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§ 0 .  Introduction

In the present paper, we will present systematical arguments on extensions of
higher derivations for algebraic field extensions of positive characteristics. Argu-
ments on ordinary derivations are included as special cases.

Assume tha t a  higher derivation d  is given in  a  field  K  of positive charac-
teristic. Let L  be an algebraic extension of K .  If d  is extended to higher deriva-
tions of L, we denote one of them by d'.

In  §2, we m ake basic considerations o n  relationship among constant fields
and value domains, of d  and d'. In §3, we seek conditions that d  can be extended
to higher derivations of L .  In the case where d is an iterative higher derivation of
finite rank we get a conclusion successfully and then we get a  criteria for L  to be
maximal in the set of algebraic extensions of K  to which d  can be extended. In §4
and §5, after we discuss conditions that the extension of d is unique and conditions
that the extension of d keeps the property of being iterative when d is iterative, we
show that in the case where d  is a  higher derivation of infinite rank, there exists
the largest algebraic extension of K  to which d  can be extended. Finally in §6, we
discuss non-integrable elements. Actually, the  corollary to Theorem  6-1 about
this matter for ordinary derivations, has given the  author a motivation to start
th is  w o rk . T h e  au tho r has tr ied  to  find  a  literature in  which it is explicitly
s ta te d . But he has not been able to find one so  far, except for tha t R. Baer in
his paper [1 ] touched upon it under some restricted conditions. We conclude
§6 in  proving  that i f  a  higher derivation d  o f  K  is ite ra tive  a n d  o f  infinite
rank, then each non-integrable elem ent o f  a n  a rb itra ry  o rder i n  K  is non-
inrtegrable for every extension d ' of d  on an algebraic extension of K , as long as
th e  in d e x  o f  d '  equals th e  in d e x  o f  d. (F o r  definitions o f  a  non-integrable
element a n d  th e  in d e x , se e  §1.) T h is  m a y  correspond t o  th e  fa c t  th a t  an
integration of a  rationally non-integrable element is transcendental, in the case of
characteristic O.
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§1. Preliminaries

Let K  be a field. We denote by p the characteristic of K .  Throughout this
paper we assume that p > 0. Let d = fd i l " , „ , , ,  be a  higher derivation of K  in
the sense of H .  H asse and F. K . Schm idt. We do  not assume in general that d
is iterative, unless otherwise stated. We call m the rank of d, where m may be co.
We always assume that d o =  id ,  and  di (K )  K  for every i. T he first positive
integer g  such that d , 0  0 is called the index of d  and  denoted by I(d). By d
being iterative we just mean that besides conditions for a higher derivation it

satisfies conditions d i di  = 
( i  +  j )

d,+ ; f o r  i + j  < m + 1. B y  d  being a  higher

derivation of rank 1, we just mean that d is an ordinary derivation. In that case,
w e u se  d  itself fo r  (11 ,  a n d  d  is also considered even a s  a n  iterative higher
derivation of r a n k  1 . For a positive inrteger t  such that t  < m + 1, we denote by
d ( t)  t h e  induced higher derivation {c11 } 0 , „  which is called the t-th section of
d. We denote by K e , d  the subfield of constants of d. Then if i < j  then K , , d(,) D

k d o )  and k d  =  n The value domain di (K ) is K c,d(,)-m odu le . An,0<i<m+1 Kc,a0)•
element z of K  is called non-integrable of order i  in  K , if z  di (K ) .  If d  is  an
ordinary derivation, a  non-integrable element o f  order 1 is simply called non-
integrable.

Hereafter, throughout this paper, we use the following notations and assump-
tions for the simplicity. (1) K  is a field with a  higher derivation d. (2) K  is an
algebraic closure of K  and  every algebraic extension of K  is considered to be
contained in  K .  (3) L  is  a n  algebraic field extension of K , a n d  d ' is  one of
extensions of d  to  L  if they exist, th a t is, d ' is  a  higher derivation of L  whose
restriction on K  is  d. (4) W e w rite a s  K i = K C,d , f o r  every i, K , = K c , d  and
Ko =  K, and similarly as L i = L c  =  L c ,d , and L o  =  L.

We denote by E the isomorphism of Taylor expansion of K  into K [[U ]] or
into K[U]/(Um + 1 )  defined by E(a) = a + d,(a)U + d 2 (a)U 2 + • • • , where U  is  an
analytically independent element.

To check whether a  higher derivation over a subfield is iterative or not, it is
enough to check that property on  generators. This assertion may be proved in
various ways but the following formulation by Miyanishi, [7], may prove it in the
simplest way.

Lemma 1-1. L e t S  be  a sub f ie ld  o f  K . L e t d  be a  higher derivation over
S. Pu t R  = S [[U ]] if  m  = co and R = S[U]/(Um + 1 ) if  m  < co. W e def ine a ring
homomorphism R  R  ( 5 5  R  by  d (U ) = U  01  + 1  0  U . T hen  the condition that
d is iterative is equivalent to the condition that the following diagram is comutative.

K R J5 K

R K R (5s  R K
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If  M  is  an overfield of K ,, L  = K  0 , c  M  a n d  a  higher derivation d*  of M
over K , is given, then we can compose d and d*, and get a  higher derivation d ' of
L .  It fo llow s from  th e  general construction by K aw ahara-Y okoyam a [6] or
B erger [2]. If d* is trivial, then it holds that d', = d i ® M, and we say that d ' is a
coefficient-field extension of d  and denote d' = d M  (or denote d' = d 0 , c  M  if
necessary). It is easy to see that in this case the field of constants of d ' is just M.

2. Fields of constants and value domains

In this § we always assume that d' exists on L.

Proposition 2-1. L et i  be an  integer such that 0 < i < m  + 1. A ssume that
g' = 1(d') and t  is a positive integer such that i < g'pt. Then we have the following.

(1) L i p  LP̀.
(2) K  and L i are linearly disjoint over K i .
(3) L, (1 K(LP') =  K i (LP̀ ).
(4) K (L P) and L i are linearly disjoint over K i (LP').

P ro o f . F or an  element y  o f L .  We consider Taylor expansion E(y ) = y  +
dg,,(y)Ug' + d g ,+ ,(y )U 9 '' + • • • . T h e n  E(yPt ) = y P' + (d g ,(y))P`Ug'" + • • • . Hence

=  0 , which proves (1). Assume that (2) is not true. L e t  {m1 , mh } be
the  shortest sequence of elements in L . such  tha t they  are  linearly independent
over K i and linearly dependent over K .  Then there exist elements k 2 , kh in K
such that m, + k 2 m2 + • • • + k h m , =  0 . S ince  di(m g ) = 0 for g = 1 , . . . ,  h, we have
di (k 2 )m2  + • • • + di (k h )mh =  0  fo r j = 1, i .  This contradicts the  fact that {m,,

mh } is the shortest sequence, unless all the di (k q ) =  0 .  However in  tha t case
kg  E  K i fo r  g = 2 , . . . ,  h , which contradicts the linear independence of m 1 , mh
over K i . N ext w e prove (3). Let a e L i n mu). Then we have an expression
a = +  •  •  •  +  k h mh ,  where kg  e  K  and m q e LP' for q = 1, h  and the m g  are
linearly independent over K .  Since di(m g ) = 0  fo r  g =  1 ,  . . . ,  h , w e have 0 =
di (k i )m, + • • • + di (k h )m , and hence di (k,)= • • • = (1; 0 (0 = 0 for j = 1 , i. There-
fore k„ E K i fo r g = 1, h, which means that a e K i (LP̀ ). Finally, we prove (4).
Assume that (4) is not t r u e .  Then take the shortest sequence c'1 , e L. which
are linearly independent over K i (LP`) and linearly dependent over K (L P`). Take a
linear relation c  +  g 2 c'2 + • • • +g f c'f  = 0, with the gq  E  K (L n .  Then in the same
way as above, we can prove that the g, e L i . Hence by (3) gq  e KALP`), which is a
contrad ic tion  •

Lemma 2-1. L et 0  be an ordinary derivation o f  K . L e t  0 ' be an extension of
0  to  L .  T h e n  f o r every  elem ent w  e  L  such  that w  K (L ,, a ,), w e hav e a'w
L,, a (K).

Pro o f . Take a n  elem ent w  E  L  such that w  K ( L , , ) .  Assume that O'w e
L 0 ( K ) .  Then there exists a n  element u  e  K (L ,,,)  su ch  th a t 0 'u  = a 'w . Put
y = w — u. T h e n  y  K(L., 1 ,). O n the  other hand, O'y = 0 means that y
A contradiction.
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Lem m a 2-2. L e t  i  b e  an  integer such that 0 < i < m  + 1. T hen w e hav e
L i d(K )n K  = d i (K).

Pro o f . This follows from Proposition 2-1, (2). •

Proposition 2-2. L et i be a positive integer such that 0  i <m  + 1 . T h e n  the
following three conditions are equivalent.

(1) L  = K L i .
(2) L q _, = 1( q _, () K g  L q for q = 1, 2, ..., i.
(3) L  = K Lq for q = 0, 1,

I f  these conditions are satisfied, we have the following.
(4) d'" ) =  d °  ® K  L i .
(5) d(L ) = L q d,d ( )  for q = 1, 2, ...,

P ro o f . First we prove (2) ( 3 ) .  ( 3 )  i s  t r u e  fo r q = 0. A s s u m e  th a t L  =
K L q  f o r  q  < i .  T h e n  b y  (2 )  i t  h o ld s  th a t  L  =  K  0 K g (K q C)K , L q + i ) —
K  0 „, i 4 + 1 . (3) ( 1 )  i s  trivial. W e  p r o v e  ( 1 )  ( 2 ) .  A ssum e th a t L q - i  T-
Kg _i L q  for some q  with 0<  q j .  Then L. K K
Lq ) = K  () K g  L q K  O K ,, (K q  C lk  L i ) = K O k . L i , which contradicts (1). Since d'" )

is trivial on L i , (1) (4). The last assertion is clear. •

Proposition 2-3. If  d  is an ordinary derivation, then we have the following.

L  = K  Clic c  L , if  and only if  d'(L) = L e d(K).

Pro o f . This follows from Lemma 2-1. •

§ 3 .  Extensibility of higher derivations of finite rank

Lemma 3-1. A ssume that rank  m  o f  d  is finite. I f  th e re  e x is ts  a subfield M
of L , containing K ,, such that L  = K  OK ,  M , then d is extended to d' of  L  such that
1(d') = I(d) = g. In this case, M  K ,(L P r ), w here r is a positive integer such that
g p r _ l s<s._ m < g p r.

Pro o f . F o r th e  extensibility, we have only to consider the  coefficient-field
extension from K , to M .  Since for every  x  K  we have xPr  e K c , Li r  = (M P r  )
K (M ) = M .  •

Hereafter in this § we treat exclusively ordinary derivations or iterative higher
derivations. We start with summarizing known facts about iterative higher deri-
vations, which will be used in  the  forthcoming discussions. They mostly appear
in W eisfeld [13]. For the simplicity, we use the notation K  =

1*. F o r a  p o sitiv e  integer j  < m + 1 and the p-adic expansion j  = Jo +  j 1  p +

— + ,iqpq, w e h av e d ;=. 1 . . (d 1 )N d p )i' (do )ig. (Follows from the itera-
Jo!./1!•••./ q !

tivity condition).
2 * .  Let p f  = I (d ) . Then, K  = = • • • = K p f _, K p f  = K p f + ,  =  •  =

K f l 1 D K p f *, = • • • . (Deduced from 1*.)
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3 * .  K p - i  is purely inseparable over for p ' <m  +  1. (G eneral property
for higher derivation.)

4 * .  If m pr - 1 ,  then  [K p ,-■ : Kp j  =  p  for i = f , f  + 1 , r  -  1. (Follows
from Wronskian argument.)

5*. F o r  every choice o f  x E K  s u c h  t h a t  x  K p 1 ,  i t  h o ld s  th a t  K p - ,  =

K p ,(xP- f ) for i such that i f  and p H ' < m  +  1. (Follows from 4*.)
In 6* and 7*, we assume that m < oo and pr. '  m  <  pr.
6 * .  F ix  a n  element x a s  in  5 * . W e can take as a p-independent base of

K p r ,  over K c a set of elements of the form lx" - f - '1  +  A, where + denotes the set
theoretical s u m . (Follows from the fact that dp r-L1K „- 2 is an ordinary derivation.)

7 * .  With elements in 6*, K  = K c (x) O K  ( 0 K  K c (a)). (Deduced from 1* - 6*.)
aeA c

Lemma 3- 2. L et d be an iterative higher derivation of finite rank m  such that
p r-1 < p r. I f  •  . st t  a n  in teger such  that - 1 i r  -  1 ,  th en  K i„ = {y e

K c }.

Pro o f . W e consider the Taylor expansion E: K  -r K [[U]]/(Um + 1 ). If y , e
K I,„ then E (y )= y + (dp ,■(y))UP - 1 1  + • • • . Since p 'p r - I - 1  =  P r >  in, E(yP- 1 ) =
E(y)P'. =  y " 1. 1 . H en ce  y"'. e  K .  C o n v e rse ly , a ssum e  t h a t  y e  K  and
y" e K c . Then yP r E ( y P r  1 ) =(E(y))P11=  y " 1.+ ( d i (y))Pr  1 U P r +

• • +  (di (y))Pr +  •  •  •  .  Hence if jpr - i - i nt, di (y )= O. O n the other hand,
if pi, i p r—i-1 p r-1 m .  Hence y e •

Proposition 3- 1. A ssume that d  is iterative and m < co. T h e n  d  can be ex-
tended to d ' o f  L  such that d ' is iterative and I(d ') = 1(d) = pf , if  and only if there
exists a subfield M  of  L , containing K c such that L  = K  Ofc c  M .  W e can choose M
so that M  D L .  M  always contains K c (LP'), where r is a positive integer such that
m < P r + f

Pro o f . W e have only to prove the only if part and the last tw o assertions.
We have a commutative diagram:

K K (L c)---* L

K , - - r  L c

where K  and L c a r e  linearly disjoint over K .  W e  t a k e  x  and  A  as in 5* and
6 * .  x"'1- f  a n d  A  a re  p - in d e p e n d e n t over L . T herefore , w e can  choose  a  p-
independent basis fo r L p r_ 2 , o f  th e  fo rm  {xPr 1

}  +  A  + B .  I f  B  0 ,  L  =

Lc(x) ( 0 ,
c.
 L (a) )  =  K  ®Kc  L .  Hence we can put M  =  L .  Otherwise, L =

a e A

L c ( x )  0 L c  ( 0 4  L c (a)) ( 0L , L c ( b ) )  =  ( K  10 1 ç  L c) ( 0 1 _ , L ( b ) )  =
ae A beB be i

K  0 „ ( 0 L  L (b)
/

. Therefore we can put M  = L ( b ) .  Since K"'' K „  M

K c (K n M n )  =  K c ( I f i r )  for every M .  •
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Lem m a 3-3. A ssume th at T  is  a f ie ld  o f  characteristic p > 0  and  Q  is  an
infinite subfield o f  T  L e t  y  be an element of  an algebraic ex tension of  T  L et y ,
be an  elem ent such that y, T (y ) an d  y ,  T ( y P ) .  T hen there ex ists an  element
c e Q such that if  we put y 2 = y, —  cyP then it holds that T (y)= T(y 2 ).

Pro o f . Let e be the inseparability exponent of y o v e r  T  Let h = [T(y°') : T].
Then there exists h different isomorphisms a 1 . .... a  o f  T (y °') into its algebraic
closure over T  Then 0-

1( y )  o -
i (y °') for i j .  Each a i is uniquely extended to

a n  isomorphism o f  T (y ) . W e denote it by the  same symbol for each i. Then
ai (y°) i (y°) for i j .  Since Q is infinite, there exists an element c E Q such that
a1(y 1 ) — o-

i (y ,) c ( o -
i (y °) —  (y °)) for i j .  We put y, = y, —  c y P. Then o-, (y 2 ),

ch (y2 )  a re  all different. Hence o -,(y r), o-h(yr) a re  all different. Since
y r  E  T(y°'), it holds that T (y ° ')  = T (y r) . We prove the assertion that T(y°') =
T ( y )  for r = e, 0, using induction. The assertion is true for e. Assume that
it is  true  for an  r >  0. S in c e  T(y)= T(yP, y2 ), w e have T(y° 1. ) = T(y°'1, yr I).
Since y"E  T (y r) T ( y r  1 ), it holds that T(y° 1- =  T ( y r  •

Proposition 3 - 2 .  Assume that d is an ordinary derivation.
(1) d  can be ex tended to L  if  and  only  i f  there ex ists a subf ield M  of  L ,

containing K„ such that L  = K  Cliç  M.
(2) Assume that L  is a sim ple ex tension of  K . Then, for every choice of  M  in

(1), M is a simple extension of K .

Proof . (1) is a  special case of Proposition 3-1. W e prove (2). Assume that
L  = K (y ). We have a commutative diagram:

K  — 0 K (y ) — 0 K (y )

K, — 0  K ,(y ° )--0  K (y )

where K „(y °)= K (L )  because K , D  K . I n  c a s e  K (y )= K (yP), that is, in case y
is separable over K , M  = K ,(y °) which is a simple extension of  K .  A ssu m e  that
K ( y )  K ( y ° ) .  Then for every choice o f  M ,  M  K ,(y°), because otherwise L  =
K (M )= K (yP), contradicting our assumption. In  this case EM K ,(y°)] = [K (y ):
K (y ° )] = p . W e take an  element y, E  M  su c h  th a t y , K (Y ") . Then, we have
M  = K,(Y P , .Y1) and  y 1 K ( y )  because K ( y )  a n d  M  a re  linearly disjoint over
K ,(y ° ) . Here, w e apply L em m a 3-3. W e take K  fo r T  and  K , for Q  in  that
lemma. Then there is an element y 2 e L such that y 2  = y, — cyP, with c e K , such
that K (y )= K (y 2 ). Then K(.V P ) = K c (A ), because both are 411 K(LP) by Prop-
osition 2-1, (3). Since EM : K e(Y n] = P and .Y2 K ( Y ) ,  M  =  y 2 )  =  K,(Y2),
which is a simple extension of K .  •

By Zorn's Lemma, it is easy to see that there exist maximal subfields L of K,
containing K , to which d is extended, keeping the index. If d is iterative, then we
also see the existence of maximal fields L, where extended derivations keep the
iterativity conditions. Later in §5 we will show even the existence of the largest
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extension, in the case m = co. H ow ever, generally  speaking, it is not easy to
describe, in  a  concrete way, the condition th a t L  is  m axim al. B ut, owing to
Proposition 3-1, i f  d  is  ite ra tive  a n d  o f  f in ite  rank , w e  h a v e  th e  following
characterization.

Theorem 3 -1 . Assume that d is an iterative higher derivation with rank m < co.
L et L  be a  subfield of  K, containing K, to w hich d  can be extended, keeping the
iterativity condition and the index . L et r  be an  integer such that pr - 1 m  <
Then the following three conditions are equivalent.

(1) L  is m ax im al in the set of  algebraic ex tensions of  K, to which d  can be
extended, keeping the iterativity condition and the index.

(2) There is no nontrivial field extension M  of  L e in  K  such that L  and M  are
linearly disjoint over L c .

(3) L contains the separably algebraic closure K s of  K  in K and L p r -2 =

Pro o f . (1).=-(2) follows from Proposition 3-1. Assume that (1) and (2) hold.
A nd assum e th a t  L p r - 2 T hen  take  y e Lf su c h  th a t y 0  L p r -2 . Since
Le ,  = L ' b y  L e m m a  3 -2 , y  L . H e n c e  L  and  L e (y ) are  linearly disjoint
over L c , contradicting (2). Hence Le ,  = 1. Assume th a t  T  is  a  separable
extension of L .  Then L  a n d  TP are linearly disjoint over LP. Hence L" 1

TP" are linearly disjoint over LP" for q = 1, 2, ..., r. Hence L and TP r  are linearly
disjoint over . Since L c L P " ,  L  a n d  L c (TP') a re  linearly disjoint over L c .
Hence by (2), L e = L c (T y ) .  Hence L = L (T )  =  T. Therefore, L  contains K .
Conversely, assume th a t  (3) h o ld s . I f  L  is  n o t  maximal, then there  exists a
nontrivial overfield M  o f Le su c h  th a t L  a n d  M  are  linearly disjoint over L c .
Then by our assumption every element in  M  is purely inseparable over L, hence
over L e . Therefore, there exists an  element z' of M  such that z  L c a n d  z" E L c ,
contradicting our assumption. •

Corollary 1. A ssume that d  is an iterative higher derivation with rank m < co
and d, O. L et L  be a  subfield of  K, containing K, to which d  can be extended,
keeping th e  iterativity condition. L et r  b e  an  integer such that p r -

1 m  <  pr.
Then the following three conditions are equivalent.

(1) L  is m ax im al in the set of  algebraic ex tensions of  K , to which d  can be
extended, keeping the iterativity condition.

(2) There is no nontrivial f ield-extension of M  of  L c in  K  such that L  and M
are linearly disjoint over L c .

(3) L contains the separably algebraic closure K, of  K in K and L p r, =  L f

Pro o f . Since d, 0, d , 0 0 for every extension d  of d. Hence our assertion
follows from the theo rem . •

Corollary 2. A ssume that d  is an ordinary  derivation. L et L  be a subifield of
K, containing K, to which d  can be ex tended. T hen the following three conditions
are equivalent.
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(1) L  is maximal in the set of  algebraic ex tensions of  K , to which d  can be
extended.

(2) There is no nontrivial field-extension M of  L c  in  K  such that L  and M  are
linearly disjoint over L .

(3) L  contains the separably algebraic closure K s  of  K  in K  and L  = L .

§ 4 .  Uniqueness of extensions

Lemma 4 -1 . A ssume that there is a  sequence {G,} 0 ,, < „,,,  of  subfields of  L
such that:

(1) the following diagram is commutative:

L G, 4-  G 2  4-
 • • 4 -  G. 4—

f
K 4 — K ,< - 1 < 2 4---••••(-- K , < - - • • •

where each arrow represents an inclusion map,
and

(2) for every i with 0 <  <  m  +  1 ,L  =  K OK , Gi .
T hen G . = f o r  i  w ith  0 <  i  < m  a n d  i f  w e  p u t d * {'} =

d" ) OK . G. f o r each i, then there ex ists an ex tension d* of  d on L  such  that d"
In this case if  d is iterative then d* is iterative.

Pro o f . If G. K. ,  then by the linear disjointness L  = K  OK, G, 7_
K  ® K .  (K 1 O K ,* , G,± 1 ) = K  O K ,+ , G ,,,, contradicting our assum ption. N ext, that
d* { i}  =  du )  ®K i G. im plies that di

* { i}  =  d;  OK. G. fo r  each j  with 0 < j  i .  On the
other hand, d;  is  a  0-map on 1(1 . Hence di  O K , G. = d;  ( K ;  OK , G,) = d O K ., G1 .

•

Hence d7{i} is independent of the choice of i with i j .  Hence we can define d*
by putting d r = 4 {

1} w ith i j .  The last assertion is clear. •

Lem m a 4 -2 . F o r ev ery  in teger i such  that 0 < j < m  + 1 , w e  put G . =
K A L P"), w here t(i) is an  integer w ith p`""  i  <  p ` " ) ,  and  w e assume that L  =
K OK, G1. T h e n  the following assertions hold.

(1) d ' exists uniquely and 1(d') = 1(d).
(2) I f  there ex ists an ov erf ield L * of  L  such that d  is ex tended to a  higher

derivation d* of L*, then L is closed under d*, that is, d7(L) L  f o r  each i.
(3) If  d  is iterative, then d ' is iterative.

Pro o f . The existence of d ' is  due  to  L em m a 4-1. N ow  for every exten-
sion  d ',  w e have Li =  K i (L P") b y  Proposition 2-1. Hence fo r  each  i d '" ) =
du )  ® K .

 which is uniquely determ ined. Hence d ' is  u n iq u e . Since by Prop-
osition  2-1 L c*,,*(,) D L*P"" LP", is t r iv ia l  o n  LP"'). Since  L  =
d (L )  (d ,(K ) )L P "  c  L . Other assertions are clear. •

Proposition 4 -1 . If  L  = K (L P) and there exists an algebraic overfield L* of  L
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such that d  is ex tended to d* of  L *, then d* has a restriction d' on L  and d' is a
unique extension of d to L  and 1(d') = I(d). If  d is iterative then d ' is iterative.

Pro o f . B y Proposition 2-1 D L*P̀  LP` with < pt. S in c e  K
and LK d *,,, are linearly disjoint over K i ,  K  and K i (L t )  are linearly disjoint over
K  Since L = K(LP) = • • • = K(LPt ), L  = K (K  A P)) = K  0 K 1 K i (LP )̀. Hence by
Lemma 4- 2, we get our assertions. •

Proposition 4 -2 .  Assume that L  is a separable ex tension of  K . Then d ' exists
uniquely, 1(d')= 1(d) and every extension of d to an overfield of L has the restriction
d' on L .  If  d  is iterative then d ' is iterative.

Pro o f . Since L  is separable over K , in  th e  sam e way a s  in  th e  proof of
Theorem 3-1, w e see  th a t K  a n d  K i (LP`) a re  linearly disjoint over K i ,  where
p t - i <  t .p Hence L = K(LP`) = K OK, K A " ) . Hence by Lemma 4-2, we get
our assertions. •

Theorem 4-1. A ssum e th at  L  h as  a  f in ite  ex ponent ov er K , that is, th e
exponents o f  orders o f  inseparability o f  elements in L  hav e an upper bound. If  d
is  an  iterative higher derivation of  f inite rank , then the follow ing conditions are
equivalent.

(1) L  is separable over K.
(2) d  ex tends uniquely  to an  iterative higher derivation d ' which satisfies

necessarily I(d) = 1(d').

P ro o f .  ( 1 ) .  (2) is in Proposition 4-2. We prove (2) ( 1 ) .  Assume that L is
not separable over K .  Then take separably algebraic closure K ' of K  in L .  Then
by Proposition 4-2 d:(1(') K ' .  Therefore, we may assume that K  = K ' and L  is
purely inseparable over K .  Since d' exists, there exists an  overfield M  of K , such
that L  = K  (5.01 Ç  M .  Then M  is purely inseparable over K .  P u t  M' = K c (MP).
Then M ' M ;  for otherwise M  = K (M P )  and  hence, L = K(LP) = K(LP2 ) = • • • ,
which means that L = K , because L  has a  finite exponent over K , contradicting
our assum ption. W e consider the coefficient-field extension of d  by M ' and  we
may assume tha t K  = K (M ') . Then M P c K . L e t  be  a  p-independent
base  of M  over K . L e t  {bi }."  b e  a n  arbitrary se t o f  elements of K .  P u t
di*(z. ) = 0 for i p r - 1 a n d  d;t_.(z.i ) = hi for j  A , where pr - 1 m  <  p r .  This in-
duces an iterative higher derivation d *  = { 4 1 " , < „, o f  M . Take the composite d'
of d and d * .  It is easy to see that d' is iterative, if we check that d ' is iterative on
generators. 1(d') = I(d) is clear. Hence d' is not u n iq u e . •

Corollary. A ssume that L  has f inite ex ponent ov er K .  I f  d  is  an  ordinary
derivation of K, then the following conditions are equivalent.

(1) L  is separable over K.
(2) d  ex tends uniquely  to an  ordinary  derivation d ' o n  L .  I n  th is  case,

4 = Kc(LP).
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§5. Higher derivations of infinite rank

W e first rem ark that fo r an  iterative higher derivation of infinite rank, the
condition th a t  [K p s, : K p s ] = p  fo r every integer s f  w ith  pf = 1(d), is kept
because d  iterative for every positive integer k.

We start with a  typical feature of iterative higher derivations of infinite rank.

Proposition 5-1. L e t  d  b e  a n  iterative higher derivation o f  infinite rank.
A ssume that d  is ex tended to an  iterative higher derivation d ' o f  L , keeping the
condition that 1(d') = 1(d). Then f or every positive integer t, d ' u) = d" ) OK , L , and
especially, L  = K  OK , L,.

Pro o f . We put p f = 1(d). In the, commutative diagram:

L = L p _ — • • • = Lp f r -I 4 - -  . 1 a p f  l a p f + 1  4- -  . *  •  L p S  •

I I I
K  K p , = • • • = K p f _. 4--  K p f  4—  K p f , 4— • • • K .

L p s] = [K p s, : K p .] = p  and K p s ,  and Li ,  are linearly disjoint over K p s for
s f .  Hence Lp s ,  =  L p .  for s 0 and L  = K  Olc p s  Lp .,. Hence it fol-
lows from Proposition 2-2 that d'w  = d" ) OK , L , and L = K  OK,  L , for every posi-
tive integer t.

Corollary. L et d  be an  interative higher derivation of  inf inite rank . Assume
that d  is ex tended to an  iterative higher derivation d ' o f  L  and d', O. Then for
every positive integer t, =  d " ) OK , L ,.

Lemma 5-1. A ssume that L  is purely inseparable over K . L e t  d  be a  higher
derivation of infinite rank. T h e n  if  d' exists, d ' is unique.

Pro o f . Let X E L .  Then there exists a positive integer n such that xP" e  K.
C onsider T aylor expansions E : K  K [[U ]]  c  L [[U ]]  a n d  E': L  L [ [ 1 . ] ] .
Then E ' is  an extension of E .  E'(x ) is a  pn-th root of E(xP”) = E '(x P"). Hence
E'(x ) is  unique, because in  L [[U ]] a  pn-th ro o t o f  a n  elem ent is unique if it
exists. •

Proposition 5-2. L et d be a higher derivation of  infinite rank. Assume that d'
exists. T h e n  d ' is unique. If  d  is iterative, then d ' is iterative.

Pro o f . We denote by K ' the separably algebraic closure of K  in L .  Then by
Proposition 4-2, K ' is closed under d ' and the restriction of d ' on K ' is iterative if
d  is iterative. R e p la c in g  K  by K ', we may assume tha t L  is purely inseparable
over K .  Then by Lem m a 5-1 d ' is  unique. Assum e th a t d  is iterative. Then
apply Lemma 1-1, where L stands for K , the Taylor expansion E ' of L stands for
E  and  K , s ta n d s  fo r  S . By the  iterativity of d, (A i d )  0 E ' and  (id E') o E'
coincides on K .  Since R CD„, R  J K  L  is a power series ring of two variables over
L , then two isomorphisms have to coincide on  L  by  the same reason as in the
proof of Lemma 5-1. Hence d' is iterative. •
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We denote by K s  the  separable closure of K  in K .  As was stated in §3, there
exist maximal subfields L  o f  K , containing K , to  w h ich  d  i s  extensible. By
Proposition 4-2, each L  has to contain K .  However if d  is  of infinite rank, we
can prove the existence of the largest subfield of K  w ith that property. This is an
extenion of Shikishima's result for iterative higher derivations in [9].

To prove it, we start with a  definition.

Definition. Let d  be a  higher derivation of in fin ite  rank . For each element
w o f K  and  fo r each natural num ber e , we define a  subset AK :(! of K  in the
following w ay . L e t a be an element of K .  Then a e A K :',! if and only if there exist
a  sequence o f  elements a 0 ,  a 1 ,  . . . ,  a ,  o f  K , where cto  =  w  a n d  a, = a ,  and a
sequence of natural numbers i 1 ,  i2 , i, such that ai  =  for j  = 1, 2,

t.

Proposition 5-3. L et d be a higher derivation of inf inite rank . For x  c K  such
that x "' = w  e K  there ex ists an ov erf ield L  of  K  contained in  K  such that x e L
and d is ex tended to L , if  and only  if  for every y e AK :d

e  it holds that d i (y) = 0 for
j  #  0  (pe). I f  these conditions are satisf ied the  least L  w ith above properties is
K ((4 : d

e )P ').

P ro o f . First we prove the  only if part. I f  y e K  is such that y  = z P' with
z e L, then for every natural number i we have di (y)= (d(z))P e . Hence if we put
u  = d ( y )  and y = d:(z), then u P  = y  e  L .  Therefore d(u) = cil(yP') = 0 for j  0
(pe). This fact shows our requirement for A t: d

e  and  also shows that L  ( A t : a
e )P

Conversely, a ssum e t h a t  t h e  requirem ent f o r  A K :d
e  i s  s a t i s f i e d .  P u t  L —

K((A t: e
d )P- '). Then LP' =  K nA t: e

d ). It is easily seen that for a, b e K  such that
di (a) = di (b) = 0  for j  0  (pe), w e have di (ab) = 0  for j  0  (pe). Therefore, for
every element c  in LP', we have di (c) = 0 for j  * 0  (pe). Moreover from this fact
and  b y  th e  definition o f  A K„4 , it is easily seen that LP ' is closed under d  and
actually only the di r  w ork on LP° non-trivially. Therefore we can define a  higher
derivation d* = fel o f  L P', putting cif  = di p .  for j  =  0 ,  1 ,  2 ,  . . . .  Let
W: L"' —> L be  a n  isom orphism  such that W(a) = aP fo r a e  L P'. Then d *  in-
duces a  higher derivation d ' o n  L  through W . Then W o d* = d' o W . Take an
element a E K .  Then d(a) = d;(V i(aP'))= c l,* (a)= V f (d i p jaP'))= Pf (d,(a))P')=
d ( a ) .  Hence d' is an extension of d. •

Theorem 5-1. I f  d  is  a  higher derivation o f  inf inite rank , then there is the
largest subfield L of  K , containing K and to which d is extended.

P ro o f . We have only to prove a maximal subfield with the above property is
the  la rgest. T ake  such  a m axim al subfield L .  Since L  contains K s ,  we may
assume tha t K  = K . A s s u m e  that there exists a maximal subfield L , w ith the
above property, different from L .  Then there exists an  element x E L , such that
x  L . Then there exists a positive integer e  such that w = e K .  Then AK

w :d
c,

satisfies the condition in Proposition 5-3. However, since L D K  and d  is  the
restriction of d ' on K, A  =  and the requirement to it with respect to  d ' is
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the same as that with respect to  d. Hence d ' on L can be extended to a subfield
of K, containing x  keeping the said property, which contradicts the maximality
o f  L .  •

§ 6 .  Non - integrable elements and order of inseparability

Theorem 6 - 1. L et d  be a  higher derivation. L et i be a  positive integer such
that i < m  + 1. L et z be an element in K  such that z  d i (K ) .  Assume that there
exists an element y  in L such that d ;(y )=  z . Then we have the following.

(1) y  is inseparable over K.
Assume that m is large enough compared with i. Then,
(2) there exists a positive integer t such that zr"  E d (K )

and
(3) The exponent of  the order of  inseparability of  y  over K  is greater than or

equals the least t satisfying (2).

Pro o f . Let q be the exponent of the order of inseparability of y over K .  Let
g' = 1 (d '). Assume th a t i <  g 'p '. Since y

!' is separable over K, we have y°' e
K(yPg ' s ) K ( L P " ) ,  where s 1. Since ipq < g'ps+ q, c  L ip q  b y  Proposition
2-1, if ipq < m + 1. T hen z"' = (d;(y))Pg = d'i p „(yPg ) e d;p ,(K ' ) )  ( L i o ) )  =
L ip a di p , (K ) .  Hence zPq e K FIL i o di p ,(K)= d ip g (K ) by Lemma 2-2. Hence (2) holds.
By the choice of q, (3) is also true. If y is separable over K  then q = 0, z E di (K),
contradicting our assumption. Hence (1) h o ld s . •

Corollary 1. L et d be an ordinary derivation which is extended to d' on L .  If
z e K  is  a  non-integrable element and d'(y )= z f o r y e L, then y  is inseparable
over K.

Corollary 2. Assume that L  is a simple extension of K, generated by y. I f  d
is an ordinary derivation and z e K  is a  non-integrable element, then the following
conditions are equivalent.

(1) d is extended to d ' on L such that d'(y) = z.
(2) y  is inseparable over K, and K and K (y ) are linearly disjount over K .

If  these conditions are satisfied, we have L  K  0 ,ç  L .

Pro o f . Assume t h a t  (1 ) i s  true. B y  Proposition 2-1 , (2 ), L D K (L ) =
K O K  L ,  and d'(K(L,))(1 K = L,d(K)(1K = d(K). Since z  d (K ) and d'y  = z, we
have cy  K (1 „ ). On the other hand, it holds that yi9 e L . H e n c e  L c (y) and K (L )
are linearly disjoint over L .  Hence L e (y) and K  are linearly disjoint over K .
Especially K  and K (y )  are linearly disjoint over K .  H e n c e  (1) ( 2 ) .  Assume
that (2) is  true. Since y is inseparable over K „  the module of differential Q —

„  is a free Ke(y)-module generated by d(y), where d  denotes the canonical
derivation of K c (y) to  Q . H ence there  exists a derivation d *  of K (y ) over K,
such that d*(y ) =  z. Since L = K O K  K e (y), we can compose d and d*, and prove
(2) ( 1 ) .  Assume th a t (1) and (2) a r e  true. Since z e d '(L ) and z L c d(K) by
Lemma 2-2, d'(L) L c d (K ). Hence L  K (D iç L, by Proposition 2-3. •
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Theorem 6- 2. A ssume that d  is an  iterative higher derivation of  infinite rank
which is extended to d ' o f  L .  I f  1(d') = I(d), then every non-integrable element of
an arbitrary order in K  is non-integrable in L  of the same order.

Pro o f . This is  a  result of Proposition 5-1. Since for every i > 0  w e have
L = K  ®K .  it ho lds tha t  d(L ) = L i di (K ) . H ence by  L em m a 2-2, w e  have
d(K) = L i d(K)n K  = dri (L)n K .  •
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