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A fine microlocalization and hypoellipticity

By

Yoshasugu TAKEI

§ 0 .  Introduction

In  th e  present article, we shall consider microhypoellipticity of the pseudo-
differential operator P = p(x, D) in Rd. Recall that P is called microhypoelliptic if

(0-1) WF(Pu) = WF(u) f o r  u e g'(Rd ) .

(See Iiiirmander [7], Definition 13.4.3). Microhypoellipticity of P  implies hypo-
ellipticity of P .  In particular, we are mainly concerned with microhypoellipticity
of P  a t  a  p o in t (xo , of Ra x S a ' ,  which means that (0-1) holds a t (xo ,
(For the precise meaning, see Definition 3 in  §1 below). As is well known, if an
operator is elliptic at (x0 , e ) ,  then it is microhypoelliptic a t the same point. This
important theorem is based on the fact that ellipticity at (xo , ()) implies ellipticity
on a conic neighborhood of (x0 , e ) .  To study an operator on  a  conic neighbor-
hood of a given point is a  key idea of the so-called microlocal analysis. On the
other hand, there are cases where a n  operator P  is no t e llip tic  o n  any conic
neighborhood of a point (x0 , but if we divide a  conic neighborhood into finer
pieces, P  can be regarded a s  'elliptic' o n  each o f them. Such finer pieces will
be nam ed "F-parabolic neighborhoods" of (xo , e ) .  A nd we would like to call
this subdivision a "fine microlocalization". In  this paper we discuss microhypo-
ellipticity from the viewpoint of the fine microlocalization.

Let us explain our idea briefly by giving an  exam ple. W e take up the heat
operator P = a2lax?—al5x2 , which is not elliptic but microhypoelliptic at (xo , °)=
(0, (0, 1)). We consider this operator on the following subset of R2 x  R 2 .

b = {(x, ) e R2 x  R 2 1 >  0 , 'XI 1} (0 <a•..b-,..1),

or

W,,„ = 1(x, 0 e R 2 x  R 2 N il > 0 , lx1 1 } (0 < b 1 )  .

We call such a  subset a  F-parabolic neighborhood of (0, (0, 1)). In  our terminol-
ogy, P is elliptic on  W._ 1/2 , because P can be regarded as an operator of the first
order on W  1/2 and the term aiax 2 guarantees the ellipticity of P th e re . On the
other hand, P  can also be called elliptic o n  Wa , b if we choose 1 b 1/2 and a
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b) close enough to b. On 147 ,„ the term 0 2 / xf dominates 0/0x 2 . The union
of W _ , 112 and  two of W b 's fills a  conic neighborhood of (0, (0, 1)). Therefore we
can conclude, by our Theo:em 1, that P is microhypoelliptic at (0, (0, 1)). ( See for
details §1 and §5).

Concerning the anisotropic wave front set, there are some works, for example
Lascar [9], Parenti-Rodino [13], Rodino [14], etc. They considered such wave
front sets in the study of quasi-homogeneous or, more generally, spatially inhomo-
geneous pseudo-differential operators. In particular, in [13] Parenti and Rodino
investigated the relations between the  usual microhypoellipticity and  the  micro-
hypoellipticity with respect to  such  w ave f ro n t se ts . O u r  idea is to consider
F-parabolic neighborhoods which a re  sim ilar to  such w ave front sets, and to
divide a conic neighborhood by making use of them.

Now it is the microlocal energy method of Mizohata that we use practically
in  considering the fine microlocalization. Mizohata initiated it for the study of
the Caucy problem, the  characterizations o f the  analytic and the G evrey wave
front sets, and s o  o n . (  See M izohata [10], [11], [12]). W e believe that his
m ethod is quite elem entary a n d  straight-forward. I n  th is  article w e  u se  this
method in  a  little modified manner, which is more suitable in  some examples for
discussing the regularity in the C  class and in Sobolev spaces.

The fine microlocalization seems to be very useful in the study of microhypo-
ellipticity. A s  a  m atter o f fac t, w e  can  show the microhypoellipticity of the
operator w hich is m ore degenerate than th e  elliptic-like operator a s  th e  heat
o p e ra to r . A s  a n  exam ple w e a re  g o in g  to  d e a l w ith  a  differential operator
Pm  =  ( 0/0x) 2 1 " + x(0/0y) w here m  is a positive integer. W hen m  =  1, this is the
simplest one that satisfies the criterion of I+3rmander [4] on the commutator of
vector fields. I n  § 6  w e  sha ll p rove  the hypoellipticity of Pm  b y  full use of
F-parabolic neighborhoods. W e expect that in  future the method studied here
will produce plenty o f  results, say the hypoellipticity  of a  class o f  operators
including Pm .

T h e  p la n  o f  th is  p a p e r  is  a s  follow s: In  § 1 , w e define the F-parabolic
neighborhood and state  our main result (Theorem 1). In §2 and §3, we explain
the basic  calculus of the fine microlocalization, m aking use of the microlocal
energy m ethod. T h e  proof o f the  m a in  result w ill be given in  §4 , and  some
examples will be studied in  § 5  an d  § 6 . Finally in §7, we will prove the funda-
mental propositions stated in §2.

Acknowledgment. The author is deeply indebted to Professors S. Mizohata
and N. Shimakura for invaluable suggestion and encouragement.

§ 1 .  Main Result

Let x = (x 1 , • • • , xd )  a n d  =  •  •  •  ,  be the independent variables running
over Rd respectively. Fix a point (x 0 , e  x  (Rd \ 0), I e I = 1. W e shall define
the notion of the F-parabolic neighborhoods around (x,, in general.
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F o r simplicity we assume x o =  0  and  O  =  (0 , •  , 0 , 1 ) . If  it  is  n o t  so , we
take  an orthogonal m atrix  T  such that (0, • • • , 0, 1) = T e ,  a n d  introduce new
coordinates y and ri as follows:

y = T(x — x,), = .

Then (x 0 , corresponds to (y 0 , ri
°
) = (0, (0, • • • , 0, 1)) in the new coordinates. So

the argument is reduced to the case (0, (0, • • • , 0, 1)) by using (y, 11) instead of (x,
In  accordance with the operators (or the distributions) and (x o , we want

to  t r e a t  later, we associate some weights K  a n d  L  to =  •  •  •  ,  and
x. That is, let K  = (K 1 , • • • , K d _i ) and L = (L 1 , • • • , Ld ) be vectors whose elements
are non-negative integers, and set

[ f l ic _ j2K.01/(2 max K .,)

= (s" x j4 .91/(2 min /..)

Here E' (resp. E") denotes the  summation which runs over j  satisfying K i  0  0
(resp. 4  0  0). W i t h  t h i s  notation, the E uclidean  norm  Ix  in  Rd  is  e q u a l to
[x] ( ,,...,, ) . W e  f ix  K  and L  as well as x , and O  until we deal with examples.

Definition 1. A subset W 1 (or Hix . 0; r )  ) of Rd  x  Rd given by

(1-1)W 1 =  { (x , ) e R" x  Rdf f ] ,

Gd-g 11C1h, > 13, I f l d> I x el

is called a F-parabolic neighborhood of (x o , = (0, (0, • • • , 0, 1)).

Here F  stands for the set of parameters x 0 , K , L , a, A , b, B , g, G , h, H  and
E. As x o , K  a n d  L  a re  fixed, we denote it abbreviatedly in  th e  following
manner:

( a  b  g h  e )
B  G  H  )

where 0 < a b 1, 0 h  g  < 1  and A, B, G, H, E are positive.

R em ark 1. In  the  above definition o f  WI- we admit a = — co. In  this case
we replace the condition BCi in (1-1) b y  [ ' ] ,  B  and write

F = (—
c

o
B G H

We also admit g  = +co in the similar way, denoting

( a  b h
F =

B  
+co E ) .

2t1 H

Remark 2. When K  = (0,•••, 0), the subset we consider is only the following:

Wr = { (x, ) E Rd X  R a 1 G ; q[ X ] !, / / 1 1', d  > 0, l' I E d , I x I El .

F =

b g  h
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In this case we write

We do the same when L  = (0, —, 0).

Remark 3. A F-parabolic neighborhood is not a neighborhood of (xo , in
the proper sense of the w o r d . But it is really a neighborhood when a = —co (or
K  = (0, ..., 0)) and g  = +co  (or L  = (0, — , 0 )). Particularly, if F  is  one of the
followings:

1 0
+00

"  cc  0  e )
H  e )

( +
' H

(

( - 0 0 (0  0  0  0  e ) ,

then a F-parabolic neighborhood is nothing but a conic neighborhood of (x o ,
In the sequel, such a F  will be denoted by F ° . (When all of K ls and L ls are
equal to zero, we consider only 1 0 ).

Remark 4. In [9 ] and [13], Lascar and Parenti-Rodino also deal with such
subsets o f Rd x  l e .  The subsets they consider are the following F-parabolic
neighborhoods in our terminology.

( b b  "  E) ,

B
( — cc B E).

Definition F. For a 1-parabolic neighborhood WI- we put

= a  an d  Sr  = g

In case a = —co (resp. g  = +co), we define pr  = b (resp. = h). When all of Ki 's
(resp. Lls) are equal to zero, we define pr  = 1 (resp. b r  = 0).

Pr and or are often abbreviated to p and (5 when no confusion arises. In order to
make calculations meaningful, we impose the essential restriction Pr > 0r.

For a F-parabolic neighborhood W r w e often  call another Wr ,  given by
substituting A — ro , B  + ro , G —  ro , H  + ro , e  + ro ( ro > 0 ) for A , B , G , H , e
respectively, a neighborhood of W r. It is obvious that 17PT  D Wr.

Hereafter we are going to study the pseudo-differential operators by full use
of F-parabolic neighborhoods. So the behavior of a given operator on Wr comes
into question. Let 57, (0 s O p  s  1) be the class of symbols of order m defined
b y  H 6rm ander [3]. T h a t is, p ( x , ) e  Ca)(Rd x  Fe) belongs to  S i

p
n
, 6  if for every

multi-index pt, y there exists a constant Ç . such that

10:;(x, )1
where 0,4, ( x ,  ) =  a v — ia x )v p (x , ) ,  <> —(1 + 2)112. W e say that p(x, 6  SZO
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is a  symbol of order m' o n  WI- or p(x, be longs to  S  if there exists a  neighbor-
hood 12PF  of WI- such that for any multi-index kt, y we have with a constant

10:4x, C,,,<>"v-PrIA1+6/-1"1, G V-Vr .

Furthermore let us define the ellipticity of an operator on  Wr.

D efin ition  2 . W e  s a y  th a t  p(x, c n o i s  ['-elliptic i f  th e re  ex is ts  a
neighborhood W- r. of Wr and positive constants Co , R such that o n  Wr nIll ?, RI
one of the following estimates holds.

(1-2) Re(zp(x, ))

for some z E C \ 0 and a, 0 a <P r  — Sr ,  or

(1-3) PIx, % Co <0 m - 6

for some a, 0  a < (p r  — 6r )/2. Here z and  a  a re  independent of (x, and we
are assuming that p(x, is a symbol of order m' on Wr.

Properly speaking, we may as well say "F-subelliptic" instead of "F-elliptic". But
we use the above terminology for the sake of simplicity.

Now we consider microhypoellipticity of a given operator P = p(x, D) (p(x, )e
S 0 ) at a  given point (xo , We define the microhypoellipticity of P at (xo ,
as follows:

Definition 3. Let p(x, e  S . W e  say  th a t P = p(x, D) is microhypoelliptic
at a point (x0 , of Rd x S d - 1  when P satisfies the following condition:

(xo , W F (Pu ) if and only if (xo , WF(u) f o r  u e

Here WF(u) denotes the wave front set of a distribution u defined in  Hiirmander
[5], II. §5. For U G g'(R d ) and (xo , e) E x  S d - 1 , (x0 ,  ° )  WF(u) if there exists
a  function ((x) e C(R") which is equal to 1 in  a  neighborhood of xo an d  a  conic
neighborhood V of such that for every positive M we have with a constant C ,

gur(01  C m <0 - m e  V.

Here and in what follows, 6 denotes the Fourier transform of V  E ,99 '. Note that, if
P is microhypoelliptic at every point of Rd x Sd - 1 , then P is (micro)hypoelliptic.

The main theorem of the present article is:

T h eorem  1 . L e t  p(x, e  Sr. ,. S uppose th at  th e re  e x is t s  a  family
of  [-parabolic neighborhoods of  (x , ,  (21 ) satisfying

(a) p(x, 0 is [-elliptic f or every j,

(b) U  W . a conic neighborhood of  (x,, ,

(c) max S r  < min pr  .

Then P = p(x, D) is microhypoelliptic at (x,,
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The proof of this theorem will be given in §4.

E xam ple . Let us consider the heat operator P = 8 2 /axi — a/ax2 a t  (0, (0, 1)).
We define ri and Wi  ( j = 1, 2, 3) as follows:

1/2ri =  (-00 0  0  1 ) , wi =  { (x ,)I1 1 0 2 , 2  >  0 ,  IX' 1} ,

(1 /2  p 1) ,
w2 = { (x, I 0 2I  I > 0, lx1

f P
 1 1) W3 = {(X, 11 > o I X ' 1}

where p is a  real number satisfying 2/3 < p  < 3/4. Then P is 1-elliptic for each j
with

m' = 1 ,r = 0 on Wi ,
= 2p , = 2p — 1 on W2,
= 2 , = 2 — 2p on W3 .

It is also clear that this {Fi }j =1,2 ,3 satisfies the conditions (b) and (c ). So Theorem
I implies that P  is microhypoelliptic a t (0, (0, 1)). Again in  §5, we are going to
consider a  class of operators including this operator P  and  to  show its (micro)
hypoellipticity.

§ 2 .  Preliminaries

In  this section we explain some terminologies which will be used throughout
th is  p a p e r . F irst w e construct cut-off functions. L e t  9(t)  b e  a n  element of
C (R 1 ) satisfying 0 9(0 .< 1, 9(0 = 1 on (—co, r0 /2] and 9(t) = 0 on  P-0 , +oo).
Moreover, given positive numbers SI, S2, 0 and real numbers s1 , s2 , we put

(t; 0) = (pi (1 64s1 t)  +
0 s 2 t

—1) 1 .
S2

Using this function, we define cut-off functions as follows:

1560 = IPIVI(H ls; _ ,) 0 1 1:i d; n)en

A1,-(x) = )14,'C ([x]L; fl) ( —  1 )

where n is a large parameter. Therefore, our cut-off functions depend on n, ro and
F .  In case a = — c c  we define simply

cxf,-( ) = (
1 7 - b

 [ ] 1 ) 1) tp _1 : 1 ( d ;  n )

B en I
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We define Ar(x) in the similar way when g = +co.

Definition 4 . A pseudo-differential operator A n
r (x, D) defined by

A nr (x, D)u = an
r (D)(r, (x)u) f o r  u e g'(112d)

is said to  be a  microlocalizer attached to Wr . W e call ro  in  th e  definition of ot„r

and 13„F  the size of microlocalizer. (Usually we choose it small).

Notice th a t A n
r (x, D) e S fo r each n, a n d  s o  A n

r (x, D)u e 9" (Rd ) for every u E

By definition there exist positive constants C , and C2 independent o f  , n and
F such that we have

(2-1) C, n..-,. < >..... C2 n on supp an
r g) .

Furthermore we see that for every p, y there exist constants C 1 , C 2 ,  independent
of n such that

(2-2) I atoc.r g/I C1 n- PIPI,

I .03 „/"(x)I C2 , ,n61"1 .

From these estimates we can derive some fundamental properties of microlocal-
izers. Before stating them, let us introduce a few of notations.

Definition 5 . 1 ) F  c  I ." (or Wr  c  W r ,) means that W 1 (R ) c W1 (R) when R
is la rge , where W 1 (R ) = wr n {„ = R } .  Sim ilarly F  c  c  F ' ( o r  W1 W r )
means that W 1 (R) is relatively compact in W 1 (R) when R  is large.

2) an
r ( ) c c oc,r,.'( ) means that oc,/,- ( ) = 1 in  a  neighborhood of the support

of ccf,.(,0 when n is la r g e . It is the same for fin
r (x) c c f i['(x).

3) A n
r (x, D) c c A ' (x , D) means that ant ', fl„F  and  ,Ç', 13„P  , corresponding to

An
r  a n d  An

n  respectively, satisfy c[ c c an
r '  and le  c  c  f i r ' .  W h e n  A n

r (x, D) c  c
A " (x, D), we say that /1 (x, D) is subordinate to A „I' (x, D).

Remark. It may happen that a microlocalizer is subordinate to another even
if they are both attached to the same F-parabolic neighborhood, because of the
difference in  th e  size o f  th e m . I f  i t  i s  so , w e a re  g o in g  to  use the notation
An

r  c c 71n
r  in the sequel.

Definition 6 . 1) We say that a  sequence of real numbers {a„} depending on
parameter n  is rapidly decreasing o r  negligible i f  e l

 l a n i -+ 0 fo r  a n y  positive
number M  when n tends to infinity.

2) W e say that a  sequence of functions {un }  depending on  n  is negligible if
the sequence of numbers { II un II } is rapidly decreasing when n ---, co.

3) W e  s a y  th a t  a  sequence o f  pseudo-differential operators {pn (x, D)}
I .idepending o n  n  is negligible if p 1Pim)}„(x, D) e S '  for every n  and is rapidly

decreasing for any m and I when n —> c o .  In  this case we write {p„(x, D)} e Sn e g .
Moreover fo r two sequences o f  operators {pn (x, D )} and {qn (x, D)} w e use the
following notation:
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p„(x, D )  gn (x, D) (mod Sn e g )

when Ip„(x, D) — g„(x, D)} c Sn e n .

Here IP Ir = max sup 11pMx, 01<> - (m - i ' r) }  and II II stands for the /2-norm  in
Ip+vi (x,)

the  x-space Rd . W e should rem ark that, a s  is easily seen, fo r any  u e 6'(Rd)
{p„(x, D)u} is negligible when {p(x, D)} e Sn e g .

Now one of the most important properties of microlocalizers is the following:

Proposition 1. 1) {A „r (x, D)} is  a  bounded subset o f  Sp
° , ,  when n  tends to

infinity.
2) Suppose that 1pn (x, )1 is  a  bounded subset o f  n o . I f  A t

!: c c A n
! '  and

max (5r , 6r ,) < min (pr , pr .), then

D)pn (x, D)(1 — D))1 c Sn e n  ,

1(1 — Dflp(x, D)A,I,"(x, D)} e Sn e, .

The same conclusions hold if  A n" Anr' and fpn (x , )1 is a bounded subset of
where max (6r, 6r 6 1 ) < min (Pr , Pr' , PO.

As is seen below, this proposition is very useful in applications. We will prove it
in §7.

Next we consider the microlocalization of symbols.

D efinition 7. F o r  p (x , e  S 0  w e  d e f in e  th e  microlocalized symbol to
Wr by

P‘,/0,(x, $[(x)/3(x,

Remark. Because the microlocalized symbol is defined by using cut-off func-
tions, the microlocalized symbol depends on ro  a s  well as n and T, though it is not
explicitly written in the above n o ta tio n . We often call ro  th e  size of microlocal-
ization (or the size of )1).

Under this notation we say also that p(x, )e ST'' if and only if fp„F,,„(x , )1 is  a
bounded subset of SZ,3 when n tends to infinity.

Proposition 2. For p(x, e SZ0  we have

p(x, D)/1„1" p„F,„(x, D)A „F ( m o d  S n e g ) ,

A „F p(x, D )  A nr P nr,10,(x, D) (mod Sn e g )

if  the size of  Af," is smaller than a half  of  the size of

W e will prove this proposition in §7 together with Proposition 1 . This propo-
sition  show s the  im portance  of the  microlocalized sy m b o l. F o r  example we
obtain the following estimates from above.

Proposition 3. S uppose that p(x, E Sir  an d  u e Gr'(R d ). T hen  there  ex is t
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positive constants C1, C2, e and negligible sequences {an }, { bn } such that, if  the size
of is smaller than e, we have for all n

(2-3) 11P(x, D)A1411 Ci1 1 4 + an ,

(2-4) 11A5(x, D)ull C2 nm' A,511 + bn ,

where A n3 „F. The constants C1 , C2 and e are independent of  u.

P roo f. By assumption we can take the microlocalized symbol D ( SO

that )} is a  bounded subset of S Z ,. In other words In-m 'Ignr,loc(x, )1 is a
bounded subset of Sp

°,,, because (2-1) h o ld s . S o  b y  the theorem of L2-bounded-
ness of Calderón-Vaillancourt [1] there exists a constant C such that

(2-5) D ) 0  Qv 11 fo r  y  E Y(R d ) .

On the other hand, Proposition 2 says that

(2-6) P(x, D)A,511 Pn,r  1.(x, D)A n
r ull +

with a negligible sequence {a n }. B y  (2-5) and (2-6) we obtain (2-3).
By the way, Proposition 1 implies that with a constant C independent of n we

have

11A5(x, 11A5(x, D)71ull + an

D)2,14 + a, ,
where {a n } is a  negligible sequence. Hence (2-4) follows from (2-3). Q.E.D.

§ 3 .  Finely microlocal smoothness

Let us consider the smoothness of a distribution on a F-parabolic neighbor-
hood . F irst, w e  dea l w ith  the  smoothness o n  a  conic neighborhood W ro .  As
stated in  Mizohata [12], the wave front set is closely connected with the micro-
local energy 11/1„r ° u11. (See also [10], [11]). That is, we can prove the following
proposition.

Proposition 4. L et u be a distribution in Rd . In order that (x,, °)( W F(u), it
is necessary and sufficient that there exist a conic neighborhood Wr o of (xo , and
a microlocalizer attached to W1 0 such that {11/1n

r ° u11} is rapidly decreasing as
n ,  co.

P roo f. L et u s  no tice  th a t  th e  cut-off function fir (x ) doesn't depend on
n. So we denote an

r ° (0  and f 3 [ ° ( x )  by  oc„( ) and f3(x) fo r  sh o rt. Now if (xo , ('')
WF(u), then there exist I3(x) E C (R d) which is equal to 1 in  a  neighborhood of x,
and a conic neighborhood V of i n  Rd such that

11flur101 Cm<0 - m M  =  1 ,  2 ,  •  •  • , E V
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Hence, if the support of a ( ) is small enough to be contained in  V for all n, we
have

llotn(D)flull2 = (270- d  f  « ( ) 2 1(flu)(012

< 0 -2 M  g
C m I nI2 s14Is 2n

< Cm n' d  , M  = 1, 2, • • .

Conversely le t u s  a ssu m e  that = doz„(D)flull is rapidly decreasing.
Take o (0  and fi(x) (j = 1, 2) in  such a  w ay that ceni cen2 and fl 1 c c
)62  c c  fl. We consider cx ( )66 1 u) ^ ( ) .  Observe that

sup la,l( )11310"(01 Ila(D)0411Li(q)

< C0 11(1 + I x12 )1; 101(6114 11

w here I = [d/2] + 1 a n d  Cc,  i s  a  c o n s ta n t  independent o f  n. Furthermore,
(1 + lx12 ;;(D)fi 1u is the image of the inverse Fourier transformation of

(1 — Ad i a4(0(fl i u r(0

( — T ivi

=  E , 
)  

 otti. (( - ia xy  +  x  )')fl .
Iv' s 2/ V

( Y7x,4 stands for the Fourier transformation). Therefore

(1 + lx12 )1«(D)fl i u

(_ olvl ( 0

=  E   (D){(1 +
ivi<2/V .

lvi2 1
=  E  cc,r(D),ov (x)u.

Here we set

So we have

Now

fiv(x) = v ! - '(-1)(1  +  lx1 2 ) vool (x).

sup lot;, ( )0 1ur ( I C o  E 111,1,(v)(D)fiv(x)ull
11, 1 21

(3-1) ar(D))6v(x)u = ocr(D)cc„(D) )62 (x))6,,(x)u

= oc,i,m (D)(oc,i(D),(32 (x))/3(x)(oc„(D)S(x)u)

+ ot"(D)(a(D) )62 (x)) )6,(x)(1 — an (D)13(x))u .

Because 14, (v)( )1 a n d  {/3,(x)} are  bounded subsets of ,S,1;1 a n d  S?, 0 respectively,
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th e  right-hand side o f  (3-1) is negligible by assum ption and  P roposition  1.
Therefore for every positive M there exists a constant Cm  such that

sup 1;1(00 1 0̂  (01 C n '
4

holds for all n. In  other words there exists a  conic neighborhood V of in R d

such that

ur (01 cm <0 - 1 4
 , M = 1, 2, • , c eV .

This shows that (x0 , WF(u). Q.E.D.

Taking this proposition into account, it is plausible to define the "smoothness of a
distribution on a F-parabolic neighborhood" as follows.

Definition 8. A distribution u in Rd  is said to be smooth on  WI- if there exists
a  microlocalizer An

r  a tta ch ed  to  Wr  su c h  th a t { /4/-14 } is rapidly decreasing as
n co. In this case we write u e C1-3 (or u e Crx0 ,40( r ) ).

Once this notion is established, we can also express Proposition 4 in the following
way.

(x ,,  ° ) W F (u ) if and only if there exists a  conic
neighborhood Wro such that u E  Crx 0 o , ro) .

W e should  also  rem ark that, if { Anr u }  is rapidly decreasing and
{ Au M} is rapidly decreasing, too. In fact

2 nFu  = 7i nr Anr u  A nr  _  A nr ) u

A c c nl" Anr,

Applying Proposition 1, the assumption implies that the right-hand side is neglig-
ible. In the same way we can prove

Proposition 5. C f c cp. provided that F' c F and max(61 , (51-.) < min(pr , pp).

Proposition 6. Suppose that p(x, )e S T , and u e &'(12°). Then u e CF implies
p(x, D)u e C .  T h e  same conclusion holds when p(x, e Sprni ,,, and max(6r , <
min(Pr, PO.

Pro o f . A ssum e t h a t  { II Anr u ll} is rap id ly  d ec rea sin g . T ak e  A n
/ . s o . th a t

2 nT
 "
AT

• Then we haven

2 5(x, D)u = 21-.FP(x, D)Anr u + 2 nr 1, (x, D)( 1 — Anr )u •

The second term is negligible by Proposition 1 . As for the first term, there exists
a constant Co  such that for all n

I171,5(x, D)A,511 Co nmIlA:u

by Proposition 3, so it is negligible, too. Q.E.D.

The following theorem is fundamental.
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Theorem 2. Let u be a distribution in R d .
1) I f  (x,, W F(u), there ex ists a  1 0  s u c h  th a t  u  e  qx 0 . ; r )  f o r  any

c  1 0 .
2) A ssum e th a t  u  e  q e ., 4 0, r i )  ( 1  j  J )  f o r  som e 11j 1i . j .." satisfy ing

max 5 < min pj . I f  U W  c o n ta in s  a  conic neighborhood o f  (x 0 , then
j= 1

(x o ,  0 ) W F(u ).

P ro o f .  1) follows from Propositions 4 and 5. Let us prove 2). We assume
xo = 0, e = (0, • 0 ,  1 )  and

U  
W r j  D  { (X , E  Rd  X  R d 1 >  0

, I 80 col •
j=1

Put
. b. g • h•

F  
a

= e ) for 1 J ,
A  B . G . H .

e  =  min e1 .

First w e arrange A A ,a,  a n d  /31 „bi  (1 J)  together in  th e  increasing order of
magnitude and number them as follows:

< S2 < S3 <  •  •  •  <  Sp .

N ote  that this order is independent of d
 w h e n

 d
 i s  la rg e . D oing th e  same

procedure as to  Gi d
- a,  and  1-11 ,715 , we get T1 , T2, • • • , T Q .  Then define

=  { (x ,)e  Rd x  Rd I Sp _, Sp,

7 :1-1 [x]i_ Tq , d  >  0 ,  I el

for 1 p P ,  1 g Q .  Here we regard So  =  To = 0. Each N P is nothing but
a  1-parabolic neighborhood. It is easy to see that

1°) I N P I  is a refinement of that is for any
(p, g) there exists a j  such that NP

2 ° )  max (5: = max 6, min p: = min pj ,

U  WqP { ( x , d >o C g d ,
P.9

T he  properties 1°) a n d  2°) im ply  that u  is  sm ooth  o n  every w q P  d u e  to
th e  assumption and P roposition  5. L e t A "  =  c (D)f3(x) b e  a  microlocalizer
attached  to  N P such  tha t flla°,(D))3„(x)ulll is rapidly decreasing. Now we will
show that the smoothness of u on Wcf  and NP+ ,  implies the smoothness of u on

171-/= tsp_ 1s p ,  T , T q+1}  -

Take eir,, ;  ,q„ so that 6i1,: af,, / J3, ,fi,g,+1 c c and put

fi„(x) = min (fi:(x) + [3',7, -"(x) , 1).
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Then ;i n =  if,(D)/(x) is a  microlocalizer attached  to  ff. N ow  51- „(x, D)u is decom-
posed into three terms:

(3-2) 71„(x, D)u = ir,(D)[3: u + eq,(D)P,q,' u  +  & (D )fu

where
L(x) it(x) - (Mx) + ki -"(x» .

The first two terms on  the  right-hand side of (3-2) are negligible. Taking 0 , in
such a way that fi,q, c OEc /3„, we obtain

5r(D)fu = evamo, f n u

= ( 6q(D)C).fn(ŒADMI)u + (cifi(D))fn( 1 — cOADV:)u

since suppf„ s u p p  [3 „ . So the third term on the right-hand side of (3-2) is also
negligible. H e n c e  u is smooth on

Repeating this procedure, we see that u is smooth o n  WP =
Sp , Ix go } from  the  property 30 )• I n  t h e  sim ilar w ay w e can prove that the
smoothness of u on WP and WP+ 1  implies the smoothness of u on ISp _, [ f l ,

eo l. Therefore u  is sm ooth  o n  1 ,1 > 0, 1.X1 Then
the theorem follows from Proposition 4. Q.E.D.

Here let us consider the smoothness on  WI- in the sense of Sobolev space.

Definition 9. W e  say  th at u e g'(14° )  belongs to  HI- (o r M 0 ,,,, r ) )  if  there
exists a  microlocalizer Af: attached to WI- such that 11/1„F ull O (n )  as n co.

We note that an =  0 (n ' )  means that there exists a constant C such  tha t a„
C n '  for large n. F or Hsi - we have the analogous results to 0 3 case  studied so
far. F o r  example,

1) H si- . 111-, provided that F' F  and max (ôF, b p )  < min (pr , pr ).
2) Suppose that p(x, ST-' and u E &'(11 " ). Then u e Hsi - implies p(x, D)u c

U rn '.

However, to state the analogy of Proposition 4, we need a  slight modification as
shown in M izohata [12]. Let us recall here the definition of the wave front set in
the sense of 11°.

Definition 10. For u e g'(R d ) and (x0, e )  e  R d  x (R" \O)0) we say that (xo ,  °)(t
WF(.0 (u) (or u e Tx 0 ,40) ), if there exists a  function C(x) e C(Rd) which is equal to 1
in a neighborhood of x , and a conic neighborhood V of such that

< 0 2s 1(C14) ^ (012<  + 0 0  •

(See Hiirmander [6], p. 11).

Proposition 7. T he f ollow ing tw o conditions for a distribution u  in  12
°
 are

equivalent.
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(a) (xo, ()) WF(s)(u).
(b) There exist a conic neighborhood Wr o of (x 0 , ('') and a microlocalizer A n

r °

attached to Wro such that

(3- 3) IlAnro u112 ,2 s ,  <

Corollary. Let u be a distribution in Rd .

1) (xo , 1:) ) WF(s ) (u) implies u e  T x ., 4 0; r 0) f or some conic neighborhood Wro.
2) (xo , WFm(u) if u  e  T x+0',40; 1 0) f or some F °  and an e > 0.

Proof of  Proposition 7 and Corollary. As in the proof of Proposition 4, we
denote the cut-off functions ocf:°( )  a n d  e ( x )  attached to a  conic neighborhood
b y  czn( )  a n d  fi(x) respectively. Also in  th is proof w e denote  by  C constants
independent of n in general.

F irst w e assume (x0 , W F w (u ). By definition, there exist Mx) E C (R a)
which is equal to 1 near xo  and a conic neighborhood V of i n  Rd such that

(3-4)
f i f

< + 09

Take a cut-off function I ( ) so that supp ; J O  c  V. Then we have by (2-1)

(3-5) an(D)flull2 n2 s = (210 -d a n W 2 I(fin)"()1 2 g • n 2s

C T
v )

2 ( 2 < >2S g

Corollary 1) is an immediate consequence of (3-4) and (3-5). O n the other hand,
(2-1) also tells us that for any

« . ( ) 2 /n E 1/n c 2 / c 1  •
K*/C 2 n .--Ç.<4›/C

Hence

Ilotn(D)fluVn' l C E .f (a . ( ) 2 /r0166/4̂ (01 2 <W s g
n V

C  R  S u r  )12  <0 2 s  g

<  +co .

Therefore (a) implies (b).
Conversely le t u s assum e (b), th a t  is  (3-3) holds fo r  som e microlocalizer

An
n ' = a n (D)/3(x). We can choose positive constants C, C 2'  and a conic neighbor-

hood V of such that

a a )  = on e VIC',n C'2171 .
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Then, when 11 is large, we have

E cx.(0 2 /11 % E 1/n Co > 0
<0/CZ <4>lc■

where Co  is independent of Therefore

J (flu) ,(0 1 2 < 0 2 s c E  f (Œn()2/ 0 0 0 . (01 2< 0 2s

C f oin ( )2 1(I3u)"()1 2 ck • n2s-1

=  E
n2  2 s - i <  + c c ,

when R  is large enough. Therefore (a) holds.
Finally Corollary 2) follow s easily from  Proposition 7 , because u

implies

E IlAnr°14112n2s, E (n—s—E)2n2,—,

= E  n -1 -2 e  <  + 00 Q.E.D.

The next theorem is the analogy of Theorem 2 for Hsr . The proof is the same as
Theorem 2, so we omit it.

Theorem 2'. L et u be a distribution in Rd .
1) I f  (xo , (:') WF( s ) (u), there ex ists a  F °  su c h  th at u E 11 0 0, r )  f o r  any

c  F
°
.

2) A ssum e t h a t  u E M 0 ,40, r j )  ( 1 • -•<.. j J )  f o r  some satisfying

max 6;  <  min pi .  I f  U  Wr,  co n tain s  a  conic neighborhood 4 ' o c ., 40, F . ) ,  then  U E
i= 1

Hs(.0,4o; ro)•

At the end of this section we give some examples.

Example 1. Let us consider a  function uk (x) = exp (ix - k ) on R1 , where k is a
positive in tege r. u„ has a  singularity at x  =  0 . Observing this singularity from
the  viewpoint o f  1-parabolic neighborhoods, we see that uk is  sm o o th  on the
following W r. Here we are considering at (xo , =  ( 0 ,  1 ) .  (The same conclusion
holds at (xo ,  1:) ) = (0, — 1)).

6 0
(a) r i =  ( 0  0  11 1 1),

51 < 1/(k + 1).

(b) T2  =  (0  0  + C O  
0

1
2 l )  , 1/(k + 1) < 62 < 1.

In fact, if we put
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= fv;,i(0 e  ix 4 13„171(x)uk(x) dx f o r  j  = 1, 2 ,

we get the following estimates for v,;(0:

1(i )m v,ig)1 CA I n't ( k + "  , M = 1, 2, — • ,

where C,,, denotes a  constant independent o f  n .  Hence we have with another
constant C M

Icx.10v,;(01 Cm1/
1 6 1 ( k + 1 ) - 1 1 m

for all M, showing the smoothness of uk on W .
Let us now observe uk o n  W r2 . U k  is a solution of the differential equation:

x ' l (Ou/Ox) +  kiu = O.
So we have for all M

v ) = (— i/k)m  I u,(x)p(x, D) m  (e- i x fl„r 2(x)) dx .

Here
p(x , D)u = /0x )(x ' u) = (k  + 1)x k u + x k + 1 (0u/Ox) .

By this formula we get

Icx.(0e,N )I Cmnt
i - S 2 ( k + 1 ) 1 M

for all M  with a constant C k ,f  independent o f  n .  Therefore uk is smooth also on
WI-2 .

Example 2. Next we take up a function u(x) = f(x 2 / x )  on R 2 ( f(t) e Y(R 1 )).
It is easily seen that u is infinitely differentiable except at x = O. Furthermore the
wave front se t o f u  consists o f tw o  po in ts  in  R 2 x  V , th a t is  (0 , (0 , 1 ))  and
(0, (0, — 1)). Considering (0, (0, 1)), gelwe get the following results.

Pi 1

(a) u e C̀r° where T = ( 0  0  l ) ,  if
 P i >

 1/2.
1 1

(b) u E H ( P 2 1 2 ) - 1  w h e r e  =  — co P

1

2 0  0  1 ) ,  if p21 / 2 .

In  o rd e r  to  show these results, we have to consider the  Fourier transform of
fl(x)u(x) where 13(x) is a  function of C ( R a )  and  equal to 1 near x = O. However,
it suffices to look at i2( ), because the Fourier transform of (1 — fi(x))u(x) is rapidly
decreasing with respect to N o w  UV is easily calculated:

i 3/2 0. 1(1/N/2) ( 2 >

e i() = f  f  dt • 6 " ( i) ( 2 =0)

(— 2.1 - 3 1 2 . 2(1/.\/ — ( 2 <
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where (5" denotes the second derivative of the 6-function on 12' and g , and 9 2  are
the functions of single variable defined by

g i (t) = f (t 2 )t 2 , g2 (t) = f (- t2 )t2

T he  above results follow  from  this explicit form  of fi( ). Moreover, if 0,(c)
satisfies

01(0) = (0,01) (0) = • • • = (a: - '01)( 0 ) = O,

then we get a better result than (b):

( c ) u  e
(0/2)-P2)(1+(1/2))- 3/4

w h e re  F = (—oo P2 0  0  1 )  a n d  p21 / 2 .
1

W e should remark that, if we estimate the  order of singularity o f u  in  a  conic
neighborhood of (0, (0, 1)), we can assert merely that u e TIF

- P .  This value —3/4
is equal to the one we get by choosing p2  =  1/2 in (b) or (c).

W e can prove sim ilar results fo r  a  function f(x 2 /x 11) on R 2  w here  k  is  a
positive integer and f (t) E Y(12 1 ).

§ 4 .  Proof of Theorem 1

First we remark that by Propositions 4 and 6 we have W F(p(x, D)u) c W F(u)
for any p (x , )e  ST.0 a n d  u e ( l e ) .  Therefore, in  order to prove Theorem 1, it
suffices to show that (x 0 ,  ( ) )  W F(p(x, D)u) implies (x o , W F(u) for u c ‘'(12d ).
This follows from Theorem 2 and

Theorem  3. L et (x ,, be  a po in t o f  Rd x  V '  an d  WI- be  a T-parabolic
neighborhood of  (x ,, If  p(x , e  ST , is T -elliptic, then p(x , D)u e c73 implies
u E C°F3 f or u e C(R d ).

Admitting this theorem for the moment, let us prove Theorem 1.

Proof  o f  Theorem 1. Let p(x, 0 be a  symbol satisfying the conditions in the
theorem . Assume that (x 0 , ())  W F(p(x , D)u). Then there exists a  conic neigh-
borhood WI-o such that p(x, D)u e CF° for any F  T ° . W e put 14/1 = Wr fl Wr o
for ] = 1, • • • , J. Then p(x, D)u is smooth on for every j  and 114/11,,,,, is a
family of F-parabolic neighborhoods of (x 0 , satisfying the conditions (a), (b)
and (c) in the assumption of Theorem  1. Hence u is smooth o n  WI for every j  by
Theorem  3, a n d  so  w e  have (x 0 , 0 )0  W F(u) b y  T h e o re m  2 . T h u s  w e  have
proved Theorem 1. Q . E . D .

The rest of this section is devoted to the proof of Theorem  3. W e need an
estimate from below.

Proposition 8. Let (x o , °) e x S a - '  and WF  be a T-parabolic neighborhood
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o f  (x , ,  1:) ). Suppose that p(x, E yje is  F-elliptic. (S ee (1-2) and (1-3)). Then
there ex ist positive constants E , N  and a negligible sequence {an }  such that, if  the
size of  An

r  is smaller than E and n is larger than N, we have

D)A,511 (C0/2)((1 — e)n)m" - a 11'1,511 + an

for any u E C(R d ).

P ro o f . First we assume (1-2). If we choose E so small and the size of A n" =
; F (D)13„r (x) is sm aller than e, then we can take cut-off functions oc( ) and /31(x)
(1 = 1,2) i n  such a  w ay that an

r (0  c  o t„2 (0  a , ; (0 ,  f l „ r (x) c f i n
2 (x) c  13 (x )

and s u p p 1 i3 .1 1 -1 0 / 4 () )ITV'r . In this case we have

(4-1) supp c ( ) {(1 — I (1 + On} .

Now let us define

qn1x, =  zP(x, 0A1(x) 01410 + C0<Om — a (1 — Mx/c(410) •

By assumption NO is a bounded subset of Sgm:g. Hence we have by Proposition 1

(zp(x, D) — qn (x, D))/1f,.(x, D)

oc,(D),6„(x)(zp(x, D) — qn (x, D))/1„.(x, D )  (mod Sneg).

The right-hand side is equal to zero, because

f3,(x)(zP(x, — ));1,.( )

= (zP(x, — C0<> m "- 6 )( 1 — 13,1(x) 04,1,(0)N(x)OEF:(0

0 .

So w e have only to  consider Ilq„(x, D)An
r ull instead of p(x, D)/1511. A s men-

tioned above, qn S 6 . Furthermore by (1-2)

Re 9(x, =  Re (zP(x, ))N1x/Œ(0 + C0< > 1 1 — N(x)oc,1(0)

% co<0 - - 6  N(x)of,;(0 + co<>"1
- 6 (1 — N1x)410)

= Co <Om— ri o n  N I  R I  .

Therefore, by the sharp form of Girding's inequality (See Kumano-go [8], Chap.
3, §4), there exists a constant C such that

(4-2) Re (q„(x, /1„-u) C0 1A,511 (
2„7,_0 2  —

where 11 11, stands for the norm  in  the  Sobolev space of order s. Here we can
easily see that by (4-1)

(1 + (1 — e)2 n2 )s/2 11A,511( 1  + (1 + 0 2 n2 ) /2 11/1 /; 1411 •

Hence (4-2) implies, for sufficiently large n,

Re (q„(x, D)Af,"u, /15) (C0 /2)((1 — e)n)m' u112
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due to the assumption 0  a < p — (5.
Next we assume (1-3). Observe that

(4-3) p(x, D)A,511 2 = (p(x, D)/15, p(x, D)Afi)

= (p*(x, D)p(x, A,5)

where p*(x, D) is the formal adjoint of p(x, D ) .  The calculus of pseudo-differential
operators tells us that p*(x, D)p(x, D) has the following decomposition:

(4-4) p*(x, D)p(x, D) = q i (x, D) + q 2 (x, D) ,

Pi(x, = 113 (x, )1 2 E s m ,
[q2 (x, Sm—(P_6) .

Since Re q i (x, C < > 2 (m -) holds by assumption, we can apply the above
argument to q i (x, where (1-2) is satisfied in this case, and obtain that

(4-5) Re (qi(x, D),(15 , A u ) (C V 2)((1  —  E)n)2 ( m '11A  511 2  + negligible terms.

On the other hand, Proposition 3 says that there exists a constant C such that

(4-6) (q2(x, A,5)1 Cn2 m — ( P - 6 ) 11/1 + negligible terms.

In view of (4-3) — (4-6) and the assumption 0 a  < (p — (5)I2, we have

D)A,511 2( C / 4 ) ( ( l  —  E)n)2 ( m '  1 ) 11A f: U112  + negligible terms

when n is large, which completes the proof. Q.E.D.

Proof o f  Theorem 3. Let us assume that p(x, e STc a n d  {11A5(x, MO} is
rapidly decreasing. We take another microlocalizer if(D)fi,r(x) and a neigh-
borhood WI- of WI- satisfying

1°) supp (Ar(x)6i,f()) 11-7r,
2 ° ) there exists a  microlocalizer which is attached to WI- and subordinate to

A ,f,"

We shall show tha t 11;1-5111 is rapidly decreasing.
First notice that there exists a  real number s such that 11/1,511 = 0 (n '),  since

u E e'(11"). Given a positive integer k arbitrarily, we take microlocalizers A4,
/et; attached to W1  in such a  way that

71r, O E  A kn  O E  O E  Aki
- 1 OE. . .  O E  O E  A n) OE OE  A p ir

Let us observe that for 0 I -‘..k

(4-7) A 1 p(x, D)u = p(x, D)A2 + 1  u + [A„+ 1  , p(x, D)]u

= P(x, D)A.1+ 1  u + , P(x, + negligible terms .

H e re  w e  s e t  A;; = A „F  a n d  An
k+1i i n

r . S ince  [A ;», p(x, D)] E S72 ' - ( P - 6 ) ,  (4-7)
implies that there exist positive constants C and C' such that
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11A,,̀ + p(x, D)ull C ren ' A ln+—  C ' n m — ( " ) 11/1„ull + negligible terms

due to  Proposition 3 and Proposition 8 . Using this formula for 0  1 k ,  we
easily see that

(4-8) 117I„r u11 Co n- ( "I' - ' ) / i n
f .  p(x, D)ull + C 1 e + 1 " - ( " ) ) 11An

r ull + negligible terms

holds with constants Co a n d  C1 , since a — (p — (5) < 0. N o w  {11/15(x, D)ull} is
rapidly decreasing by assumption, so we have

112511 = 0(n - 5 +(k+1 ) ( ° - ( P- 6 ) ) ).

This means that {0511} is rapidly decreasing, because a — (p — (5) < 0  a n d  k is
arbitrary. Thus we have proved Theorem 3. Q.E.D.

§ 5 .  Applications to known examples

In  this section we apply Theorem 1 to some operators which are well-known
to be hypoelliptic.

Application 1. First let us consider a differential operator

P = p(x, D) =1x1 21 (— A) " + (— A) '

with a symbol

P(x, )=1x1 21 112m

Here A  denotes Laplacian 02/ax? + • • • + 02 /04 and 1, m and m are non-negative
integers. This operator was studied by Grushin [2]. By applying Theorem 1, we
shall show the (micro)hypoellipticity of P  when the condition 1> m — m' > 0 is
satisfied.

It is c lear tha t P  is microhypoelliptic a t  (x, e (le \O) x Sd - 1 , because P  is
e llip tic  a t such  a  p o in t .  (cf. Theorem 3 ). S o  w e  have  only  to  consider a t
(0, Without loss of generality we may a s su m e  = (0, • • • , 0, 1). We define

K = (0, • • • , 0) , L = (1, • • • , 1) ,

[x ], =  [x ] (1 ...=  X I .

The F-parabolic neighborhoods we treat here are as follows:

r g h ( 0  0  g
i
 h

i
 1 )

Wo , = {(x, )I d d
h ,lx1 1 , > •

10 ) P  is F.,,„-elliptic if m — lh m', that is (m — m')// h. In fact, such a
h (0 h < 1) exists due to  the assumption of 1 > m — m'.

2 °) When we consider P  on I4' 0 • ‘..h < g < 1  and m-1h?.-m ', we
have
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P c , Re p(x, 12(Pn- ig) •

Hence P is Fg ,h -elliptic if

21g — 2Ih < 1 — g ,

that is

1'(1 — h) < 1 — g (I' = (21)1(21 + 1)) .

Putting the above results together, we easily see that we can take up a finite family
{W , , } of F-parabolic neighborhoods satisfying

(a) P is Fg i , -e1liptic for every ].
(b) U contains a conic neighborhood of (0, (0,— , 0, 1)).

So w e have proved the microhypoellipticity of P  at (0, (0,•••, 0,1)) because of
Theorem 1.

Application 2. Let m = (m1, •••, md) be a  vector whose components are posi-
tive integers and we set la: ml = (a 1 /m1 ) + • • • + (ad lm d ) for a multi-index Œ. L e t
us consider a  differential operator

P = p(x, D) = aŒ(x )D .

Here ad (x) e C(R '), Dx = (— ia —iad )(a, = a/axi ) and we define

P( x ,

p d x ,  = a.(x)œ •

If the condition po (x o , 0  holds for all 0  0 , w e  s a y  th a t  P is semi-elliptic at
xo . For example, the heat operator 0 2 /0.4, — a/ax 2 is semi-elliptic in  this sense
with nt = (2, 1). W e are going to show that P is microhypoelliptic at (x o , for
all V  E Sd - 1 , when P is semi-elliptic at x o .

For simplicity we assume that m, ?.. m 2•  md . First we remark that, if
we define

(  d 1/2
R (

)
 =  E ,c2m•

j=1

the condition p o (xo , )  0  0 0  0 ) im plies that there exist positive constants C,
and C2 such that

(5-1) C ,-1R () IP0(x, 01 CI R () ,

C2
- 1 R ( )  1 1 * ,  0 1  C2R(0

in a neighborhood of x , w h e n  l is  la rg e . Also for all multi-indices a and fl there
exists a constant CŒ,/, such that

(5-2) 10 x ,  ) 1 <  C OE,0 R(0 1 -1 Œ'n'i .
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Now we put

=  max tini  I 1 •,<.. dI (=

mo  = max {mi l j  such that 0 0 }

In  c a se  m = m o ,  P  is  e llip tic  a t  (x0 , b y  (5-1), s o  P  i s  microhypoelliptic
there. H ence w e suppose m > m o from  now  o n .  L e t  {m1 , • • • , m,} be the set of

mi  > mo l. N ote  th a t  e, = (1, 0, • • • , 0), e2 = (0, 1, 0, • • • , 0), • • • , e, = (0, • • • , 1,
• • • , 0) (only the /-th component is equal to 1) and e  form an orthonormal system,
since e  =  0  fo r  1 j  1 .  W e take a n  orthonorm al basis of R  including this
system and consider the following ['-parabolic neighborhoods of (xo ,

Wa d, = {(X, )1 ra R 0 ( )n  wro .

Here r denotes a  
°
-component of that is r = e • and

R0( ) =  ( .±  j? ' " I 'i )

1 / ( 2 m )

j r -- 1

W e choose a  conic neighborhood W,-. of (xo , ° )  so  sm all tha t (5-1) and  (5-2)
hold in a neighborhood of WT .. W e  s tu d y  the differential operator P on these F-
parabolic neighborhoods.

1°) P is  F-elliptic o n  W_. , ,, if bm m , .  In  fact (5-1) and (5-2) tell us that,
if b m  mo ,

P E ST°1 P ( X , C1Vn°

where C is a constant independent of (x,
2 ° )  When we consider P on Wa d, where 0 < a <  b 1 and b m  mo , we have

with a constant C'

P G Sbrm  , lp(x,

by (5-1) and (5-2). Hence P is F-elliptic on W b  if

bm — am < a/2,

that is

m'b < a (m ' = (2m)/(2m + I ) ) .

Therefore P is microhypoelliptic at (x o ,  °) as in the case of Application 1.

§6. Hypoellipticity of OP" +  xay

In this section we deal with a  differential operator

= (0/0x) 2 m + x(0/ay)

where m  is  a positive integer. B ecause there is a  p o in t  where the  symbol of
Pm  van ishes, T heorem  1 is  no more applicable to  th is  c a s e . However the  F-
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parabolic neighborhoods are very useful to this operator. W e shall show that Pm

is (micro) hypoelliptic for all m  1 .  As mentioned in the Introduction, the hypo-
ellipticity of Pi  is derived from the well-known theorem of Harmander [4].

According to the notations used in §1 § 4 ,  we write x , and x 2 instead of x
and y  below . So  the operator Pm  and the symbol p„,(x, of Pm  are

= (0 / ex i )2 '" + x 1 (0/0x 2 )

P.(x, =  ( —  Om a n + iX 1 2  •

T heorem  4 . 1) The operator Pm  is (micro)hypoelliptic in R2 .
2) L et T be any positive number satisfying T (2m)/(2m + 1). Then any solu-

tion of  the equation Pm u  = f  gains T  derivative at every point (x0 , in R2 x  S 1 .
More precisely, u  e  T x 0 0) and Pm u e II x o ,v )  imply u E T x

+.',40) for u e

Proof of  Theorem 4. We shall prove only 2). 1 )  can be shown in the similar
w a y . We denote (2m)/(2m + 1) simply by A in th is p roof. Note that Pm  is elliptic
at (x0 , provided that 0  (0 , + 1 ). Hence we have only to show 2) at (xo , (0,
+ 1 )). As the situation is the same, we are going to treat only (x0 , (0, 1)). Sup-
pose that u e T x 0 . ( 0, 1 ) )  and f =  13,0  E T x 0 ,(0 , 1 ) ) •  Let us consider Pm  on the follow-
ing F-parabolic neighborhoods of (xo , (0, 1)).

a
(  bFa,b= 1 1 0 0 8

Wa,b = {(X, 2 1 11 1 11 >  ° , X01 el
Here e is chosen so small that u and f  belong to I/1-0 if Wr o is defined by

Wro = {(x, >  0 ,  I 11 2e 2 , lx — x o l 2e1 .

Case I. Suppose th a t the  first component of x o  i s  n o t  zero, tha t is  x ,
(0, x0 ,2 ). In this case Pm  is semi-elliptic. (cf. §5. Application 2.)

1°) Assume that 0 < a b  1 and b 1/(2m). Then we have

Pm  E SPnb , Re (( — l)mp(x, )) 121na

with a constant C .  Therefore Pm  is Fa ,b-elliptic if

2mb — 2ma < a , th a t  is  2.13 < a .

Moreover, in view of (4-8) in the proof of Theorem 3,

U E H sr: 2
b

m a  i f  1/(2m) b  a n d  Ab < a.

Note that u E HT,'  if a 1/(2m).
20 ) Pm  i s  F-elliptic o n  W_ 0 , b  i f  b 1/(2m). T his tim e  w e  have w ith  a

constant C'

Pm e , I m p(x,
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Hence, in view of (4-8), u e In-'  on W_0 0 .1 / (2 „ )
 .

From the assertions 1°) and 2°1, we have ue H 'Al  f o r  some conic neighbor-
h o o d  Wr o. T his  implies u e  T e )  f o r  a n y  a  < 1 b y  Proposition 7 a n d  its
Corollary.

C a s e  I I .  Suppose th a t xo  = (0, x0 ,2 ). W ithout loss o f  generality we may
assume x, = 0.

1°) Assume that Cl <a...5b..<, 1 and b?.. 1/(2m). In  this case, the same con-
clusion holds as in Case I, 1°). Hence

u e H si"  if 1/(2m)...5 b  a n d  Ab < a.
2°) Now let us consider Pm  o n  1, V_ , b. In the following argument we use p

instead of b and denote F_ o o , b, W_ c o , b, An
r , an

r , 13,r simply by Fp ,  Wp , An,p , ot,,,p , 13.
That is,

wp = 1(x, 0 I 1 11 '2', 1 11 C2> 2 > 0, 1X1 81 .

Also we denote several constants independent of n by C1 ,  C2, • — and sometimes
omit negligible terms in estimates.

Taking the result of 1°) into account, we may assume p > 1/(2m + 1). Let us
estimate IlAm p ull = da„, p (D)/3(x)till. Because

supp an ,p (0 c R I lil .... g ''., n/2 --<., -.-, 2n1 ,

we have, by Poincare's inequality,

11/1 „,pull = ilan,p(0(fiur(41

CinP Illaiki/lan,p(Olfiur(0111 •

Hence

(6-1) IlAn,pull C2nP - 1 g2(a/a1)1 0( ( )66 ur(0111

= C2n P
-

1 11x1(alax2)(A„,p1-011.

Observe that

(6- 2) [xi (3/3x2), A ]u  = i(a la1)(D)( 3filax2)(x)u

+ i(acc,,,pla1)(D)fi(x)(aulax2)

+ a n , p ( D ) ( 3 f i l a x 2 ) ( x ) x 1 u  .

Here

supp •00(„,p/a i  c { 1 1i ---- I  i I -<... n', n/2 -.<.. 2 .,<, 2n1

from the definition of oc (0 .  So, owing to the result of 1"), the norm of the first
tw o term s o n  th e  right-hand side o f (6-2) is sm aller than a  constant tim es of
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n - s- À +1 - P. Hence we have

(6-3) Il[x1(a/ax2), C3 A U  +  0(n - s- A + i - P)

where A n o , COE Â n , p . Putting (6-1) and (6-3) together, we obtain

(6- 4) IlAn,pull
C o "  {11/1 .,p1xiOulax2)11 + + O(n ).

On the other hand,

(6-5) II An,p(xi Ou/Ox2 )11 = II A n,p(Pm — (a I OX 1)2 m )Ull

111 1 n,p f ± P in ,p (a laX1) 2 m Ull •

Here we claim that

(6-6) An,p(a/Oxi )2m u II C 5 nmP{nc - m P  II2 n,pf II + nm P — €  112
n, pu ll}

+ 0(n —  s—  2 + 1 —  P + ' )

where E is any positive number satisfying 0 < g < 1/(4m + 2). We admit (6-6) for
the moment. Then, in view of (6-4), (6-5) and (6-6), we obtain

(6-7)I A  u M C 6 In P -1 + E R p f n ( 2m+i )p -1 —e n ,
p14 11}

+ 0(n - s- A ± e).

From this estimate and  the  result o f  1°), we can prove the assertion 2) of the
Theorem as follows. First we set g' = E + 1 —(2m +1)p. Choosing p  closely enough
to  1/(2m + 1), w e m ay assume E' > O. O n  the  other hand, w e have  112.,pf 11 =
0 ( n ')  a n d  112 n,pull = 0 ( n ')  by  assum ption . H ence  IIA„, p ull = 0(n )  holds
due to  (6-7). Putting this and  the  result o f  1°) together, we obtain u E H O C' for
some conic neighborhood W ro by Theorem 2'. Then, replacing =  O (n )
b y  ll2„, p ull = 0(n - s- ' ) ,  w e can  d o  th e  sam e argum ent and se e  th a t IIA u ll  =
0(n - s- 2 ' ) .  A s is easily seen, we can repeat this procedure until we obtain u
H si -1' P ' .  (See the first term  on  the  right-hand side of (6-7)). Because we are
able to choose p — 1/(2m + 1) and E as closely to zero as possible, this show s 2)

a t (0, (0, 1)). Q.E.D.

Proof  of (6-6). Assume that A n o ,  C C C C  A n
2

, p  C C p . Because

An,p(a/ax 02m u II ‹  II A,, p (O/Ox i )mA (O/Ox i )mil„, p ull

< C7 nmP(a/ax i )mA ,uM,

we have only to show that

(6-8) 11(0/0-x1ril!,pu C8 { C
- 1 " f  +  r e " -  e

o(n - s - P ) -nIP+E)

for any e satisfying 0 < E 1/(4m + 2). Observe that
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11(0/ax1r4011 2 ((a/ax1)m4pu, (a/ax i )mALu)

= (— 1)" Re (Pm A,i, p u, A Lu)

= (— 1)'n Re (4 , P m u,

+ (-1)m  Re ([(0/Ox i )2 m, Ati, p ]u, A,2,r, p u)

+ (-1 ) 1"  Re gx 1 (0/0x 2 ), 4 ] u ,  A u).

Here [(010X1)2 M , AL] is of order (2m — 1)p on Wp since (a/ax i )2 m is of order 2mp.
Hence, noting (6-3), we have

11(0/ax1r4pull 21 1 2 .,pf II 1171uli + c9n (2 — "P112 u112

+ c 1 0 {1171n ,pull + o(n- s- " 1 - P)}112,..011
c,,In 2 ( — P) 112,pf112 + n2 ( m P - 11 2 n,pud 2 1

0 ( n -2,2,11-2(1-p)-2mp+2e ) .

This implies (6-8). Q.E.D.

R em ark 1. The value (2m)/(2m + 1) appearing in  Theorem  4, 2) is best-
possib le . In fact, let q (t) be an element of CNR 1 ) satisfying

0 9(0 1 , q ( t )  =  1 on (—co, 1] , =  0  on [2, +oo) ,

and put

2) = (PO 112 m  + g2)( 1
 —  49 ( 2 ) ) i ( m ± 1 ( 2 m + "

u(x) = = (27 )- 2  e ' • 4A( ) d .

Then we see easily that

u e H - s(R 2 ) f o r  s > 0  a n d

Pm u e  H '(R 2 ) for s > (2m)/(2m + 1) ,

but

u  L2 (U) in any neighborhood U of x  = (0, 0) .

For the present we cannot prove that any solution of Pm u  = f  gains (2m)/(2m + 1)
derivative by our method. However, we suppose that the derivative gain of Pm  is
exactly (2m)/(2m + 1).

When m = 1, this value equals to 2/3, as Rothschild-Stein obtained in [15].

R em ark 2. By making full use of F-parabolic neighborhoods, we can also
prove the hypoellipticity of

(0/0x, )2 m + ix 11( — i alex2)1
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in  the  similar w ay. B ut the situation is a  little more com plicated. As for such
operators, we shall discuss in the forthcoming paper.

§ 7 .  Proofs of Propositions 1 and 2

First we remark that by (2-1) there exist functions x ( )  and  xn, + ( ) which are
elements of CNIt d), depend only on 11 and satisfy the following conditions.

O zn xn, + 1 , Xn + + Xn,+ = I ,

C211}supp xn OE IC, n

Xn = 1 in a neighborhood of supp cz„r (0 ,

supp ,

supp x,_ n supp ocn
r ( ) =

s u p P  4 +  {c 2 n  I  }

supp n su =  o
co -1m for any p.

(In this section we denote several constants independent of n a n d  by C 1 , C2, • • • 5)

Lem m a. Suppose that {pn(x , )} is  a bounded subset of ST, 0 , then

{Œnr (D)Pn(x, D)Xn, + (D ) }  E  Sneg 5

k ri (D)flnr (X)Pn(X5 D)Xn, + (D ) }  G Sn„ •

The same conclusion ho lds if tp (x , 01  is  a  bounded subset of S 1 where
max (ôr, 61) < min (Pr, Pi).

Proof. W e shall show that {anr (D)/3nr (x)Pn(x, D)4 + (D)} e S {Mx, 0}
is a bounded subset of and max (61-, bi ) < min (Pr, Pi). We can do the same
in the other cases.

We denote anew max (ôr, 61) and min (Pr, Pi) by 6 and p respectively. We
put

S D )  ŒRD)13,r(x)p„(x, D)x,,, + (D).

From the calculus of pseudo - differential operators, we have

= O — + q)fl,,r (x + y)p„(x + y, 0Xn, ± dy dri/(27rr .

Here Os - means the oscillatory integral. Now let I be a positive integer satisfying
1> d/2. W e take such a n  integer /  and fix it. O n  t h e  other hand, let k be an
arbitrary positive integer. Using

e - iy.n _ <y >- 210 —  A rl y< 0 -2(k+i) (1A o k +/e - iy • , ,

(7-1)
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we obtain by integration by parts

(7 -2 ) S ,+?(x , = J Je _ 2 1 [ ( l A g ) lan r( o x n , + ( ) ( 1 A o k + I

x D{<y> -2 1 13nr (x + +  y ,  )1] dy dn/(27r)d

Because of Leibniz' formula, (2-2) and (7-1), the integrand of (7-2) is estimated from
above by the sum of a finite number of terms of the following form:

c < 0 -2(k+ on -pIp 1<y  y 2i n aiyil<0.+61y21-pli, 21

where Itt 1 + P2I =  p  and I yi +  Y2 y +  2 (k  +  I). Let us notice that the integral
(7-2) is absolutely convergent owing to <n>- 2 1 <y> - 2 1 .

10) ( S A x , Since e supp xn , -  and +  j  e supp an ,  there exist positive
constants C  and  C ' such that C n  C l q l .  Therefore, when k is  large, we
have

< 0 - 2 k  n -  PIP IlnblY  <0m+61Y21-  PIP21 11C3 nin' +41,1+ 261 -  2k(1 -  5)

ç '  / \ m * -  pig il-1,51v1+2,51-2k(1 - 5)
4 

( m  =  max (0, m)). Since k  is arbitrary, w e have S „ ,_ (x , )e  S '  fo r every n.
Furthermore it is easily seen that this implies {S„,_(x, D)} e Sneg .

20 ) (Sn, + ( X ,  '')) S in c e  e supp x +  a n d  +  E  s u p p  an ,  there exist positive
constants C and C' such that n I. T herefore

c 5 <un-p1p2i+61v1+2 ,31-2k(i-.5)

p1A 2 1+alvt+2at-2k(i- 5)

when k is la rge . T he rest is the same as in the case of V). Q.E.D.

Proof of Proposition 1.
1) We devide A„r (x, D) = a n

r (D)13„1 (x) into three terms:

(7 -3 )  A (x , D) = otnr (D)fl,,r (x)X,,(D)

H ere  lotn
r (D )Ar(x)x,_(D )} a n d  lan

r (D))1„r (x)x + (D )}  b e lo n g  to  Sne,  because of
Lemma. Concerning the  first term on  the  right-hand side of (7-3), we see that
fa ,f ( )1  and  {finrcxv,()1 are  bounded subsets of Sp

° ,6 b y  (2-2) and (7-1). Hence
IŒRD)/3nr (x)X.(D)1 is a  bounded subset of Sp' . 6 , and {A„r (x, D)} is so, too.

2) Let us prove that {A r (x, D)p„(x, D)(1 — /1„n  (x, D))1 c Sn e g  w hen fp n(x , )1
is a  bounded subset of SP; ,  and max (Sr, o r , Oi ) <  min (pr, P r,  P i) .  We can do
the same in the other cases.

We denote anew max (Or, 0p, Oi ) and min (Pr, Pr' ,  P l )  by (5 and p respectively.
O w in g  to  L e m m a  a n d  1) p ro v e d  a b o v e , w e  h a v e  o n l y  t o  sh o w  that
{A (x, D)p„(x, D)(1 — A n

n  (x, D))x(D)} e Sneg . Let us decompose it as follows:

(7-4) A5.(1 —  Arf; ' )Zn an(D)fl,,(x)P,.(x, D)(1 — Œ'„(D))Z,,(D)

+ oc,,(D)fin (x)pn (x, D)cx;,(D)(1 — 13,(x))xn(D).

+ Inr (D)16f(x)X.,-(D) + cx,f(D)finr (x)X+(D) •
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,n nHere and in what follows, we write a  a  B  and fin' instead of an
r ,

for short.
1°) We put

155

and 131,- '

S„, i (x, D) = an(D)Mx)1, .(x, D)(1 — oe,,(D))X n (D) .

Let us show that {S„, i (x, D)} e Sn„ .  Note that

S„, (x, = Os — JJ e - i "o t n ( +  r/)fin(x + Y)Pn(x + y ,  )( 1 —  (0)X .( ) dy dril(27r) d  .

Since e supp xn n supp (1 — of„) and + j  E supp a„, there exist positive con-
stants C and C' such that

C 1n I Cn,I 1111 C V  •
If we do the same as in the proof of Lemma, we obtain

C7 n m-(41+1v1+2 2k(p-6)Sn, 

C8<Om-plph+2,5,-2ktp-6)

where k is an arbitrary positive integer. H ence {S i (x, D)} e Sn„.
2 ° )  We put

Sn,2(x, D) = 11(x)p(x, D)ocL(D)(1 — Mx))Xn(D)

Let us show tha t {S„, 2(x, D)} e Sn„ .  If we can prove it, we find that the second
term on the right-hand side of (7-4) is also an element of Sneg, because fan( )1 is a
bounded subset of 4, 0 . Note that

Sn,2(x, = o s — e- 6 - 1 ,6„(x)p.(x, + t1) 0t:g  +  11)( 1 — + .0)X, ( ) dy dri/(27r) d  .

Since x E SU pp fin and  x + y e supp (1 — fl), there exists a positive constant C such
that ly1 C f l ' .  On the other hand, we have with constants C' and C"

C' n < ( < C 'n , C" 4  + C"n ,

since e supp xn a n d  + e supp an'. N o w  le t / be a positive integer satisfying
1> d/2 and k be an arbitrary positive integer. Using

e -i y •n < y > -2/13,1-2ko z i o /( j ) k< 0 -2/0  _  j y y e -iy •n 5

we obtain by intgration by parts

(7-5) S„,2,f4x, = e -iy,70,0-2/Djavi _ A q ),(_Zi n )k

x Ip„(x , + n)ct:g + n)x„()} 13(x)(1 —  4 ) 1

X I<Y>-211Y1-21'(1 16(X Y))}] dy di7/(27r)d

So the integrand of (7-5) is estimated from above by the sum of a finite number of
terms of the following form:
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c o l y 2 I n ni-plii1+aivi-2kp<y >-211 y 1-(2k+lyibely21

where +  y I  2 1 .  Therefore

Sn, 2)1 1 C9nm-p1M+aivi+261-2k(P-6)

C 1 0 <U n —

PIP1+61v1+261 - 2k(P - 6)

Since k  is arbitrary, this implies {S 2 (x, D)} E Sneg. Q.E.D.

P roo f of Proposition 2. W e put

= finr (x)P(x, 0 6i,1:(0

A ( x ,  D) =  ( D ) A ,r (x) .

By assumption we have an
r ( ) OE i f -, ( ) and fl,r(x) A r(x). Because

Pnr,loc(x, D)A n
r (x, D) = finr (x)P(x, D)A n

r (x , D) ,

A n
r (x , D ) P n r , i o c ( x ,  D) = A n

r (x , D)p(x, D) (x , D) ,

it is sufficient to show that

{(1A r ( x ) ) P ( x , D)Œ,f(D)Ar(x)} e Sneg

fa,1:(D)13„1-(x)p(x, D)(1 —  ei[(D))1 e S „g

These follow from the same argument as in the proof of Proposition 1, 2). (See 1°)
and 2°) in the proof of Proposition 1, 2)). Q.E.D.
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