) — 0
we have an exact sequence
Hom(A/n, A/aPA/b) —> Hom(A/n, A/(a+b)) — Ext'(A/n, A)
and we see that ht n=1, because otherwise depth A,=2, depth(4/aPA/0)RA,. =1

and depth A/(a+5)XA,=0 which is a contradiction.
Then dim A/n=dim A/q;—1=dim A—1 for some q;Sun with 1=</=<t because

A/q; is universally catenary. On the other hand
dim A/q;=dim A/n+htn/q;=dim A—1+1=dim A

for some q;Sn with t4+1=<;7<n, which is a contradiction.

Proposition 4.2. Let (A, m) be a noetherian local ring with canonical module
K. Then the following are equivalent.

(1) Hom(K, K)=A
2) A is (Sy.
(3) A is (Sy).

Proof. If A is (Sy). then A is (S;). So it is sufficient to show that (2)
means (1) by [1, Proposition 2].

Let h: A»Hom(K, K) be the canonical homomorphism, let p be a prime
ideal of A such that ht p<2 and take a minimal prime ¥ of pA. Then Ay is a
Cohen Macaulay ring with canonical module K& A/lq;:(K(X) AA)WEO by Lemma 4.1.
Therefore

Ay —> Hom (K, K)®4Ay and hence A, —> Hom (K, K)QA,

are isomorphisms by [9, Satz 6.1].

On the other hand, M=ker i is a submodule of A. So if p is a prime ideal
of height not smaller than one, then depth M,=1. Therefore M=0 by Lemma
4.3 below. ’

Now consider the exact sequence

h
0—> A —> HomuK, K) — N—0

where N=coker h. Now if q is a prime ideal of height not smaller than 2, then
depth N,=1 because depth A,=2 and depth Hom(K, K),=2. Therefore N=0 by
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the following

Lemma 4.3. Let M be a finite A-module such that M,=0 if htp=<1 and
depth M,=1 if htp=2, then M=0.

Proof. Suppose M=0 and let p be a minimal prime of M. Then depth M,
=0 and ht p=2 by first assumption. But this contradicts second assumption.

Now we generalize the canonical module in some cases where the ring is
not local. Let A be a noetherian ring which has a unique minimal prime or
which is (S;). Then we say that a finite A-module K is a canonical module of
A if K, is the canonical module of A, for any maximal ideal m of A. Then
K, is a canonical module of A, for peSpec A by [2, Corollary 4.3].

Now we define the notion of “ A has a canonical module in a strict sence
(S-S canonical module, for short)” inductively on dim A=n.

If n=0, then every noetherian ring has S-S canonical module. Suppose
n>0. Then A has a S-S canonical module if there exists a primary decom-
position 0=gq,N -:- Nq, such that A;=A/q; has a canonical module K; and A;/c;
has S-S canonical module for each 7 (1=/<t) where ¢; is the conductor of
Ai=Homy,(K;, K;) over A;. Note that A; is a finite A-subalgebra of the total
ring of quotients of A; such that A} is (S,) with canonical module K; by [2,
Theorem 3.2].

§5. Existence of dualizing complexes.

Proposition 5.1. Let (A, m) be local (S,) ring of dim A=n=2 with formal
fibers Gorenstein. Let
dO dl dn—Z
0—1"—1— . — "1 —s(
be injective complex of A-modules such that H*(I')=K is a canonical module of A
and I'Q4A, is a fundamental dualizing complex of A, for pelU=Spec A— {m}.
Then there exists an A-homomorphism

drt: "t — E(A/m)=I"
such that (I*, d*|0<k=n) is a dualizing complex of A (d"=0).

Proof. Let C'* be the minimal injective resolution of A-module ['® A4 and
C’ be a complex associated to the resolution C of I'®4A (Proposition 2.8). Then
Cy is a fundamental dualizing complex of Ay for PeU=Spec A—{mA} by
Lemma 2.5 because H¥(Cq)=H(I;)Q4Ap with p=PNA. Since H°(C)=HI")
QRA=KR,A is a finite A-module, C" defines a sheaf of fundamental dualizing
complex ¢ on U by Theorem 2.1. Note that X=U satisfies the assumption in
Theorem 2.1 because A is a homomorphic image of regular local ring.

Let (J', @) be the fundamental dualizing complex of A and 4 be the sheaf
of fundamental dualizing complex on U defined by J'. Then there exists an
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invertible sheaf £ on U and an integer s such that C'=4Qoyz-LIs] by Lemma
1.1. Note that U is connected because A is local (S,) and dim A=2 [cf. see the
proof of Lemma 4.1].

Changing the degree if necessary, we may assume s=0. Now we have

LQogR~=LRINF )= H (LRI )= 4(C)=K~

where K=K®4A and M~ denote the sheaf of ©p-module defined by the A-module
M. Hence by Proposition 4.2 we have

L= LRQHom(K~, KM)=Hom(K~, LQK ) =Hon(K~, K~)=0Op.
Therefore ¢'= 4" defines an injective homomorphism
g IQA—T
of chain complexes, which induces an isomorphism of homology modules in degree

less than n—1.
Now we define d" ! by the composition of maps

R gn—l n-1 . R (b
"1 — ["QA —> [P — JP=FE(A/mA) = E (A/m)=I".
Then h': '®4A—] defined by hi=g* (0<i<n—1) and h"=¢' is a chain map
and we see that A" is a map associated to the minimal injective resolution of
I'®A by construction. Hence A’ is a quasi-isomorphism and I has finite homology

modules, because A is a faithfully flat A-algebra. That is, [* is a fundamental
dualizing complex of A.

Theorem 5.2. Let A be a ring such that

(1) A is (Sy) of dim A<oo.

(2) formal fibers of A are Gorenstein.

(3) Any homomorphic image of A has Cohen Macaulay locus open.
(4) A has a canonical module K.

Then A has a dualizing complex I’ such that H'(I)=K.

Proof. We write E(p) for E(A/p) and put Ii:ht@ E(p). It is sufficient to
p=1
show, by Theorem 2.1, the existence of the set of A-homomorphisms

{foq: E®)—E(q)|pCq, hta/p=1}
such that
(a) Put f“=1;[ foat E(p)—»]‘q[ E(y), then we have f"(E(p))gEqBE(q).
(b) (I, d’) is a chain complex with di:},te,,'ifv'
() I'RA,, d@A,) is a fundamental dualizing complex of A, for p=Spec A.
d) HI)=K.

We prove the existence of H(k)={f,,|ht q=Fk} satisfying (a)~(d), as far as
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they have significance, inductively on k=1.
For k=1, consider the exact sequence

00— K—FE—>D—0

where E is the injective envelope of K. Since K is a canonical module of (S,)
ring A, we see that E=ht€B E(p) by [6, Proposition 6.6 (5)] and by Lemma 4.1.
p=0

Now for q=Spec A such that htq=1, consider the fundamental dualizing
complex J' of the completion A, of A, Since K, is a canonical module of A,
by ®[2, Corollary 4.3], we have a left vertical isomorphism of the following
diagram, where horizontal sequencies are exact by Lemma 1.3.

0—> KQA—> EQA, —> DQA,—> 0

e

0 K Je J! 0

-

Since EQA, and J° are injective envelopes of K®A, and K respectively,
the former by Lemma 2.5, left isomorphism induces middle and right vertical
isomorphisms. Hence we see that D,=FE(q) and that injective envelope of D is
isomorphic to I! because K is (S,). We have H(l) from I°’=E—DC, I

Now k=1 and suppose H(k) is defined. For q=Spec A such that htq=4k-+1,
let U=Spec A,—{qA,} be the open subscheme of Spec A,, Now H(k) defines
complex (I°, d°) such that (I, d)Q4A, is a fundamental dualizing complex of A,
for peU and H%I,)=K, Therefore, there exists a map d°:/[:—E(q)=It"
which makes I; a dualizing complex of A, by Proposition 5.1. Put f,,=d%*
(pCq, ht p=F) where ¢* is the canonical injection E(p)—I*. Note that f,(x)=0
if xed*I*YHNE(D).

Define f,, for any qSpec A such that ht q=k-41. We show that f*(E(p))
S @ E(q) for peSpec A, htp=~ with f"=l;[ fear

T hto=k+1

Really since df': [t '—It=E(p) is surjective by Lemma 1.3, for xeE(p)
there exists a€ A—p such that axed (I*Y),

For qeSpec A, if a<q, then ¢ is a unit of A, and

fea(x)=(1/a)frlax)=0 in E(q).

Since prime ideals ¢ such that e=q and htq/p=1 are finite, we see that

THE@)SDEQ).

Remark 5.3. The condition (3) above holds if A is an acceptable ring.
Really Nagata’s criterion for openness holds for the property “Cohen Macaulay .
[cf. 11]

*) In our case that formal fibers of A are Gorenstein, we have a more direct proof of this
assertion.
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Lemma 5.4. Let A be a universally catenary local ring with unique associated
prime and let A’ be finite A-subalgebra of the total ring of quotients of A with
conductor ¢. Let I' and ] be the fundamental dualizing complex of A/c and A’
respectively. Then

Hom4(A’/¢, I")=Hom(A’/¢c, J)[t]
for some integer t.

Proof. Write A’/c=A,X-- XA, such that Spec 4; (=1, -+, s) are connected.
Then Hom(A;, I') and Homy (A;, /) are fundamental dualizing complex of
semilocal ring A; and hence there exist integers ¢; such that Hom,(A4,, )=
Hom 4 (A;, J)[t:;] by Lemma 1.1. So it is sufficient to show that ¢; do not depend
oni (i=1, -+, s).

To see this it is sufficient to show that for p,, p,=Spec A’ such that p;NA
=p,NA2¢, the degrees that E(A’/p)) and E 4 (A’/p,) appear in J coincide.
Now since A’ has a unique minimal prime, it is sufficient to show that htp,=
ht p,, which is a direct consequence of the universally catenarity.

Theorem 5.5. Let A be a local ring. Then A has a dualizing complex if
and only if (1) formal fibers of A are Gorenstein and (2) A has a canonical
module in a strict sence.

Proof. The necessity of these conditions are known [7, Chapter V or 21,
(3.8) Theorem]. Suppose (1) and (2) hold. We show the existence of funda-
mental dualizing complex by double induction on dim A=n and the number ¢ of
associated primes of A. The case n=0 is obvious.

Suppose n=1 and {=1. Then A has a canonical module K by (2) and A,=
Hom (K, K) is a finite (S,) A-algebra with canonical module K. Note that A is
universally catenary by the proof of Lemma 4.1 because A has a canonical
module and has a unique minimal prime. Since formal fibers of A, are Goren-
stein and A, is semilocal, Cohen Macaulay locus of any homomorphic image of
A; is open [cf. 13, (21.c) and (32.c)]. Hence A, has a fundamental dualizing
complex I; by Theorem 5.2. On the other hand A,=A/c has a fundamental
dualizing complex I, by induction phypothesis where ¢ is the conductor of A,
over A. Then changing degree if necessary, we have

Homy, (Ao, I1)=Hom 4,(Ao, I2)

by Lemma 5.4 where A,=A,/c. Since A=A,X 4,4, by Lemma 3.2, A has a
dualizing complex I by Corollary 3.7.

Suppose t>1. Let 0=q;N\ - Nq, be a normal primary decomposition of 0.
Put a=q;N - Nq;-;. Then A/a and A/q, have fundamental dualizing complexes
I" and J° respectively by induction phypothesis. Then Hom,(A/b, ') =
Hom4(A/6, J)[s] for some integer s by Lemma 1.1 because A/0 with b=a+q, is
a local ring. We may assume s=0. Hence A has a dualizing complex by
Corollary 3.7. i
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Corollary 5.6. Let A be a local ring. Then A has a dualizing complex if
and only if A is an acceptable ring and any homomorphic image of A has a
canonical module.

Remark 5.7. Suppose a ring A has a function ¢ corresponds to codimension
function [7, Chapter V 7], that is, ¢ :Spec A—Z such that ¢(p)—¢(q)=htp/q for
any p=2q. Then Theorem 5.5 is easily generalized to the semilocal case. The
author does not know the example of universally catenary ring which does not
have such a function.

Remark 5.8. In general, if A has a function ¢ as above and if Cohen
Macaulay locus of any homomorphic image is open, then the Theorem 5.5 is
easily generalized that there exists an open covering {U;} of Spec A such that
U; has a dualizing complex J;. But the author does not know whether {J;}
patch together to a dualizing complex [° of A.

Remark 5.9. Professor S. Goto pointed out that the proof of Theorem 5.5
shows that generalized Buchsbaum ring (i.e. I((Hi(A))<oco for i<dim A) with a
canonical module possesses a dualizing complex.

§6. Examples.

For the construction of Example 1 below, we need some preliminaries.

Lemma 6.1. Let R=Fk[x, y, 2] be a polynomial ring of indeterminates x, y
and z over a field k. Let w be an element of R such that one of R=k[x, y, w]
or R=Fk[x, z, w] holds. Then

p=(xU+yw, xV+zw, zU—yV)
is a prime ideal of R[U, V] for indeterminates U and V.

Proof. It is easy to see that any minimal prime of p is height two. Since
the assumption and conclusion are symmetric with respect to y and z, we may
assume R=~k[x, y, w]. Then we have a primary decomposition

p+UR[U, V]=(yw, xV+zw, yV, U)=(y, xV+zw, UNU, V, w)

which is an intersection of two prime ideals of height three because x, y and z
also x, y and w are generators of k-algebra R. Hence we see that p is a radical
ideal and x is not in any associated prime of p. Now since pR[U, V, 1/x] is a
prime ideal, p is a prime ideal of R[U, V1.

Lemma 6.2. Let R=S/I where S is a polynomial ring of indeterminates
X1, Xo X3, Y1, Yo, Ys over a field k and I be the 2X2 determinatial ideal of

(;1;2;8) and let z=ax,+bxytcxs+dy,+ey,+fys (a, b, ¢, d, e, fEk). If the
1)2)3
b c

. a . . .
rank of the matrix A=<d . f) is two, then z is a prime element of R.
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Proof. We may assume some coefficient in z, say a, is 1. Now it is suffi-
cient to show that R/zR is a domain. To see this it is sufficient to show that
the polynomials

FY )=xotcxs+dY 1+ey,+ f3:)y.+Y1x,
=x:(Y14+by,tcys)+y.(dY 1 +ey.t fys)

FuY )=(bxy+cxs+dY +ey,+fys)ys+xsY,
=x3(Y1+by.tcys)tys(dY i +ey.t fys)

generate a prime ideal of k[x, xi, ¥s, ¥s1/(X2¥s— x3y2)[Y (].
Again, it is sufficient to show that the polynomials

Xoz+yow, Xeztysw and X,y;—Xsy,

of X, and X, over T=~k[y,, y,, ¥s] generate a prime ideal of T[X, X;] where
z=y,+by,+cys and w=dy,+ey,+fy,. Since T=k[z, y,, ys], if the matrix A
is rank two, then one of T=k[z, w, y,] or T=Fk[z, w, ys] holds. Hence we
have the conclusion by Lemma 6.1.

Let (R, m) be a regular local ring of dimension six with regular system of
parameters x;, X,, Xs, ¥1, Y2, Ys. We say that z in m is a general element with

respect to (x, y)=(x;, X5, Xs, ¥1, Yo, ¥s) if it holds that writing the class z of z
in m/m? as

Z=aX;+bx.tcxst+dy+ed,+ ¥ (a, b c, d e fER/m),

the rank of the matrix [ ] is two.

abc
def
Proposition 6.3. Let (S, uw) be a regular local ring of dim S=6 with regular

system of parameters x,, xXs, Xs, Y1, Vs, ¥s and let R=S/I where I is the 2X2

X1XoX3

determinantial ideal of [ ] Let z' be a general element of n with respeet

Y1Y2)s
to (x, y), then the class z of z’ in R is a prime element of R.

Proof. Let A=grzR be the graded ring associator to the ring R=R/zR
W=m/zR. Then we see that A is a homomorphic image of

B=Fk[x,, x5, X3, Y1, Yo, ¥a1/(X1¥2—X2Y1, X1¥s—X3Y1, X2Y5— X3Y2, f)

where £=R/m and f is the linear polynomial correspond to the leading form of
z in gruR. Since dim A=dim R=dim R—1=dim B by [16, (23.8)] and since B
is a domain by Lemma 6.2, we see that A is a domain. Then R is a domain
by [16, (25.15)].

Let F1(X, Y):lez—'Xzyh Fz(X, Y)=X,Y,— XY, FS(Xy Y):XIYH_XSYI-
Then we have seen
6.4.1. For regular local ring (R, m) of dimension six and a regular system
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of parameters x;, x,, x5, ¥i, ¥, and y,, general element z w.r.t.(x, y) generate
a prime ideal of

R/{Fi(x, 3), Fao(x, 3), Fo(x, y)}.

6.4.2. For integral domain R, F,, F, and F; generate a prime ideal of
REX; Y]:R®ZZ[X1, XZy Xs, Y., Y, Ya]-

Now the following is a consequence of the proof of [18, Proposition 3.2].
Proposition 6.5. Let (S, m) be a regular local ring of dimension six with

regular system of parameters xi, X,, Xs, V1, Y2, ¥s and let (R, n) be a subring of
S such that n'S=m and R contains an infinite field. Take a, B, ps, =+, pnEm and

a natural number e. Let q,, -+, q, be prime ideals of S such that ht q;=5 and
(a, BSEq; (G=1, -, 7). Then there exists an element p’ in R such that p’ is
associate none of p; (=1, -+, n), a+ppt&q; (=1, -, 7) and p’ is general
w.r.t.(x, y).

Example 1. Acceptable Cohen Macaulay ring with no canonical module.

Let @ be the rational number field and let {a;s, b |1=7, /<3, k, [EN} be a
set of indeterminates. Put K=@Q({a:s, b;;}) and S=K[x,, xz X3, ¥1, Y2 Ysliz, )
where x,, x,, X5, ¥1, Y5, ¥s are indeterminates. Let 2 be the set of principal
prime ideals of S. Now consider a map ¢: N—S, a set of integers {t,|neN}
and the following three conditions.

6.6.1. ¢(k)=p, (ke N) are prime elements of S and for any peP, there
exists a unique k2< N such that p=p,S.

Put Qn='f=[lpky ginZJCi'l'é:l aixqtk, hjn=yj+é]1bjk4kt" (1=:, 7=3) and
92=(g1n, &2n, Lsx)S (mEN). The second condition is
6.6.2. (i) t;<t; if 1<y and (ii) pr&EP,-, for all ne V.

Put xn: {Fl(gny hn)y Fz(gny hn); Fa(gm hn)}
for (gn; hn):(glny gen, 3n, hln, hzn’ han)
and II,={keN|1=k=n, (X, p»)S is a prime ideal}.

The third condition is the following

6.6.3. For each ne NV and for each minimal prime q of (¥X,, p,)S, q=-(£;,, pr)S
for some kell,.

Remark 6.6.4. It may seem strange that the condition (ii) of 6.6.2 is not
symmetric on g and k. Really, the condition we need is p,<X%,-,S.

Now we can prove

Theorem 6.6. There exists a map ¢: N—S and a set of integers {t,|nsN}
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such that they satisfies the three conditions 6.6.1, 6.6.2, 6.6.3 above.

Proof. Since dim S=6 is equal to the number of indeterminates of F,, F,
and F,, we can not adopt the absolute generator arguments in the proof of Prop-
osition (4.2) in [18]. Nevertheless instead of the condition (2.1.1) in [18], we
consider the property 6.4.1. Really, adopt Proposition 6.5 instead of Proposition
(3.2) in [18], then other arguments proceed in parallel with that in §4 in [18].

Let (¢, {t;lj€N}) be the map in the Theorem 6.6 and put p,=¢(n). Let
L be the field of fractions of S and we put

0 =F1(gn, h2)/Gn'"  pa=Fu(gn, hi)/Gn'" va=Fs(gn, hu)/ga'"EL
An=Slwn, tn, Yoliz, v 0n 0w
A=1i_r)n A,CL

Then A is our example. Really we can prove

6.7.1. A is noetherian.

6.7.2. (g1, g2 £)SNS=0

6.7.3. A=S/{F\(g, h), Fi(g, h), Fig, h)}
where gi=x;+ > aixqrt*, h;=y;+ 5 birgitreS (1=, j<3)
k=1 k=1
and (g, M)=(g1, g2 gs N1, o, hs).

6.7.4. A is a unique factorization domain.
by the proof in [18, §47 and [17, §III1.
Now we see easily from 6.7.3 that

6.7.5. Canonical module of A is isomorphic to (g,. h,)A and hence A does not
have a canonical module.

Really canonical module of A4 is isomorphic to an ideal of pure height one if
exists by [15, Lemma 3], but it must be principal by 6.7.4, a contradiction.

6.7.6. A is acceptable.

Proof. A is universally catenary because A is Cohen Macaulay. Since the
open subscheme U=Spec A— {mA} is Gorenstein, we see that formal fibers of A
are Gorenstein by [23, Theorem 1]. Then A is acceptable because A is local.

Example 2. Non-acceptable ring with a canonical module.

Let R= 61290 R, be a finitely generated graded ring over the field #=R, such
n
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that R is not Cohen Macaulay and the completion R of the local ring Ry is a
factorial domain where M=R,, the existence of such a ring is shown by [14].
Write

R=k[X,, -, XpJ/(F(X), -, F/(X))

where X; (=1, ---, n) are indeterminates of positive degree and Fy(X)=
FiX,, -+, Xy) (=1, -+, t) are homogeneous polynomials. Since coefficients of
Fy, ---, F, are finite, we may assume that % is countable.

Let {a;;]1=/=n, je N} be a set of indeterminates and let K=~k ({a;}). Put

S:K[yl; Y Z:I(yl.m.yn.z)

where y,, ---. ¥, and z are indeterminates.

Let ¢ be a set of prime elements in S such that each principal prime ideal
of S has a unique generator in €. Since £ is countable, elements of ¢ can be
numbered in such a way that @={p;|/e N} with p,=z.

Put Qm:kl;ll,bk’ gfm=yi+J§ ay;gi (=1, -+, n) and Pn=(g1m, ***» Znm)S.

Theorem 6.8. With the notations above, there is an enumeration of P such
that pmEPm-1 for all meN.

The proof is an easy generalization of [17, Theorem 4] and we omit the
proof.
Let {pm|meN} be the ennumeration of ¢ in Theorem 6.8 and put

Win=Fi(gim, =+, gum)/qn€L=0Q'S  (1=i<t, meN)

-"lm:S[wlm, U, wzm](yl,...,yn.z.wlm.---.w“,,_)

A=li_x>n A.,CL
Then we can prove by the proof in [17, §III] that
6.9.1. A is noetherian
6.9.2. (g1, =, g.)SNS=0 where gi=y;+ glaikqie§
6.9.3. A=S/(F, -, F,) with Fi=Fi(g,, -, ga) G=1, -, t)
Now we show that A is the required example. Really

6.9.4. A has canonical module because A is factorial and hence has a canon-
ical module free. [15, Lemma 3].

6.9.5. A is not acceptable because generic fiber L& ,A at the prime (gy, -+, gn)
is not Cohen Macaulay by 6.9.3.

DEPARTMENT OF MATHEMATICS,
KocCHI UNIVERSITY
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