Differentiability of generalized Fourier transforms associated with Schrödinger operators

By

Hiroshi Isozaki

(Received Oct. 12, 1984)

Introduction

In our previous work [1], we developed a theory of eigenfunction expansion or generalized Fourier transformation associated with the Schrödinger operator $H = -\Delta + V(x)$ in $L^2(\mathbb{R}^n)$ $(n \ge 2)$ with a long-range potential V(x) satisfying the following assumption

(A)
$$\begin{cases} V(x) \text{ is a real smooth function on } \mathbf{R}^n \text{ such that for some constant } \epsilon_0 > 0 \\ D_x^{\alpha}V(x) = O(|x|^{-|\alpha|-\epsilon_0}) \text{ as } |x| \longrightarrow \infty \\ \text{for all multi-index } \alpha. \end{cases}$$

More precisely, we constructed a partially isometric operator \mathscr{F} with initial set $L^2_{ac}(H)$ (the absolutely continuous subspace for H) and final set $L^2(\mathbb{R}^n)$ satisfying

$$(\mathcal{F}\alpha(H)f)(\xi) = \alpha(|\xi|^2)(\mathcal{F}f)(\xi)$$

for any bounded Borel function $\alpha(\lambda)$ on R and $f \in L^2(R^n)$. The main idea was as follows: First we construct a real function $\phi(x, \xi)$ which behaves like $x \cdot \xi$ as $|x| \to \infty$ and solves the eikonal equation

$$|V_x \phi(x, \xi)|^2 + V(x) = |\xi|^2$$

in an appropriate region of the phase space $R^n \times R^n$. We set $G_0(x, \xi) = e^{-i(x,\xi)} \cdot (-\Delta + V(x) - |\xi|^2)e^{i\phi(x,\xi)}$ and $R(z) = (H-z)^{-1}$. We then define $\mathscr F$ formally by

(0.1)
$$(\mathscr{F}f)(\xi) = (2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{-i\phi(x,\xi)} f(x) dx$$
$$-(2\pi)^{-n/2} \int_{\mathbb{R}^n} e^{-i\phi(x,\xi)} \overline{G_0(x,\xi)} R(|\xi|^2 + i0) f(x) dx.$$

If V(x) is short-range, i.e. $V(x) = O(|x|^{-1-\epsilon_0})$, one can take $x \cdot \xi$ as $\phi(x, \xi)$. Then the above formula (0.1) takes the following form

(0.2)
$$(\mathscr{F}f)(\xi) = (2\pi)^{-n/2} \int e^{-ix \cdot \xi} f(x) dx$$
$$-(2\pi)^{-n/2} \int e^{-ix \cdot \xi} V(x) R(|\xi|^2 + i0) f(x) dx.$$

As is clear from the above definition, the operator \mathcal{F} is a generalization of the ordinary Fourier transformation

(0.3)
$$(\mathscr{F}_0 f)(\xi) = \hat{f}(\xi) = (2\pi)^{-n/2} \int e^{-ix \cdot \xi} f(x) dx.$$

One knows many interesting properties of \mathscr{F}_0 : Various Paley-Winer type theorems, transforming rapidly decreasing functions into smooth ones, etc. It may be of interest to consider to what extent these properties extend to \mathscr{F} . The main purpose of this paper is to prove the following differentiability property for \mathscr{F} . For a real number s, let $L^{2,s}$ denote the space of measurable functions f(x) on \mathbb{R}^n such that

$$||f||_s^2 = \int (1+|x|)^{2s}|f(x)|^2dx < \infty.$$

Theorem 0.1. Let $\gamma > 1/2$ be arbitrarily fixed and N a non-negative integer. If $f \in L^{2,N+\gamma}$, $(\mathcal{F}f)(\xi)$ is N times differentiable with respect to $\xi \neq 0$, and for any $\varepsilon > 0$

$$\sum_{|\alpha| \leq N} \int_{|\xi| > \varepsilon} \langle \xi \rangle^{-2\gamma} |D_{\xi}^{\alpha}(\mathscr{F}f)(\xi)|^2 d\xi \leq C \|f\|_{N+\gamma}^2.$$

The differentiability of \mathcal{F} is closely connected with the decay rates for scattering states. Using the above result, we can prove the following

Theorem 0.2. Let $\chi(\lambda)$ be a smooth function on \mathbb{R}^1 such that for some $\varepsilon > 0$, $\gamma(\lambda) = 1$ for $\lambda > 2\varepsilon$, $\gamma(\lambda) = 0$ for $\lambda < \varepsilon$. Then for any $s \ge 0$ and $\delta > 0$

$$\|\chi(H)e^{-itH}f\|_{-s} \le C(1+|t|)^{-s}\|f\|_{s+\delta}$$
.

One can make use of the above result as an intermediate step to prove the best possible decay rate

whose proof will be given in a forthcoming paper.

As can be seen from (0.1) and (0.2), in order to prove the differentiability of \mathscr{F} , one should consider that of the resolvent $R(\lambda+i0)$, which occupies the major part of this work and is studied in §1 (Theorem 1.9) utilizing the recent results of Isozaki–Kitada [2], [3] concerning the micro-local estimates for the resolvent. The differentiability with respect to λ of $R(\lambda+i0)$ is also discussed by Jensen–Mourre–Perry [8], where they employ the commutator method due to Mourre [9].

Let us list the notations used in this paper. For a vector $x \in \mathbb{R}^n$, $\hat{x} = x/|x|$ and $\langle x \rangle = (1+|x|^2)^{1/2}$. $\mathcal{B}(\mathbb{R}^n)$ denotes the space of smooth functions on \mathbb{R}^n with bounded derivatives. $C_0^{\infty}(\mathbb{R}^n)$ is the space of smooth functions on \mathbb{R}^n with compact support. For two Banach spaces X and Y, B(X; Y) denotes the totality of bounded linear operators from X to Y. For a multi-index α , $D_x^{\alpha} = (\partial/\partial x_1)^{\alpha_1} \cdots (\partial/\partial x_n)^{\alpha_n}$, $|\alpha| = \alpha_1 + \cdots + \alpha_n$. Throughout the paper, C's denote various constants independent of the parameters in question.

§ 1. Differentiability of the resolvent

Let $H = -\Delta + V(x)$, where V satisfies the assumption (A) in the introduction, and $R(z) = (H-z)^{-1}$. Our starting point is the following limiting absorption principle (see e.g. [2], Theorem 1.2).

Lemma 1.1. For any $\lambda > 0$ and $\gamma > 1/2$, there exists a strong limit s- $\lim_{\varepsilon \downarrow 0} R(\lambda \pm i\varepsilon) = R(\lambda \pm i0)$ in $B(L^{2,\gamma}; L^{2,-\gamma})$. Moreover for any $\varepsilon > 0$, there exists a constant C > 0 such that

$$||R(\lambda \pm i0)f||_{-\gamma} \le C/\sqrt{\lambda}||f||_{\gamma}$$

for $\lambda > \varepsilon$.

Our aim of this section is to discuss the differentiability with respect to λ of the resolvent $R(\lambda \pm i0)$. It leads us to consider the powers of $R(\lambda \pm i0)$, since by the formal calculus

$$\left(\frac{d}{d\lambda}\right)^{N} R(\lambda \pm i0) = N! R(\lambda \pm i0)^{N+1}.$$

Needless to say, one cannot use Lemma 1.1 directly to treat $R(\lambda \pm i0)^{N+1}$. If one inserts some pseudo-differential operators (Ps. D. Op.'s), however, one can give a definite meaning to $R(\lambda \pm i0)^{N+1}$. The estimates of resolvents multiplied by Ps. D. Op.'s, which we call the micro-local resolvent estimates, have been intensively studied in [2] and [3]. Let us begin with recalling the results.

Definition 1.2. Let $a_0 > 0$ be arbitrarily fixed and $\mu \ge 0$. A smooth function $p(x, \xi; \lambda)$ belongs to $W(\mu)$ if for any α , β

$$\sup_{x,\,\xi\in\mathbb{R}^n,\,\lambda>\alpha_0}\langle x\rangle^{\mu+|\alpha|}\langle\xi\rangle^{|\beta|}|D^\alpha_xD^\beta_\xi\;p(x,\,\xi\,;\,\lambda)|<\infty.$$

Definition 1.3. $p(x, \xi; \lambda) \in S_{\infty}$ if

- (1) $p(x, \xi; \lambda) \in W(0)$,
- (2) there exists a constant $\varepsilon > 0$ such that

$$p(x, \xi; \lambda) = 0$$
 if $||\xi|/\sqrt{\lambda} - 1| < \varepsilon, \lambda > a_0$,

(ε may depend on $p(x, \xi; \lambda)$).

Definition 1.4. $p_{\pm}(x, \xi; \lambda) \in S_{\pm}$ if

- (1) $p_{\pm}(x, \xi; \lambda) \in W(0)$,
- (2) there exists a constant $\varepsilon > 0$ such that

$$p_{\pm}(x, \xi; \lambda) = 0$$
 if $||\xi|/\sqrt{\lambda} - 1| > \varepsilon, \lambda > a_0$,

(ε may depend on $p_{\pm}(x, \xi; \lambda)$),

(3) there exists a constant μ_{\pm} such that $-1 < \mu_{\pm} < 1$ and

$$p_{+}(x, \xi; \lambda) = 0$$
 if $\hat{x} \cdot \hat{\xi} < \mu_{+}$,
 $p_{-}(x, \xi; \lambda) = 0$ if $\hat{x} \cdot \hat{\xi} > \mu_{-}$,

 $(\mu_+ \text{ may depend on } p_+(x, \xi; \lambda)).$

For a Ps. D. Op. $P(\lambda)$, $P(\lambda) \in S_{\infty}$ (or S_{\pm}) means that its symbol belongs to S_{∞} (or S_{\pm}). Then we have shown in [2], Theorems 3.3 and 3.5 the following

Lemma 1.5.

(1) Let $P(\lambda) \in S_{\infty}$. Then for any s > 1/2 and $\lambda > a_0$

$$||P(\lambda)R(\lambda\pm i0)f||_s \leq C/\lambda ||f||_s$$
.

(2) Let $P_{\pm}(\lambda) \in S_{\pm}$. Then for any s > 1/2 and $\lambda > a_0$

$$||P_{\pm}(\lambda)R(\lambda\pm i0)f||_{s-1} \leq C/\sqrt{\lambda}||f||_{s}$$
.

A remark should be added here concerning the limits $\lim_{\varepsilon \downarrow 0} P(\lambda)R(\lambda \pm i\varepsilon)$ and $\lim_{\varepsilon \downarrow 0} P_{\mp}(\lambda)R(\lambda \pm i\varepsilon)$. What we have shown in [2] actually is that for any s > 1/2

(1.1)
$$\sup_{0 \le \varepsilon \le 1} \|P_{\mp}(\lambda)R(\lambda \pm i\varepsilon)f\|_{s-1} \le C/\sqrt{\lambda} \|f\|_{s}$$

(see [2], Theorem 3.7), which does not necessarily imply the existence of the strong limit s- $\lim_{\varepsilon \downarrow 0} P_{\mp}(\lambda) R(\lambda \pm i\varepsilon)$ in $B(L^{2,s}; L^{2,s-1})$. As can be checked easily, however,

(1.1) implies the existence of the strong limit s- $\lim_{\varepsilon \downarrow 0} P_{\mp}(\lambda) R(\lambda \pm i\varepsilon)$ in $B(L^{2,s};$

 $L^{2,s-1-\delta}$) for any $\delta > 0$. In the same way, one can show the existence of the strong limit s- $\lim_{\epsilon \to 0} P(\lambda)R(\lambda \pm i\epsilon)$ in $B(L^{2,s}; L^{2,s-\delta})$ for any $\delta > 0$.

Definition 1.6. (1) Let $P(\lambda)$, $Q(\lambda)$ be Ps. D. Op.'s $\in W(0)$ with symbols $p(x, \xi; \lambda)$, $q(x, \xi; \lambda)$, respectively. $\{P(\lambda), Q(\lambda)\}$ is said to be a disjoint pair of type I if

$$\inf_{x \in p^n, \lambda < a_0} \operatorname{dis} \left(\sup_{\xi} p(x, \xi; \lambda), \sup_{\xi} q(x, \xi; \lambda) \right) > 0,$$

where dis (A, B) denotes the distance of two sets $A, B \subset \mathbb{R}^n$, and supp $p(x, \xi; \lambda)$ means the support of $p(x, \xi; \lambda)$ as a function of ξ .

(2) Let $P_{\pm}(\lambda)$ be Ps. D. Op.'s $\in S_{\pm}$ with symbols $p_{\pm}(x, \xi; \lambda)$. $\{P_{+}(\lambda), P_{-}(\lambda)\}$ is said to be a disjoint pair of type II if there exist constants μ_{\pm} such that $-1 < \mu_{-} < \mu_{+} < 1$ and

$$p_{+}(x, \xi; \lambda) = 0$$
 if $\hat{x} \cdot \hat{\xi} < \mu_{+}$,
 $p_{-}(x, \xi; \lambda) = 0$ if $\hat{x} \cdot \hat{\xi} > \mu_{-}$.

Lemma 1.7. (1) Let $P(\lambda)$, $Q(\lambda) \in S_{\infty}$. Suppose $\{P(\lambda), Q(\lambda)\}$ is a disjoint pair of type I. Then for any s > 0 and $\lambda > a_0$, there exists a strong limit s- $\lim_{\varepsilon \downarrow 0} P(\lambda)R(\lambda \pm i\varepsilon)Q(\lambda)$ in $B(L^{2,-s}; L^{2,s})$ and

$$||P(\lambda)R(\lambda \pm i0)Q(\lambda)f||_s \leq C/\sqrt{\lambda}||f||_{-s}$$
.

(2) Let $P_{\pm}(\lambda) \in S_{\pm}$ and $Q(\lambda) \in S_{\infty}$. Suppose that $\{P_{\pm}(\lambda), Q(\lambda)\}$ are disjoint pairs of type I. Then for any s > 0 and $\lambda > a_0$, there exist strong limits

$$s-\lim_{\varepsilon\downarrow 0} Q(\lambda)R(\lambda\pm i\varepsilon)P_{\pm}(\lambda), \quad s-\lim_{\varepsilon\downarrow 0} P_{\mp}(\lambda)R(\lambda\pm i\varepsilon)Q(\lambda)$$

in $B(L^{2,-s}; L^{2,s})$. Moreover,

$$||Q(\lambda)R(\lambda \pm i0)P_{\pm}(\lambda)f||_{s} \leq C/\sqrt{\lambda}||f||_{-s}$$

$$||P_{\mp}(\lambda)R(\lambda \pm i0)Q(\lambda)f||_s \leq C/\sqrt{\lambda}||f||_{-s}$$
.

(3) Let $P_{\pm}(\lambda) \in S_{\pm}$. Suppose $\{P_{+}(\lambda), P_{-}(\lambda)\}$ is a disjoint pair of type II. Then for any s>0 and $\lambda>a_0$, there exists a strong limit s- $\lim_{\epsilon \downarrow 0} P_{\pm}(\lambda)R(\lambda \pm i\epsilon)P_{\pm}(\lambda)$ in $B(L^{2,-s}; L^{2,s})$ and

$$||P_{\pm}(\lambda)R(\lambda_{\pm}i0)P_{\pm}(\lambda)f||_{s} \leq C/\sqrt{\lambda}||f||_{-s}$$
.

For the proof, see [2] Theorems 4.2, 4.3, 4.4 and [3] Theorem 2. We now study the limit s- $\lim_{\lambda \to 0} R(\lambda \pm i\epsilon)^N$.

Theorem 1.8. Let $\gamma > 1/2$ be arbitrarily fixed and N an integer ≥ 1 . Let $\lambda > a_0$. Then we have:

(1) There exists a strong limit s- $\lim_{\varepsilon \downarrow 0} R(\lambda \pm i\varepsilon)^N \equiv R(\lambda \pm i0)^N$ in $B(L^{2,\gamma+N-1}; L^{2,-\gamma-N+1})$ and

$$||R(\lambda \pm i0)^N f||_{-\gamma-N+1} \le C\lambda^{-N/2}||f||_{\gamma+N-1}$$
.

(2) Let $P_{\pm}(\lambda) \in S_{\pm}$. For any $s \ge N + \gamma$ and $\delta > 0$, there exists a strong limit s- $\lim_{n \to \infty} P_{\pm}(\lambda) R(\lambda \pm i \epsilon)^N$ in $B(L^{2,s}; L^{2,s-N-\delta})$ and

$$||P_{\pm}(\lambda)R(\lambda \pm i0)^{N}f||_{s-N} \leq C\lambda^{-N/2}||f||_{s}$$
.

(3) Let $P_{\pm}(\lambda) \in S_{\pm}$. For any $s \ge N + \gamma$ and $\delta > 0$, there exists a strong limit s-lim $R(\lambda \pm i\varepsilon)^N P_{\pm}(\lambda)$ in $B(L^{2,-s+N}; L^{2,-s-\delta})$ and

$$||R(\lambda \pm i0)^N P_+(\lambda)f||_{-s} \le C\lambda^{-N/2}||f||_{-s+N}$$
.

(4) Let $P_{\pm}(\lambda) \in S_{\pm}$. Suppose $\{P_{+}(\lambda), P_{-}(\lambda)\}$ is a disjoint pair of type II. Then for any s > 0, there exists a strong limit s- $\lim_{\epsilon \downarrow 0} P_{\pm}(\lambda) R(\lambda \pm i\epsilon)^N P_{\pm}(\lambda)$ in $B(L^{2,-s}; L^{2,s})$ and

$$||P_{\pm}(\lambda)R(\lambda \pm i0)^{N}P_{\pm}(\lambda)f||_{s} \le C\lambda^{-N/2}||f||_{-s}.$$

(5) Let $Q(\lambda) \in S_{\infty}$ and $s \ge \gamma + N - 1$. For any $\delta > 0$ there exists a strong limit s-lim $Q(\lambda)R(\lambda \pm i\varepsilon)^N$ in $B(L^{2,s}: L^{2,s-N+1-\delta})$ and

$$||Q(\lambda)R(\lambda \pm i0)^{N}f||_{s-N+1} \le C\lambda^{-N/2}||f||_{s}.$$

Proof (by induction on N). The assertions of the theorem have already been proved for N=1 (see Lemmas 1.5, 1.7). Assume the theorem for N.

Choose $\phi_0(\xi) \in C^{\infty}(\mathbb{R}^n)$ such that

$$\phi_0(\xi) = \begin{cases} 1 & ||\xi| - 1| < \varepsilon \\ 0 & ||\xi| - 1| > 2\varepsilon, \end{cases}$$

where $0 < \varepsilon < 1/2$. We set

$$\phi_{\infty}(\xi) = 1 - \phi_0(\xi)$$
.

Let $\chi_0(x)$, $\chi_{\infty}(x) \in C^{\infty}(\mathbb{R}^n)$ be such that $\chi_0(x) + \chi_{\infty}(x) = 1$,

$$\chi_0(x) = 0$$
 for $|x| > 2$,

$$\chi_0(x) = 1$$
 for $|x| < 1$.

Choose constants $-1 < \tilde{\mu}_{\pm} < 1$ and C^{∞} -functions $\rho_{\pm}(t)$ so that $\tilde{\mu}_{-} < \tilde{\mu}_{+}$, $\rho_{+}(t) + \rho_{-}(t) = 1$ and

$$\rho_+(t) = 0$$
 for $t < \tilde{\mu}_+$,

$$\rho_{-}(t) = 0$$
 for $t > \tilde{\mu}_{-}$.

Let $A(\lambda)$, $B(\lambda)$, $\tilde{P}_{\pm}(\lambda)$ be the Ps. D. Op.'s with symbols $\phi_{\infty}(\xi/\sqrt{\lambda})$, $\chi_0(x)\phi_0(\xi/\sqrt{\lambda})$, $\chi_{\infty}(x)\rho_{\pm}(\hat{x}\cdot\hat{\xi})\phi_0(\xi/\sqrt{\lambda})$, respectively. By definition $A(\lambda)\in S_{\infty}$, $\tilde{P}_{\pm}(\lambda)\in S_{\pm}$, the symbol of $B(\lambda)$ is compactly supported for x and

$$A(\lambda) + B(\lambda) + \tilde{P}_{+}(\lambda) + \tilde{P}_{-}(\lambda) = 1.$$

We further introduce the following notations. Let

$$I = \{z \in C; \text{ Re } z > a_0, \text{ Im } z > 0\}.$$

For an operator T(z) defined for $z \in I$, $T(z) \in C(\bar{I}; L^{2,s}, L^{2,r}; k)$ means that there exists a strong limit s- $\lim_{t \to 0} T(\lambda + i\varepsilon)$ in $B(L^{2,s}; L^{2,r})$ for $\lambda > a_0$ and

$$||T(\lambda+i0)f||_{r} < C\lambda^{-k/2}||f||_{s}$$
.

Pfroof of (1) for N+1. We split $R(\lambda + i\varepsilon)^{N+1}$ into four parts:

(1.2)
$$R(\lambda + i\varepsilon)^{N+1} = R(\lambda + i\varepsilon)^{N} A(\lambda) R(\lambda + i\varepsilon) + R(\lambda + i\varepsilon)^{N} B(\lambda) R(\lambda + i\varepsilon)$$

$$+ R(\lambda + i\varepsilon)^{N} \tilde{P}_{+}(\lambda) R(\lambda + i\varepsilon) + R(\lambda + i\varepsilon)^{N} \tilde{P}_{-}(\lambda) R(\lambda + i\varepsilon) .$$

Since $A(\lambda) \in S_{\infty}$, Lemma 1.5 (1) shows that $A(\lambda)R(\lambda + i\varepsilon) \in C(\bar{I}; L^{2,\gamma+N-1}, L^{2,\gamma+N-1}; 1)$. By our induction hypothesis (1), $R(\lambda + i\varepsilon)^N \in C(\bar{I}; L^{2,\gamma+N-1}, L^{2,\gamma-N-1}; N)$. Thus the first term belongs to $C(\bar{I}; L^{2,\gamma+N-1}, L^{2,\gamma-N-1}; N+1)$.

Since the symbol of $B(\lambda)$ is compactly supported for x, $R(\lambda+i\varepsilon)^N B(\lambda) \in C(\bar{I}; L^{2,-\gamma}, L^{2,-\gamma-N+1}; N)$ by our induction hypothesis (1). This, combined with Lemma 1.1, shows that the second term belongs to $C(\bar{I}; L^{2,\gamma}, L^{2,-\gamma-N+1}; N+1)$.

In view of Lemma 1.1 and our induction hypothesis (3), we have $R(\lambda + i\varepsilon) \in C(\bar{I}; L^{2,\gamma}, L^{2,-\gamma}; 1)$ and $R(\lambda + i\varepsilon)^N \tilde{P}_+(\lambda) \in C(\bar{I}; L^{2,-\gamma}, L^{2,-\gamma-N}; N)$, which shows that the third term belongs to $C(\bar{I}; L^{2,\gamma}, L^{2,-\gamma-N}; N+1)$.

Making use of our induction hypotheses (1) and (2) for N, we have for small $\delta > 0$, $\tilde{P}_{-}(\lambda)R(\lambda+i\varepsilon) \in C(\bar{I}; L^{2,\gamma+N}, L^{2,\gamma+N-1-\delta}; 1)$ and $R(\lambda+i\varepsilon)^N \in C(\bar{I}; L^{2,\gamma-\delta+N-1}, L^{2,-\gamma+\delta-N+1}; N)$. Thus the fourth term belongs to $C(\bar{I}; L^{2,\gamma+N}, L^{2,-\gamma-N+1}; N+1)$.

Proof of (2) for N+1. We multiply (1.2) by $P_{-}(\lambda)$. By methods similar to the above, one can show that $P_{-}(\lambda)R(\lambda+i\epsilon)^NA(\lambda)R(\lambda+i\epsilon)$, $P_{-}(\lambda)R(\lambda+i\epsilon)^NB(\lambda)R(\lambda+i\epsilon)$ and $P_{-}(\lambda)R(\lambda+i\epsilon)^N\tilde{P}_{-}(\lambda)R(\lambda+i\epsilon)$ belong to $C(\bar{I}; L^{2,s}, L^{2,s-N-1-\delta}; N+1)$ for $s \ge N+1+\gamma$ and $\delta > 0$. In order to treat the term $P_{-}(\lambda)R(\lambda+i\epsilon)^N\tilde{P}_{+}(\lambda)R(\lambda+i\epsilon)$, we note that $\{P_{-}(\lambda), \tilde{P}_{+}(\lambda)\}$ becomes a disjoint pair of type II if $\tilde{\mu}_{+} > \mu_{-}$. Thus by our induction hypothesis (4) for N, we have $P_{-}(\lambda)R(\lambda+i\epsilon)^N\tilde{P}_{+}(\lambda) \in C(\bar{I}; L^{2,-\gamma}, L^{2,s}; N)$ for any s > 0, which, combined with Lemma 1.1, shows that $P_{-}R(\lambda+i\epsilon)\tilde{P}_{+}(\lambda)R(\lambda+i\epsilon) \in C(\bar{I}; L^{2,\gamma}, L^{2,s}; N+1)$ for any s > 0.

Proof of (3). By the asymptotic expansion of the symbol of $P_{\pm}(\lambda)^*$, we have for any m>0,

$$P_+(\lambda)^* = P_+^{(m)}(\lambda) + Q_m(\lambda)$$

where $P_{\pm}^{(m)}(\lambda) \in S_{\pm}$ and the symbol $q_m(x, \xi; \lambda)$ of $Q_m(\lambda)$ verifies

$$|D_x^{\alpha}D_{\xi}^{\beta}q_m(x,\xi;\lambda)| \leq C_{\alpha\beta}\langle x \rangle^{-m-|\alpha|}\langle \xi \rangle^{-|\beta|}$$

(see [2], Theorem 2.4). Thus if $s \ge N + \gamma$ and $m \ge \gamma + s - 1$

$$\begin{split} &\|P_{\mp}(\lambda)^*R(\lambda\pm i\varepsilon)^N f\|_{s-N} \\ &\leq &\|P_{\pm}^{(m)}\|(\lambda)R(\lambda\pm i\varepsilon)^N f\|_{s-N} + \|Q_m(\lambda)R(\lambda\pm i\varepsilon)^N f\|_{s-N} \\ &\leq &C\lambda^{-N/2}\|f\|_{s}, \end{split}$$

where we have used (1) and (2). Taking the adjoint, we have $||R(\lambda \pm i\varepsilon)^N P_{\pm}(\lambda)f||_{-s} \le C\lambda^{-N/2}||f||_{-s+N}$, which proves that (3) for N follows from (1) and (2) for N.

Proof of (4) for N+1. First we choose $\tilde{\mu}_{\pm}$ in such a way that $-1 < \mu_{-} < \tilde{\mu}_{-} < \tilde{\mu}_{+} < \mu_{+} < 1$ so that $\{P_{-}(\lambda), \tilde{P}_{+}(\lambda)\}$ and $\{\tilde{P}_{-}(\lambda), P_{+}(\lambda)\}$ form disjoint pairs of type II. Next we recall that the support with respect to ξ of the symbol of $P_{+}(\lambda)$ lies in a small neighborhood of the sphere $\{\xi; |\xi| = \sqrt{\lambda}\}$. Thus for a suitable choice of ε for $A(\lambda)$, $\{A(\lambda), P_{+}(\lambda)\}$ becomes a disjoint pair of type I.

We multiply (1.2) by $P_{\pm}(\lambda)$ from both sides. Consider the resulting first term. By Lemma 1.7 (2), $A(\lambda)R(\lambda+i\varepsilon)P_{+}(\lambda)\in C(\bar{I};L^{2,-s},L^{2,s};1)$ for any s>0. We also have by our induction hypothesis (2), $P_{-}(\lambda)R(\lambda+i\varepsilon)^{N}\in C(\bar{I};L^{2,s},L^{2,s-N-1};N)$. Thus the first term belongs to $C(\bar{I};L^{2,-s},L^{2,s};N+1)$ for s>0.

The treatment of the second term is easy, hence is omitted.

Taking the adjoint in Lemma 1.5 (2), one can show using Lemma 1.1 that $R(\lambda+i\varepsilon)P_+(\lambda)\in C(\bar{I};L^{2,-s},L^{2,-s-2};1)$ for s>0. Since $\{P_-(\lambda),\,\tilde{P}_+(\lambda)\}$ is a disjoint pair of type II, we have $P_-(\lambda)R(\lambda+i\varepsilon)^N\tilde{P}_+(\lambda)\in C(\bar{I};L^{2,-s-2},L^{2,s};N)$ for s>0. Thus the third term has the desired property.

Since $\{\tilde{P}_{-}(\lambda), P_{+}(\lambda)\}$ is a disjoint pair of type II, $\tilde{P}_{-}(\lambda)R(\lambda+i\varepsilon)P_{+}(\lambda)\in C(\bar{I}; L^{2,-s}, L^{2,s}; 1)$ for s>0. This, combined with (2) proves that the fourth term has the desired property.

Proof of (5) for N+1. We shall estimate

$$\begin{split} Q(\lambda)R(\lambda+i\varepsilon)^{N+1} &= Q(\lambda)R(\lambda+i\varepsilon)A(\lambda)R(\lambda+i\varepsilon)^N + Q(\lambda)R(\lambda+i\varepsilon)B(\lambda)R(\lambda+i\varepsilon)^N \\ &\quad + Q(\lambda)R(\lambda+i\varepsilon)\tilde{P}_+(\lambda)R(\lambda+i\varepsilon)^N + Q(\lambda)R(\lambda+i\varepsilon)\tilde{P}_-(\lambda)R(\lambda+i\varepsilon)^N. \end{split}$$

The treatment of the first two terms is easy. We have only to use (1), (5) for N and Lemma 1.5 (1).

Since $Q(\lambda) \in S_{\infty}$, one can assume that $\{Q(\lambda), \tilde{P}_{+}(\lambda)\}$ is a disjoint pair of type I by an appropriate choice of ε . Therefore by Lemma 1.7 (2), $Q(\lambda)R(\lambda+i\varepsilon)\tilde{P}_{+}(\lambda) \in C(\bar{I}; L^{2,-s}, L^{2,s}; 1)$ for s>0. This, combined with (1) for N, shows that the third term belongs to $C(\bar{I}; L^{2,\gamma+N}, L^{2,s}; N+1)$ for s>0.

In order to treat the fourth term, we have only to take note of (2) for N and Lemma 1.5 (1).

In view of Theorem 1.8 and the formula $\left(\frac{d}{d\lambda}\right)^N R(\lambda \pm i\varepsilon) = N!R(\lambda \pm i\varepsilon)^{N+1}$, one can conclude the strong differentiability of the resolvent $R(\lambda + i0)$.

Theorem 1.9. Let $\gamma > 1/2$ and N be an integer ≥ 0 .

(1) As an operator $\in B(L^{2,\gamma+N}, L^{2,-\gamma-N})$, $R(\lambda \pm i0)$ is N-times strongly differentiable and for $\lambda > a_0 > 0$,

$$\left\| \left(\frac{d}{d\lambda} \right)^N R(\lambda \pm i0) f \right\|_{-\gamma - N} \le C \lambda^{-(N+1)/2} \|f\|_{\gamma + N}.$$

(2) Let $P_{\pm}(\lambda) \in S_{\pm}$. For any $s \ge N + 1 + \gamma$ and $\lambda > a_0 > 0$

$$\left\| P_{\pm}(\lambda) \left(\frac{d}{d\lambda} \right)^{N} R(\lambda \pm i0) f \right\|_{s-N-1} \le C \lambda^{-(N+1)/2} \|f\|_{s},$$

$$\left\| \left[\left(\frac{d}{d\lambda} \right)^{N} R(\lambda \pm i0) \right] P_{\pm}(\lambda) f \right\|_{s-N-1} \le C \lambda^{-(N+1)/2} \|f\|_{-s+N+1}.$$

(3) Let $P_{\pm}(\lambda) \in S_{\pm}$. Suppose that $\{P_{+}(\lambda), P_{-}(\lambda)\}$ is a disjoint pair of type II. Then for s > 0 and $\lambda > a_0 > 0$

$$\left\| P_{\mp}(\lambda) \left\lceil \left(\frac{d}{d\lambda} \right)^{N} R(\lambda \pm i0) \right\rceil P_{\pm}(\lambda) f \right\|_{s} \leq C \lambda^{-(N+1)/2} \|f\|_{-s}.$$

(4) Let $Q(\lambda) \in S_{\infty}$. For any $s > N + \gamma$ and $\lambda > a_0 > 0$

$$\left\| Q(\lambda) \left(\frac{d}{d\lambda} \right)^N R(\lambda \pm i0) f \right\|_{s-N} \le C \lambda^{-(N+1)} \|f\|_s.$$

For later use, it is convienient to rewrite the above theorem in the following form.

Theorem 1.10. In addition to the assumptions of Theorem 1.9, suppose that the symbols $p_{\pm}(x, \xi; \lambda)$, $q(x, \xi; \lambda)$ of $P_{\pm}(\lambda)$ and $Q(\lambda)$ have the following properties

$$|D_x^{\alpha} D_{\xi}^{\beta} D_k^m p_{\pm}(x, \xi; k^2)| \leq C_{\alpha\beta m} \langle x \rangle^{-|\alpha|} \langle \xi \rangle^{-|\beta|},$$

$$|D_x^{\alpha} D_{\xi}^{\beta} D_k^m q(x, \xi; k^2)| \leq C_{\alpha\beta m} \langle x \rangle^{-|\alpha|} \langle \xi \rangle^{-|\beta|},$$

where the constant $C_{\alpha\beta m}$ is independent of $k > k_0 = \sqrt{a_0} > 0$. Then we have for $k > k_0 > 0$

(1)
$$\left\| \left(\frac{d}{dk} \right)^N R(k^2 \pm i0) f \right\|_{-\gamma - N} \le Ck^{-1} \|f\|_{\gamma + N},$$

(2) for $s \ge N+1+\gamma$

$$\left\| \left(\frac{d}{dk} \right)^{N} \left[P_{\pm}(k^{2}) R(k^{2} \pm i0) \right] f \right\|_{s-N-1} \le C k^{-1} \| f \|_{s},$$

$$\left\| \left(\frac{d}{dk} \right)^{N} \left[R(k^{2} \pm i0) P_{\pm}(k^{2}) \right] f \right\|_{-s} \le C k^{-1} \| f \|_{-s+N+1},$$

(3) for s>0

$$\left\| \left(\frac{d}{dk} \right)^{N} \left[P_{\mp}(k^{2}) R(k^{2} \pm i0) P_{\pm}(k^{2}) \right] f \right\|_{s} \le C k^{-1} \|f\|_{-s},$$

(4) for $s \ge N + \gamma$

$$\left\| \left(\frac{d}{dk} \right)^{N} [Q(k^{2})R(k^{2} \pm i0)] f \right\|_{s-N} \le Ck^{-1} \|f\|_{s}.$$

§ 2. Differentiability of generalized Fourier transforms

In [1], we constructed a solution to the eikonal equation

$$(2.1) |\nabla_{\mathbf{x}}\phi(\mathbf{x},\,\xi)|^2 + V(\mathbf{x}) = |\xi|^2$$

and used it to develop an eigenfunction expansion theory for the Schrödinger operator H. In [4], we gave a slightly different method of construction. First we recall the results of [1] and [4] (see [1], Theorem 1.16 and [4], Theorem 2.5).

Lemma 2.1. Let $\varepsilon > 0$ be arbitrarily fixed. Choose d > 0 arbitrarily. Then there exists a real function $\phi(x, \xi) \in C^{\infty}(\mathbb{R}^n \times (\mathbb{R}^n - \{0\}))$ having the following properties:

(1) For any $\delta > 0$

$$|D_x^{\alpha}D_{\xi}^{\beta}(\phi(x,\xi)-x\cdot\xi)| \leq C_{\alpha\beta}\langle x\rangle^{1-\varepsilon_0-|\alpha|}\langle \xi\rangle^{-1}$$

for $x \in \mathbb{R}^n$ and $|\xi| > \delta$.

(2)
$$\sup_{x \in \mathbb{R}^n, |\xi| > d} \left| \left(\frac{\partial^2}{\partial x_i \partial \xi_i} \phi \right) (x, \xi) - I \right| < 1/2,$$

where I is the $n \times n$ identity matrix.

(3) For any $\delta > 0$, there exists a constant R > 0 such that for |x| > R, $|\xi| > \delta$ and $\hat{x} \cdot \hat{\xi} > -1 + \varepsilon/2$, $\phi(x, \xi)$ solves the eikonal equation (2.1).

Lemma 2.2 ([3], Theorem 2.3). Choose ε , d>0 arbitrarily. Let $\phi(x, \xi)$ be as in Lemma 2.1. Then there exists a smooth function $a(x, \xi) \in \mathcal{B}(\mathbf{R}^n)$ having the following properties:

$$(1) |D_x^{\alpha} D_{\xi}^{\beta}(a(x,\xi)-1)| \leq C_{\alpha\beta} \langle x \rangle^{-\varepsilon_0 - |\alpha|} \langle \xi \rangle^{-1},$$

if $|\xi| > d$, $\hat{x} \cdot \hat{\xi} > -1 + \varepsilon$, |x| > 2R, R being the constant specified in Lemma 2.1 for $\delta = d/2$. $a(x, \xi) = 0$ if $|\xi| < d/2$ or $\hat{x} \cdot \hat{\xi} < -1 + \varepsilon/2$ or |x| < R.

(2) Let $G(x, \xi) = e^{-i\phi(x,\xi)}(-\Delta + V - |\xi|^2)e^{i\phi(x,\xi)}a(x, \xi)$. Then for $\hat{x} \cdot \hat{\xi} > -1 + \varepsilon$, we have for any N > 0,

$$|D_x^{\alpha}D_{\xi}^{\beta}G(x,\xi)| \leq C_{\alpha\beta N}\langle x \rangle^{-N}\langle \xi \rangle$$
.

If $\hat{x} \cdot \hat{\xi} < -1 + \varepsilon$,

$$|D_x^{\alpha}D_{\xi}^{\beta}G(x,\xi)| \leq C_{\alpha\beta}\langle x \rangle^{-1-|\alpha|}\langle \xi \rangle.$$

Our generalized Fourier transformation in [1] is constructed by the following method.

Lemma 2.3 ([1], Theorem 5.5). Let $\phi(x, \xi)$ be as in Lemma 2.1. Choose $0 < \mu < 1$ arbitrarily and let $\rho(t) \in C^{\infty}(\mathbf{R}^1)$ be such that $\rho(t) = 1$ for $t > 1 - \mu/2$, $\rho(t) = 0$ for $t < 1 - \mu$. Let $\psi(t) \in C^{\infty}(\mathbf{R}^1)$ be such that $\psi(t) = 1$ for t < 1, $\psi(t) = 0$ for t > 2. We set $\psi_R(x) = \psi(|x|/R)$. Then for $f \in L^{2,\gamma}$ and k > 0, there exists the following strong limit

$$s-\lim_{R\to\infty} 2ik(2\pi)^{-n/2} \int e^{-i\phi(x,k\omega)} \left(\frac{\partial}{\partial r} \psi_R(x)\right) \rho(\hat{x}\cdot\omega) R(k^2+i0) f(x) dx = \mathcal{F}(k) f(x) dx$$

in $L^2(S^{n-1})$. This $\mathcal{F}(k)$ is independent of μ and for any $\delta > 0$

(2.2)
$$\| \mathscr{F}(k)f \|_{L^{2}(S^{n-1})} \leq Ck^{-(n-1)/2} \| f \|_{\gamma}, \qquad (k > \delta).$$

Let us take notice that (2.2) follows from the formulae (8.1), (9.4) in [1] and Lemma 1.1 in the present paper. The fact that $\mathcal{F}(k)$ is independent of μ follows from the proof of [1], §5.

For $f \in L^{2,\gamma}$, we define $(\mathcal{F}f)(\xi)$ by

$$(\mathscr{F}f)(\xi) = (\mathscr{F}(|\xi|)f)(\xi/|\xi|).$$

Then \mathscr{F} is uniquely extended to a partial isometry with initial set $L^2_{ac}(H)$ and final set $L^2(\mathbb{R}^n)$, and plays the role of a generalization to the Fourier transformation ([1], Theore 7.1). Moreover, the above Lemma 2.3 shows that \mathscr{F} depends only on the behavior of the phase function $\phi(x, \xi)$ in a neighborhood of $\hat{x} = \hat{\xi}$. As has been noted in the introduction, $\mathscr{F}f(\xi)$ can be written formally as in (0.1). We now rewrite (0.1) by using $a(x, \xi)$.

Definition 2.4. Let $\phi(x, \xi)$ and $a(x, \xi)$ be as in Lemmas 2.1 and 2.2. Let $\psi_R(x)$ be as in Lemma 2.3. We define for $f \in L^{2,\gamma}$ and k > 0

$$\mathcal{F}(k,R) f(\omega) = (2\pi)^{-n/2} \int \psi_R(x) e^{-i\phi(x,k\omega)} \overline{a(x,k\omega)} f(x) dx$$
$$-(2\pi)^{-n/2} \int \psi_R(x) e^{-i\phi(x,k\omega)} \overline{G(x,k\omega)} R(k^2 + i0) f(x) dx.$$

Lemma 2.5. For $f \in L^{2,\gamma}$ and k > d,

s-
$$\lim_{R\to\infty} \mathscr{F}(k, R) f = \mathscr{F}(k) f$$
 in $L^2(S^{n-1})$.

Proof. We proceed as in [1], § 5. Let $u = R(k^2 + i0)f$. Since

$$(2\pi)^{n/2} \mathscr{F}(k,R) f = \int \psi_R \{ \Delta(e^{-i\phi}\bar{a}) \} u dx - \int \psi_R e^{-i\phi} \bar{a} \Delta u dx,$$

we have by integration by parts

$$(2\pi)^{n/2} \mathscr{F}(k, R) f = \int e^{-i\phi} (\Delta \psi_R) \, \bar{a} u \, dx + 2 \int e^{-i\phi} \left(\frac{\partial}{\partial r} \psi_R\right) \bar{a} \left(\frac{\partial u}{\partial r} - iku\right) dx$$
$$+ 2ik \int e^{-i\phi} \left(\frac{\partial}{\partial r} \psi_R\right) \bar{a} u \, dx$$
$$= I_1(R) + I_2(R) + I_3(R).$$

One can argue as in the proof of [1], Lemma 5.2 to see that $I_1(R) \to 0$, $I_2(R) \to 0$ as $R \to \infty$. Let $\rho(t)$ be as in Lemma 2.3. Then as in the proof of [1], Lemma 5.3, we have

$$\int e^{-i\phi(x,k\omega)} \left(\frac{\partial}{\partial r} \psi_R(x) \right) \overline{a(x,k\omega)} (1 - \rho(\hat{x} \cdot \omega)) u(x) dx \longrightarrow 0$$

as $R \to \infty$. Thus we have only to consider

$$2ik\int e^{-i\phi}\left(\frac{\partial}{\partial r}\psi_R\right)\bar{a}\rho(\hat{x}\cdot\omega)u(x)dx.$$

Since $|(a(x, k\omega) - 1)\rho(\hat{x} \cdot \omega)| \le C\langle x \rangle^{-\epsilon_0}$ by Lemma 2.2, we have as in the proof of Lemma 5.2 in [1],

$$\int e^{-i\phi} \left(\frac{\partial}{\partial r} \psi_R \right) (\bar{a} - 1) \rho(\hat{x} \cdot \omega) u(x) dx \longrightarrow 0.$$

Therefore by Lemma 2.3, we have

$$s-\lim_{R\to\infty} (2\pi)^{n/2} \mathscr{F}(k, R) f = s-\lim_{R\to\infty} 2ik \int e^{-i\phi} \left(\frac{\partial}{\partial r} \psi_R \right) \rho(\hat{x} \cdot \omega) u(x) dx \\
= (2\pi)^{n/2} \mathscr{F}(k) f. \qquad \square$$

It follows formally from Lemma 2.5 that

(2.4)
$$(2\pi)^{n/2} \mathscr{F}(k) f = \int e^{-i\phi(x,k\omega)} \overline{a(x,k\omega)} f(x) dx$$
$$- \int e^{-i\phi(x,k\omega)} \overline{G(x,k\omega)} R(k^2 + i0) f(x) dx.$$

The rest of this section is devoted to showing that the right-hand side is a well-defined bounded operator on $L^{2,\gamma}$ and that it is differentiable with repect to $\xi = k\omega$ if f decays rapidly.

Lemma 2.6. Let $b(x, \xi) \in \mathcal{B}(\mathbb{R}^{2n})$ be such that for some $\varepsilon > 0$ $b(x, \xi) = 0$ if $|\xi| < \varepsilon$. Then the integral transformation

$$Tf(\xi) = \int e^{-i\phi(x,\xi)}b(x,\xi)f(x)dx$$

has the following properties:

(1) If $f \in L^{2,N}$, $Tf(\xi)$ is N times differentiable and

$$\sum_{|\alpha| \leq N} \|D_{\xi}^{\alpha} T f(\xi)\|_{L^{2}} \leq C_{N} \|f\|_{N}.$$

(2) Let $\gamma > 1/2$ and $\varepsilon > 0$ be arbitrarily fixed. Then for any $k > \varepsilon$,

$$\|(Tf)(k\cdot)\|_{L^2(S^{n-1})} \le Ck^{-(n-1)/2} \|f\|_{\gamma}.$$

Proof. (1) follows from [1], Theorem 3.2. Arguing in the same way as in [1], Theorem 3.4, we have

$$\int_{\|\theta\|=k} |Tf(\theta)|^2 dS_{\theta} \leq C \|f\|_{\gamma}^2,$$

where the constant C is independent of $k > \varepsilon$. The assertion (2) directly follows from this inequality.

Lemma 2.7. Let S(k) be defined by

$$S(k)f(\omega) = \int_{-i\phi(x,k\omega)} b(x,k\omega)f(x)dx \qquad (k>0),$$

where $b(x, \xi) \in C^{\infty}(\mathbb{R}^{2n})$ and

$$|D_x^{\alpha}D_{\xi}^{\beta}b(x,\,\xi)| \leq C_{\alpha\beta}\langle x \rangle^{-|\alpha|}$$
.

Let P(k) be the Ps. D. Op. with symbol $p(x, \xi; k)$ such that

$$|D_x^{\alpha} D_{\xi}^{\beta} p(x,\,\xi\,;\,k)| \leq C_{\alpha\beta} \langle x \rangle^{-|\alpha|} \langle \xi \rangle^{-|\beta|}$$

for a constant $C_{\alpha\beta}$ independent of $k > k_0$, k_0 being as in Theorem 1.10. Suppose that $b(x, \xi)$ and $p(x, \xi; k)$ satisfy either of the following assumptions (1), (2):

(1) There exists a constant $\varepsilon > 0$ such that

$$p(x, \xi; k) = 0$$
 if $|\xi|/k-1| < \varepsilon, k > k_0$.

(2) There exist constants μ_{\pm} such that $-1 < \mu_{-} < \mu_{+} < 1$ and

$$b(x, \xi) = 0 \qquad \text{if} \quad \hat{x} \cdot \hat{\xi} > \mu_{-},$$

$$p(x, \xi; k) = 0 \qquad \text{if} \quad \hat{x} \cdot \hat{\xi} < \mu_{+}, k > k_{0}.$$

Then for any $s \ge 0$, $k > k_0$ and N > 0

$$||S(k)\langle x\rangle^N P(k) f||_{L^2(S^{n-1})} \leq C_s k^{-s} ||f||_{-s}.$$

Proof. Choose $\chi_1(x)$, $\chi_2(x) \in C^{\infty}(\mathbb{R}^n)$ such that $\chi_1(x) + \chi_2(x) = 1$, $\chi_1(x) = 1$ for |x| < 1, $\chi_1(x) = 0$ for |x| > 2. We split $S(k) \langle x \rangle^N P(k)$ into two parts: $S(k) \langle x \rangle^N P(k) = A_1(k) + A_2(k)$, where

$$A_{j}(k) f(\omega) = \iint e^{-i(\phi(x,k\omega)-x\xi)} b(x,k\omega) \langle x \rangle^{N} p(x,\xi;k) \chi_{j}\left(\frac{|x|}{R}\right) \hat{f}(\xi) d\xi dx,$$

R > 0 being a constant yet to be determined. By Lemma 2.1 (1),

$$|\nabla_{\mathbf{x}}(\phi(\mathbf{x}, k\omega) - \mathbf{x} \cdot \xi)| - (k\omega - \xi)| \leq Ck^{-1} \langle \mathbf{x} \rangle^{-\epsilon_0}$$
.

In view of the assumptions (1) or (2), one can find a constant C>0 such that on the support of the integrand

$$|k\omega - \xi| \ge Ck$$
 for $k > k_0$.

Therefore, there is a constant R > 0 such that

$$|\mathcal{F}_{\mathbf{x}}(\phi(x, k\omega) - x \cdot \xi)| \ge Ck$$
 for $k > k_0$ and $|x| > R$.

Letting $\psi(\omega, x, \xi; k) = \phi(x, k\omega) - x \cdot \xi$ and using the relation $e^{-i\psi} = |\nabla_x \psi|^{-2} i \nabla_x \psi \cdot \nabla_x e^{-i\psi}$, we have by integrating by parts in $x \ 3N$ times

$$A_2(k) f(\omega) = \iint e^{-i\psi(\omega,x,\xi;k)} b_N(\omega,x,\xi;k) \hat{f}(\xi) d\xi dx,$$

where

$$(2.5) |D_x^{\alpha} D_{\xi}^{\beta} b_N(\omega, x, \xi; k)| \leq C_{\alpha\beta} \langle x \rangle^{-2N} k^{-2N}.$$

Let $B_2(k, \omega)$ be the Ps. D. Op. with symbol $\langle x \rangle^N b_N(\omega, x, \xi; k)$. Then we have

$$A_2(k)f(\omega) = \int e^{-i\phi(x,k\omega)} \langle x \rangle^{-N} (B_2(k,\omega)f)(x) dx.$$

Thus for large N

$$||A_2(k) f||_{L^2(S^{n-1})} \le C \sup_{\omega \in S^{n-1}} |A_2(k) f(\omega)|$$

$$\le C \sup_{\omega \in S^{n-1}} ||B_2(k, \omega) f||_{L^2(S^{n-1})}.$$

(2.5) implies that $||B_2(k, \omega)f||_{L^2} \le Ck^{-2N}||f||_{-N}$, which shows that $||A_2(k)f||_{L^2(S^{n-1})} \le Ck^{-2N}||f||_{-N}$.

Next we consider $A_1(k)$. Since in this case the symbol $\langle x \rangle^N p(x, \xi; k) \chi_1(x/R)$ is compactly supported for x, one can easily show for any $s \ge 0$

$$||A_1(k)f||_{L^2(S^{n-1})} \le C||f||_{-s}$$

with a constant C independent of $k > k_0$. In order to derive the decay with respect to k, we have only to note that for large k, $|\nabla_x(\phi(x, k\omega) - x \cdot \xi)| \ge Ck$ for a constant C > 0 and integrate by parts. \square

We turn to the estimate of the right-hand side of (2.4). The first term is treated by Lemma 2.6 (1). In order to treat the second term, we set

$$T(k)f(\omega) = \int e^{-i\phi(x,k\omega)} \overline{G(x,k\omega)} R(k^2 + i0) f(x) dx$$

and

$$(Tf)(\xi) = T(|\xi|)f(\xi/|\xi|).$$

Lemma 2.8. Let d>0 be the constant specified in Lemma 2.2. Choose $\gamma>1/2$ arbitrarily. Then we have for any $N\geq0$ and k>d

$$\sum_{|\alpha| \leq N} \|D_{\xi}^{\alpha} T f(\xi)|_{\xi = k\omega}\|_{L^{2}(S^{n-1})} \leq C k^{-(n-1)/2} \|f\|_{N+\gamma}.$$

Proof. We make use of the localizations used in the proof of Theorem 1.8. Let $\phi_0(\xi)$, $\phi_{\infty}(\xi)$, $\chi_0(x)$ and $\chi_{\infty}(x)$ be as in the proof of Theorem 1.8. Choose $\rho_{\pm}(t) \in C^{\infty}(\mathbb{R}^1)$ such that $\rho_{+}(t) + \rho_{-}(t) = 1$ and $\rho_{+}(t) = 0$ if t < 1/2, $\rho_{-}(t) = 0$ if t > 3/4. Let A(k), B(k), $P_{\pm}(k)$ be the Ps. D. Op.'s with symbols $\phi_{\infty}(\xi/k)$, $\chi_0(x)\phi_0(\xi/k)$, $\chi_{\infty}(x)\rho_{\pm}(\hat{x}\cdot\hat{\xi})\phi_0(\xi/k)$, respectively. Then $T(k) = \sum_{i=1}^4 T_i(k)$, where

$$T_{1}(k)f(\omega) = \int e^{-i\phi(x,k\omega)}\overline{G(x,k\omega)}A(k)R(k^{2}+i0)f(x)fx,$$

$$T_{2}(k)f(\omega) = \int e^{-i\phi(x,k\omega)}\overline{G(x,k\omega)}B(k)R(k^{2}+i0)f(x)dx,$$

$$T_{3}(k)f(\omega) = \int e^{-i\phi(x,k\omega)}\overline{G(x,k\omega)}P_{+}(k)R(k^{2}+i0)f(x)dx,$$

$$T_{4}(k)f(\omega) = \int e^{-i\phi(x,k\omega)}\overline{G(x,k\omega)}P_{-}(k)R(k^{2}+i0)f(x)dx.$$

We set

$$T_i f(\xi) = T_i(|\xi|) f(\xi/|\xi|)$$
.

First we consider T_1 . By a straightforward calculation we have

$$\begin{split} &\sum_{|\alpha| \leq N} D_{\xi}^{\alpha} T_{1} f(\xi) \\ &= \sum_{\substack{|\alpha| \leq N \\ \beta \leq \frac{\pi}{\delta}}} \int e^{-i\phi(x,\xi)} \langle \xi \rangle a_{\beta}(x,\xi) \langle x \rangle^{|\beta|} A_{\beta}(|\xi|) D_{\xi}^{\alpha-\beta} R(|\xi|^{2} + i0) f(x) dx, \end{split}$$

where $\langle \xi \rangle a_{\beta}(x, \xi)$ and $A_{\beta}(|\xi|)$ arise from the derivatives of $\overline{G(x, \xi)}$ and $A(|\xi|)$, respectively. In particular, $a_{\beta}(x, \xi) \in \mathcal{B}(\mathbf{R}^{2n})$ by Lemma 2.2. In view of Lemma 2.7, we have for any s > 0

$$\sum_{|\alpha| \le N} \|D_{\xi}^{\alpha} T_{1} f(\xi)|_{\xi = k\omega} \|_{L^{2}(S^{n-1})}$$

$$\leq Ck^{-s} \sum_{m \le N} \left\| \left(\frac{d}{dk} \right)^{m} R(k^{2} + i0) f \right\|_{-s}$$

$$\leq Ck^{-s} \|f\|_{N+\gamma},$$

where we have used Theorem 1.10 (1).

Since the symbol of B(k) is compactly supported for x, we have by using Lemma 2.6 (2),

$$\sum_{|\alpha| \le N} \|D_{\xi}^{\alpha} T_{2} f(\xi)\|_{\xi = k\omega} \|L^{2}(S^{n-1})$$

$$\le Ck^{-(n-1)/2} \sum_{m \le N} \left\| \left(\frac{d}{dk} \right)^{m} R(k^{2} + i0) f \right\|_{-N - \gamma}$$

$$\le Ck^{-(n-1)/2} \|f\|_{N + \gamma}.$$

Since $G(x, \xi) = O(\langle \xi \rangle \langle x \rangle^{-1})$, we have, similarly,

$$\sum_{|\alpha| \le N} \|D_{\xi}^{\alpha} T_{4} f(\xi)|_{\xi = k\omega}\|_{L^{2}(S^{n-1})}$$

$$\leq Ck^{-(n-1)/2} \sum_{m \le N} \|\langle x \rangle^{N-m-1+\gamma} \left(\frac{d}{dk}\right)^{m} P_{-}(k) R(k^{2}+i0) f \|_{L^{2}}$$

$$\leq Ck^{-(n-1)/2} \|f\|_{N+\gamma}.$$

The treatment of T_3 is slightly different. Choose $\chi_{\pm}(t) \in C^{\infty}(\mathbb{R}^1)$ such that $\chi_{+}(t) + \chi_{-}(t) = 1$ and $\chi_{+}(t) = 0$ if t < -1/4, $\chi_{-}(t) = 0$ if t > 1/4. We split T_3 into two parts: $T = T_3^{(+)} + T_3^{(-)}$, where

$$T_{\mathfrak{F}}^{(\pm)}(k)f(\omega) = \int e^{-i\phi(x,k\omega)}\overline{G(x,k\omega)}\chi_{\pm}(\hat{x}\cdot\omega)P_{+}(k)R(k^{2}+i0)f(x)dx.$$

Since $\overline{G(x, k\omega)}\chi_+(\hat{x}\cdot\omega)$ is rapidly decreasing in x, we have as for T_2

$$\sum_{|\alpha| \le N} \|D_{\xi}^{\alpha} T_{3}^{(+)} f(\xi)\|_{\xi = k\omega} \|_{L^{2}(S^{n-1})}$$

$$\leq Ck^{-(n-1)/2} \|f\|_{N+\gamma}.$$

Using Lemma 2.7, one can treat $T_3^{(-)}$ in the same way as T_1 :

$$\sum_{|\alpha| \le N} \| D_{\xi}^{\alpha} T_{3}^{(-)} f(\xi) \|_{\xi = k\omega} \|_{L^{2}(S^{n-1})}$$

$$\leq Ck^{-s} \| f \|_{N+\gamma}. \qquad \Box$$

Theorem 0.1 in the introduction now ready follows from Lemma 2.8 by integrating in k.

§ 3. Decay rates for scattering states

As an application of the differentiability property of \mathcal{F} , we derive in this section a decay rate for scattering states of the Schrödinger operator H.

Theorem 3.1. Let $\gamma > 1/2$. Let $\chi(\lambda) \in C^{\infty}(\mathbb{R}^1)$ be such that for some $\varepsilon > 0$ and an integer $N \ge 1$, $\chi(\lambda) = 0$ for $\lambda < \varepsilon$, and $\left| \left(\frac{d}{d\lambda} \right)^m \chi(\lambda) \right| \le C_m \lambda^{(N-2\gamma-m)/2}$ for $\lambda > \varepsilon$, $m = 0, 1, 2, \ldots$. Then we have for t > 0

$$\|\chi(H)e^{-itH}f\|_{-N} \leq Ct^{-N}\|f\|_{N+1+\gamma}.$$

Proof. Let $\psi(\xi) = (\mathscr{F}\chi(H)f)(\xi)$. By [1], Theorem 7.1,

$$e^{-itH}\chi(H)f = \int_0^\infty \mathscr{F}(k)^* e^{-itk^2} \psi(k \cdot) k^{n-1} dk.$$

From (2.4) it follows that

$$\mathscr{F}(k)^*\psi(k\cdot) = (2\pi)^{-n/2} \int_{S^{n-1}} e^{i\phi(x,k\omega)} a(x,k\omega) \psi(k\omega) d\omega - R(k^2 - i0) v(k),$$

where

(3.1)
$$v(k)(x) = (2\pi)^{-n/2} \int_{S^{n-1}} e^{i\phi(x,k\omega)} G(x,k\omega) \psi(k\omega) d\omega.$$

Therefore,

(3.2)
$$e^{-itH}\chi(H)f = (2\pi)^{-n/2} \int e^{i(\phi(x,\xi)-t|\xi|^2)} a(x,\xi)\psi(\xi)d\xi$$
$$-\int_0^\infty R(k^2-i0)v(k)e^{-itk^2}k^{n-1}dk.$$

First we consider the first term of (3.2). Using the relation $(-2it|\xi|^2)^{-1}\xi$. $\mathcal{P}_{\xi}e^{-it|\xi|^2}=e^{-it|\xi|^2}$, we have by integration by parts

$$\langle x \rangle^{-N} \int e^{i(\phi(x,\xi)-t|\xi|^2)} a(x,\xi) \psi(\xi) d\xi$$

$$= \sum_{|\alpha| \le N} \int e^{i(\phi(x,\xi)-t|\xi|^2)} a_{\alpha}(x,\xi;t) D_{\xi}^{\alpha} \psi(\xi) d\xi,$$

where $|D_x^{\beta}D_{\xi}^{\gamma}a_{\alpha}(x, \xi; t)| \le C_{\beta\gamma}(t|\xi|)^{-N}$. Thus by an L^2 -boundedenss theorem of Fourier integral operators ([1], Theorem 3.2), we have

(3.3)
$$\left\| \langle x \rangle^{-N} \int e^{i(\phi(x,\xi)-t|\xi|^2)} a(x,\xi) \psi(\xi) d\xi \right\|_{L^2}$$

$$\leq Ct^{-N} \sum_{|\alpha| \leq N} \left\| \langle \xi \rangle^{-N} D_{\xi}^{\alpha} \psi \right\|_{L^2}.$$

The second term of (3.2) is treated by the technique employed in [5], Lemma 5.1. For $\varepsilon > 0$

$$R(k^2 - i\varepsilon) = -ie^{-it(H - (k^2 - i\varepsilon))} \int_t^\infty e^{is(H - (k^2 - i\varepsilon))} ds.$$

Therefore letting $g(k) = v(k)k^{n-1}$, we have

$$\int_0^\infty R(k^2 - i\varepsilon)e^{-itk^2}g(k)dk = -i\int_t^\infty e^{-(s-t)\varepsilon}e^{-i(t-s)}\hat{g}(s)ds,$$

$$\hat{g}(s) = \int_0^\infty e^{-isk^2}g(k)dk.$$

In the following, we show for finy s > 0

(3.4)
$$\|\hat{g}(s)\|_{L^{2}} \leq C s^{-N-1} \sum_{|\alpha| \leq N+1} \|\langle \xi \rangle^{-N} D_{\xi}^{\alpha} \psi\|_{L^{2}}.$$

If (3.4) is established, we have by the dominated convergence theorem

$$\left\| \int_0^\infty R(k^2 - i0) e^{-itk^2} g(k) dk \right\|_{L^2}$$

$$\leq Ct^{-N} \sum_{|\alpha| \leq N+1} \| \langle \xi \rangle^{-N} D_{\xi}^{\alpha} \psi \|_{L^2}.$$

Therefore for t > 0

$$\|\chi(H)e^{-itH}f\|_{-N} \le Ct^{-N} \sum_{|\alpha| \le N+1} \|\langle \xi \rangle^{-N} D_{\xi}^{\alpha}\psi\|_{L^2}.$$

Since $\psi(\xi) = \chi(|\xi|^2) (\mathscr{F} f)(\xi)$ and $|D_{\xi}^{\alpha} \chi(|\xi|^2)| \leq C \langle \xi \rangle^{N-2\gamma}$,

$$\sum_{|\alpha| \leq N+1} \|\langle \xi \rangle^{-N} D_{\xi}^{\alpha} \psi \|_{L^{2}} \leq C \sum_{|\alpha| \leq N+1} \|\langle \xi \rangle^{-\delta/2} D_{\xi}^{\alpha} (\mathscr{F} f)(\xi) \|_{L^{2}}$$

$$\leq C \|f\|_{N+1+\gamma},$$

by Theorem 0.1. This proves the theorem.

Now we prove (3.4). By (3.1),

$$\hat{g}(t) = (2\pi)^{-n/2} \int e^{i(\phi(x,\xi)-t|\xi|^2)} G(x,\xi) \psi(\xi) d\xi.$$

Choose $\chi_{\pm}(t) \in C^{\infty}(\mathbb{R}^{1})$ such that $\chi_{+}(t) + \chi_{-}(t) = 1$, $\chi_{+}(t) = 0$ for t < 1/2, $\chi_{-}(t) = 0$ for t > 3/4. Split $\hat{g}(t)$ into two parts: $\hat{g}(t) = g_{+}(t) + g_{-}(t)$, where

$$g_{\pm}(t) = (2\pi)^{-n/2} \int e^{i(\phi(x,\xi)-t|\xi|^2)} G(x,\xi) \chi_{\pm}(\hat{x}\cdot\hat{\xi}) \psi(\xi) d\xi.$$

Since $G(x, \xi)\chi_+(\hat{x} \cdot \hat{\xi})$ is rapidly decreasing in x, we have by integration by parts as we have derived (3.3)

$$\|g_{+}(t)\|_{L^{2}} \le Ct^{-N-1} \sum_{|\alpha| \le N+1} \|\langle \xi \rangle^{-N} D_{\xi}^{\alpha} \psi\|_{L^{2}}.$$

(Take notice of the estimates for $G(x, \xi)$ in Lemma 2.2).

Choose $\rho_1(t)$, $\rho_2(t) \in C^{\infty}(\mathbb{R}^1)$ such that $\rho_1(t) + \rho_2(t) = 1$, $\rho_1(t) = 0$ for t > 2, $\rho_2(t) = 0$ for t < 1. Split $g_-(t)$ into two parts: $g_-(t) = g_-^{(1)}(t) + g_-^{(2)}(t)$, where

$$g_{-}^{(j)}(t) = (2\pi)^{-n/2} \int e^{i(\phi(x,\xi)-t|\xi|^2} \rho_j(|x|/R) G(x,\xi) \chi_{-}(\hat{x} \cdot \hat{\xi}) \psi(\xi) d\xi,$$

R>0 being a constant yet to be determined. Since $\rho_1(|x|/R)$ is compactly supported, we have as above

$$\|g_{-}^{(1)}(t)\|_{L^{2}} \le Ct^{-N-1} \sum_{|\alpha| \le N+1} \|\langle \xi \rangle^{-N} D_{\xi}^{\alpha} \psi\|_{L^{2}}.$$

On the support of the integrand of $g_{-}^{(2)}$, we have for large R > 0

$$|\nabla_{\xi}(\phi(x, \xi) - t|\xi|^2)| \ge C(|x| + t|\xi|)$$
 $(|x| > R)$.

Thus by integration by parts

$$g_{-}^{(2)}(t) = \int e^{i(\phi(x,\xi)-t|\xi|^2)} \sum_{|\alpha| \le N+1} b_{\alpha}(x,\xi;t) D_{\xi}^{\alpha} \psi(\xi) d\xi,$$

where $|D_x^{\beta}D_{\zeta}^{\gamma}b_{\alpha}(x, \xi; t)| \le Ct^{-N-1}|\xi|^{-N}$. Therefore again using the L^2 -boundedness theorem of Fourier integral operators

$$\|g_{-}^{(2)}(t)\|_{L^{2}} \le Ct^{-N-1} \sum_{|\alpha| \le N+1} \|\langle \xi \rangle^{-N} D_{\xi}^{\alpha} \psi\|_{L^{2}}.$$

In order to prove Theorem 0.2, we have only to interpolate the estimate in Theorem 3.1 with the obvious one

$$\|\chi(H)e^{-itH}f\|_{L^2} \leq f\|_{L^2}$$
.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

References

- [1] H. Isozaki, On the generalized Fourier transforms associated with Schrödinger operators with long-range perturbations, J. reine angew. Math., 337 (1982), 18-67.
- [2] H. Isozaki and H. Kitada, Micro-local resolvent estimates for two-body Schrödinger operators, (preprint).
- [3] H. Isozaki and H. Kitada, A remark on the micro-local resolvent estimates for two-body Schrödinger operators, (preprint).
- [4] Isozaki and H. Kitada, Modified wave operators with time-independent modifiers, (preprint).
- [5] T. Ikebe and H. Isozaki, A stationary approach to the existence and completeness of long-range wave operators, Integr. Equat. and Oper. Theory, 5 (1982), 18-49.
- [6] T. Ikebe, Spectral representations for Schrödinger operators with long-range potentials,J. Functional Anal., 20 (1975), 158-176.
- [7] Y. Saitō, Spectral representation for the Schrödinger operator with long-range potentials, Springer Lecture Notes in Math. 727, Berlin-Heidelberg-New York 1979.
- [8] A. Jensen, E. Mourre and P. Perry, Multiple commutator estimates and resolvent smoothness in quantum scattering theory, (preprint).
- [9] E. Mourre, Absence of singular continuous spectrum for certain self-adjoint operators, Comm. Math. Phys., 78 (1981), 391-408.