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Introduction

The present study arose, in close relationships to a series of our investigations
[16], [17] and [18], from an attempt to embed an arbitrary open Riemann surface
of finite genus into another closed Riemann surface of the same genus, so that the
prolongation of  the surface accompanies that of  some global meromorphic uni-
form izer of the given surfacel ) .

It is a well known fact that an open Riemann surface of finite genus is prolongable
anyway up to some closed Riemann surface of the same genus (see Bochner [2]).
It belongs, however, to comparatively recent questions, what variety of like prolon-
gations occur, or whether we are always able to find among them the one endowed
with somewhat distinguished features such as extremalities. As for the first problem
the readers are referred to, e.g. Mori [10], Heins [5], Grunsky [3], [4], Oikawa
[11 ], and for the second to Ioffe [6], Timmann [21], Shiba [16], [17], Shiba-
Shibata [18], and others. They are also intimately connected with the problems
of conformal mappings and of realizations of Riemann surfaces, to which significant
contributions have been made above all by the mathematicians in Hannover: Tietz
[19], [20], Keditz-Timmann [7] and Schmieder [14], [15].

In our preceding papers [16] and [18] we have shown the following: Given an
open Riemann surface R of finite genus together with a special kind of single-valued
meromorphic function f  (called an S-function — a generalization of the classical
Str6mungsfunkion) on it, there is a  closed Riemann surface R *  R  of the same
genus as R such that f is continued holomorphically up to R *---R  beyond R . More
precisely, for the given R and f  there exists a closed Riemann surface R*, a conformal

t )  This research was partially supported by the Grant-in-Aid, No. 5934007 for Science Research
from the Ministry of Education.

1) We are concerned here with no more than the extensions with the property 'non-increase of
genus'.
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injection t* of R  into R * and a single-valued meromorphic function f *  on R * sat-
isfying the conditions:

(1) f * .t* =f  on R;
(2) Imf *=const. on each component of R*---,t*(R);
( 3 )  R*---..t*(R) is a set of measure zero, on which f *  is holomorphic.
We called the continuation (R *, t*) of R  a  hydrodynamische A bschlieflung

(hydrodynamical closing-up) of R with respect to the S-functionf after a phenomenal
interpretation it reveals.

In this paper we will construct another continuation of R , so that it preserves
the properties (1), (2) and that the S-function is extended meromorphically  off R.

§ 1 .  Preliminaries

1.1. Every open Riemann surface R  of finite genus is realized by means of an
S-function f  onto a covering surface over e with horizontal slits, which originates
from the ideal boundary OR and are schlicht except at most finitely many ones (see
[1 6 ]) . Therefore, via a natural sewing process of those schlicht slits, R comes to be
embedded conformally in another bordered Riemann surface of the same genus.

So far as our continuation theory is concerned, we may thus concentrate our
attention exclusively upon a compact bordered Riemann surface without any re-
striction of generality.

In the following we shall commit ourselves to employ the notations below without
particular mention :

R  always denotes the interior of a compact bordered Riemann surface R  of
finite genus g  and )6;  ( j=  1, 2,..., h) are the contours of k oriented so that aR=
/3, + (32 + • • • +fih . Then there exists another Riemann surface R ' with the same
genus g comprising k as its closed subdomain, on which every f3;  ( j= 1, 2,..., h) is
realized as an analytic Jordan curve. Next let f  be a non-constant (single- or multiple-
valued) S-function on R2 ); namely, f  is a non-constant meromorphic function on R
with constant imaginary part on 13 (j = 1, 2,..., h), whose possible multiple-valuedness
comes only from the non-planarity of R.

1 .2 .  It is known to us that the S-function f  can be characterized by any one of
the following four equivalent propositions :

(A )  Im {df} is a real distinguished harmonic differential in the sense of Ahlfors
(Ahlfors-Sario [1], p. 313);

( K )  idf  is a canonical semi-exact differential of Kusunoki (Kusunoki [8]);
(SO  R ef is an 4-princ ipal function of Sario ;

or
(S1 ) Im f  is a (Q)L i -principal function of Sario, where Q stands for a canonical

partition of aR (Sario-Oikawa [13], pp. 23-24).
One of the results we have obtained in the previous investigations is as follows:

2) Although we discussed in [18] mainly single-valued S-functions, the multiple-valuedness like
this is no doubt allowed to f
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Theorem 1. For the  above introduced p air (R , f) there ex ists a trip le  (R*,
c*, f*) satisfy ing the conditions:

1°) R* is a closed Riemann surface of genus g;
2 ° )  c*: R.-+R* is a conformal injection; meas (R*---..c*(R))= 0;
3 °) f *  is a function meromorphic on R*, which is single-valued o r multiple-

valued according as f  is;
4 ° ) f *  is single-valued holomorphic in a neighbourhood of R*--...c*(R);
5 °) Im f*=  const. on each component of R*---..e*(R);
6 °) f* .c*= f on R.

In general, the closing-up (R*, c*, f*) was not uniquely determined by the
prescribed pair (R , f), b u t depends o n  a  finite number o f  real parameters
except the case g = 0 with a dipole f and the case g =1 with an f holomorphic every-
where on  R, in  which the closing-up (R *, f* ) is unique. Several significant
extremum properties that the slit torus enjoys were detailed in [17].

§ 2. Heuristic observation

2 . 1 .  The crux of our ideas in [18] can be sketched as fo llow s. In terms of
physics, the stream f on R never overflows OR, which amounts to saying mathemati-
cally that OR is  an impenetrable boundary for f  (see Rodin-Sario [12]; p. 260).
Fix an index j  at will. We showed in [18] that, for every value u e R  taken by
Ref on fii , it is possible to identify an appropriate n-tuple of points of f3,  —n e Z±
depending on u— such that Ref=u. We extend f  holomorphically up to /3i  with
the aid of Painlevé's theorem. Letting j  run from 1 to h , we obtained f *  as an
extension of f  and simultaneously R* as the existence domain for f * .  Thus each
component of R*---„e*(R) takes part in the totality of streamilines of the complex
velocity potential (S-function)f* on R*.

The above mentioned fact supplies a reason why we could obtain the closing-up
R* without attaching any 'big point set' to R, while one might try in vain to continue
f  holomorphically up to some closed surface R' such that R'--4? contains an interior
point (on account of Maximum Principle).

2 .2 .  On the other hand, the state of a steady flow in the presence of some
obstructive solid body are unaltered and invariant outside the solid after removal
of the solid and replacement by an appropriate streaming with source and sink (and
vice versa), as is familiar in Milne-Thomson's Circle Theorem, Rankine's Solid
(Ovoid) Theorem etc. in  hydrodynamics (see Milne-Thomson [9], pp. 154-155,
pp. 461-462). Here the border of the body agrees to part of streamlines for the
obstructed flo w . Translated into our terms, it suggests the possibility of cutting
out the closed surface R* again along OR —which is realized on R* as part of the
streamlines of f  *— and of inserting a 'big point set' into the lacuna. This implies
that the original complex potential f  on R is prolonged across the ideal boundary
OR analytically but now with some isolated singular points. In the subsequent
argument we concern ourselves with such continuations of the pair (R , f) with
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singularities, which we wish to name singular hydrodynam ical continuation of R
in regard to f. See Theorem 2 below.

§ 3 .  Singular hydrodynamical continuations

3 . 1 .  Now we are prepared to state and prove our Main Theorem :

Theorem 2. There ex ists a  proper continuation k of  R  an d  a meromorphic
function f  on k which coincides with f  on R . T o be precise, to a prescribed pair
(R , f) it is possible to associate a triplet '1, 1) possessing the properties:

1°) k is a closed Riemann surface of genus g;
2 ° )  t: R—>1? is a conformal injection; .1i--.21(R) has interior points;
30 ) J  is a  meromorphic function on R , w hich has at least one pole in each

component of k-,i(R);
4 ° )  f o i=f  on R.

We propose here to name the above k a singular hydrodynamical continuation
of R .  In proving this assertion it suffices to observe a suitable planar neighbourhood
of aR, where f  is necessarily single-valued. Furthermore, a  recursive argument
perm its us t o  confine ourselves to the case h = 1 .  S o  w e  w rite  13=fl 1 =3R
for shortness' sake. U nder the circumstances thus specified, the matter will be
rather simple.

Recall that the non-negative integer

1  N: = — d arg df —12.7r fi

could favourably describe the covering property of the map f :e ,  near /3 (see
[1 6 ]) . Only for the time being let us agree to use the wording as follows: a subset
of R is called a neighbourhood 3 ) of /3, if it is a doubly connected subdomain bounded
by the 1-cycle /3 itself and by an analytic Jordan curve )6" such that —fl' is homologous
to fl. We have shown in [16]

f  is univalent in a neighbourhood U0 of /3 if and only if N =0.
More generally :
f  is at most (N+1)-valent in a neighbourhood UN of fl.

3 .2 .  We will now expose how to construct in comparison with the manner
in which R* has already been achieved. The notation w =f(p) (p e R) for the S-
function on R  shall be consistently employed. To begin with, we consider the
simpler case N =0, which will be typical for later line of argument.

Based on the univalency of f  in Uo , we work with our construction procedure in
reference to the conformal image Vo =f(U 0) on C equivalent to U0 rather than on
the abstract subsurface U0 itself. B y  the definition of S-function, Imf takes on a
constant value on [I, i.e. the image set f ( f i )  is a horizontal segment a. W h e n  a point

3) Often referred to as an 'end of R'.
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pe fi makes a round along )6, its image point f(p) goes and returns the way a exactly
once. Hence the image set Vo =f(U o )  of the neighbourhood U , is  a  so-called
horizontal slit subdomain of C .  Then we have attempted in [18] to identify a pair
of points which are located on the upper and lower edges of the slit and are of an
equal w-coordinate. In this way the range of values of f  have been extended up to
the Jordan domain V; bounded by a single Jordan curve f(fi'). The inverse
conformal mapping f - 1  clearly extend up to r o , which implies that we have sewn
fi via the S-function f to get the closed surface R*.

Now instead, we keep the above-mentioned slit-sides not identified, but take
another copy C^ ' of the extended complex w-plane e slit along a segment congruent
to  a. Then we connect e, with r o cross-wise along each pair of the upper and
lower edges of their slits. The range of w=f(p) is thus enlarged towards the w-
sphere just attached across a. Back to the closed surface R* by f 1 , we come to
have welded a bordered Riemann surface of genus zero to R* along fi, which implies
the birth of a new abstract closed Riemann surface (0 R*) of the same genus as R*.
In addition, the S-function f  on R is prolonged up to a meromorphic S-function f
on it, whose range has been ready in advance as the covering surface over C, i.e.

f.. (p),
f (p) =

p E R

w, p e

More precisely, J  associates some value w e C' with every point of _ bijectively ;
in particular, f  has a simple pole at a single point poe corresponding to co on C.

§ 4. Proof of Theorem 2

4 . 1 .  Our line of argument to demonstrate the Main Theorem in full generality
lies, as preceded by the one in the particular case N=0, in identifying adequate part
of the boundary streamlines of the S-function by its equal values and inserting some
bordered surfaces of vanishing genus into the slits consisting of the remainder part
of those boundary streamlines.

Before commencing the main body of proof we want to bring to mind something
about the stagnation points of S-functions quoting from [18].

A point q on 13 was called a boundary  stagnation point if  d f(q )=0 . All the
boundary stagnation point was classified into one of the two, an even stagnation
point or an odd stagnation point, according as the number of the interior streamlines
meeting it. Curiously enough, the even stagnation points were found of hardly
any use in building the hydrodynamical closing-up R* of R by f, whereas the odd
stagnation points have filled a significant rôle ; the existence proof for R* has been
done inductively with respect to the number of the odd stagnation points on fi.
By the way we have seen through a simple observation on the orientation of streams
that /3 necessarily carries more than one and an even number of odd stagnation points
(see Fig. 1).
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Fig. 1.
4 .2 .  Roughly speaking, R* had grown out of R via an identification of points

on fi according to the equal values taken by f, which resulted the elimination of the
old boundary curve fi of R .  In the simplest case (N = 0  in  our terms) it reminds
us nearly of the usual conformal sewings in the classical se n se . To be precise, every
point of f (f i) should have been identified, by its equal complex w-coordinate, with
a unique point with the sole exception of the both extremities, which were odd
stagnation points (of the first order) and were identified with no other points. The
exceptional points reveal no longer any singularities after the identification.

In case N >0 too, R* was obtained in working on some partially similar sewing
processes. But unlike the first case N =0, the closing-up here was not unique on
account of the multivalency of f. O n e  o f  th e  measures to achieve it was as follows
(see [1 8 ] ) . Analogously to the above, (1) even number of (more than two) odd
stagnation points on /3 are identified with no other points ; (2) all point p e fi, except
finitely many ones, is identified with a point p' (Op) G 16 such that f (p )= f (p ');  (3)
as fo r a  finite number of those exceptional points, more than three of them are
simultaneously identified according to an equal value taken by f there to form a single
point q* of R * .  To be precise, q* comes from an even number of odd stagnation
points or an even number of even stagnation points  off. It w ould of course be easy
to prove these facts, but the situations are more directly convinced of through a
hydrodynamic in tu itio n . See Figure 2.

At any rate, fl is realized on R * as a finite union B  of simple closed analytic
arcs, which makes a compact connected subset of R * .  With the aid of Painleves
theorem f was prolongable analytically up to an S-function4 )f * on R * .  Hence R can

4) This simply means that f is an ordinary meromorphic function on the closed surface R*.
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Fig. 2.

be identified with the restriction R*---.B of R* as the existence domain off *.
The differential df* vanishes at a  finite number of points of multiplicity g1 ,

g2 ,..., g„, of B .  Here, the extremities of B shall be excluded. Hence f *  is not uni-
valent in some neighbourhood of each i . e .  the value ci =f*(g i )  is taken by f *
v;  times there (2 < v . ; E Z ) ;  2vi  s tream lines o f  f *  m e e t th e  s in g le  p o in t g;

( 1 = 1 ,  m ). N o te  that the equality

(1) (v;  —1)= N

holds.

Remark 1. Now that B takes part in the whole streamlines of the S-function
f *  on R*, it also constitutes a  subset of the trajectories for the analytic quadratic
differential —(df*) 2 .

4 .3 .  I t  is  possible to  f in d  a  neighbourhood W q ;  (j = 1, m), which
contains no  interior stagnation points originating from f, and satisfies W  Pif,=0
( j 0 k ) .  The analytic subarcs of B contained in Wi  shoots radially out of the core

some of which may reach aw, (see F ig . 3 ) . We need the following two pro-
positions.

Proposition 1. There exists a closed subset R of B with the following properties:

. .
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1°) 13-  consists of  ex actly  m  connected components I) ;  com prised entirely  in
the interior of  Wi ;

2 ° )  df* does not vanish at every extremity of yi  (j = 1, m) .

P ro o f . Along all the subarcs of B lying outside W , R can be sewn up according
to the equal values of 

f *
 in  a  similar manner as b e fo re . The sewing is unique and

may invade the interiors of all W  close to q;  as desired ( j= 1, m ) .  H e n c e  1-3
sought after is readily made of B. q. e. d.

Proposition 2 .  There exists a triplet (IZ, f )  satisfy ing the conditions:
1°) R  is a f inite Riemann surface of genus g;
2 ° )  e: R,R is a conformal injection;
3°) f is an S-function on 1Z;
4 ° )  the whole boundary streamlines of f  coincide with R---.1(R);
5°) foe =f  on R.

Pro o f . We have only to set R = R*---.13- , while f  is the restriction  o f f *  to  R.
q. e. d.

By this Proposition we may consider /3 as the realization of the boundary of
R on R*.

Remark 2 .  In accordance with the alteration from (R, f) to (R, f), the integers
m and N  in the identity (1) change their values in general, which shall be denoted
by the same letters, however.

For every index j = 1, m an appropriate choice of W a local coordinate
zi  in Wi  permits us to assume

(2) zi(q.1)= 0, w=f (p)=z;i, (2 < vi  c Z) .

In terms of zp  y i =  n W  is realized as a degenerate concave polygon A ;  in C, which

F1,1

Fig. 4. p i= 3
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consists of 2v;  rectilinear segments F • 1,..., F every F., 1  = 1, 2,..., 2v; ) starts
a t the origin and the angle Fi 1+1 composed by the adjacent pairs F  F 1 + 1

(i =1, 2,..., 2vi , mod 2vi ) are equal to nivi  (see Fig. 4).
We fix an index j  at will (1 m ). Then the shorter notations y, y, z , and A

are preferred to and A i ,  respectively. The exterior of A  (i.e. the com-
plement of A  with respect to  C) can be mapped onto ICI >1 conformally and the
m apping function is w ritten dow n in  closed form  e.g. by m eans o f  Schwarz-
Christoffel's transformation. In fact, there are 2v points c(1) , c(2) , . . . ,  ( (2, )  located
on ICI =1 in this order and a constant C such that

(3 )

Substitution of (3) into

(2')

yields the expression

= (C—((n))11%
n=1

=  zv

2v
= ( V  n =1

of f (p) in terms of a new local coordinate near y (c 13), which admits the S-function
w=f (p) to be continued meromorphically up to 10 <1 in a unique m an n e r. If one
attaches a surface portion t o  R such a s  t o  correspond t o  1(1 <1, one obtains
a  meromorphic prolongation of the S-function f (p )  onto the  new surface. The
S-function f(p) on R thus turns out to have been prolonged meromorphically beyond
y, so that it may have a pole of order v outside R.

Working on the indices j =1, m in the same way, we have finally a  con-
tinuation R of R and f  of f  looked for. q. e. d.

§ 5 .  Concluding remarks

5 .1 .  At the j-th step in the course of proving Theorem 2, f has arisen from f
by getting a  new pole of order vi  (j =1, m ). Hence 1 has more poles than f
by v»  namely df is greater than df by (v. ; 1 )  in  th e  degree o f  their polar

.v=1
div isors. On the other hand dI is greater than df  by 2 vi  in the degree of their

i =
zero divisors, since di has a simple zero at each endpoint of y»  Consequently we
have the relation

deg (dbi, — deg (df)R

=2 vi — (vi +1)= (vi -1 )=N ,
j=1 j=1

which agrees well with the statement "df possesses the ramification of total order N
on 11" in  [16], p. 372. In  other words, the classical Riemann-Hurwitz relation for"
the covering f : R-+ C is reproduced in quite a natural manner from the same formula
for f  in our generalized sense (see [16]).
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5 .2 .  Non-uniqueness. T he singular hydrodynamical continuation R  i s  no
m ore determined uniquely by the  prescribed pa ir (R ,  f )  th an  R *  was. There
would subsist some opportunities, on which the non-uniqueness might have entered.
Even at a  glance of the simplest case N = 0 in the proof of Theorem 2 we shall be
aware of the following circumstances : In section 3.2 e has been joined to F o so
that the resultant covering surface may possess the branch points of the first order
over the two endpoints o f  a .  They need not, however, be located on the extremities
of a, but might be any two points on cr. In this way one could obtain many closed
Riemann surfaces which are conformally equivalent neither to k nor to each other,
if g > 0 .  Much more in case N >0, we notice that an arbitrary choice of the neigh-
bourhoods W  (j =1, m) has already caused a  similar non-uniqueness. This
circle of idea may go further, for we presume that R  is at first an open Riemann
surface of finite genus b u t possibly w ith inf initely  m any  boundary  com ponents.
The S-function f  on R  still lends itself to the construction of the hydrodynamical
closing-up R* of R (see [18]). Then take a finite number of connected components
B 1 ,..., A , out of a t  will. A pp lica tion  o f Theorem 2 to the finite Riemann

h

surface R*--, B. yields a  singular hydrodynamical continuation R,, of R, such that
-

f  extends to a meromorphic function A, on k h whose order is at least h. Since h
was arbitrary, it enables us to obtain a  singular hydrodynamical continuation of R
of as high total order as we please.

5 .3 .  Our continuation processes of R  to k  was based upon a  specific mero-
morphic function on R in the sense that it was only performed through the S-function
f  on R .  Note that a  similar continuation problem is dealt with in Grunsky [3].
Meromorphic continuations of Riemann surfaces referring to more general functions
are found in Mori [10] and Grunsky [4].

5 .4 .  Just as we remarked earlier there are widely known results such as Milne-
Thomson's Circle Theorem, Rankine's Solid Theorem (a kind of generalization of
the former) and others in the classical hydrodynamics, which are very akin to ours
in the treatment of subjects. Those theorems assert that under the existence of a
parallel uniform flow on the whole complex plane C the placement of an obstacle
has an effect equivalent to the composition of the original flow with another flow
generated by some adequate singularities. What is more, in Circle Theorem the
composite flow has a dipole —its sole singularity— at the centre of the circle, which
seems to make no essential difference from Reflexion Principle. So an attempt of
its direct (but obvious) translation to a Riemann surface R would lead us to nothing
but the Schottky double, which is of genus 2g.

In our Theorem 2, however, the hypothesis on the existence domains of the given
regular flows is weakened to a more general Riemann surface R  than  C, and the
continuation k of R shall be always of genus g .  Thus our Theorem 2 is regarded as
a non-trivial generalization of both Circle Theorem and Ovoid Theorem to arbitrary
open Riemann surfaces of finite genera.
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