Differentiability of generalized Fourier transforms associated with Schrödinger operators

By
Hiroshi Isozaki

(Received Oct. 12, 1984)

Introduction

In our previous work [1], we developed a theory of eigenfunction expansion or generalized Fourier transformation associated with the Schrödinger operator $H=-\Delta+V(x)$ in $L^{2}\left(\boldsymbol{R}^{n}\right)(n \geq 2)$ with a long-range potential $V(x)$ satisfying the following assumption
(A)

More precisely, we constructed a partially isometric operator \mathscr{F} with initial set $L_{a c}^{2}(H)$ (the absolutely continuous subspace for H) and final set $L^{2}\left(\boldsymbol{R}^{n}\right)$ satisfying

$$
(\mathscr{F} \alpha(H) f)(\xi)=\alpha\left(|\xi|^{2}\right)(\mathscr{F} f)(\xi)
$$

for any bounded Borel function $\alpha(\lambda)$ on \boldsymbol{R} and $f \in L^{2}\left(\boldsymbol{R}^{n}\right)$. The main idea was as follows: First we construct a real function $\phi(x, \xi)$ which behaves like $x \cdot \xi$ as $|x| \rightarrow \infty$ and solves the eikonal equation

$$
\left|\nabla_{x} \phi(x, \xi)\right|^{2}+V(x)=|\xi|^{2}
$$

in an appropriate region of the phase space $\boldsymbol{R}^{n} \times \boldsymbol{R}^{n}$. We set $G_{0}(x, \xi)=e^{-i(x, \xi)}$. $\left(-\Delta+V(x)-|\xi|^{2}\right) e^{i \phi(x, \xi)}$ and $R(z)=(H-z)^{-1}$. We then define \mathscr{F} formally by

$$
\begin{align*}
(\mathscr{F} f)(\xi)= & (2 \pi)^{-n / 2} \int_{R^{n}} e^{-i \phi(x, \xi)} f(x) d x \tag{0.1}\\
& -(2 \pi)^{-n / 2} \int_{R^{n}} e^{-i \phi(x, \xi)} \overline{G_{0}(x, \xi)} R\left(|\xi|^{2}+i 0\right) f(x) d x
\end{align*}
$$

If $V(x)$ is short-range, i.e. $V(x)=O\left(|x|^{-1-\varepsilon_{0}}\right)$, one can take $x \cdot \xi$ as $\phi(x, \xi)$. Then the above formula (0.1) takes the following form

$$
\begin{align*}
(\mathscr{F} f)(\xi)= & (2 \pi)^{-n / 2} \int e^{-i x \cdot \xi} f(x) d x \tag{0.2}\\
& -(2 \pi)^{-n / 2} \int e^{-i x \cdot \xi} V(x) R\left(|\xi|^{2}+i 0\right) f(x) d x
\end{align*}
$$

As is clear from the above definition, the operator \mathscr{F} is a generalization of the ordinary Fouier transformation

$$
\begin{equation*}
\left(\mathscr{F}_{0} f\right)(\xi)=\hat{f}(\xi)=(2 \pi)^{-n / 2} \int e^{-i x \cdot \xi} f(x) d x \tag{0.3}
\end{equation*}
$$

One knows many interesting properties of \mathscr{F}_{0} : Various Paley-Winer type theorems, transforming rapidly decreasing functions into smooth ones, etc. It may be of interest to consider to what extent these properties extend to \mathscr{F}. The main purpose of this paper is to prove the following differentiability property for \mathscr{F}. For a real number s, let $L^{2, s}$ denote the space of measurable functions $f(x)$ on \boldsymbol{R}^{n} such that

$$
\|f\|_{s}^{2}=\int(1+|x|)^{2 s}|f(x)|^{2} d x<\infty
$$

Theorem 0.1. Let $\gamma>1 / 2$ be arbitrarily fixed and N a non-negative integer. If $f \in L^{2, N+\gamma},(\mathscr{F} f)(\xi)$ is N times differentiable with respect to $\xi \neq 0$, and for any $\varepsilon>0$

$$
\sum_{|\alpha| \leq N} \int_{|\xi|>\varepsilon}\langle\xi\rangle^{-2 \gamma}\left|D_{\xi}^{\alpha}(\mathscr{F} f)(\xi)\right|^{2} d \xi \leq C\|f\|_{N+\gamma}^{2}
$$

The differentiability of \mathscr{F} is closely connected with the decay rates for scattering states. Using the above result, we can prove the following

Theorem 0.2. Let $\chi(\lambda)$ be a smooth function on \boldsymbol{R}^{1} such that for some $\varepsilon>0$, $\chi(\lambda)=1$ for $\lambda>2 \varepsilon, \chi(\lambda)=0$ for $\lambda<\varepsilon$. Then for any $s \geq 0$ and $\delta>0$

$$
\left\|\chi(H) e^{-i t H} f\right\|_{-s} \leq C(1+|t|)^{-s}\|f\|_{s+\delta}
$$

One can make use of the above result as an intermediate step to prove the best possible decay rate

$$
\begin{equation*}
\left\|\chi(H) e^{-i t H} f\right\|_{-s} \leq C(1+|t|)^{-s}\|f\|_{s} \quad(s \geq 0) \tag{0.4}
\end{equation*}
$$

whose proof will be given in a forthcoming paper.
As can be seen from (0.1) and (0.2), in order to prove the differentiability of \mathscr{F}, one should consider that of the resolvent $R(\lambda+i 0)$, which occupies the major part of this work and is studied in $\S 1$ (Theorem 1.9) utilizing the recent results of IsozakiKitada [2], [3] concerning the micro-local estimates for the resolvent. The differentiability with respect to λ of $R(\lambda+i 0)$ is also discussed by Jensen-Mourre-Perry [8], where they employ the commutator method due to Mourre [9].

Let us list the notations used in this paper. For a vector $x \in \boldsymbol{R}^{n}, \hat{x}=x /|x|$ and $\langle x\rangle=\left(1+|x|^{2}\right)^{1 / 2} . \mathscr{B}\left(\boldsymbol{R}^{n}\right)$ denotes the space of smooth functions on \boldsymbol{R}^{n} with bounded derivatives. $C_{0}^{\infty}\left(\boldsymbol{R}^{n}\right)$ is the space of smooth functions on \boldsymbol{R}^{n} with compact support. For two Banach spaces X and $Y, \boldsymbol{B}(X ; Y)$ denotes the totality of bounded linear operators from X to Y. For a multi-index $\alpha, D_{x}^{\alpha}=\left(\partial / \partial x_{1}\right)^{\alpha_{1} \ldots}\left(\partial / \partial x_{n}\right)^{\alpha_{n}}$, $|\alpha|=\alpha_{1}+\cdots+\alpha_{n}$. Throughout the paper, C 's denote various constants independent of the parameters in question.

§1. Differentiability of the resolvent

Let $H=-\Delta+V(x)$, where V satisfies the assumption (A) in the introduction, and $R(z)=(H-z)^{-1}$. Our starting point is the following limiting absorption principle (see e.g. [2], Theorem 1.2).

Lemma 1.1. For any $\lambda>0$ and $\gamma>1 / 2$, there exists a strong limit $s-\lim _{\varepsilon \downarrow 0} R(\lambda \pm$ $i \varepsilon)=R(\lambda \pm i 0)$ in $B\left(L^{2, \gamma} ; L^{2,-\gamma}\right)$. Moreover for any $\varepsilon>0$, there exists a constant $C>0$ such that

$$
\|R(\lambda \pm i 0) f\|_{-\gamma} \leq C / \sqrt{\lambda}\|f\|_{\gamma}
$$

for $\lambda>\varepsilon$.
Our aim of this section is to discuss the differentiability with respect to λ of the resolvent $R(\lambda \pm i 0)$. It leads us to consider the powers of $R(\lambda \pm i 0)$, since by the formal calculus

$$
\left(\frac{d}{d \lambda}\right)^{N} R(\lambda \pm i 0)=N!R(\lambda \pm i 0)^{N+1}
$$

Needless to say, one cannot use Lemma 1.1 directly to treat $R(\lambda \pm i 0)^{N+1}$. If one inserts some pseudo-differential operators (Ps. D. Op.'s), however, one can give a definite meaning to $R(\lambda \pm i 0)^{N+1}$. The estimates of resolvents multiplied by Ps. D. Op.'s, which we call the micro-local resolvent estimates, have been intensively studied in [2] and [3]. Let us begin with recalling the results.

Definition 1.2. Let $a_{0}>0$ be arbitrarily fixed and $\mu \geq 0$. A smooth function $p(x, \xi ; \lambda)$ belongs to $W(\mu)$ if for any α, β

$$
\sup _{x, \xi \in R^{n}, \lambda>a_{0}}\langle x\rangle^{\mu+|\alpha|}\langle\xi\rangle^{|\beta|}\left|D_{x}^{\alpha} D_{\xi}^{\beta} p(x, \xi ; \lambda)\right|<\infty,
$$

Definition 1.3. $p(x, \xi ; \lambda) \in S_{\infty}$ if
(1) $p(x, \xi ; \lambda) \in W(0)$,
(2) there exists a constant $\varepsilon>0$ such that

$$
p(x, \xi ; \lambda)=0 \quad \text { if } \quad||\xi| / \sqrt{\lambda}-1|<\varepsilon, \lambda>a_{0}
$$

(ε may depend on $p(x, \xi ; \lambda)$).
Definition 1.4. $p_{ \pm}(x, \xi ; \lambda) \in S_{ \pm}$if
(1) $p_{ \pm}(x, \xi ; \lambda) \in W(0)$,
(2) there exists a constant $\varepsilon>0$ such that

$$
p_{ \pm}(x, \xi ; \lambda)=0 \quad \text { if } \quad|\xi| / \sqrt{\lambda}-1 \mid>\varepsilon, \lambda>a_{0}
$$

(ε may depend on $p_{ \pm}(x, \xi ; \lambda)$),
(3) there exists a constant $\mu_{ \pm}$such that $-1<\mu_{ \pm}<1$ and

$$
\begin{array}{lll}
p_{+}(x, \xi ; \lambda)=0 & \text { if } & \hat{x} \cdot \hat{\xi}<\mu_{+}, \\
p_{-}(x, \xi ; \lambda)=0 & \text { if } & \hat{x} \cdot \hat{\xi}>\mu_{-},
\end{array}
$$

($\mu_{ \pm}$may depend on $p_{ \pm}(x, \xi ; \lambda)$).
For a Ps. D. Op. $P(\lambda), P(\lambda) \in S_{\infty}$ (or $S_{ \pm}$) means that its symbol belongs to S_{∞} (or $S_{ \pm}$). Then we have shown in [2], Theorems 3.3 and 3.5 the following

Lemma 1.5.

(1) Let $P(\lambda) \in S_{\infty}$. Then for any $s>1 / 2$ and $\lambda>a_{0}$

$$
\|P(\lambda) R(\lambda \pm i 0) f\|_{s} \leq C / \lambda\|f\|_{s}
$$

(2) Let $P_{ \pm}(\lambda) \in S_{ \pm}$. Then for any $s>1 / 2$ and $\lambda>a_{0}$

$$
\left\|P_{\mp}(\lambda) R(\lambda \pm i 0) f\right\|_{s-1} \leq C / \sqrt{\lambda}\|f\|_{s} .
$$

A remark should be added here concerning the limits $\lim _{\varepsilon \neq 0} P(\lambda) R(\lambda \pm i \varepsilon)$ and $\lim _{\varepsilon \downarrow 0} P_{\mp}(\lambda) R(\lambda \pm i \varepsilon)$. What we have shown in [2] actually is that for any $s>1 / 2$

$$
\begin{equation*}
\sup _{0<\varepsilon<1}\left\|P_{\mp}(\lambda) R(\lambda \pm i \varepsilon) f\right\|_{s-1} \leq C / \sqrt{\lambda}\|f\|_{s} \tag{1.1}
\end{equation*}
$$

(see [2], Theorem 3.7), which does not necessarily imply the existence of the strong limit $s-\lim _{\varepsilon \downarrow 0} P_{\mp}(\lambda) R(\lambda \pm i \varepsilon)$ in $B\left(L^{2, s} ; L^{2, s-1}\right)$. As can be checked easily, however, (1.1) implies the existence of the strong limit $s-\lim _{\varepsilon \downarrow 0} P_{\mp}(\lambda) R(\lambda \pm i \varepsilon)$ in $\boldsymbol{B}\left(L^{2, s}\right.$; $\left.L^{2, s-1-\delta}\right)$ for any $\delta>0$. In the same way, one can show the existence of the strong limit $s-{ }_{\varepsilon \downarrow 0} P(\lambda) R(\lambda \pm i \varepsilon)$ in $\boldsymbol{B}\left(L^{2, s} ; L^{2, s-\delta}\right)$ for any $\delta>0$.

Definition 1.6. (1) Let. $P(\lambda), Q(\lambda)$ be Ps. D. Op.'s $\in W(0)$ with symbols $p(x, \xi ; \lambda), q(x, \xi ; \lambda)$, respectively. $\{P(\lambda), Q(\lambda)\}$ is said to be a disjoint pair of type I if

$$
\inf _{x \in P^{n}, \lambda<a_{0}} \operatorname{dis}\left(\operatorname{supp}_{\xi} p(x, \xi ; \lambda), \operatorname{supp}_{\xi} q(x, \xi ; \lambda)\right)>0,
$$

where $\operatorname{dis}(A, B)$ denotes the distance of two sets $A, B \subset \boldsymbol{R}^{n}$, and $\operatorname{supp}_{\xi} p(x, \xi ; \lambda)$ means the support of $p(x, \xi ; \lambda)$ as a function of ξ.
(2) Let $P_{ \pm}(\lambda)$ be Ps. D. Op.'s $\in S_{ \pm}$with symbols $p_{ \pm}(x, \xi ; \lambda) . \quad\left\{P_{+}(\lambda), P_{-}(\lambda)\right\}$ is said to be a disjoint pair of type II if there exist constants $\mu_{ \pm}$such that $-1<\mu_{-}<$ $\mu_{+}<1$ and

$$
\begin{array}{lll}
p_{+}(x, \xi ; \lambda)=0 & \text { if } & \hat{x} \cdot \hat{\xi}<\mu_{+}, \\
p_{-}(x, \xi ; \lambda)=0 & \text { if } & \hat{x} \cdot \hat{\xi}>\mu_{-} .
\end{array}
$$

Lemma 1.7. (1) Let $P(\lambda), Q(\lambda) \in S_{\infty}$. Suppose $\{P(\lambda), Q(\lambda)\}$ is a disjoint pair of type I. Then for any $s>0$ and $\lambda>a_{0}$, there exists a strong limit $s-\lim _{\varepsilon \downarrow 0} P(\lambda) R(\lambda \pm$ ie) $Q(\lambda)$ in $B\left(L^{2,-s} ; L^{2, s}\right)$ and

$$
\|P(\lambda) R(\lambda \pm i 0) Q(\lambda) f\|_{s} \leq C / \sqrt{\lambda}\|f\|_{-s}
$$

(2) Let $P_{ \pm}(\lambda) \in S_{ \pm}$and $Q(\lambda) \in S_{\infty}$. Suppose that $\left\{P_{ \pm}(\lambda), Q(\lambda)\right\}$ are disjoint pairs of type I. Then for any $s>0$ and $\lambda>a_{0}$, there exist strong limits

$$
s-\lim _{\varepsilon \downarrow 0} Q(\lambda) R(\lambda \pm i \varepsilon) P_{ \pm}(\lambda), \quad s-\lim _{\varepsilon \downarrow 0} P_{\mp}(\lambda) R(\lambda \pm i \varepsilon) Q(\lambda)
$$

in $B\left(L^{2,-s} ; L^{2, s}\right)$. Moreover,

$$
\begin{aligned}
& \left\|Q(\lambda) R(\lambda \pm i 0) P_{ \pm}(\lambda) f\right\|_{s} \leq C / \sqrt{\lambda}\|f\|_{-s}, \\
& \left\|P_{\mp}(\lambda) R(\lambda \pm i 0) Q(\lambda) f\right\|_{s} \leq C / \sqrt{\lambda}\|f\|_{-s} .
\end{aligned}
$$

(3) Let $P_{ \pm}(\lambda) \in S_{ \pm}$. Suppose $\left\{P_{+}(\lambda), P_{-}(\lambda)\right\}$ is a disjoint pair of type II. Then for any $s>0$ and $\lambda>a_{0}$, there exists a strong limit $s-\lim _{\varepsilon \downarrow 0} P_{ \pm}(\lambda) R(\lambda \pm i \varepsilon) P_{ \pm}(\lambda)$ in $\boldsymbol{B}\left(L^{2,-s} ; L^{2, s}\right)$ and

$$
\left\|P_{\mp}(\lambda) R\left(\lambda_{ \pm} i 0\right) P_{ \pm}(\lambda) f\right\|_{s} \leq C / \sqrt{\lambda}\|f\|_{-s}
$$

For the proof, see [2] Theorems 4.2, 4.3, 4.4 and [3] Theorem 2.
We now study the limit $s-{ }_{\varepsilon \downarrow 0} R(\lambda \pm i \varepsilon)^{N}$.
Theorem 1.8. Let $\gamma>1 / 2$ be arbitrarily fixed and N an integer ≥ 1. Let $\lambda>a_{0}$. Then we have:
(1) There exists a strong limit $\underset{\varepsilon \downarrow \downarrow 0}{ } R(\lambda \pm i \varepsilon)^{N} \equiv R(\lambda \pm i 0)^{N}$ in $B\left(L^{2, \gamma+N-1} ; L^{2,-\gamma-N+1}\right)$ and

$$
\left\|R(\lambda \pm i 0)^{N} f\right\|_{-\gamma-N+1} \leq C \lambda^{-N / 2}\|f\|_{\gamma+N-1} .
$$

(2) Let $P_{ \pm}(\lambda) \in S_{ \pm}$. For any $s \geq N+\gamma$ and $\delta>0$, there exists a strong limit $s-\lim _{\varepsilon \downarrow 0} P_{\mp}(\lambda) R(\lambda \pm i \varepsilon)^{N}$ in $B\left(L^{2, s} ; L^{2, s-N-\delta}\right)$ and

$$
\left\|P_{\mp}(\lambda) R(\lambda \pm i 0)^{N} f\right\|_{s-N} \leq C \lambda^{-N / 2}\|f\|_{s} .
$$

(3) Let $P_{ \pm}(\lambda) \in S_{ \pm}$. For any $s \geq N+\gamma$ and $\delta>0$, there exists a strong limit $s-\lim _{\varepsilon \downarrow 0} R(\lambda \pm i \varepsilon)^{N} P_{ \pm}(\lambda)$ in $B\left(L^{2,-s+N} ; L^{2,-s-\delta}\right)$ and

$$
\left\|R(\lambda \pm i 0)^{N} P_{ \pm}(\lambda) f\right\|_{-s} \leq C \lambda^{-N / 2}\|f\|_{-s+N} .
$$

(4) Let $P_{ \pm}(\lambda) \in S_{ \pm}$. Suppose $\left\{P_{+}(\lambda), P_{-}(\lambda)\right\}$ is a disjoint pair of type II. Then for any $s>0$, there exists a strong limit $s-\lim _{\varepsilon \downarrow 0} P_{\mp}(\lambda) R(\lambda \pm i \varepsilon)^{N} P_{ \pm}(\lambda)$ in $B\left(L^{2,-s} ;\right.$ $L^{2, s}$) and

$$
\left\|P_{ \pm}(\lambda) R(\lambda \pm i 0)^{N} P_{ \pm}(\lambda) f\right\|_{s} \leq C \lambda^{-N / 2}\|f\|_{-s}
$$

(5) Let $Q(\lambda) \in S_{\infty}$ and $s \geq \gamma+N-1$. For any $\delta>0$ there exists a strong limit $s-\lim _{\varepsilon \downarrow 0} Q(\lambda) R(\lambda \pm i \varepsilon)^{N}$ in $B\left(L^{2, s}: L^{2, s-N+1-\delta}\right)$ and

$$
\left\|Q(\lambda) R(\lambda \pm i 0)^{N} f\right\|_{s-N+1} \leq C \lambda^{-N / 2}\|f\|_{s} .
$$

Proof (by induction on N). The assertions of the theorem have already been proved for $N=1$ (see Lemmas 1.5, 1.7). Assume the theorem for N.

Choose $\phi_{0}(\xi) \in C^{\infty}\left(\boldsymbol{R}^{n}\right)$ such that

$$
\phi_{0}(\xi)= \begin{cases}1 & ||\xi|-1|<\varepsilon \\ 0 & ||\xi|-1|>2 \varepsilon\end{cases}
$$

where $0<\varepsilon<1 / 2$. We set

$$
\phi_{\infty}(\xi)=1-\phi_{0}(\xi) .
$$

Let $\chi_{0}(x), \chi_{\infty}(x) \in C^{\infty}\left(R^{n}\right)$ be such that $\chi_{0}(x)+\chi_{\infty}(x)=1$,

$$
\begin{array}{lll}
\chi_{0}(x)=0 & \text { for } & |x|>2 \\
\chi_{0}(x)=1 & \text { for } & |x|<1 .
\end{array}
$$

Choose constants $-1<\tilde{\mu}_{ \pm}<1$ and C^{∞}-functions $\rho_{ \pm}(t)$ so that $\tilde{\mu}_{-}<\tilde{\mu}_{+}, \rho_{+}(t)+$ $\rho_{-}(t)=1$ and

$$
\begin{array}{lll}
\rho_{+}(t)=0 & \text { for } & t<\tilde{\mu}_{+}, \\
\rho_{-}(t)=0 & \text { for } & t>\tilde{\mu}_{-} .
\end{array}
$$

Let $A(\lambda), B(\lambda), \widetilde{P}_{ \pm}(\lambda)$ be the Ps. D. Op.'s with symbols $\phi_{\infty}(\xi / \sqrt{\lambda}), \chi_{0}(x) \phi_{0}(\xi / \sqrt{\lambda})$, $\chi_{\infty}(x) \rho_{ \pm}(\hat{x} \cdot \hat{\xi}) \phi_{0}(\xi / \sqrt{\lambda})$, respectively. By definition $A(\lambda) \in S_{\infty}, \widetilde{P}_{ \pm}(\lambda) \in S_{ \pm}$, the symbol of $B(\lambda)$ is compactly supported for x and

$$
A(\lambda)+B(\lambda)+\tilde{P}_{+}(\lambda)+\tilde{P}_{-}(\lambda)=1
$$

We further introduce the following notations. Let

$$
I=\left\{z \in \boldsymbol{C} ; \operatorname{Re} z>a_{0}, \operatorname{Im} z>0\right\}
$$

For an operator $T(z)$ defined for $z \in I, T(z) \in C\left(\bar{I} ; L^{2, s}, L^{2, r} ; k\right)$ means that there exists a strong limit $\underset{\varepsilon \downarrow 0}{s \text {-lim }} T(\lambda+i \varepsilon)$ in $\boldsymbol{B}\left(L^{2, s} ; L^{2, r}\right)$ for $\lambda>a_{0}$ and

$$
\|T(\lambda+i 0) f\|_{r} \leq C \lambda^{-k / 2}\|f\|_{s} .
$$

Pfroof of (1) for $N+1$. We split $R(\lambda+i \varepsilon)^{N+1}$ into four parts:

$$
\begin{align*}
R(\lambda+i \varepsilon)^{N+1}= & R(\lambda+i \varepsilon)^{N} A(\lambda) R(\lambda+i \varepsilon)+R(\lambda+i \varepsilon)^{N} B(\lambda) R(\lambda+i \varepsilon) \tag{1.2}\\
& +R(\lambda+i \varepsilon)^{N} \widetilde{P}_{+}(\lambda) R(\lambda+i \varepsilon)+R(\lambda+i \varepsilon)^{N} \widetilde{P}_{-}(\lambda) R(\lambda+i \varepsilon)
\end{align*}
$$

Since $A(\lambda) \in S_{\infty}$, Lemma 1.5 (1) shows that $A(\lambda) R(\lambda+i \varepsilon) \in C\left(\bar{I} ; L^{2, \gamma+N-1}\right.$, $\left.L^{2, \gamma+N-1} ; 1\right)$. By our induction hypothesis (1), $R(\lambda+i \varepsilon)^{N} \in C\left(\bar{I} ; L^{2, \gamma+N-1}\right.$, $\left.L^{2,-\gamma-N+1} ; N\right)$. Thus the first term belongs to $C\left(\bar{I} ; L^{2, \gamma+N-1}, L^{2,-\gamma-N+1} ; N+1\right)$.

Since the symbol of $B(\lambda)$ is compactly supported for $x, R(\lambda+i \varepsilon)^{N} B(\lambda) \in C(\bar{I}$; $L^{2,-\gamma}, L^{2,-\gamma-N+1} ; N$) by our induction hypothesis (1). This, combined with Lemma 1.1 , shows that the second term belongs to $C\left(\bar{I} ; L^{2, \gamma}, L^{2,-\gamma-N+1} ; N+1\right)$.

In view of Lemma 1.1 and our induction hypothesis (3), we have $R(\lambda+i \varepsilon) \in$ $C\left(\bar{I} ; L^{2, \gamma}, L^{2,-\gamma} ; 1\right)$ and $R(\lambda+i \varepsilon)^{N} \widetilde{P}_{+}(\lambda) \in C\left(\bar{I} ; L^{2,-\gamma}, L^{2,-\nu-N} ; N\right)$, which shows that the third term belongs to $C\left(\bar{I} ; L^{2, \gamma}, L^{2,-\gamma-N} ; N+1\right)$.

Making use of our induction hypotheses (1) and (2) for N, we have for small $\delta>0, \widetilde{P}_{-}(\lambda) R(\lambda+i \varepsilon) \in C\left(\bar{I} ; L^{2, \gamma+N}, L^{2, \gamma+N-1-\delta} ; 1\right)$ and $R(\lambda+i \varepsilon)^{N} \in C\left(\bar{I} ; L^{2, \gamma-\delta+N-1}\right.$, $\left.L^{2,-\gamma+\delta-N+1} ; N\right)$. Thus the fourth term belongs to $C\left(\bar{I} ; L^{2, \gamma+N}, L^{2,-\gamma-N+1} ; N+1\right)$.

Proof of (2) for $N+1$. We multiply (1.2) by $P_{-}(\lambda)$. By methods similar to the above, one can show that $P_{-}(\lambda) R(\lambda+i \varepsilon)^{N} A(\lambda) R(\lambda+i \varepsilon), P_{-}(\lambda) R(\lambda+i \varepsilon)^{N} B(\lambda) R(\lambda+i \varepsilon)$ and $P_{-}(\lambda) R(\lambda+i \varepsilon)^{N} \widetilde{P}_{-}(\lambda) R(\lambda+i \varepsilon)$ belong to $C\left(\bar{I} ; L^{2, s}, L^{2, s-N-1-\delta} ; N+1\right)$ for $s \geq N+1+\gamma$ and $\delta>0$. In order to treat the term $P_{-}(\lambda) R(\lambda+i \varepsilon)^{N} \tilde{P}_{+}(\lambda) R(\lambda+i \varepsilon)$, we note that $\left\{P_{-}(\lambda), \tilde{P}_{+}(\lambda)\right\}$ becomes a disjoint pair of type II if $\tilde{\mu}_{+}>\mu_{-}$. Thus by our induction hypothesis (4) for N, we have $P_{-}(\lambda) R(\lambda+i \varepsilon)^{N} \widetilde{P}_{+}(\lambda) \in C\left(\bar{I} ; L^{2,-\gamma}\right.$, $\left.L^{2, s} ; N\right)$ for any $s>0$, which, combined with Lemma 1.1, shows that $P_{-} R(\lambda+$ $i \varepsilon) \widetilde{P}_{+}(\lambda) R(\lambda+i \varepsilon) \in C\left(\bar{I} ; L^{2, \gamma}, L^{2, s} ; N+1\right)$ for any $s>0$.

Proof of (3). By the asymptotic expansion of the symbol of $P_{ \pm}(\lambda)^{*}$, we have for any $m>0$,

$$
P_{ \pm}(\lambda)^{*}=P_{ \pm}^{(m)}(\lambda)+Q_{m}(\lambda),
$$

where $P_{ \pm}^{(m)}(\lambda) \in S_{ \pm}$and the symbol $q_{m}(x, \xi ; \lambda)$ of $Q_{m}(\lambda)$ verifies

$$
\left|D_{x}^{\alpha} D_{\xi}^{\beta} q_{m}(x, \xi ; \lambda)\right| \leq C_{\alpha \beta}\langle x\rangle^{-m-|\alpha|}\langle\xi\rangle^{-|\beta|}
$$

(see [2], Theorem 2.4). Thus if $s \geq N+\gamma$ and $m \geq \gamma+s-1$

$$
\begin{aligned}
& \left\|P_{\mp}(\lambda)^{*} R(\lambda \pm i \varepsilon)^{N} f\right\|_{s-N} \\
\leq & \left\|P_{ \pm}^{(m)}\right\|(\lambda) R(\lambda \pm i \varepsilon)^{N} f\left\|_{s-N}+\right\| Q_{m}(\lambda) R(\lambda \pm i \varepsilon)^{N} f \|_{s-N} \\
\leq & C \lambda^{-N / 2}\|f\|_{s}
\end{aligned}
$$

where we have used (1) and (2). Taking the adjoint, we have $\left\|R(\lambda \pm i \varepsilon)^{N} P_{ \pm}(\lambda) f\right\|_{-s} \leq$ $C \lambda^{-N / 2}\|f\|_{-s+N}$, which proves that (3) for N follows from (1) and (2) for N.

Proof of (4) for $N+1$. First we choose $\tilde{\mu}_{ \pm}$in such a way that $-1<\mu_{-}<\tilde{\mu}_{-}<$ $\tilde{\mu}_{+}<\mu_{+}<1$ so that $\left\{P_{-}(\lambda), \widetilde{P}_{+}(\lambda)\right\}$ and $\left\{\widetilde{P}_{-}(\lambda), P_{+}(\lambda)\right\}$ form disjoint pairs of type II. Next we recall that the support with respect to ξ of the symbol of $P_{+}(\lambda)$ lies in a small neighborhood of the sphere $\{\xi ;|\xi|=\sqrt{\lambda}\}$. Thus for a suitable choice of ε for $A(\lambda),\left\{A(\lambda), P_{+}(\lambda)\right\}$ becomes a disjoint pair of type I.

We multiply (1.2) by $P_{ \pm}(\lambda)$ from both sides. Consider the resulting first term. By Lemma 1.7 (2), $A(\lambda) R(\lambda+i \varepsilon) P_{+}(\lambda) \in C\left(\bar{I} ; L^{2,-s}, L^{2, s} ; 1\right)$ for any $s>0$. We also have by our induction hypothesis (2), $P_{-}(\lambda) R(\lambda+i \varepsilon)^{N} \in C\left(\bar{I} ; L^{2, s}, L^{2, s-N-1} ; N\right)$. Thus the first term belongs to $C\left(\bar{I} ; L^{2,-s}, L^{2, s} ; N+1\right)$ for $s>0$.

The treatment of the second term is easy, hence is omitted.
Taking the adjoint in Lemma 1.5 (2), one can show using Lemma 1.1 that $R(\lambda+i \varepsilon) P_{+}(\lambda) \in C\left(\bar{I} ; L^{2,-s}, L^{2,-s-2} ; 1\right)$ for $s>0$. Since $\left\{P_{-}(\lambda), \widetilde{P}_{+}(\lambda)\right\}$ is a disjoint pair of type II, we have $P_{-}(\lambda) R(\lambda+i \varepsilon)^{N} \widetilde{P}_{+}(\lambda) \in C\left(\bar{I} ; L^{2,-s-2}, L^{2, s} ; N\right)$ for $s>0$. Thus the third term has the desired property.

Since $\left\{\widetilde{P}_{-}(\lambda), P_{+}(\lambda)\right\}$ is a disjoint pair of type II, $\widetilde{P}_{-}(\lambda) R(\lambda+i \varepsilon) P_{+}(\lambda) \in C(\bar{I} ;$ $L^{2,-s}, L^{2, s} ; 1$) for $s>0$. This, combined with (2) proves that the fourth term has the desired property.

Proof of (5) for $N+1$. We shall estimate

$$
\begin{aligned}
Q(\lambda) R(\lambda+i \varepsilon)^{N+1}= & Q(\lambda) R(\lambda+i \varepsilon) A(\lambda) R(\lambda+i \varepsilon)^{N}+Q(\lambda) R(\lambda+i \varepsilon) B(\lambda) R(\lambda+i \varepsilon)^{N} \\
& +Q(\lambda) R(\lambda+i \varepsilon) \widetilde{P}_{+}(\lambda) R(\lambda+i \varepsilon)^{N}+Q(\lambda) R(\lambda+i \varepsilon) \widetilde{P}_{-}(\lambda) R(\lambda+i \varepsilon)^{N} .
\end{aligned}
$$

The treatment of the first two terms is easy. We have only to use (1), (5) for N and Lemma 1.5 (1).

Since $Q(\lambda) \in S_{\infty}$, one can assume that $\left\{Q(\lambda), \widetilde{P}_{+}(\lambda)\right\}$ is a disjoint pair of type I by an appropriate choice of ε. Therefore by Lemma 1.7 (2), $Q(\lambda) R(\lambda+i \varepsilon) \widetilde{P}_{+}(\lambda) \in$ $C\left(\bar{I} ; L^{2,-s}, L^{2, s} ; 1\right)$ for $s>0$. This, combined with (1) for N, shows that the third term belongs to $C\left(\bar{I} ; L^{2, \gamma+N}, L^{2, s} ; N+1\right)$ for $s>0$.

In order to treat the fourth term, we have only to take note of (2) for N and Lemma 1.5 (1).

In view of Theorem 1.8 and the formula $\left(\frac{d}{d \lambda}\right)^{N} R(\lambda \pm i \varepsilon)=N!R(\lambda \pm i \varepsilon)^{N+1}$, one can conclude the strong differentiability of the resolvent $R(\lambda \pm i 0)$.

Theorem 1.9. Let $\gamma>1 / 2$ and N be an integer ≥ 0.
(1) As an operator $\in B\left(L^{2, \gamma+N}, L^{2,-\gamma-N}\right), R(\lambda \pm i 0)$ is N-times strongly differentiable and for $\lambda>a_{0}>0$,

$$
\left\|\left(\frac{d}{d \lambda}\right)^{N} R(\lambda \pm i 0) f\right\|_{-\gamma-N} \leq C \lambda^{-(N+1) / 2}\|f\|_{\gamma+N}
$$

(2) Let $P_{ \pm}(\lambda) \in S_{ \pm}$. For any $s \geq N+1+\gamma$ and $\lambda>a_{0}>0$

$$
\begin{gathered}
\left\|P_{\mp}(\lambda)\left(\frac{d}{d \lambda}\right)^{N} R(\lambda \pm i 0) f\right\|_{s-N-1} \leq C \lambda^{-(N+1) / 2}\|f\|_{s} \\
\left\|\left[\left(\frac{d}{d \lambda}\right)^{N} R(\lambda \pm i 0)\right] P_{ \pm}(\lambda) f\right\|_{-s} \leq C \lambda^{-(N+1) / 2}\|f\|_{-s+N+1}
\end{gathered}
$$

(3) Let $P_{ \pm}(\lambda) \in S_{ \pm}$. Suppose that $\left\{P_{+}(\lambda), P_{-}(\lambda)\right\}$ is a disjoint pair of type II. Then for $s>0$ and $\lambda>a_{0}>0$

$$
\left\|P_{\mp}(\lambda)\left[\left(\frac{d}{d \lambda}\right)^{N} R(\lambda \pm i 0)\right] P_{ \pm}(\lambda) f\right\|_{s} \leq C \lambda^{-(N+1) / 2}\|f\|_{-s}
$$

(4) Let $Q(\lambda) \in S_{\infty}$. For any $s>N+\gamma$ and $\lambda>a_{0}>0$

$$
\left\|Q(\lambda)\left(\frac{d}{d \lambda}\right)^{N} R(\lambda \pm i 0) f\right\|_{s-N} \leq C \lambda^{-(N+1)}\|f\|_{s} .
$$

For later use, it is convienient to rewrite the above theorem in the following form.

Theorem 1.10. In addition to the assumptions of Theorem 1.9, suppose that the symbols $p_{ \pm}(x, \xi ; \lambda), q(x, \xi ; \lambda)$ of $P_{ \pm}(\lambda)$ and $Q(\lambda)$ have the following properties

$$
\begin{gathered}
\left|D_{x}^{\alpha} D_{\xi}^{\beta} D_{k}^{m} p_{ \pm}\left(x, \xi ; k^{2}\right)\right| \leq C_{\alpha \beta m}\langle x\rangle^{-|\alpha|}\langle\xi\rangle^{-|\beta|}, \\
\left|D_{x}^{\alpha} D_{\xi}^{\beta} D_{k}^{m} q\left(x, \xi ; k^{2}\right)\right| \leq C_{\alpha \beta m}\langle x\rangle^{-|\alpha|}\langle\xi\rangle^{-|\beta|},
\end{gathered}
$$

where the constant $C_{\alpha \beta m}$ is independent of $k>k_{0}=\sqrt{a_{0}}>0$. Then we have for $k>k_{0}>0$

$$
\begin{equation*}
\left\|\left(\frac{d}{d k}\right)^{N} R\left(k^{2} \pm i 0\right) f\right\|_{-\gamma-N} \leq C k^{-1}\|f\|_{\gamma+N} \tag{1}
\end{equation*}
$$

(2) for $s \geq N+1+\gamma$

$$
\begin{gathered}
\left\|\left(\frac{d}{d k}\right)^{N}\left[P_{\mp}\left(k^{2}\right) R\left(k^{2} \pm i 0\right)\right] f\right\|_{s-N-1} \leq C k^{-1}\|f\|_{s}, \\
\left\|\left(\frac{d}{d k}\right)^{N}\left[R\left(k^{2} \pm i 0\right) P_{ \pm}\left(k^{2}\right)\right] f\right\|_{-s} \leq C k^{-1}\|f\|_{-s+N+1},
\end{gathered}
$$

(3) for $s>0$

$$
\left\|\left(\frac{d}{d k}\right)^{N}\left[P_{\mp}\left(k^{2}\right) R\left(k^{2} \pm i 0\right) P_{ \pm}\left(k^{2}\right)\right] f\right\|_{s} \leq C k^{-1}\|f\|_{-s}
$$

(4) for $s \geq N+\gamma$

$$
\left\|\left(\frac{d}{d k}\right)^{N}\left[Q\left(k^{2}\right) R\left(k^{2} \pm i 0\right)\right] f\right\|_{s-N} \leq C k^{-1}\|f\|_{s} .
$$

§ 2. Differentiability of generalized Fourier transforms

In [1], we constructed a solution to the eikonal equation

$$
\begin{equation*}
\left|\nabla_{x} \phi(x, \xi)\right|^{2}+V(x)=|\xi|^{2} \tag{2.1}
\end{equation*}
$$

and used it to develop an eigenfunction expansion theory for the Schrödinger operator H. In [4], we gave a slightly different method of construction. First we recall the results of [1] and [4] (see [1], Theorem 1.16 and [4], Theorem 2.5).

Lemma 2.1. Let $\varepsilon>0$ be arbitrarily fixed. Choose $d>0$ arbitrarily. Then there exists a real function $\phi(x, \xi) \in C^{\infty}\left(\boldsymbol{R}^{n} \times\left(\boldsymbol{R}^{n}-\{0\}\right)\right)$ having the following properties:
(1) For any $\delta>0$

$$
\left|D_{x}^{\alpha} D_{\xi}^{\beta}(\phi(x, \xi)-x \cdot \xi)\right| \leq C_{\alpha \beta}\langle x\rangle^{1-\varepsilon_{0}-|\alpha|}\langle\xi\rangle^{-1}
$$

for $x \in R^{n}$ and $|\xi|>\delta$.

$$
\begin{equation*}
\sup _{x \in \mathbb{R}^{n},|\xi|>d}\left|\left(\frac{\partial^{2}}{\partial x_{i} \partial \xi_{j}} \phi\right)(x, \xi)-I\right|<1 / 2 \tag{2}
\end{equation*}
$$

where I is the $n \times n$ identity matrix.
(3) For any $\delta>0$, there exists a constant $R>0$ such that for $|x|>R,|\xi|>\delta$ and $\hat{x} \cdot \hat{\xi}>-1+\varepsilon / 2, \phi(x, \xi)$ solves the eikonal equation (2.1).

Lemma 2.2 ([3], Theorem 2.3). Choose $\varepsilon, d>0$ arbitrarily. Let $\phi(x, \xi)$ be as in Lemma 2.1. Then there exists a smooth function $a(x, \xi) \in \mathscr{B}\left(\boldsymbol{R}^{n}\right)$ having the following properties:

$$
\begin{equation*}
\left|D_{x}^{\alpha} D_{\xi}^{\beta}(a(x, \xi)-1)\right| \leq C_{\alpha \beta}\langle x\rangle^{-\varepsilon_{0}-|\alpha|}\langle\xi\rangle^{-1}, \tag{1}
\end{equation*}
$$

if $|\xi|>d, \hat{x} \cdot \hat{\xi}>-1+\varepsilon,|x|>2 R, R$ being the constant specified in Lemma 2.1 for $\delta=d / 2 . \quad a(x, \xi)=0$ if $|\xi|<d / 2$ or $\hat{x} \cdot \hat{\xi}<-1+\varepsilon / 2$ or $|x|<R$.
(2) Let $G(x, \xi)=e^{-i \phi(x, \xi)}\left(-\Delta+V-|\xi|^{2}\right) e^{i \phi(x, \xi)} a(x, \xi)$. Then for $\hat{x} \cdot \hat{\xi}>-1+\varepsilon$, we have for any $N>0$,

$$
\left|D_{x}^{\alpha} D_{\xi}^{\beta} G(x, \xi)\right| \leq C_{\alpha \beta N}\langle x\rangle^{-N}\langle\xi\rangle .
$$

If $\hat{x} \cdot \hat{\xi}<-1+\varepsilon$,

$$
\left|D_{x}^{\alpha} D_{\xi}^{\beta} G(x, \xi)\right| \leq C_{\alpha \beta}\langle x\rangle^{-1-|\alpha|}\langle\xi\rangle .
$$

Our generalized Fourier transformation in [1] is constructed by the following method.

Lemma 2.3 ([1], Theorem 5.5). Let $\phi(x, \xi)$ be as in Lemma 2.1. Choose $0<\mu<1$ arbitrarily and let $\rho(t) \in C^{\infty}\left(\boldsymbol{R}^{1}\right)$ be such that $\rho(t)=1$ for $t>1-\mu / 2, \rho(t)=0$ for $t<1-\mu$. Let $\psi(t) \in C^{\infty}\left(\boldsymbol{R}^{1}\right)$ be such that $\psi(t)=1$ for $t<1, \psi(t)=0$ for $t>2$. We set $\psi_{R}(x)=\psi(|x| / R)$. Then for $f \in L^{2, \gamma}$ and $k>0$, there exists the following strong limit

$$
\underset{R \rightarrow \infty}{s-\lim _{R}} 2 i k(2 \pi)^{-n / 2} \int e^{-i \phi(x, k \omega)}\left(\frac{\partial}{\partial r} \psi_{R}(x)\right) \rho(\hat{x} \cdot \omega) R\left(k^{2}+i 0\right) f(x) d x=\mathscr{F}(k) f
$$

in $L^{2}\left(S^{n-1}\right)$. This $\mathscr{F}(k)$ is independent of μ and for any $\delta>0$

$$
\begin{equation*}
\|\mathscr{F}(k) f\|_{L^{2}\left(S^{n-1}\right)} \leq C k^{-(n-1) / 2}\|f\|_{\gamma}, \quad(k>\delta) . \tag{2.2}
\end{equation*}
$$

Let us take notice that (2.2) follows from the formulae (8.1), (9.4) in [1] and Lemma 1.1 in the present paper. The fact that $\mathscr{F}(k)$ is independent of μ follows from the proof of [1], §5.

For $f \in L^{2, \gamma}$, we define ($\mathscr{F} f$) (ξ) by

$$
\begin{equation*}
(\mathscr{F} f)(\xi)=(\mathscr{F}(|\xi|) f)(\xi /|\xi|) . \tag{2.3}
\end{equation*}
$$

Then \mathscr{F} is uniquely extended to a partial isometry with initial set $L_{a c}^{2}(H)$ and final set $L^{2}\left(\boldsymbol{R}^{n}\right)$, and plays the role of a generalization to the Fourier transformation ([1], Theore 7.1). Moreover, the above Lemma 2.3 shows that \mathscr{F} depends only on the behavior of the phase function $\phi(x, \xi)$ in a neighborhood of $\hat{x}=\hat{\xi}$. As has been noted in the introduction, $\mathscr{F} f(\xi)$ can be written formally as in (0.1). We now rewrite (0.1) by using $a(x, \xi)$.

Definition 2.4. Let $\phi(x, \xi)$ and $a(x, \xi)$ be as in Lemmas 2.1 and 2.2. Let $\psi_{R}(x)$ be as in Lemma 2.3. We define for $f \in L^{2, \gamma}$ and $k>0$

$$
\begin{aligned}
\mathscr{F}(k, R) f(\omega)= & (2 \pi)^{-n / 2} \int \psi_{R}(x) e^{-i \phi(x, k \omega)} \overline{a(x, k \omega)} f(x) d x \\
& -(2 \pi)^{-n / 2} \int \psi_{R}(x) e^{-i \phi(x, k \omega)} \overline{G(x, k \omega)} R\left(k^{2}+i 0\right) f(x) d x
\end{aligned}
$$

Lemma 2.5. For $f \in L^{2, \gamma}$ and $k>d$,

$$
\underset{R \rightarrow \infty}{s-\lim _{F}} \mathscr{F}(k, R) f=\mathscr{F}(k) f \quad \text { in } \quad L^{2}\left(S^{n-1}\right)
$$

Proof. We proceed as in [1], § 5. Let $u=R\left(k^{2}+i 0\right) f$. Since

$$
(2 \pi)^{n / 2} \mathscr{F}(k, R) f=\int \psi_{R}\left\{\Delta\left(e^{-i \phi} \bar{a}\right)\right\} u d x-\int \psi_{R} e^{-i \phi} \bar{a} \Delta u d x,
$$

we have by integration by parts

$$
\begin{aligned}
(2 \pi)^{n / 2} \mathscr{F}(k, R) f= & \int e^{-i \phi}\left(\Delta \psi_{R}\right) \bar{a} u d x+2 \int e^{-i \phi}\left(\frac{\partial}{\partial r} \psi_{R}\right) \bar{a}\left(\frac{\partial u}{\partial r}-i k u\right) d x \\
& +2 i k \int e^{-i \phi}\left(\frac{\partial}{\partial r} \psi_{R}\right) \bar{a} u d x \\
= & I_{1}(R)+I_{2}(R)+I_{3}(R)
\end{aligned}
$$

One can argue as in the proof of [1], Lemma 5.2 to see that $I_{1}(R) \rightarrow 0, I_{2}(R) \rightarrow 0$ as $R \rightarrow \infty$. Let $\rho(t)$ be as in Lemma 2.3. Then as in the proof of [1], Lemma 5.3, we have

$$
\int e^{-i \phi(x, k \omega)}\left(\frac{\partial}{\partial r} \psi_{R}(x)\right) \overline{a(x, k \omega)}(1-\rho(\hat{x} \cdot \omega)) u(x) d x \longrightarrow 0
$$

as $R \rightarrow \infty$. Thus we have only to consider

$$
2 i k \int e^{-i \phi}\left(\frac{\partial}{\partial r} \psi_{R}\right) \bar{a} \rho(\hat{x} \cdot \omega) u(x) d x
$$

Since $|(a(x, k \omega)-1) \rho(\hat{x} \cdot \omega)| \leq C\langle x\rangle^{-\varepsilon_{0}}$ by Lemma 2.2, we have as in the proof of Lemma 5.2 in [1],

$$
\int e^{-i \phi}\left(\frac{\partial}{\partial r} \psi_{R}\right)(\bar{a}-1) \rho(\hat{x} \cdot \omega) u(x) d x \longrightarrow 0 .
$$

Therefore by Lemma 2.3, we have

$$
\begin{aligned}
\underset{R \rightarrow \infty}{s-\lim _{\infty}(2 \pi)^{n / 2} \mathscr{F}(k, R) f} \begin{aligned}
& =\operatorname{sim}_{R \rightarrow \infty} 2 i k \int e^{-i \phi}\left(\frac{\partial}{\partial r} \psi_{R}\right) \rho(\hat{x} \cdot \omega) u(x) d x \\
& =(2 \pi)^{n / 2} \mathscr{F}(k) f .
\end{aligned}
\end{aligned}
$$

It follows formally from Lemma 2.5 that

$$
\begin{align*}
(2 \pi)^{n / 2} \mathscr{F}(k) f= & \int e^{-i \phi(x, k \omega)} \overline{a(x, k \omega)} f(x) d x \tag{2.4}\\
& -\int e^{-i \phi(x, k \omega)} \overline{G(x, k \omega)} R\left(k^{2}+i 0\right) f(x) d x .
\end{align*}
$$

The rest of this section is devoted to showing that the right-hand side is a welldefined bounded operator on $L^{2, \gamma}$ and that it is differentiable with repect to $\xi=k \omega$ if f decays rapidly.

Lemma 2.6. Let $b(x, \xi) \in \mathscr{B}\left(\boldsymbol{R}^{2 n}\right)$ be such that for some $\varepsilon>0 \quad b(x, \xi)=0$ if $|\xi|<\varepsilon$. Then the integral transformation

$$
T f(\xi)=\int e^{-i \phi(x, \xi)} b(x, \xi) f(x) d x
$$

has the following properties:
(1) If $f \in L^{2, N}, T f(\xi)$ is N times differentiable and

$$
\sum_{|\alpha| \leqslant N}\left\|D_{\xi}^{\alpha} T f(\xi)\right\|_{L^{2}} \leq C_{N}\|f\|_{N} .
$$

(2) Let $\gamma>1 / 2$ and $\varepsilon>0$ be arbitrarily fixed. Then for any $k>\varepsilon$,

$$
\|(T f)(k \cdot)\|_{L^{2}\left(S^{n-1}\right)} \leq C k^{-(n-1) / 2}\|f\|_{\gamma} .
$$

Proof. (1) follows from [1], Theorem 3.2. Arguing in the same way as in [1], Theorem 3.4, we have

$$
\int_{|\theta|=k}|T f(\theta)|^{2} d S_{\theta} \leq C\|f\|_{\gamma}^{2},
$$

where the constant C is independent of $k>\varepsilon$. The assertion (2) directly follows from this inequality.

Lemma 2.7. Let $S(k)$ be defined by

$$
S(k) f(\omega)=\int-i \phi(x, k \omega) b(x, k \omega) f(x) d x \quad(k>0)
$$

where $b(x, \xi) \in C^{\infty}\left(\boldsymbol{R}^{2 n}\right)$ and

$$
\left|D_{x}^{\alpha} D_{\xi}^{\beta} b(x, \xi)\right| \leq C_{\alpha \beta}\langle x\rangle^{-|\alpha|} .
$$

Let $P(k)$ be the Ps. D. Op. with symbol $p(x, \xi ; k)$ such that

$$
\left|D_{x}^{\alpha} D_{\xi}^{\beta} p(x, \xi ; k)\right| \leq C_{\alpha \beta}\langle x\rangle^{-|\alpha|}\langle\xi\rangle^{-|\beta|}
$$

for a constant $C_{\alpha \beta}$ independent of $k>k_{0}, k_{0}$ being as in Theorem 1.10. Suppose that $b(x, \xi)$ and $p(x, \xi ; k)$ satisfy either of the following assumptions (1), (2):
(1) There exists a constant $\varepsilon>0$ such that

$$
p(x, \xi ; k)=0 \quad \text { if } \quad||\xi| / k-1|<\varepsilon, k>k_{0} .
$$

(2) There exist constants $\mu_{ \pm}$such that $-1<\mu_{-}<\mu_{+}<1$ and

$$
\begin{array}{lll}
b(x, \xi)=0 & \text { if } & \hat{x} \cdot \hat{\xi}>\mu_{-}, \\
p(x, \xi ; k)=0 & \text { if } & \hat{x} \cdot \hat{\xi}<\mu_{+}, k>k_{0} .
\end{array}
$$

Then for any $s \geq 0, k>k_{0}$ and $N>0$

$$
\left\|S(k)\langle x\rangle^{N} P(k) f\right\|_{L^{2}\left(S^{n-1}\right)} \leq C_{s} k^{-s}\|f\|_{-s} .
$$

Proof. Choose $\chi_{1}(x), \chi_{2}(x) \in C^{\infty}\left(R^{n}\right)$ such that $\chi_{1}(x)+\chi_{2}(x)=1, \quad \chi_{1}(x)=1$ for $|x|<1, \chi_{1}(x)=0$ for $|x|>2$. We split $S(k)\langle x\rangle^{N} P(k)$ into two parts: $S(k)\langle x\rangle^{N} P(k)$ $=A_{1}(k)+A_{2}(k)$, where

$$
A_{j}(k) f(\omega)=\iint e^{-i(\phi(x, k \omega)-x \xi)} b(x, k \omega)\langle x\rangle^{N} p(x, \xi ; k) \chi_{j}\left(\frac{|x|}{R}\right) \hat{f}(\xi) d \xi d x
$$

$R>0$ being a constant yet to be determined. By Lemma 2.1 (1),

$$
\left.\mid \nabla_{x}(\phi(x, k \omega)-x \cdot \xi)\right)-(k \omega-\xi) \mid \leq C k^{-1}\langle x\rangle^{-\varepsilon_{0}} .
$$

In view of the assumptions (1) or (2), one can find a constant $C>0$ such that on the support of the integrand

$$
|k \omega-\xi| \geq C k \quad \text { for } \quad k>k_{0} .
$$

Therefore, there is a constant $R>0$ such that

$$
\left|\nabla_{x}(\phi(x, k \omega)-x \cdot \xi)\right| \geq C k \quad \text { for } \quad k>k_{0} \quad \text { and } \quad|x|>R .
$$

Letting $\psi(\omega, x, \xi ; k)=\phi(x, k \omega)-x \cdot \xi$ and using the relation $e^{-i \psi}=\left|\nabla_{x} \psi\right|^{-2} i \nabla_{x} \psi$. $\nabla_{x} e^{-i \psi}$, we have by integrating by parts in $x 3 N$ times

$$
A_{2}(k) f(\omega)=\iint e^{-i \psi(\omega, x, \xi ; k)} b_{N}(\omega, x, \xi ; k) \hat{f}(\xi) d \xi d x
$$

where

$$
\begin{equation*}
\left|D_{x}^{\alpha} D_{\xi}^{\beta} b_{N}(\omega, x, \xi ; k)\right| \leq C_{\alpha \beta}\langle x\rangle^{-2 N} k^{-2 N} . \tag{2.5}
\end{equation*}
$$

Let $B_{2}(k, \omega)$ be the Ps. D. Op. with symbol $\langle x\rangle^{N} b_{N}(\omega, x, \xi ; k)$. Then we have

$$
A_{2}(k) f(\omega)=\int e^{-i \phi(x, k \omega)}\langle x\rangle^{-N}\left(B_{2}(k, \omega) f\right)(x) d x
$$

Thus for large N

$$
\begin{aligned}
\left\|A_{2}(k) f\right\|_{L^{2}\left(S^{n-1}\right)} & \leq C \sup _{\omega \in S^{n_{-1}}}\left|A_{2}(k) f(\omega)\right| \\
& \leq C \sup _{\omega \in S^{n-1}}\left\|B_{2}(k, \omega) f\right\|_{L^{2}\left(S^{n-1}\right)} .
\end{aligned}
$$

(2.5) implies that $\left\|B_{2}(k, \omega) f\right\|_{L^{2}} \leq C k^{-2 N}\|f\|_{-N}$, which shows that $\left\|A_{2}(k) f\right\|_{L^{2}\left(S^{n-1}\right)}$ $\leq C k^{-2 N}\|f\|_{-N}$.

Next we consider $A_{1}(k)$. Since in this case the symbol $\langle x\rangle^{N} p(x, \xi ; k) \chi_{1}(x / R)$ is compactly supported for x, one can easily show for any $s \geq 0$

$$
\left\|A_{1}(k) f\right\|_{L^{2}\left(S^{n-1}\right)} \leq C\|f\|_{-s},
$$

with a constant C independent of $k>k_{0}$. In order to derive the decay with respect to k, we have only to note that for large $k,\left|\nabla_{x}(\phi(x, k \omega)-x \cdot \xi)\right| \geq C k$ for a constant $C>0$ and integrate by parts.

We turn to the estimate of the right-hand side of (2.4). The first term is treated by Lemma 2.6 (1). In order to treat the second term, we set

$$
T(k) f(\omega)=\int e^{-i \phi(x, k \omega)} \overline{G(x, k \omega)} R\left(k^{2}+i 0\right) f(x) d x
$$

and

$$
(T f)(\xi)=T(|\xi|) f(\xi /|\xi|) .
$$

Lemma 2.8. Let $d>0$ be the constant specified in Lemma 2.2. Choose $\gamma>1 / 2$ arbitrarily. Then we have for any $N \geq 0$ and $k>d$

$$
\sum_{|\alpha| \leq N}\left\|\left.D_{\xi}^{\alpha} T f(\xi)\right|_{\xi=k \omega}\right\|_{L^{2}\left(S^{n-1}\right)} \leq C k^{-(n-1) / 2}\|f\|_{N+\gamma} .
$$

Proof. We make use of the localizations used in the proof of Theorem 1.8. Let $\phi_{0}(\xi), \phi_{\infty}(\xi), \chi_{0}(x)$ and $\chi_{\infty}(x)$ be as in the proof of Theorem 1.8. Choose $\rho_{ \pm}(t) \in C^{\infty}\left(\boldsymbol{R}^{1}\right)$ such that $\rho_{+}(t)+\rho_{-}(t)=1$ and $\rho_{+}(t)=0$ if $t<1 / 2, \rho_{-}(t)=0$ if $t>3 / 4$. Let $A(k), B(k), P_{ \pm}(k)$ be the Ps. D. Op.'s with symbols $\phi_{\infty}(\xi / k), \chi_{0}(x) \phi_{0}(\xi / k)$, $\chi_{\infty}(x) \rho_{ \pm}(\hat{x} \cdot \hat{\xi}) \phi_{0}(\xi / k)$, respectively. Then $T(k)=\sum_{j=1}^{4} T_{j}(k)$, where

$$
\begin{aligned}
& T_{1}(k) f(\omega)=\int e^{-i \phi(x, k \omega)} \overline{G(x, k \omega)} A(k) R\left(k^{2}+i 0\right) f(x) f x, \\
& T_{2}(k) f(\omega)=\int e^{-i \phi(x, k \omega)} \overline{G(x, k \omega)} B(k) R\left(k^{2}+i 0\right) f(x) d x, \\
& T_{3}(k) f(\omega)=\int e^{-i \phi(x, k \omega)} \overline{G(x, k \omega)} P_{+}(k) R\left(k^{2}+i 0\right) f(x) d x, \\
& T_{4}(k) f(\omega)=\int e^{-i \phi(x, k \omega)} \overline{G(x, k \omega)} P_{-}(k) R\left(k^{2}+i 0\right) f(x) d x .
\end{aligned}
$$

We set

$$
T_{j} f(\xi)=T_{j}(|\xi|) f(\xi /|\xi|)
$$

First we consider T_{1}. By a straightforward calculation we have

$$
\begin{aligned}
& \sum_{|\alpha| \leq N} D_{\xi}^{\alpha} T_{1} f(\xi) \\
= & \sum_{\substack{\alpha \leq N \\
\beta \leq \bar{z}}} \int e^{-i \phi(x, \xi)\langle\xi\rangle a_{\beta}(x, \xi)\langle x\rangle^{|\beta|} A_{\beta}(|\xi|) D_{\xi}^{\alpha-\beta} R\left(|\xi|^{2}+i 0\right) f(x) d x,}
\end{aligned}
$$

where $\langle\xi\rangle a_{\beta}(x, \xi)$ and $A_{\beta}(|\xi|)$ arise from the derivatives of $\overline{G(x, \xi)}$ and $A(|\xi|)$, respectively. In particular, $a_{\beta}(x, \xi) \in \mathscr{B}\left(R^{2 n}\right)$ by Lemma 2.2. In view of Lemma 2.7, we have for any $s>0$

$$
\begin{aligned}
& \sum_{|\alpha| \leq N}\left\|\left.D_{\xi}^{\alpha} T_{1} f(\xi)\right|_{\xi=k \omega}\right\|_{L^{2}\left(S^{n-1}\right)} \\
& \quad \leq C k^{-s} \sum_{m \leq N}\left\|\left(\frac{d}{d k}\right)^{m} R\left(k^{2}+i 0\right) f\right\|_{-s} \\
& \quad \leq C k^{-s}\|f\|_{N+\gamma}
\end{aligned}
$$

where we have used Theorem 1.10 (1).
Since the symbol of $B(k)$ is compactly supported for x, we have by using Lemma 2.6 (2),

$$
\begin{aligned}
& \sum_{|\alpha| \leq N}\left\|\left.D_{\xi}^{\alpha} T_{2} f(\xi)\right|_{\xi=k \omega}\right\|_{L^{2}\left(S^{n-1}\right)} \\
& \quad \leq C k^{-(n-1) / 2} \sum_{m \leq N}\left\|\left(\frac{d}{d k}\right)^{m} R\left(k^{2}+i 0\right) f\right\|_{-N-\gamma} \\
& \quad \leq C k^{-(n-1) / 2}\|f\|_{N+\gamma} .
\end{aligned}
$$

Since $G(x, \xi)=O\left(\langle\xi\rangle\langle x\rangle^{-1}\right)$, we have, similarly,

$$
\begin{aligned}
& \sum_{|\alpha| \leq N}\left\|\left.D_{\xi}^{\alpha} T_{4} f(\xi)\right|_{\xi=k \omega}\right\|_{L^{2}\left(S^{n-1}\right)} \\
& \quad \leq C k^{-(n-1) / 2} \sum_{m \leq N}\left\|\langle x\rangle^{N-m-1+\gamma}\left(\frac{d}{d k}\right)^{m} P_{-}(k) R\left(k^{2}+i 0\right) f\right\|_{L^{2}} \\
& \leq C k^{-(n-1) / 2}\|f\|_{N+\gamma} .
\end{aligned}
$$

The treatment of T_{3} is slightly different. Choose $\chi_{ \pm}(t) \in C^{\infty}\left(\boldsymbol{R}^{1}\right)$ such that $\chi_{+}(t)+\chi_{-}(t)=1$ and $\chi_{+}(t)=0$ if $t<-1 / 4, \chi_{-}(t)=0$ if $t>1 / 4$. We split T_{3} into two parts: $T=T_{3}^{(+)}+T_{3}^{(-)}$, where

$$
T_{3}^{(\pm)}(k) f(\omega)=\int e^{-i \phi(x, k \omega)} \overline{G(x, k \omega)} \chi_{ \pm}(\hat{x} \cdot \omega) P_{+}(k) R\left(k^{2}+i 0\right) f(x) d x
$$

Since $\overline{G(x, k \omega)} \chi_{+}(\hat{x} \cdot \omega)$ is rapidly decreasing in x, we have as for T_{2}

$$
\begin{aligned}
& \sum_{|\alpha| \leq N}\left\|\left.D_{\xi}^{\alpha} T_{3}^{(+)} f(\xi)\right|_{\xi=k \omega}\right\|_{L^{2}\left(S^{n-1}\right)} \\
& \quad \leq C k^{-(n-1) / 2}\|f\|_{N+\gamma} .
\end{aligned}
$$

Using Lemma 2.7, one can treat $T_{3}^{(-)}$in the same way as T_{1} :

$$
\begin{aligned}
& \sum_{|\alpha| \leq N}\left\|\left.D_{\xi}^{\alpha} T_{3}^{(-)} f(\xi)\right|_{\xi=k \omega}\right\|_{L^{2}\left(S^{n-1}\right)} \\
& \leq C k^{-s}\|f\|_{N+\gamma} .
\end{aligned}
$$

Theorem 0.1 in the introduction now ready follows from Lemma 2.8 by integrating in k .

§3. Decay rates for scattering states

As an application of the differentiability property of \mathscr{F}, we derive in this section a decay rate for scattering states of the Schrödinger operator H.

Theorem 3.1. Let $\gamma>1 / 2$. Let $\chi(\lambda) \in C^{\infty}\left(\boldsymbol{R}^{1}\right)$ be such that for some $\varepsilon>0$ and an integer $N \geq 1, \chi(\lambda)=0$ for $\lambda<\varepsilon$, and $\left|\left(\frac{d}{d \lambda}\right)^{m} \chi(\lambda)\right| \leq C_{m} \lambda^{(N-2 \gamma-m) / 2}$ for $\lambda>\varepsilon$, $m=0,1,2, \ldots$. Then we have for $t>0$

$$
\left\|\chi(H) e^{-i t H} f\right\|_{-N} \leq C t^{-N}\|f\|_{N+1+\gamma} .
$$

Proof. Let $\psi(\xi)=(\mathscr{F} \chi(H) f)(\xi) . \quad$ By [1], Theorem 7.1,

$$
e^{-i t H} \chi(H) f=\int_{0}^{\infty} \mathscr{F}(k)^{*} e^{-i t k^{2}} \psi(k \cdot) k^{n-1} d k
$$

From (2.4) it follows that

$$
\mathscr{F}(k)^{*} \psi(k \cdot)=(2 \pi)^{-n / 2} \int_{S^{n-1}} e^{i \phi(x, k \omega)} a(x, k \omega) \psi(k \omega) d \omega-R\left(k^{2}-i 0\right) v(k),
$$

where

$$
\begin{equation*}
v(k)(x)=(2 \pi)^{-n / 2} \int_{S^{n-1}} e^{i \phi(x, k \omega)} G(x, k \omega) \psi(k \omega) d \omega \tag{3.1}
\end{equation*}
$$

Therefore,

$$
\begin{align*}
e^{-i t H} \chi(H) f= & (2 \pi)^{-n / 2} \int e^{i\left(\phi(x, \xi)-t|\xi|^{2}\right)} a(x, \xi) \psi(\xi) d \xi \tag{3.2}\\
& -\int_{0}^{\infty} R\left(k^{2}-i 0\right) v(k) e^{-i t k^{2}} k^{n-1} d k
\end{align*}
$$

First we consider the first term of (3.2). Using the relation $\left(-2 i t|\xi|^{2}\right)^{-1} \xi$. $\nabla_{\xi} e^{-i t|\xi|^{2}}=e^{-i t|\xi|^{2}}$, we have by integration by parts

$$
\begin{aligned}
& \langle x\rangle^{-N} \int e^{i\left(\phi(x, \xi)-t|\xi|^{2}\right)} a(x, \xi) \psi(\xi) d \xi \\
& \quad=\sum_{|\alpha| \leq N} \int e^{i\left(\phi(x, \xi)-t|\xi|^{2}\right)} a_{\alpha}(x, \xi ; t) D_{\xi}^{\alpha} \psi(\xi) d \xi
\end{aligned}
$$

where $\left|D_{x}^{\beta} D_{\xi}^{\gamma} a_{\alpha}(x, \xi ; t)\right| \leq C_{\beta \gamma}(t|\xi|)^{-N}$. Thus by an L^{2}-boundedenss theorem of Fourier integral operators ([1], Theorem 3.2), we have

$$
\begin{align*}
& \left\|\langle x\rangle^{-N} \int e^{i\left(\phi(x, \xi)-t|\xi|^{2}\right)} a(x, \xi) \psi(\xi) d \xi\right\|_{L^{2}} \tag{3.3}\\
& \quad \leq C t^{-N} \sum_{|\alpha| \leq N}\left\|\langle\xi\rangle^{-N} D_{\xi}^{\alpha} \psi\right\|_{L^{2}} .
\end{align*}
$$

The sceond term of (3.2) is treated by the technique employed in [5], Lemma 5.1. For $\varepsilon>0$

$$
R\left(k^{2}-i \varepsilon\right)=-i e^{-i t\left(H-\left(k^{2}-i \varepsilon\right)\right)} \int_{t}^{\infty} e^{i s\left(H-\left(k^{2}-i \varepsilon\right)\right)} d s
$$

Therefore letting $g(k)=v(k) k^{n-1}$, we have

$$
\begin{aligned}
& \int_{0}^{\infty} R\left(k^{2}-i \varepsilon\right) e^{-i t k^{2}} g(k) d k=-i \int_{t}^{\infty} e^{-(s-t) \varepsilon} e^{-i(t-s)} \hat{g}(s) d s, \\
& \hat{g}(s)=\int_{0}^{\infty} e^{-i s k^{2}} g(k) d k
\end{aligned}
$$

In the following, we show for finy $s>0$

$$
\begin{equation*}
\|\hat{g}(s)\|_{L^{2}} \leq C s^{-N-1} \sum_{|\alpha| \leq N+1}\left\|\langle\xi\rangle^{-N} D_{\xi}^{\alpha} \psi\right\|_{L^{2}} . \tag{3.4}
\end{equation*}
$$

If (3.4) is established, we have by the dominated convergence theorem

$$
\begin{aligned}
& \left\|\int_{0}^{\infty} R\left(k^{2}-i 0\right) e^{-i t k^{2}} g(k) d k\right\|_{L^{2}} \\
& \quad \leq C t^{-N} \sum_{|\alpha| \leq N+1}\left\|\langle\xi\rangle^{-N} D_{\xi}^{\alpha} \psi\right\|_{L^{2}} .
\end{aligned}
$$

Therefore for $t>0$

$$
\left\|\chi(H) e^{-i t H} f\right\|_{-N} \leq C t^{-N} \sum_{|\alpha| \leq N+1}\left\|\langle\xi\rangle^{-N} D_{\xi}^{\alpha} \psi\right\|_{L^{2}} .
$$

Since $\psi(\xi)=\chi\left(|\xi|^{2}\right)(\mathscr{F} f)(\xi)$ and $\left|D_{\xi}^{\alpha} \chi\left(|\xi|^{2}\right)\right| \leq C\langle\zeta\rangle^{N-2 \gamma}$,

$$
\begin{aligned}
\sum_{|\alpha| \leq N+1}\left\|\langle\xi\rangle^{-N} D_{\xi}^{\alpha} \psi\right\|_{L^{2}} & \leq C \sum_{|\alpha| \leq N+1}\left\|\langle\xi\rangle^{-\delta / 2} D_{\xi}^{\alpha}(\mathscr{F} f)(\xi)\right\|_{L^{2}} \\
& \leq C\|f\|_{N+1+\gamma},
\end{aligned}
$$

by Theorem 0.1. This proves the theorem.
Now we prove (3.4). By (3.1),

$$
\hat{g}(t)=(2 \pi)^{-n / 2} \int e^{i\left(\phi(x, \xi)-t|\xi|^{2}\right)} G(x, \xi) \psi(\xi) d \xi .
$$

Choose $\chi_{ \pm}(t) \in C^{\infty}\left(R^{1}\right)$ such that $\chi_{+}(t)+\chi_{-}(t)=1, \chi_{+}(t)=0$ for $t<1 / 2, \chi_{-}(t)=0$ for $t>3 / 4$. Split $\hat{g}(t)$ into two parts: $\hat{g}(t)=g_{+}(t)+g_{-}(t)$, where

$$
g_{ \pm}(t)=(2 \pi)^{-n / 2} \int e^{i\left(\phi(x, \xi)-t|\xi|^{2}\right)} G(x, \xi) \chi_{ \pm}(\hat{x} \cdot \hat{\xi}) \psi(\xi) d \xi
$$

Since $G(x, \xi) \chi_{+}(\hat{x} \cdot \hat{\xi})$ is rapidly decreasing in x, we have by integration by parts as we have derived (3.3)

$$
\left\|g_{+}(t)\right\|_{L^{2}} \leq C t^{-N-1} \sum_{|\alpha| \leq N+1}\left\|\langle\xi\rangle^{-N} D_{\xi}^{\alpha} \psi\right\|_{L^{2}} .
$$

(Take notice of the estimates for $G(x, \xi)$ in Lemma 2.2).
Choose $\rho_{1}(t), \rho_{2}(t) \in C^{\infty}\left(\boldsymbol{R}^{1}\right)$ such that $\rho_{1}(t)+\rho_{2}(t)=1, \rho_{1}(t)=0$ for $t>2$, $\rho_{2}(t)=0$ for $t<1$. Split $g_{-}(t)$ into two parts: $g_{-}(t)=g_{-}^{(1)}(t)+g_{-}^{(2)}(t)$, where

$$
g_{-}^{(j)}(t)=(2 \pi)^{-n / 2} \int e^{i\left(\phi(x, \xi)-t|\xi|^{2}\right.} \rho_{j}(|x| / R) G(x, \xi) \chi_{-}(\hat{x} \cdot \hat{\xi}) \psi(\xi) d \xi
$$

$R>0$ being a constant yet to be determined. Since $\rho_{1}(|x| / R)$ is compactly supported, we have as above

$$
\left\|g_{-}^{(1)}(t)\right\|_{L^{2}} \leq C t^{-N-1} \sum_{|\alpha| \leq N+1}\left\|\langle\xi\rangle^{-N} D_{\xi}^{\alpha} \psi\right\|_{L^{2}} .
$$

On the support of the integrand of $g_{-}^{(2)}$, we have for large $R>0$

$$
\left|\nabla_{\xi}\left(\phi(x, \xi)-t|\xi|^{2}\right)\right| \geq C(|x|+t|\xi|) \quad(|x|>R) .
$$

Thus by integration by parts

$$
g_{-}^{(2)}(t)=\int e^{i\left(\phi(x, \xi)-t|\xi|^{2}\right)} \sum_{|\alpha| \leq N+1} b_{\alpha}(x, \xi ; t) D_{\xi}^{\alpha} \psi(\xi) d \xi,
$$

where $\left|D_{x}^{\beta} D_{\xi}^{\gamma} b_{\alpha}(x, \xi ; t)\right| \leq C t^{-N-1}|\xi|^{-N}$. Therefore again using the L^{2}-boundedness theorem of Fourier integral operators

$$
\left\|g_{-}^{(2)}(t)\right\|_{L^{2}} \leq C t^{-N-1} \sum_{|\alpha| \leqslant N+1}\left\|\langle\xi\rangle^{-N} D_{\xi}^{\alpha} \psi\right\|_{L^{2}} .
$$

In order to prove Theorem 0.2, we have only to interpolate the estimate in Theorem 3.1 with the obvious one

$$
\left\|\chi(H) e^{-i t H} f\right\|_{L^{2}} \leq f \|_{L^{2}}
$$

Department of Mathematics Kyoto University

References

[1] H. Isozaki, On the generalized Fourier transforms associated with Schrödinger operators with long-range perturbations, J. reine angew. Math., 337 (1982), 18-67.
[2] H. Isozaki and H. Kitada, Micro-local resolvent estimates for two-body Schrödinger operators, (preprint).
[3] H. Isozaki and H. Kitada, A remark on the micro-local resolvent estimates for two-body Schrödinger operators, (preprint).
[4] Isozaki and H. Kitada, Modified wave operators with time-independent modifiers, (preprint).
[5] T. Ikebe and H. Isozaki, A stationary approach to the existence and completeness of longrange wave operators, Integr. Equat. and Oper. Theory, 5 (1982), 18-49.
[6] T. Ikebe, Spectral representations for Schrödinger operators with long-range potentials, J. Functional Anal., 20 (1975), 158-176.
[7] Y. Saitō, Spectral representation for the Schrödinger operator with long-range potentials, Springer Lecture Notes in Math. 727, Berlin-Heidelberg-New York 1979.
[8] A. Jensen, E. Mourre and P. Perry, Multiple commutator estimates and resolvent smoothness in quantum scattering theory, (preprint).
[9] E. Mourre, Absence of singular continuous spectrum for certain self-adjoint operators, Comm. Math. Phys., 78 (1981), 391-408.

