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Existence of dualizing complexes
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Duality on  Gorenstein rings and canonical modules of Cohen Macaulay rings
are  generalized if  we consider a  complex instead of rings or m odules, and such
a complex, called dualizing complex, is introduced by Grothendieck [7].

If  a  r in g  A  is  a  homomorphic im a g e  o f  a  Gorenstein r in g , then  A  h as a
dualizing complex a s  is well known [5, Chapter V § 10], but other good sufficient
condition of existence of dualizing complex is not known.

O n the other hand Sharp showed in  [21, (3.8) Theorem ] that i f  a  r i n g  A
h as a  dualizing com plex, then  A  is an acceptable ring ; that is (1) universally
catenary, (2) formal fibers a r e  Gorenstein a n d  (3 ) f o r  any finitely generated
A-algebra B , th e  Gorenstein locus of Spec B  is open.

Again, it follows that if  A  has a  dualizing complex, then A has a  canonical
module as the initial non-zero homology module of the complex.

T h e  purpose o f this note is to investigate how extent th e  co nv erse  holds.
We show  the following ;

If  (SO holds, then acceptable rings with canonical m odules have dualizing
complexes (Theorem 5.2, Remark 5.3). Here both o f th e  acceptability and the
existence of canonical m odules are im portant. Really, there exists an acceptable
ring with no canonical modules (§ 6, Example 1) and also exists a non-acceptable
ring with canonical modules (§ 6, Example 2).

If  (S 2 ) does not hold bu t the  ring  is  local, then slightly stronger condition
on existence of canonical modules is necessary fo r u s  (Theorem 5.5).

A ll r in g s  a re  a ssu m e  to  b e  com m utative ring w ith identity and, except
section 3, noetherian. The terminologies and notations of [5 ], [13] and [16] are
used freely.

§ 1. Fundamental dualizing complexes.

L et A be a  noetherian r i n g .  A  complex I '  of A-modules is called a  funda-
mental dualizing complex [c f . 22] if

( i ) / 1 ( iE Z )  are injective A-modules
(ii) I . i s  a  bounded complex
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(iii) ( iE Z )  a re  finite A-modules
(iv)e p -  ED E(Alp)

TEZ ESpec A

where E(A lp ) denote the injective envelope of A-module Alp.
A  fundamental dualizing complex is a  dualizing complex [c f . 7, Chapter V,

Proposition 2.51 a n d  A  has a  fundamental dualizing complex if  A  has a  dualizing
complex in  the  sence of Sharp. [8, Theorem 3.6] (If dim A < C O ,  dualizing complex
in  the  sence of Grothendieck and of Sharp coincide.)

L et X  be a  noetherian schem e. A  sheaf o f complex 8 . o f  Ox -modules i s  a
fundamental dualizing complex if  there exists an  affine open covering {U,} o f X
such that T (U  s ' )  is  a  fundamental dualizing complex of n u  x ) f o r  a l l  i.
Since X  is noetherian, 8 . is bounded.

Lem m a 1.1. Let 8 . and S be fundamental dualizing complexes on a connected
noetheian scheme X. Then there exists an integer t and an invertible sheaf on
X  such that there exists an isomorphism

P ro o f. By [7, Chapter V, Theorem 3.1], there exists a n  invertible sheaf
on  X  and  an  integer t  such that .4Com(g*, d )  is  quasi isomorphic to ..r [t ] in the
derived category. Then M on i(S 'O i[t], 8 ') is  quasi isomorphic to O x . Consider
th e  se c tio n  s  o f  St. .)71(g. 0 -C [t ],  8 ')  corresponds to  1  o f  O x .  S ince S ' is an
injective complex, s  is represented locally by th e  s e c t io n  o f  degree zero  in
SCom(g . 0...C[t], cg . )  itself. M oreover, w e see easily that th e  se c tio n s  o f  degree
negative in  cgcom(g*o_c[t], s') are zero because S'O_C[t] and sg. are fundamental
dualizing complexes.

Therefore s  is represented by the section f  in  Sont(g . 0..E [t], 8 . )  globaly.
Since f  is  a n  isomorphism of com plexes locally by [8, Theorem  4.2], w e see
that f  is  th e  required isomorphism.

Lem m a 1.2. Let T  b e  an injective complex of A-modules. Suppose one of
the following conditions holds;

(1) HomA (A/p, I ')  is  a  fundamental dualizing complex o f  A lp  fo r  any minimal
p r im e  o f  A.

(2) There exists a finite A-algebra A ' (A C A ') such that HomA (A ', I . ) is a funda-
mental dualizing complex of A' and HomA (A'/A, 1 . ) has finite homology modules.

Then T is a fundamental dualizing complex o f A.

P ro o f. W e see easily that G P =  e  E(A lp ) b y t h e  assumption i n  both
EZ pESpec A

cases, so it is sufficient to show that T has finite homology m odules. Now in
case (2) this is a direct consequence of the  exact sequence

0 —> A A '  — >  A ' A  0

and  the  injectivity o f th e  complex F.
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Now we show the Lemma in case (1). Note that for any prime q, there exists a
minimal prime p such that p_cr. Hence HomA(A/a, F)=HomArp(A/a, HomA(A/P,
is  a  fundamental dualizing complex o f  A lq.

Let 0=q 1n ••• na n  b e  a norm al primary decomposition o f  0 .  We prove the
Lemma by inducation o n  n .  I f  n = 1 ,  then there exists a  sequence of A-modules

0=M 0 C M ,C  C M .= A

such that M 1 /M _ 1 is isomorphic to a submodule of A lp by [5 , Lemma 5.11.1]
where p is  the unique associated p r im e  o f  A .  Hence we see inductively that
HomA(Mi, I ')  has finite homology modules because

HomA(Mi/Mi_i, I')=HomAtp(Mi/Mi- , HomA(A/P, I S ))

has finite homology modules.
Suppose  n  > 1 . By induction PhYpothesis Hom A (A /a, I ')  and HomA(A/q,„ /')

are dualizing complexes of A la a n d  A lq „ respectively where a=cl i n •••
Then from the exact sequence

0 — >  — >  A A /  a —> 0

we see that T has finite homology modules because a  i s  a  fin ite A/q„-module
and hence

HomA(a, P)=HomAt q n (a, HomA(A/an, I . ))

has finite homology modules.

Lemma 1.3. L et (A , In) be a lo c al rin g  w ith depth A 1  and le t P  b e  a
fundam ental dualiz ing complex o f  A .  I f  I n = E ( A lm ) ,  then  dn - ': I n - '- 4 n  is
surjective.

Pro o f . Consider the  exact sequence

Then e  is  an A-module of finite length because e =H n ( P )  i s  a  finite A-module
and Supp E _ESupp /n= {m}.

O n the other hand we have exact sequence

0 —> Hom(E, E) ----> Hom(/n, E) H om (P-', E)

where E =E (A lm ) . Now(in, E)=-_'A by [12, Theorem 3.7] and depth Â 1  because
A  is  a  fla t A-algebra. Hence Hom(E, E)=0 and 8=0, that is dn - i  is  surjective.

§ 2. Extension to a neighborhood.

T h e  purpose of this section is to prove th e  following,

Theorem 2.1. L et X  be a noetherian scheme with bounded complex J .  such
that Cohen M acaulay  locus of  any closed subscheme Y  o f  X  is  open in  Y  and
is  a  fundam ental dualiz ing complex of  f o r  all x E X .  If  non-zero initial
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homology module of JCom(Ov , S') is a coherent 0,-module for any irreducible com-
ponent V  o f X , th e n  f  is  a fumdamental dualizing complex on X.

Since the assertion is  local, w e m ay assume th a t X=Spec A  f o r  a  r i n g  A
an d  it is sufficient to show tha t r=r(x, d )  is  a  fundamental dualizing complex
of A .  Note that since 1;  is  a  dualizing complex o f  A , for G Sp ec A  by assump-
tion , A  is universally catenary and formal fibers a re  Gorenstein by  [7 , Chapter
V , p . 3 0 0 ]. Before proving the  Theorem, we need some preliminaries.

L et Z  be a  subset o f Spec A  closed under specialization. For an A-m odule
M , le t S be the  se t o f non  zero-divisor fo r M in A .  Then Z-transform T(Z, M )
o f  M  is  an A-module

T(Z, M)= {x e M s  V (M : A x)„E Z}

w here V(a) denote th e  closed s e t  defined  by  t h e  id e a l a  o f  A  a n d  M : A x=
fa E A la x e M l. [c f . 1 0 ]  F r o m  n o w  o n ,  w e  m e a n  b y  Z = Z (A )  th e  s e t

eSpec A  ht p

Lemma 2 .2 .  L e t  A  b e  a n  in tegral dom ain  w ith  fie ld  of fractions L
and let f :  L - ,@ E (A lp ) b e  an A-homomorphism w ith  Ker f  = M  w here H =

p E H

E Spec A I ht p=1} . T hen w e hav e  M= n M , and n N ,= T (Z ,  N ) f o r  any
pelf pE H

A-submodule N o f L.

Pro o f . L et x E () A , and put f (x )= (a ) H . Then since E(A/Op=E(A/P),pea
f(x)p=0 means aP = 0 . Hence f(x )= 0  and  x  M .  T he  second  equality follows
from  th e  definition and  the  equation (N: x),=N„: x.

Proposition 2 .3 .  Let A  be an integral domain such that X=Spec A  is as in
the Theorem 2.1. Let M  be a torsion f ree f inite A-module. Then N =T (Z , M )
is a finite A-module.

Pro o f . Since M A "  fo r some integer n, w e m ay assume M = A .  Since A
is un iversa lly  ca tenary , A ,  is quasi-unmixed by [19, Theorem 3 .1 ] .  Moreover
associated p r im e s  o f  Â ,  a re  m in im a l because  fo rm al fibers a r e  Gorenstein.
H e n c e  w e  s e e  th a t  T(V(pA,), l i p) i s  a  finite  A n-m odule f o r  pG Ass AT/M=r
IpG Spec A ; depth An =1, ht p . 2} b y  [4, Proposition 1 .1 ] . Moreover Ass N IM  is
aTfinite se t b y  [10, Lemma 4.5] because Cohen Macaulay locus is  an open set by
assum ption. Therefore N  is  a  finite A-module b y  [10, Theorem 3.1].

Lemma 2 .4 .  The Theorem 2.1 holds i f  dim A_2.

Pro o f . By Lemma 1.2 (1), we may assume A is a  dom ain . L e t A '= T (Z , A),
t h e n  A ' i s  a  finite A-module by Proposition 2.3 and  is  a Cohen Macaulay ring
because A ' is (S2) of dim A ' 2 .  Now J•=HomA (A', F) is a fundamental dualizing
complex, because J .,  is  a  fundamental dualizing complex fo r  pGSpec A ' and the
unique non-zero homology module is  a  finite A'-module Hom A (A', K ) where K  is
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the initial non-zero homology module of F.
O n the other hand, the  conductor c o f A ' over A  is height 2, hence A/c is

artinian. Hence HomA (A/c, I ')  is a dualizing complex of A/c and P  is a  dualizing
complex o f A  by Lemma 1.2 (2).

F o r an  A -m od u le  M  a n d  p Spec A , we denote by pVp, M ) th e  number
dimx(p)ExtVK(P), Mp), which corresponds to  t h e  number o f  c o p ie s  o f  EA(A/P)
appear in  the  i-th degree of the minimal injective resolution o f M  [c f . 3].

Lemma 2.5. L e t A-43 be a  Gorenstein homomorphism and E-=E(A lp) be
injective envelope of A-module A/p f o r p e Spec A .  Then f o r $  Spec B , we have

L.

i f  q3nA =- )? and ht q3/pB-=i
dr-eB13, E0AB)--=

0 otherwise.

Proof. Let EO A B -4• be the minimal injective resolution of B-module EO A B.
Since Supp I•  is contained in  th e  closed se t V (pB), w e see ,t45 (l3, EO A B )=0 if
$1p

O n the other hand, since a multiplication of an element x  in  A—p raise up
to an  automorphism o f E , a n d  hence o f  l ' ,  w e see  th at A(43, EO A B )=0 if
$nA  Therefore we may assume that A  is a local ring  with maximal ideal
p. Now since

Ext13(B/pB, E0A B)=--- ExtVA/p, E )0 A B =0

f o r  i> 0  because B  i s  a  f l a t  A-algebra, Hom(B/pB, I- )  is a minimal injective
resolution of

HomB(B/PB, E0AB)=HomA(A/P, E)0A B=BIpB
a s  B/pB-module. T h e  Lemma follows from t h e  assumption that B lpB  is
Gorenstein [3, (4.1) Theorem].

Now consider a ring  B = A [ X ] 3  th e  localization of the polynomial ring A [X ]
by the  multiplicatively closed se t S  generated by th e  polynomials f  such that
ht c(f) 3  fo r  th e  c o n te n t  ideal c (f) o f  f .  Then th e  homomorphism A—>I3 is
Gorenstein. Take a m inim al in jective resolution r i  o f  B-module PO A B  and
consider a  complex J . associated to the  resolution J -  o f  FOB A .  (See Proposition
2.8 at the  end of this section.)

Then we see that J i  is a  fundamental dualizing complex of 1:313 fo r q3 E Spec B.
Really J i  is quasi-isomorphic to / . 0 A / 4  and has finite homology modules. On
th e  other hand we have J =  e  E(B 10) and that JT. is bounded complex

CESpec
by Lemma 2.5.

Therefore j* is a  fundamental dualizing complex o f  B  by Lemma 2.4.
L et p be a prime ideal of height one in A .  Then we see that HomB(B/PB, P )

is  a minimal injective resolution of

HomB(B/PB, POAB)=HomA(A/P, P)0A B
and  hence HomB(B/PB, J . ) a n d  HomB(B/pB, FOA B)=Hom A (A/p, ./ . )® A B  have
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isomorphic homology m odules. Now non-zero initial homology m odule L  of
HomB(B/PB, f )  is  a  finite B-module and we have L=K(gA B with non-zero initial
homology module K  of Hom A (A/p, T).

L e t  M  be a  finite A-submodule o f K  such that M (2)A B =K gA B . Then we
see that M ,=If , fo r any q G Spec A  such that q'Dp and  h t q /p= 1  because A,-->13,
is faithfully flat. H ence w e see that K =T (Z , M ) i s  a  finite A/p-module by
Lemma 2 .2  and Proposition 2.3 w here Z =Z ( A /p ) .  S o  w e  h av e  proved the
following

Lemma 2 .6 .  The non-zero initial homology module o f  Hom(A/p, I ' )  is  a
finite Alp-module fo r  any pESpec A s. t. h t  p=1.

Proof of the Theorem 2.1.
It is sufficient to  prove that I *  has finite homology m odules. Since I '  is

bounded, A  has finite K rull dimension and we prove th e  Theorem by induction
o n  dim A = n .  M oreover we m ay assum e th at A  is  a  domain by Lemma 1.2.
The case rz.- 2  is already proved in  Lemma 2.4.

Suppose n 3 and  consider th e  ideal C=  n  p where W= U AssAli i (r)—  {O}.
pEW iEZ

If Ap is Cohen Macaulay for pGSpec A , then the dualizing com plex I o f  A ,  is
e x a c t except a  "  initial "  degree a n d  hence th e  closed set V(c) defined by C is
contained in non Cohen Macaulay locus and ht c 1.

Take x  c, x  O. N o w  w e  have the exact sequence

0 ---> Hom A (Al x A, T) 1 - -> O.

Since non-zero initial homology module of Hom(A/p, /*) is  a  finite A-module for
a n y  m inim al prim e p o f  x A  by Lemma 2.6, we have by induction phypothesis
that Hom(A/x A , I ')  has homology modules finite. Therefore we see that W  is  a
finite se t because x Ec.

Then considering x  instead o f  x , we may assume that th e  maps x  H ( I )
(i E Z  except an  " initial "  degree) are zero-maps by the following Lemma

2.7. Hence we see that I '  has finite homology modules.

Lemma 2 .7 .  Let M  be an A-module such that Ms is a finite A s -module where
S =A —  U  p. I f  x E  n  p, then there exists an integer t such that x' :111—>M

peAss M EAss
is a zero-map.

P r o o f .  Since M s i s  a  f in ite  A s -m odule and x n  p, there exists an
YEAss M

integer t  such that a: M s —>Ms i s  a  zero-m ap . Since M  is  an A-submodule of
M s b y  th e  definition o f  S , we see that x  :  M—>M is  a zero map.

Finally in  this section, we prove a  general p rop o sitio n  o n  a  resolution of
complexes, w hich  is postponed . W e call t h e  obtained complex (F , d) in the
following a s  a  complex associated to a  resolution I -  o f  K .  H ere it is not
necessary K • to be bounded below [c.f. 7, chp . I , Lemma 4.61 nor a  r in g  A  to
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be noetherian.

Proposition 2 .8 .  L et (K . , a) be a complex of A -modules and let Pi be in je c -
t i v e  resolutions of A-modules K .  T h e n  I -  has a complex structure ( I . ,  d) which
is quasi-isomorphic to K.

P roo f. Let d  : P' 1 -4 '+ '.' be maps defined by the resolution of K .  We define

A-homomorphisms : k'2— > E  r k - I , 1 + 1 + 1  such that d" diLL =—  d (k
1=0

by induction on k  ( k  0) where d = E ( d 1 '± d P ) .  (We understand d  is defined,„
only where the component maps have already been defined.)

In case k = 0 , take d P  such that the diagrams

are commutative.

Suppo§e k  1 and that c a i  are defined for O i k .  T h e n  for 1 i k ,  w e
have

d o d(P - L i)= d ( c l f - Li + o d 1  i+  do

= ( d P  d f - L —  clf. jodl - L i) = 0 .

Now we have
k+1

d o d P ( P , ..1) C d (  E E  10+1-1,5+1+1
1=0 1=0

and since we have

do d c1/1- 1 . i(1 k - 1 ' .1) = — do do d ( Ik - 1 -  1, J+1+1) =  0

in case k 1 by induction phypothesis or if k=0

doi)= d (ai(K i) )= d 7 . i+ 1 d2 'i+ i)(a iu c i))g (17 , i+ i(K i+ i)+ai+ ia v i ) — o  ,

there exist A-homomorphisms d 1 w h ich  m ake the diagrams

I k ,1 1 1 k - L i ,f k i t  ik+1-I,j+1+1
1=0

di2e+1'.1

, k j

are commutative, where S b k ,j are maps induced by — clo cI P .  (In case k = 0 , we
understand J-1 5=K).
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Thus are  defined fo r all i N  and .7. Z  and  hence d  is defined. W e
have already seen that d.d  =O. Hence (F, d) with I n =  E P  form a complex.

z+j=n

Remaining assertion follows from the  well-known theory on spectral sequences.
In  fac t, define a  f iltra tio n  by F ( I ) =  E  P .  Then since this filtration is

i p

regu lar, th e  sp e c tra l sequence is convergent and the chain map 1C—>1. which,
we see easily, defines an isomorphis of spectral sequences, is a quasi-isomorphism.

§ 3. Decomposition of injective modules.

L et C be a  category. A commutative diagram C C, is called a  pu ll back

C2 Co
if  fo r  any commutative diagram X there exists a unique morphism X-->C

such that C2 .- -  C  com m utes. This C is uniquely determined up to isomorphisms

X  — + C1

and  we denote it by C, X c0 C2.
Dually push out Doi s  d e f i n e d  and we denote D=DILD 0 D2.

D2 D
L et A be a  r in g  an d  n  be the  category of A-m odules. Then pull back and

çoi go2
push out exist in ,91. Really let M 1 --> M 0  a n d  M 2 — >M 0 b e  A-module homo-

y91- -  w2
morphism, then th e  kernel of MIEDM2 >Mo is the  pull back /111 x m o M ,.  If
ço, and ço, are homomorphisms of rings M o ,  M i  a n d  M 2 ,  then  it is  easy  to  see
that Ker(ço1 - 2)  above is also a pull back in  th e  category of rings.

Sim ilarly l e t  N o —>Ni  a n d  N o --*N ,  b e  A-module homomorphisms then  the
cokernel of N o .—N i e N ,  is  th e  push out N 1 it NoN2.

T he  ring  we consider in  this section is  itse lf th e  p u ll  back o f  tw o  rings.
The im portant examples o f such rings a re  the  following

Lemma 3 .1 .  L e t  A  be  a  rin g  an d  le t  a , and a , be ideals o f  A  such that
a1 n a 2 -=0 . Then we have A -=A i X A 0 A , where A i = A /a i  (i=0, 1 , 2) and a0-=a1+a2.

Pro o f . By canonical surjections w e have a commutative diagram A

Suppose there exists another commutative diagram B fo r some r in g  B.

f l ! I
A , -■A 0

Then for any b e B ,  there exists a unique element a in  A  such that

f i(b)— (a mod a l ) a n d  f  2 (b)=(a mod a2)

Really take a i  a n d  a ,  in  A  such that
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f 1 (b)=(a 2 mod a i ) an d  f 2 (b)=(a 2 mod a 2) .

Then a i — a 2 a , b ecau se  the classes of f  1 (b) and f  2 (b) in A, coincide. Hence
there ex ists c i  E a , and c2 Ea 2 such that a 1 —a 2 =c 1 ± c 2 . Put a=a1— c1=a2 - Pc2.
The uniqueness follows from a1 n a 2 =- 0. Define a  map g: 13 ,- 4 b y  g ( b ) =a as
above. It is easy to see that g  is  a ring homomorphism.

Lemma 3 .2 .  L et A  be a rin g  an d  A ' be a f inite  A -subalgebra o f  th e  to tal
ring of  quotients with conductor c. Then A =A lc X  i c A '.

Pro o f . A s in  Lemma 3 .1 , it is  su ffic ien t to  show th a t  fo r  a  diagram
f i

B --->A lc  and for b E B , there exists a unique element a in  A  such that

12 1
A ' A//c

f i(b )=(a mod c) a n d  f  2 (b)= a .

Really, since (f 2(b) mod c)-= f i(b) E A/c and cOEA, we have f  2 (b) E A .  Put a= f ,(b).

Now we consider the decomposition with respect to A i of injective A I X AA 0 - 2 -

modules.

Lemma 3 .3 .  L et A 1 —>A0 an d be homomorphisms o f  rin g s . L e t M
and  N  be A =A i x  A o A , modules and put

M i =Hom A (A i ,  M )  a n d  N i =Hom A (A i , N ) ( =0, 1, 2).

Then we have

HomA(MiLm 0 M2, N)=HomA (Mi, N)xxorn A cmo .N,H0mA(M2. N)

=-Hom A i (M i , N1)Xviom A o (pr0 ,N 0 )HomA z (M2, N2) •

Sol
Pro o f . From the push out diagram A li, w e  have a commutative

çoz
M 2  M II- 1/0 M 2

02

diagram HomA(Mil- m0 M 2. N )---+Hom A (M i , N )

Hom A (M 2 , N )  — o N ) .
To show the first equality, it is sufficient to prove that for f i GHomA (M i , N)

an d  heH om A (M2 , N )  su c h  th a t  f1oçoi=fes02, th e re  ex is ts  a un ique f  in
HomA (M1 Lm 0 M2 , N ) such that

1 . 0 i = f 1  a n d  f °0 2 =f 2 .

But this follows from the definition of M 2 ll_m 0 M2 . The second equality follows
from the isomorphisms

Hom A (M i , N )=Hom A ,(M b Hom A (A i , N))=HomA i(M-



36 T. Ogoma

Lemma 3 .4 .  Let (A , nt) be a local ring and A ' be a  f inite A -algebra. Let
E=E(A lm ) be an injective envelope of A -module A lm  and put E'=Hom A (A ', E).
Then we have

A 'OA Â .

Pro o f . Since A ' i s  a  finite A-algebra, it is a  sem ilocal r in g , say with
maximal ideals 911 , ••• , Me. Then since b y  [16 , (17 .7)], it is

sufficient to show by [12, Theorem 3 .7 ] that E '=  E ; ; w here E  is an injective

envelope of the module A'191. 1 . Now since E ' i s  an  in jec tiv e  A'-module
with support in V (trtil'), it is sufficient to show that HomA ,(A7911, E')=A '191 1 .

Really we have

HomA
, (A1911i , E')=-Hom A

, (A1gi , Hom A (A', E))=Hom A (A'/Ri, E)

=Hom A (A 'Igi„ HomA (A/rn, E))=Hom A (A191i, A lm )=-

Lemma 3 .5 .  L et A =A 1 X A 0 A 2 be noetherian ring with finite A -algebras A i

(i=0, 1, 2). Then A p=B,X .B o B , an d  ,
21,---Pi x  rB"B o - 2 f o r  p E Spec A  w here B i =

AiOAAp.

Pro o f . These assertions follow from t h e  flatness o f  th e  localization and
completion as A-modules and the isomorphisms

(i=0, 1, 2).

Theorem 3 .6 .  Let A 1 —>A0 and A,— *A 0 be homomorphisms of noetherian rings
such that A , and A 2  are . f inite A -algebras with A =A i X A 0 A , .  L et E=E(A lp) be
the injective envelope o f  A /p as an A -m odule f or p E Spec A. T h e n  w e  h av e
E-=E,L E 0 E, w here E i =Hom A (A i , E) (i=0, 1, 2).

Pro o f . Consider the exact sequence
0

0 — >K — >E , E0 E , — >E — >C — >0

where 0  is the  map induced by E 0E 1  which comes from A A l .  From

E A0
22

this we have the exact sequence
0*

0 —> Hom A (C, E) —> Hom A (E, E) — >

-->Hom A (E l lt E o E 2 , E) -->H om A (K, E) — > O.
Now we have

HornA (E i li_E o E 2 , E)=Hom A i (E i , E1)X norn A 0 (E0 ,E0 )HomA2 (E2, E2)

=P 1 xh o e2 =,210
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by Lemma 3 .3 , Lemma 3 .4  a n d  Lemma 3.5. Moreover t h e  identity 1  in
HomA (E, E )=A , is mapped by 0* to the identity.

Really 0*(1)= GHom A (E l it E ,E 2 , E) and 8  is induced from 2, E HomA (E i , E)
=Hom,,,,(E„ E i )  (i= 1, 2 ) by definition. Now f o r  e, HomA (A i , E ) ,  w e  have
2i(e,)EHomA(Ai, E ) if  we regard 2, as A t -homomorphism. Then fo r a i  E Ai we
have

(2i(ei))(ai)=2i(aiei)=(aiei)(1)=-ei(ai)EE

and Ai  corresponds to the  identity of HomA i (E i , E i ) (i=1, 2).
Therefore we have Hom(C, E)=Hom(K, E)=0 and since C  a n d  K  are A 0,-

modules, we see that C=K =0.

Corollary 3 .7 .  L e t A= A i X Ao A 2 b e  a s  in  Lemma 3 .1  or Lemma 3.2. I f
A i  h a s  a  fundamental dualiz ing com p lex  I (i= 1, 2) such that there exists an
isomorphism

Horn41(A0,

as chain complexes, then A  has a fundamental dualiz ing complex F.

P ro o f. We identity the  two fundamental dualizing complexes on Ao by the
above isomorphisms, which we denote by I. P u t  P=P11. 1 10, P ,' ( k e Z ) . Then
we see that P  is an injective A-module by Theorem 3.6. Now we have

HOM A(P, P + 1 ) = HOMA I ( I ,  P1+1) X HomA0 (Po', 4 + 1 )HOMA2(/ 12, / 12+ 1 )

by Lemma 3 .3  a n d  th e  differentials d and d i
2e of /j and I; define an  A-homo-

morphism d k  : P-4k + 1 su ch  th a t ( I ',  d ')  i s  a  chain com plex. Then I '  is  a
fundamental dualizing complex by Lemma 1.2.

§ 4. C an o in ca l modules.

Let R  be a  complete local ring. Then by the Cohen's structure theorem [16,
(31.3)] R  is  a  homomorphic image of a regular local ring, say T .  We say an
R-module K is a canonical module of R  if  K  is isomorphic to E x tr (R , T ) where
n =dim T  and r -=dim R . (See [9, Vortrag 5] for original definition) It is easy
to see that K  is the non-zero initial homology module of the dualizing complex
of R .  If a local ring R  is not necessary complete, we say a n  R-module K  is a
canonical module if KoR p is a  canonical module of the completion Ê of R.

Now we state the proposition of Aoyama [1, Proposition 2 ] by the condition
upon the ring itself. The key Lemma to get this is the following

Lemma 4 .1 .  Let (A , m ) be a local ring with canonical m o d u le  K . I f  A  is
(S 2 ), then dim A=dim ;4113 f o r any minimal prime q3 of  A.

P ro o f. Let be a  p r im e  ideal o f  A  such that dim A/p=dim A .  Since
K'=HomA(A/p, K ) is a  canonical module of A/p and since any minimal prime 13
of pA. is an associated prime of the canonical module K'OAll‘ of Â4,.,4, we see
that dim i1/13=dim A/pA=dim A  [6 , Proposition 6 .6  (5 )] . Hence A/p is  quasi-
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unmixed and  A/p is universally catenary. [16, (34.6)1
We show that dim A/p=dim A  fo r any associated prime 1.) o f A .  Let

0=q i r) ••• nci n

be a  primary decomposition o f 0 o f A , then A/ch, are minimal prime of A because
A  is  (SO and we m ay assume dim A/ci i =dim A  if  an d  only i f  1 /*. t.

t n
We want to show that t= n .  Suppose t < n  an d  pu t a=  n (I n L b .

Leti=1 J=t+i
a be a m inim al prim e of a+t), then ht n - 1. Now from the  exact sequence

0 A  —> A/aEDA/T) --> A/(a+b) 0

we have an exact sequence

Hom(A/a, A la eA lf1 )-->  Hom(A/n, A/(a+b)) —> Ext'(A/n, A)

and we see that ht a=1, because otherwise depth A„_>_2, depth(A/a•EDA/f))0A, 1
and depth A/(a+b)0A 0 --- 0 which is a contradiction.

Then dim A/tt=dim A/Li,-1=dim A - 1  fo r some q 1 n with 1 i t  because
Alq i  is un iversally catenary. O n the other hand

dim A/q, A/ad-ht a/cb=dim A -1 ±1  =dim A

for some cli ç n with t-kl j n, which is a contradiction.

Proposition 4 .2 . L et (A , In) be a noetherian local ring with canonical module
K . T h e n  the following are equivalent.

(1) Hom(K, K  )  A
(2) A  is (S„).
(3) Â  is (SO.

Pro o f . I f  Â  i s  (S ,),  then  A  i s  (S2). So it is sufficient to show that (2)
means (1) by [1, Proposition 21.

L et h: A—>Flom(K, K) be t h e  canonical homomorphism, let b e  a  p rim e
ideal o f A  such that ht p_<2 and take a minimal prime  l  of Â .  Then ;443 is a
Cohen Macaulay ring with canonical module KO A A713= (K O A Â O by Lemma 4.1.
Therefore

HOM A ( K  100 A1443 and hence A, HomA(K, K )0 A 2

a re  isomorphisms by [9, Satz 6.111.
O n the other hand, M=ker h  is  a  submodule of A .  So if  1.1 is  a prim e ideal

o f height not smaller than one, then depth M.2 _ 1. Therefore M = 0  by Lemma
4.3 below.

Now consider th e  exact sequence
h

0 A  —› Hom A (K, K) — > N 0

where N=coker h .  Now if q  is  a prime ideal of height not smaller than 2, then
depth ./V2 .1 because depth A 2 2  and depth Hom(K, K) 2 _ 2. Therefore N-- -- 0  by
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the  following

Lemma 4 .3 .  L e t M  be a  fin ite A-module such that M2 =0 i f  ht _ 1  and
depth M2 >_1 i f  ht p_>_2, then M=0.

P ro o f. Suppose M #0 and let be a m inim al prim e of M .  Then depth M,
=0 and ht p by first assumption. But this contradicts second assumption.

Now we generalize th e  canonical module in some cases where th e  r in g  is
not local. L e t  A  be a  noetherian r in g  which has a unique minimal prime or
which is (S O . Then we say that a  finite A-module K  is a  canonical module of
A  i f  K .  is  th e  canonical module of A„, fo r any maximal ideal in o f A .  Then
K2 is  a  canonical module of A , fo r pESpec A  by [2 , Corollary 4.311.

Now we define the notion of  " A  has a  canonical m o d u le  in  a  s tr ic t  sence
(S-S canonical module, for short) "  inductively on  dim A=n.

I f  n = 0 , then every noetherian r in g  has S-S canonical module. Suppose
n >O. Then A  has a  S-S canonical m odule  if there exists a  primary decom-
position 0=cf 1n ••• nq t such that A1--A/c1 has a  canonical module K, and A i /c,
has S -S  canonical m odule  fo r each i where ci  i s  th e  conductor of
A=HomA,(Ki, K,) over A , .  Note that A  is a  finite A-subalgebra o f  th e  to ta l
r in g  o f  q u o tie n ts  o f  A ,  such that A  is (S2) with canonical module K, by [2.
Theorem 3.2].

§ 5. E xistence  of dualizing complexes.

Proposition 5 .1 .  Let (A, ni) be local (SO ring of dim A -= n 2  with formal
fibers Gorenstein. Let

d '  d '  d n
-2

0 — ›  P — >  I n - 1

be injective complex of A-modules such that H°(F)=K is a canonical module of A
and FO A A , is a fundamental dualizing complex o f A , for EU=-Spec A— {m}.
Then there exists an A-homomorphism

Cl n - 1 : I n - 1  E ( A l m ) = I n

such that (I', d 0 __- k n) is a dualizing complex o f A  (d"=0).

P ro o f. L et C ' be the minimal injective resolution o f  A-module PO A A  and
C• be a complex associated to the resolution C-  o f  FO A A  (Proposition 2.8). Then
C;  i s  a  fundamental dualizing complex o f  ;443 f o r  41 U = Spec A— ftnAl by
Lemma 2.5 because 1-P ( C 'H 1 (/;)0 A A,43 w ith  p = q 3 n A . Since H °(C )=H °(F )
0A24= K O A lf i s  a  finite A-module, C .  defines a  sheaf o f fundamental dualizing
complex C. o n  Û by Theorem 2.1. Note that X = 0  satisfies t h e  assumption in
Theorem 2.1 because A  is a  homomorphic im age of regular local ring.

Let (JO, a.) be th e  fundamental dualizing complex o f A  an d  S  be th e  sheaf
o f  fundamental dualizing complex o n  Û  defined by T. Then there exists an
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invertible sheaf L o n  Û  and  an  integer s  such that C' g '0 0 0 ..E [s] by Lemma
1.1. Note that Û is connected because Â  is  local (SO and  dim A  [cf. see the
proof o f Lemma 4.1].

Changing th e  degree if  necessary, we may assume s = 0 .  Now we have

-00o0 1 -  = -Cag M g .)'=",-/C°(-COS .):-=' ,4C°(C.) -='1?- -

where k=K (D A A  and  At -  denote the sheaf of de-module defined by the A-module
M .  Hence by Proposition 4.2 we have

Jconi(k— ,

Therefore c •  g •  defines an injective homomorphism

g . : FO A A j•

o f chain complexes, which induces an isomorphism of homology modules in degree
less than n-1.

Now we define dn -1 b y  the composition of maps

g n-1
rn =j  E A (A / M )= In .

Then h : defined by 12'=g  (0 - _ i_ n -1 )  an d  hn-=0 -- '  is  a  chain map
a n d  w e  se e  th a t h •  is  a  map associated to the minimal injective resolution of
/*OA by construction . Hence h' is a quasi-isomorphism and I '  has finite homology
modules, because Â  is  a  faithfully flat A -algebra. That is, 1 • is  a  fundamental
dualizing complex o f A.

Theorem 5.2. L et A  be a ring such that

(1) A  is (S 2 )  o f  dim A <oo.
(2) formal fibers of A  are Gorenstein.
(3) Any homomorphic im age of  A  has Cohen Macaulay locus open.
(4) A  has a canonical module K.

Then A  has a dualiz ing complex P such that H°(F)=K .

P ro o f. W e write E(p) fo r E(A lp) and put P = E (p ) . It is sufficient to
ht p = i

show, by Theorem 2.1 , the existence of the set of A-homomorphisms

If „: E(p).—E(q)i pCq, ht q/p=11
such that

(a) P u t fP-=ll f,: E(p)—>11 E(q), then we have f 2(E(p)).0)E(q).

(b) ( I ',  cl") is  a  chain complex with di= ED f .
ht p= i

(C) (V ®A, d . 0Ap) is  a  fundamental dualizing complex of A , for p ESpec A.
( d )  H°(T)=K.

We prove the existence of H(k)-={ f„Iht q - /z} satisfying (a) , —(d), as fa r a s
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they have significance, inductively on
F o r k = 1, consider the  exact sequence

where E  is the injective envelope o f K .  Since K  is a  canonical module of (SO
ring A , we see that E.= E(p) by [6 , Proposition 6.6 (5)] and by Lemma 4.1.

ht p=o

Now fo r q ESpec A such that ht c1= 1 , consider t h e  fundamental dualizing
complex J .  o f  t h e  completion Â , o f A ,.  Since K , is a  canonical module of A,
by *) [2 , Corollary 4 .3 ], we h a v e  a  le ft vertica l isomorphism o f  t h e  following
diagram, where horizontal sequencies are exact by Lemma 1.3.

0 ---> K(S)4,--> E0:21%, ---> DOA, --> 0

o p J1 0

Since E O Â , and J°  are injective envelopes o f  KO -14., a n d  R- respectively,
th e  fo rm e r  by Lemma 2 .5 , left isomorphism induces middle and right vertical
isomorphisms. Hence we see that D,=E(q) and  that injective envelope o f D  is
isomorphic to I' because K  is  (S 2). We have H(1) from I°=E—>Dc_,P.

Now k -.1 and suppose H(k) is defined. F or q E Spec A such that ht = k+ 1,
le t U=Spec A,— {ciA,} b e th e  o p e n  subscheme o f  Spec A , .  Now H (k ) defines
complex (P, d ')  such that (I% C O A A , is a  fundamental dualizing complex of A,
f o r  ip and H ° ( I ) = K , .  Therefore, there exists a  m ap (I' :
which makes I ,  a  dualizing complex o f  A, by Proposition 5.1. P u t f p g =c/PcP

ht =k )  where cP is  th e  canonical injection E ()— I".  N o t e  that f 00 (x )=0
if  x  d k - l(P - 1 )(-)E(p).

Define f „  fo r any (I Spec A such that h t  =k + 1 .  W e show  that p(E(p))
Eco f o r  a Spec A, h t =k  with fP=r1 f o .

ht q=k+1

Really since 4 - 1 : Ifr 1 - 4 = E ( p )  i s  surjective by Lemma 1 .3 , f o r  x cE(p)
there exists a E A— p such that ax Edk - '(I 0 - 1 ).

For q ESpec A, i f  a €Eq, then a  is a  u n it o f  A, and

f„,(x )=(11a)f„(ax )=0 i n  E(q).

Since prim e ideals q  such that a E q  a n d  ht ii/p=1 a r e  finite, we see that
f P(E(P))-E Ep E(q) •

Remark 5 .3 .  T h e  co nd ition  (3 ) above holds i f  A  i s  an acceptable ring.
Really Nagata's criterion fo r openness holds for the property "Cohen Macaulay ".
[c f . 11]

* ) In  our case  that formal fibers o f  A a re  Gorenstein, w e h av e  a  m o re  d irec t proof of this
assertion.
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Lemma 5 .4 .  Let A  be a universally catenary local ring with unique associated
prime and let A' be finite A -subalgebra of the total ring of quotients of A with
conductor c. Let P  and J . be the fundamental dualiz ing complex o f A/c and A '
respectively. Then

HomA(A'/c, 1. . ) - Hom A
, (A' lc, f ) [t ]

fo r some integer t.

P ro o f. Write A' lc= A i x • • x A s  such that Spec A, (i=1, • •• , s) are connected.
Then HomA(A,, I . ) and HomAr(Ai, J . )  a r e  fundamental dualizing complex of
sem ilocal ring A ,  a n d  hence there exist integers t ,  such that HomA (A E ,
HomA , (11z, .1 . )[h1 by Lemma 1 .1 . So it is sufficient to show that t i  d o  not depend
on  i (i=1, ••• , s).

To see this it is sufficient to show  that fo r p i ,  p2 spec A ' such that p,nA
-=p2 n A 2 c ,  t h e  degrees that EA, (A l /P i)  a n d  E4 , (A1P2) appear in  r  coincide.
Now since A ' has a unique minimal prime, it is sufficient to sh o w  th a t ht p ,=
ht p„  which is a  d irec t consequence o f th e  universally catenarity.

Theorem 5.5. Let A be a local ring. Then A  has a  dualiz ing complex i f
and only i f  (1) formal fibers o f  A  a re  Gorenstein and (2) A  has a canonical
module in a strict sence.

P ro o f. T h e  necessity o f  these conditions are known [7 , Chapter V  or 21,
(3.8) Theorem ]. Suppose (1) and (2) hold. W e sh o w  th e  e x is te n c e  o f  funda-
mental dualizing complex by double induction on dim A =n  and  the  number t  of
associated prim es of A .  T h e  ca se  n = 0  is obvious.

Suppose n 1  a n d  t= 1 .  Then A  has a  canonical module K  by (2) and  A ,=
Hom A (K , K ) is a  finite (S 2 )  A-algebra with canonical module K .  Note that A  is
universally catenary by t h e  proof o f  Lemma 4 .1  because A  has a  canonical
module and h as a  unique m inim al prim e. Since formal fibers of A 1 a r e  Goren-
stein and  A , is semilocal, Cohen Macaulay locus of any homomorphic im age of
A ,  i s  open [cf. 13, (21.c) and (32.c)]. Hence A ,  h as  a  fundamental dualizing
complex / ;  by Theorem 5.2. O n  th e  other hand A 2 =A lc  h as  a  fundamental
dualizing complex I ;  b y  induction phypothesis where c is  th e  conductor of A1
over A .  Then changing degree if  necessary, we have

Hom A 1 (A0 , /1)=HomA 2 (A0,

by Lemma 5 .4  where A 0 =A 1 /c. Since A =A i X  A ,A , by Lemma 3 .2 , A  h as  a
dualizing complex I -  by Corollary 3.7.

Suppose t>1. Let 0=-c 1 n  •  •  n n , be a norm al primary decomposition o f  O.
Put a=q 1 r1 • •• ( q 2 _1 . T hen  A /a and A/Li t h a v e  fundamental dualizing complexes
1 . a n d  J "  resp ective ly  b y  induction phypothesis.  T h en  Hom A (A/b, I')
HomA(A/b, P [ s ]  fo r some integer s  by Lemma 1.1 because Alb with b= a+ qt is
a  lo c a l  r in g .  W e m ay assum e s =O. Hence A  h as  a  dua liz ing  complex by
Corollary 3.7.



Existence of dualizing complexes 43

Corollary 5.6. Let A  be a local ring. T hen A  h as a dualizing complex i f
and only  i f  A  is  an  accep tab le  ring and any  homomorphie image of A has a
canonical module.

Remark 5.7. Suppose a ring A  has a  function yo corresponds to codimension
function [7, Chapter V 7], that is , ça : Spec A-->Z such that ço(p)--yo(q)=ht p/q for
any p q .  Then Theorem 5.5 is easily generalized to the  semilocal c a se . T h e
author does not know th e  example o f universally catenary ring  which does not
have such a  function.

Remark 5.8. I n  general, i f  A  has a function ça a s  above and if Cohen
Macaulay locus of any homomorphic im ag e  i s  o pen , then t h e  Theorem 5.5 is
easily generalized that there exists an open covering WO- o f Spec A  such that
U , has a  dualizing complex cg;. B u t th e  author does not know whether 0;1
patch together to a  dualizing complex P o f A.

Remark 5.9. Professor S . Goto pointed out that th e  proof o f  Theorem 5.5
show s that generalized Buchsbaum ring  (i. e. l(Fg(A))<00 for i <dim A) with a
canonical module possesses a  dualizing complex.

§ 6. Examples.

For the construction of Example 1 below, we need some preliminaries.

Lemma 6.1. L e t R = k [x , y , z ] be a polynom ial ring of indeterminates x, y
and z over a field k. Let w  be an element o f R  such that one of R=k[x, y, w ]
or R =k [x , z , w ] holds. T h e n

p=(xU-kyw, xV+zw, zU—yV)

is a prime ideal of R[U, V] for indeterminates U and V.

P ro o f .  It is easy to see that any minimal prime of p is height two. Since
the assumption and conclusion are symmetric with respect to y  and z , we may
assume R = k [x , y , w ]. Then we have a  primary decomposition

1.)+U R [U , V ]= (yw , xV±zw , yV , U )= (y , xV±zw , u)n(u , V , w )

which is an intersection of two prime ideals o f height three because x, y  an d  z
also x, y  an d  w are generators of k-algebra R .  Hence we see that p is a radical
ideal and  x  is not in  any associated p rim e  o f  p . Now since pR[U, V , 1/x] is a
prime ideal, p is a  prim e ideal o f  R[U , V].

Lemma 6.2. L e t  R = S I I  w here S  is a po ly nom ial rin g  o f  indeterminates
X1 , x 2 , x3, Yi, y2 ,  y 3  o v er a  fie ld  k  a n d  I  b e  the 2 X 2 determinatial ideal of
(x i x 2 x 3 )
\YiY2Y2) 

an d  let z-=ax1±bx24-cx3±dY1±ey2±f y 3 (a , b , c , d , e , fE k ). If the
( a  b  c ) irank  of the m a t r i x  A =  

e  f  
s tw o, then z  is  a prime elem ent o f R.
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Pro o f . We may assume some coefficient in z ,  say a, is  1. Now it is suffi-
cient to show that R /z R  is a  d o m a in . To see this it is sufficient to show that
the  polynomials

F1(Y 1)-=(bx2-i-cx3±dY 1 +e y  4 -  f v  )1) 4 - Y  x2 - 1-2

= x2( 7 1-kbY2 - 1- eY 3 )+ Y 2 (d Y id - ey2H- fY 3 )

F2 (12 - 1)=(b x2+ c x3±dY  i+e Y 2 -  f Y 3)3, 3± x 3 Y ,

=x3(17 14- by2±cY 3)+Y 3(dY i±eY 2 - Ff Y3)

generate a prim e ideal o f  k [x 2 ,  xs, Y3]/(x2Y3 — x3Y2)CY1i.
Again, it is sufficient to show that the  polynomials

X 2z-l-y 2 w , , X 3 z-l-y 3 w  a n d  X 2 y 3 X3Y2

o f X 2  and X 3 over T -=k [y „ y 2, y 3 ]  generate a prim e ideal o f T [X 2 , X 3 ]  where
z =y 1 -kby 2 -Ecy 3 a n d  w =d y 1 +ey 2 4 -f y 3 . Since T =k [z , y 2, 313], if  th e  matrix A
is rank tw o, then  o n e  o f  T =k [z , w , y 2 ]  o r  T -=k[z , w , y3 ] holds. Hence we
have the conclusion by Lemma 6.1.

L et (R , ni) be a  regular local ring of dim ension six with regular system of
parameters x „ x 2 , x 3 , y l, Y 2 , y 3 . We say that z  in  ni is a  general element with
respect to (x , y )=(x i , x2, x3, yi, Y2, y3 ) i f  it holds that writing th e  class 2  of z
in  m/m2 a s

z =dx 1± bx 2+cx 3+dy 1-1-e y 2 4 -f y 3  (a, b, c, d, e, f  eR/m),

th e  rank of the  matrix F.  b is two.
Ld e  f

Proposition 6 .3 .  Let (S , n) be a regular local ring of dim 5 =6  with regular
system of Parameters x l , x2, x3, y l, y2 , y3  and le t  R = S I I  w h e re  I  is  the 2 x 2

1xxxr i , 3determ inantial ideal of Let z '  be a general element of n  with respeet
Lyiy2Y3

to (x , y ), then the class z  of z ' in R  is a prime element o f R.

Pro o f . Let A =grf f iR  be th e  graded r in g  associator to  th e  r in g  R =R Iz R
III= m / zR . Then we see that A  is a  homomorphic image of

B =k [x „ x 2 , x 3, y l, Y2 , Y3]/(X1Y2 — X2Y1, X1Y3 — X3Y1, X2Y3 — X3Y2,

where k =R /m  and  f  is th e  linear polynomial correspond to the  leading form of
z  in  g r„,R . Since dim A=dim R =dim R - 1 =d im B  by [16, (23.8)] and since B
is a  domain by Lemma 6.2, we see that A  is a  d o m a in . Then R i s  a  domain
by [16, (25.15)].

L e t  F i (X , Y )=X i l 7  2 —X 2 Y ,, F 2 (X ,Y )=X 2 Y 3 —X 3 Y 2 , F 3 (X ,Y )=X 1 17
3 —X 3 Y 1 .

Then we have seen
6.4.1. For regular local ring (R , m ) of dim ension six and a regular system
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o f  parameters x l , x2, x3, y ly  Y 2  and y 3 ,  general element z w . r. t. (x, y )  generate
a prime ideal of

RI y ) ,  F2(x, Y ), Fs(x, y)} .

6 .4 .2 . F o r  integral domain R , F„ F 2 a n d  F2 generate a  p r im e  ideal of
RUC, Y ]=R O z Z [X „ X 3 , X 3 ,  Y l ,  Y 2 ,  37 3].

Now the following is a  consequence of the proof of [18, Proposition 3.2].

Proposition 6 .5 .  L et (S , ni) be a regular local rin g  o f  d im ensio n  s ix  with
regular sy stem  of  parameters x 1 , x2, x3, Y 1, y 2 , y 3  and let (R , n) be a subring of
S  such that nS=m and R  contains an  infinite field. T a k e  a , 13, pi , • • • ,  p i i c m  and
a natural num ber e. L e t ch, ,  q. be prim e ideals o f  S  such that ht q 1 _5 and
(a, 13)SZq 1 (i=1, •-• , r). Then there exists an  element p ' i n  R  such that p '  is
associate n o n e  o f  pi  ( i= 1 , • • •  ,  n ), a4 - 13p"E q ;  • • •  ,  r )  and  p '  is general
w. r. t. (x , y).

Example 1. A cceptable Cohen M acaulay  ring with no canonical module.

Let Q  be the rational number field and let latk, k , lE N I be a
set of indeterminates. Put K=Q(laik, b) 11) and S =K [x i ,  x 2 , x 3 , v  v  v„ 1, , 2, 3](2, y )

where x „ x 2 ,  x 3 , y i, y 2 , 3 , 2 are indeterminates. L e t ga b e the set of principal
prime ideals of S .  Now consider a  map 0 : N -4 S , a  se t o f integers { t„In EN}
and the following three conditions.

6 .6 .1 . 0(k )=Pk  (k  EN) are prime elements of S  an d  fo r  an y  pŒs), there
exists a unique k EN such that p=p k S.

P u t  q n = k, g i n = x , -  ki i aikqk t k , h i n=y ) ± b i k q k t k j 3 )  and

. (g i n , g 2 n ,  g 3 n )S  (n E N ). The second condition is

6 .6 .2 . ( i)  t i <t i  i f  i < j  and (ii) p .ep 71_, for a ll n GN.

Put IF i(gg , h.), F2(g71, hn), F3(g71, h.)}

(g .,  h 7 1 ) =(g 1 7 1 , g1 71, g3 71, h 1 7 1 ,  h 271, h 3 71 )

and I I .= Pk)S  is a prime ideal} .

The third condition is the following

6 .6 .3 . For each n EN and for each minimal prime q of (X., Pn)S , n=(?Ek , pk )s
for some k E ll

Remark 6 .6 .4 . It may seem strange that the condition ( i i)  o f  6.6 .2  is not
symmetric on g and h .  Really, the condition we need is p 71 E3C71 _1 S.

Now we can prove

for

Theorem 6 .6 .  There exists a  map 0 : N - 6  and a set of integers {t n In E NI
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such that they satisfies the three conditions 6.6.1, 6.6.2, 6.6.3 above.

P ro o f. Since dim S=6 is equal to the  number o f  indeterminates o f  F l  •  F 2

and  F „ we can not adopt th e  absolute generator arguments in the proof of Prop-
osition (4.2) in  [18 ]. Nevertheless instead of the condition (2.1.1) i n  [18], we
consider the  property 6.4.1. Really, adopt Proposition 6.5 instead of Proposition
(3.2) in  [18], then other arguments proceed in  parallel with that in  § 4 in  [18].

Let (0 , It; /E N D  be th e  map in  the  Theorem 6.6 and  pu t p = 0 ( 1 ) .  Let
L  be the field of fractions of S  and w e put

C O n =Fi(g n , h n ) /q n tn , t t n = F 2 (g n , 17 7,) /q n
3n, vn=F2(g.,h,3)/q t

' nL

A n = S I(On, Pn, V ni(x ,

A-=lim A n c L

Then A is our example. Really we can prove

6.7.1. A  is noetherian.

6.7.2. (g 2 , g 2 , 2 .
3 )g n S =0

6.7.3.

where

and

A.- 1{Fi (g , h), F2 (g , h), .F3 (g, h)}

g i =x i +  E a i k q k tk, h i =y i + E b j k q k tk g
k=1 k=1

(g, h)=(g1, g2, g2, h1, 112, h2).

6.7.4. A is a unique factorization domain.

b y the  proof in  [18, § 4] and  [17, § III].

Now we see easily from 6.7.3 that

6.7.5. Canonical module of A is isomorphic to (g 3 , h i )A  and hence A  does not
have a canonical module.

Really canonical module of A  is isomorphic to an  ideal of pure height one if
exists by [15, Lemma 3], b u t it m ust be principal by 6.7.4, a contradiction.

6.7.6. A  is acceptable.

P ro o f. A  is universally catenary because A  is  Cohen M acaulay. Since the
open subscheme U=Spec Im241 is  Gorenstein, we see that formal fibers of A
a re  Gorenstein by [23, Theorem 1]. Then A  is  acceptable because A  is  local.

Example 2 .  Non-acceptable ring with a canonical module.

L et R = R 7,  be a  finitely generated graded ring over the field k =R 0 such
nto
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that R  is not Cohen Macaulay and the completion P of the  local ring  R n  i s  a
factorial domain where 9R=R + ,  the existence of such a  r in g  is shown by [14].
Write

R=k[X„ ••• , X.]1(F1(X), •-• , Ft(X))

w here X i  (i= 1, ••• , n )  a r e  indeterm inates o f  p o s i t iv e  degree a n d  F ,(X )=
F,(X„ •••, X .) ( j= 1 ,  • • ,  t )  a r e  homogeneous polynomials. Since coefficients of
F1 , ••• , F t a r e  finite, we may assume that k  is countable.

Let {a 1 j E N }  be a  se t o f  indeterminates and let K = k (fa i ,1 ). Put

S
=

KE Y 1, ••• y n y Y , l)

where Yi, ••• , y n a n d  z  a re  indeterminates.
Let be a  se t of prim e elements in  S  such that each principal prim e ideal

of S  has a unique generator in  2 .  Since 2  is countable, elements o f 2  can be
numbered in  such a  way that .g.= with p,=z.

P ut q„,= kA p k , (i =1, •••, n) and pn i = (g i , ••• , g n i n )S.

Theorem 6.8. W ith the notations above, there is an enumeration of 2  such
that p nosE p„, fo r  all mEN.

T h e  proof is a n  easy generalization o f  [17 , Theorem 4 ]  and  we omit the
proof.

L e t Ip m l in E N I be th e  ennumeration of g ' in  Theorem 6.8 and put

••• , g n m ) I L=Q-1S mE N)

A m = S E W im , •  •  •  y a h m 1 (  y y z, cot &

A=lim A n OEL

Then we can prove by th e  proof in  [17, § III] that

6 .9 .1 . A  is noetherian

6.9.2. (g1, ••., g )g n S = 0  where g i = y i +  E a i k q

6 .9 .3 . A'LlSs I(F,, •-• , F t ) w ith F i = F i (g,, ••• , g.) (i=1, ••• , t)

Now we show that A  is th e  required example. Really

6 .9 .4 . A  has canonical module because Â  is factorial and hence has a  canon-
ical module free. [15 , Lemma 3].

6 .9 .5 . A is not acceptable because generic fiber L O A Â at the prime (g„ ••• g .)
is not Cohen Macaulay by 6.9.3.
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