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Ample vector bundles of small cf -sectional genera

By

TAKAO FUJITA

Introduction

L e t g  be a  vector bundle of rank r  on a com pact complex manifold M of
dim ension n. L et P = P (‘)  be  the associated Pr - 1 -bundle and  le t H  = H (g) be
the tautological line bundle (9(1) on P .  g  is said to be ample if so is H  on P .  In
this case A  = det (6) is also am ple on M . The c r sectional genus g of g  is defined
to  b e  g(M, A ), w hich is determ ined by the formula 2g(M, A) — 2 = (K + (n —
1)A)AH- 1 , where K  is the canonical bundle o f  M . Then g(M, A ) is a  non-negative
in teg e r b y  [F 5 ]. In  this paper we establish a classification theory of the case
g(M, A) 2. T h e  c a s e  r  =  1  was treated in  [F 6 ]  a n d  w e study here the case
r >  1. In §1, we study the case g = 0 or 1 . The case g = 2 is studied in §2. The
main theorem is in (2.25). I n  § 3 ,  we give a classification according to the sectional
genus of (P, H).

T h e  author thanks Professor S . M u k a i fo r  helpful comments during the
preparation of this paper.

W e employ similar notation to  th a t  in  our previous papers o n  polarized
manifolds.

§ 1 .  The case g  1

(1 .1 )  Throughout this paper let 6', M, P, H , A  and K  be as in the introduc-
tion. W e further assume that n 2 and r 2.

(1 .2 )  T he  canonical bundle K "  o f  P  i s  tr*(K  + A) —  rH, w here  it is  the
projection P — > M. S o  2g(P, H) — 2 = (IC + (n + r — 2)H)H"'' =(n—  2)11 '  +
Hn+ 1 - 2 7r*(K + A) = (n — 2 )sn(e) + (K + A )s n - i(g ) , where s j ( g )  i s  the j-th Segre
class of g. The total Segre class s(g) is related to the Chern class by the formula
s(g)c(g' ) = I. T h u s ,  in particular, we have 2g(P, H)— 2 = (K + A )A  =2g(M, A ) —
2 and g(P, H)= g(M , A) in case n = 2.

Remark. If M  were a  curve, both g(P, H) and g(M, A ) would be equal to the
genus o f  M . However, if n 3, g(P, H) 0 g(M, A ) in general.

(1.3) Lem m a. A C  r f o r any rational curve C in M.
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P ro o f . Let f : P ' C  be the norm alization. Then f *6'c  i s  ample and is  a
direct sum of line bundles. Hence A C = deg (f * c ) r .

Remark. If A C = r, then f * c  is a direct sum of OM's.

(1.4) Theorem. I f  g(M, A) = 0, then M  P c
2„  =  Ha  C) Ha , P P  x P  and

H = H c, + Hp .

P ro o f . W e  have zi(M, A) = 0  b y  [ F 5 ] .  U sing (1.3) and [ F l ]  we infer
(M, A) (11„ M OE). M o re o v e r  6't  ( 9 ( 1 )  OW for any line e in M. This implies
e  H, C) 11.„ by [V].

Alternately, one can  argue as follow s: B y (1.2) w e have g(P, H)= O. So
.61(P, H) = O. O b v io u sly  (P, H ) is a scroll over P2 . By the theory in [F 1 ], this
implies (P, H) a (13 , x 11, H 2  + Hp ).

(1.5) Theorem. If  g(M, A) = 1, then (M, 6') is one of the following:
1) M and e 2H„ HOE .
2) M P 2  and e is the tangent bundle of  P 2 .
3) M 13 ,2,  and e H,C) e HOE .
4) M P x Pi) and  6' [11„ + Hp ] e [H OE + Hp ].
5) M Pc', and HOE C) HOE .

P ro o f . By (1.3), (M, A ) cannot be a scroll. S o  (M, A ) is a Del Pezzo mani-
fold. M o re o v e r , b y  (1.3), the two-dimensional rung S  o f (M, A ) contains no
exceptional curve. Hence S  P 2 o r  13 '  x  13 '. This implies (M, A )  (p2„ 3H2 ),
(P1 x 13

11, 2H2 + 211p ) or (P:, 214) by [F2].
If n = 2, we have g(P, H) = 1 by (1.2). So (P, H) is also a Del Pezzo mani-

fold. S in c e  b2 (P) 2 and dim P  3, using the theory in [F 2 ] we infer that P is
either

1) the blowing-up of P 3 a t  a point,
2) a general member of 1H2  + 11131 on P,2, x
3) POE

2 x or
4) Pc!  x x

In  these cases w e easily  see  that (M, 6') i s  of the corresponding type in the
statement of the theorem.

If (M, A) (133„ 21-4), then 6'(  e ( 1 ) (9(1) for any line (  in  M . S o  6'
H, e HOE . Thus we are in case 5).

Remark. In case 5), (P, H) is the Segre product of (13 „ Ha ) and (13
/1, Hp ). So

g(P, H) = O.

§ 2 . The case g = 2

(2.1) In this section we assume g(M, A) = 2. First we study the case n = 2.

(2.2) d(P, H) = H ' ' S  2 ( 6 ) =  ( 6 )2  -  c 2 (e ) .  Since c2  >  0  b y  [BG], we
have A2 d ( P ,  H) + c 2 2 .
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(2.3) In  view of (1.3), (2.2) and the classification theory of polarized surfaces
of sectional genus two (see [F6; §4]), we infer that (M, A ) is one of the following
types:

1) K  0 and A 2 = 2.
2) M  is  a  P '-bundle  over an  elliptic curve C, A F = 2  for any fiber F  and

= 4.
3) M  is as above and A F = A 2 = 3.
4) —K is ample, A  = —2K and K 2 =  I .  A 2 = 4.
5 )  M  P c! x PI, and A  = 2H„ + 3Hp . A 2 =  12.
5 1) M  is the blowing-up E, of 13,2,  a t a point and A  = 4H„ — 2E, where E is

the exceptional curve. A 2 = 12.
The case 1) will be studied after the others. See (2.11).

(2.4) Suppose that (M, A ) is of the type (2.3; 2). T h e n  M  P c (gr) for some
vector bundle gr.  o f  rank tw o over C  with f  = c 1 (.'F) = 0  o r  1 .  Moreover, by
[F6; (4.5)], A  = 2H (F)+ p*B  for some B e Pic(C) with b = deg B = 1 —  f, where
p is the map M —> C and H ( ,)  is the tautological line bundle on P(F).

Since A F = 2, we have 6'x  0(1) 0 (.9(1) for every fiber X  of p. Hence =
p* (6' 0 [— M ail])  is a  locally free sheaf of rank two on C  and 6' ‘3  0
Clearly c 1(W) = B, c2 (&) = c 1 (W)H(..97 ) + H(.F) 2 = 1 and d(P, H) = H 3 = s2( 6 ) = 3 .

Since 6' p * 1  H (.F), (P, H ) can be view ed a s  a  scroll over N  = Pc (W).
More precisely, P  PN (F, 0 H ( ) )  and H  is  the  tautological line bundle on it.
Furthermore, P is the fiber product of M and N  over C.

We claim that gr a n d  a re  se m is ta b le . By the above symmetry it suffices to
consider gr. o n ly .  Let Q be a quotient line bundle of gr and set q = c,(Q ). Then
p has a section Z  with H(.°7-- )Z  = q . Since 0 < A Z = 2q + 1 —  f, we have q > 0 if
f  = 1, and q 0 if f  = O. This implies the claim.

(2.5) Conversely, let gr, be semistable vector bundles of rank two over an
elliptic curve C with (c,(,F), c l (W))= (1, 0) or (0, 1). Then e = ® H(F-) is an
ample vector bundle on M  = P c (g7 ) of the type (2.3; 2).

This is clear except the ampleness o f  ‘ .  W e should show the ampleness of
H(S ) o n  P = pm (e). W e m ay assume c ,( ,F)= 1  and c 1 ( ) = 0 by symmetry.
Then H(.F) is  a m p le  o n  M  a n d  H((g) i s  n e f  o n  N  = P ( )  b y  th e  theory in
[M ; §3 ]. So we easily see that H (,)  + H ( )  = H (‘) is  am ple on P .  Thus we
complete the proof.

(2.6) Suppose that (M, A ) is of the type (2.3; 3). By [F6; (4.5)], M Pc1.-F)
for some indecomposable vector bundle ,.97  of rank two over C with c 1 (9-. ) = 1 and
A  = 311(F) —  F f o r som e f iber F  o f p: M —> C .  W e have r A F  =  3  by (1.3).
Note that i s  stable.

W hen r = 3, similarly as in (2.4), we see 6' p* H (F) for some vector
bundle of rank three o n  C .  So c i ( p * ) =  — F, c2(S) = 2c 1 (W)H(. 7 ) + 3H(F) 2

=- 1 and d(P, H) = 114  = s 2 (e) = 2.
Let Q be any quotient bundle of o f  rank o n e .  Then Q + H(gi) is an ample
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line  bundle  since it is a  quo tien t o f g .  Restricting to a  section Z  of p  with
H(„F)Z = 1, we get deg (Q) . O. W e  have t = deg (T) < 0 for any subbundle T of
/ of rank o n e .  Indeed, g' = p*(W/T) 0 11(.59 is ample since it is a quotient of g.
Hence 0  <  1(612 = (2H (39 — (t + 1)F) 2 =  —4t. Combining these observations
we conclude that i s  stable.

Conversely, for any stable vector bundle / of rank three with c"  =  — 1  on
C, g = p*/ 0 H(.97) is an ample vector bundle of the type considered here. This
is obvious except the ampleness. To see the ampleness, note that P = P(‘) is the
fiber product of M and N  = P ( )  over C, and that H(e) = 1 (97), + H (W ),. By
the theory in  [M; §3], 2H(F) — F is nef on M and 3H(/) + F' is nef on N, where
F' is  a  fiber o f N -4 C .  Hence 6H(g) — F = 3(2H(,97 ) — F)p + 2(3H(/) + F')p is
nef on P .  So H(e) is ample.

(2 .7 ) Next we consider the case r = 2. Then gx  0 (2 ) (9 (1 ) for any fiber
X  of p. So / = p* (g  0  [-211(F)]) is  a n  invertible sheaf o n  C .  W e have an
exact sequence 0 —0 p'V 0 [21-1(F )] —> g  —> (9[Q] —> 0 for some line bundle Q. Then
Q = det (g) — p*(g — 2H(F) = H (F) + p*T  fo r some T e Pic (C) with deg (/) +
deg (T )= — 1. We have deg (T)._ 0 since Q is am ple. O n the other hand c2 (g )=
(p*S + 2H(.97 ))(H(..F) + p*T) = 2 + 2 deg (T) + deg (/) = 1 + deg ( T )  a n d  0 <
s2 (g) = 3 — c2 (g). So deg (T) = 0 or 1 . Thus:

1) deg (T) = 1, deg (/) = —2, c2 (g) = 2 and H3 = s2 (g) = 1, or
2) deg (T) = 0, deg (/) = — 1, c 2 (‘) = 1 and H3 = 2 .

Remark. Both types seem to exist really. But we have troubles in showing
the ampleness of g .

(2 .8 )  Suppose that (M, A ) is of the type (2.3; 4). By (1.3), rank (e) = 2 since
A E = 2 for any exceptional curve E o n  M . We easily see that g is A-semistable.
We have c2 (g) = 1, 2 or 3 since 4 = A 2 = c2(&) + s2(6 ).

(2 .8 .1) In case c2 (‘) = 1, we have ci 0'1 = O = c 2 (, )  for F  = [K ].  So
(F )= 2  b y  the Riemann—Roch theorem . W e have h2 (F )=  h° ( ‘ ')= h° (6. [2K])

and  h° (M, — K) = 2. Therefore 2  h° (, -) = h° (P, H  + Tr*K ). F o r  any member
D of 1H + n*K1, we have H2D = s2 (g) + s i (g)K =  1 .  Hence D is irreducible and
reduced since H  i s  a m p le . So dim (D fl D') < 2 fo r  any other m em ber D ' of

+ n* K 1. We have HDD' = H(H + 7r* K)2 = O. H e n c e  D n D ' = 0  since H  is
a m p le . So D and D' are disjoint sections of  it. T h i s  implies .97  C O  049 and g
(.9[— IC] (P[— K].

(2.8.2) In case c2 (&)= 2, we have c 1 (F )=O  and c2 (, )=  1  for gr, = SO  [K].
S o x(.97) = I .  W e  have a lso  h2 (F) = h° (g 0  [2 K ]) h ° (,F ) .  Hence h ° (F) > 0
and we have D e 1H + rt*K 1. Then H2D = s 2 (g) + s i (g)K  = 0, contradicting the
ampleness of H .  Thus this case is ruled out.

(2.8.3) In  c a s e  c2 (g) = 3, w e  h a v e  H3 = s 2 (g) = 1 a n d  x (e) = 2. Since
h2(g) = h ° (g C) [3K]),  w e  in fe r  h°() 2 ,  so  dim I. I n  f a c t  w e  have
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dim 1111 = 1. Indeed, otherwise, A(P, H )  1  a n d  hence b2 (P) 2  b y  [F2; Part
III]). This contradicts b2 (M) = 9.

For any D c 1H I, w e  have H
2D = 1, so D is irreducible and reduced. M ore-

over, for any other member D ' of 11/1, the scheme theoretical intersection Z  of D
and D' is an irreducible reduced curve of arithmetic genus two with H Z  = 1. By
definition of the Segre class, C = it(Z) represents s 1 (6), so C e 1A 1 . For every fiber
X  of TC over x e C , either D (1X  o r  D' (1 X  is  a sim ple point because otherwise
X  c  Z .  Ths implies Z  C .  This section Z  of it over C yields an exact sequence
o -> - >  g c . - >  0  of vector bundles over C and _2 is identified with the restric-
tion of H  t o  Z  C .  So deg (.2) = 1 and deg (F.) = 3.

Let (5 and (5' be the section in H
° (M, (Sy) H ° (P, H) corresponding to D  and

D'. Then the restrictions of them in H° (C, gc ) come from H° (C, gr, ) by construc-
tion. Thus they define m em bers Y  and Y ' of 1.F 1 .  Clearly x c Supp (Y) if and
only if n - 1 (x) c D .  In  particular y n Y' = O .  The structure of D  is related to Y
as follows:

If Y consists of three different points (this is the case if D is a general member
of 1H1), then 7r,: D  M  is the blowing-up at Y since c 2 (g )  =  3 .  We have an exact
sequence 0 -■ (9[E 1 ] 0 [ 4 , A  -  E y ] - + 0 of vector bundles on D, where Ey  is
the exceptional divisor over Y consisting of three (-1)-curves.

If Y = p i  +  2p2 fo r  some p, p 2 , let M 2  be the blowing-up of M a t p , and
P2. T he  stric t transform o f  C  m eets th e  ( -1)-curve E 2  over p2 a t  a  point
p3 . Let M 3  be the blowing-up of M 2  a t p3 . Then the strict transform .E2 of E,
is a (-2)-curve . Contracting E '2 to  an  ordinary double point we obtain D.

If Y = 3p,, let M , be the blowing-up of M at p i  and let E , be the exceptional
curve over p i . Let p2 b e  the m eeting point of E l  a n d  th e  s tr ic t  transform of
C .  L e t  M 2  b e  th e  blowing-up o f  M , a t  p2 a n d  l e t  E 2  b e  th e  exceptional
c u rv e . Let p3 b e  the meeting point of E 2  and the strict transform of C .  Let M 3

be the blowing-up of M2. T h e n  the strict transforms of E ,  and  E 2  on  M 3  are
(-2)-curves meeting transversally at a  p o in t .  C ontracting them  to a  rational
double point of type A 2 , we obtain D.

Having these observations in mind, w e w ill now  show  that such a  vector
bundle does really exist. W e take three points p i , p 2 , p 3  o n  M  in  a  generic
position . Since h° (M, A ) = 4, there is a unique member C of 1A I containing Y =
U Pi. Let D be the blowing-up of M  a t  Y and let Ey  b e  the exceptional divisor.
Then h i (D,2E y  -  A D ) = ( D ,  [ -  -  E y ) = 1 since Y is in  a  generic position.
Moreover, for any general element e of 1-11(D, 2E 1  -  AD ), the restriction of e to  E i ,
the (-1)-curve over p i ,  is  no t zero for each i, because 0 = h l (D,[ - K]D  -  E i  -
E 2 ) = ( D ,  [ -  K]D  -  E2 —  E3) = 111 (D, [ -  K] D  -  E3 — E l ). Let O - .4 &[E 1 ]el[E y ] S ' ---+
6[A D  -  E y ] --> 0  b e  the extension of vector bundles o n  D  induced by e. The
restriction of it  to  E. is  a non-trivial extension O-* CO( -  1) -4 gi 0 (1 )  -4 0, so the
restriction S i of e  to E. is  trivial. Hence g ' is the pull-back of a vector bundle g
o n  M . Obviously c i ( e )= A , c 2 (e) = 3 and h ° (E) =  z(g) =  2 . Thus it suffices to
show the ampleness of g.

N ote  that dim  1-1(1 = 1 and  every member F  o f  1-1(1 is irreducible and
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reduced since (— K )F = 1  a n d  — K  is  a m p le . So there a re  only finitely many
singular members of I —  K and each of them has only finite singular points. Let S
be the union of all such singular points of members of 1— K . S in c e  Y is  in a
generic position, G is a general member of IA l. S o  w e  m ay  assume that snc = 0
and C is smooth.

Let J  be  the Jacobian variety of C  and  we fix a  po in t o  o n  C .  F o r any
divisor X  in  M , we define v(X) =  [X , —  (X C)o] e J. This depends only on the
linear equivalence class of X , and gives a  mapping v: Pic (M) —> J. The image N
of v is a countable subset of the abelian variety J.

For any triple in = (m 1 , m2 , m3 ) of positive integers, let p,,,: C x C x C — >J be
the m orphism  defined by p m (x , x 2 , x 3 ) = [m i x, + rn 2 x 2 + m 3 x 3 — (m 1 + m 2 +
m3 )o]. N ote that I -L (1 ,1 ,1 )  factors through the  sym m etric  p roduct C xC x
C / S3 of C, which is a  P I -bundle over J.

We claim that pm is sm ooth at a = (a l , a2 , a 3 ) if a i 's are three different points
on C .  To see this, set b = p„,(a) and let dp„,: T ,„„„„
be the differential. W rite dpm  =  6, (:), 62  C) S 3  fo r  Si e Hom (Te ,a . , Tj ,b ). L et p ' be
the map defined by if (x ) =  p(x) — p(a) + b e J and  le t dit' = ô 0  ô  O  63'  be its
differential at a. Then Si = m i k .  Since a i's  are different, Cx C x C  is étale at a
over the symmetric p ro d u c t. So p and p' are smooth at a. Hence the images of
Si'  generate Ti ,„, a n d  so  do the im ages of 6i = m i k .  T his im plies that dpm  is
surjective, as desired.

From  this claim  w e infer that every fiber o f  pm  i s  a  curve fo r any  m .  So
=  Um kum-1 (N)) is a union of countably many curves.

F o r  a n y  p a ir  k = (k 1 , k 2 ) of positive  integers, le t  pk : C x  C  J  b e  the
morphism defined by pk (x 1 , x 2 )= [k ,x ,+ k 2 x 2 —(k, + k 2 )o]. T hen, similarly as
before, we infer that K ( b )  is finite for every b  e  J except b = [to —  2o], where
co is  the  canonical bundle o f  C .  Therefore N' = { (x 1 , x 2 ) e C  x CI x i  +  x 2 0 lorl
and x 2 )  e  N  for some k} is a countable set. Let f : C x C x  C  C  x  C be
the projection and let J2 = p ( f -1 (N ') ) .  Then J2 is  a union of countably many
curves.

Now, since p i 's are in a generic position, we may assume it(p 1 ,p 2 , p3 )0 J2 U J3.
W e m ay assume also Bs I YI = Ø o n  C .  W e w ill now  prove that H  = H (g) is
ample on P = P(‘).

W e will derive a contradiction assuming H X  = 0  fo r some curve X  in  P.
Since h° (P, H) = V(M, g) = 2, there is a  member D' of 1HI such that D' n x  o Ø.
Then X  c  D ' since H X  = O. Let Y ' = pi +  19'2 + p '3  b e  the member of Y1 corre-
sponding to D'. Then D ' is obtained from M  by several belowing-ups over Y,
possibly followed by a contraction yielding a  rational doub le  po in t. In  any case
D' rl D = Z is the strict transform of C on D'. Since H X  = 0, we have z n x = Ø.
So ir(z)n Ir(x) Supp(Y').

I f  n(X )C1C consists o f  th ree  points, th e n  so  d o e s  Y ' a n d  Tc(X)c  = m 1 p1 +
m2P2' + in3P3'  in  P ic(C ). This implies tt ( p ,  p , e N  for m = (m 1 , m2 , m3 ) and

/3 ,  p )  e J 3 . On the other hand, u(p'i ,  p , p )  = p2, 133 ) since Y' = Y in
P ic(C ). This contradicts /A(p, , p2 , p 3 ) (t J3.
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If  n(X)n C consists o f tw o  points, set n(X) c  =  ki p', + k 2 p'2  a n d  Y ' = p', +
p'2 +  p .  W e have p  +  p '2  k o l  because otherwise p; e Bs 1Y'l = Bs 1Y1. Hence

p ) E N' and tt(p l , p2 , p3 ) = u(p,, p, p) e J2, contradicting the choice of Y
If rc(X) meets C at only one point p', we claim that Y' is of the form 2p' + q' for

some q' e C (possibly q' = p'). Indeed, otherwise, D' is isomorphic to the blowing-
up M , of M at p' over a  neighborhood of p'. So the strict transforms X , and C,
of n(X) and C on M , do  not m ee t. O n  the  other hand, the member F of KI
passing p' is smooth at p' since S fl C = Ø . T h e  s tr ic t  transform F, of F on M , is
a  member o f 1— K — E l w ith F? = 0, where E' is  the exceptional curve and  K
denotes the pull-back of K by abuse of notation. Then C, = — K + F, in Pic (MO
and 0 = C ,  —K • n(X)> O. T h u s  w e  in fe r  Y' = 2p' + q'. This implies (p', q') e
N' as before and hence ,(p 1 , p2 , p3 ) p ,  p )  e  J2, a contradiction.

Now we have proved HX> 0 for any curve X in P .  We have H2 D'= HZ=1
for any member D' of H .  F o r  any irreducible surface W of P, there is a  member
D ' o f  1H1 su c h  th a t D' f1 W Ø .  S o  H2 W = HD'W > O. O f course  1/3 = 1.
Conseuently H is ample by Nakai's criterion.

(2 .9 )  Suppose that (M, A) is of the type (2.3; Se ). For any fiber F of f :  M
we have AF  = 2. S o  r = 2  and  gE (9(1) & W . H ence &  f *1 0  [Ha ]

for some vector bundle S  on P . R e s tr ic t in g  to  a  fiber of M  P , 1„  we infer that
is  a m p le . S o  5  (9(2) ( 9 ( 1 ) .  Thus w e conclude &  [Ha + M a ] C) [Ha +

Ha ]. Hence c2 (&) = 3 and s2 (&) = 9.

(2.10) Suppose that (M, A) is of the type (2.3; 5 1 ). Set L = Ha . There is a
morphism f :  M such that f *Ha = L — E and every fiber F of f  is P 1. Since
AF = 2, we infer e, (9(1) ( 9 ( 1 )  for any F .  So &  f  0 L  for some vector
bundle on P ,.  S in c e  E is a section of f  and LE = 0, can be identified with
gE . In  view o f AE = 2, we infer lip 0  H .  S o  &  [2L  —  E] C) [2L — E].
Hence c2 (&) = 3 and s2 (&) = 9.

R em ark . The polarized manifold (P, H) is the Segre product of (E 1 , 2L — E)
and (POE', Ha ). On the other hand, (P, H) is a  scroll over PI x via the morphism

x f, where ia  i s  th e  identity of P .  This gives a  vector bundle of the type
(2.9). Thus, th e  polarized manifold (P, H ) in  case  (2.9) is isom orphic to that
h e re . This can be viewed also a s  a  hyperquadric fibration o v e r  P .  C o m p are
[F6; (3.29)].

(2 .11) From now on, we study the case (2.3; 1). W e have 2 = (K + A)A =
A2  = c 2 ( ) + s 2 (g). T h e re fo re  d(P, H) = s2 (e) = c 2 (e ) =  1 . H e n c e  X(M, g) =
rx(M, (9) by Riemann—Roch theorem.

We have also h2 (M, g) = O. Indeed, otherwise, there would be a non-trivial
homomorphism & em [K ] by Serre d u a lity . This is impossible since e is ample
and K  O. T h u s  h° (M , & )  x(M, = rx(M, (9).

(2 .12) We will derive a contradiction assuming x(M, (9) > O. By classifica-
tion theory M is a K3-surface or an Enriques surface.
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If  M  is  K3, we have IP(P, H) = h ° (M , 1 ) 2 r .  S o A(P, H)= (r + 1) + 1 -
h° (P, H )  2  -  r. By the theory of A-genus we infer r = 2 and (P, H )  (P3 , (9(1)).
This is absurd.

If M is Enriques, let i i  b e  the universal covering o f M . L et the  pull-backs to
/17/ be denoted by We have h2 (/17/, = 0 similarly as in (2.11). So e(P, R) =
h°(M- , 1) x(11 71, I )  = 2x(M, = 2r. Since d(P, = 2 ,  th is im plies A(P, =
r + 3  -  h° (F', 17) 3  -  r 1.

W hen A(P, = 0 , th en  (P, R) is  a  hyperquadric. S o  b2 (/3 )  =  1 . T his is
absurd since P is a scroll over R.

When A(P, 17) = 1, we infer from d(P, f i) = 2 that P is a double covering of
P r '  with 17 being the pull-back of (.9(1) (see [F 2 ]) . Then, by [F3; (3.11)] , b2 (P) =
1, yielding a contradiction.

(2 .13 ) Thus we have x(M, 0. By the classification theory M  is a  com-
plex torus or a  hyperelliptic surface. In the latter case, the Albanese variety is an
elliptic curve and the Albanese mapping makes M  a  fiber bundle over it with all
fibers being isomorphic to an elliptic curve. M o re o v e r  b2 (M) = 2.

(2.14) L em m a. L et f: S C  be an analytic f iber bundle over a curve C with
all f ibers being isom orphic to an  elliptic curv e. Let F  b e  an am ple locally free
sheaf on S of  rank r 2 such that c,(F)X = 1 f or every fiber X o f f . T h e n

1) = f,k r ,  is an invertible sheaf on C with 6 = deg (2 ) >  0,
2) ' = Coker (f *2' ..") is locally free,
3) = f * cg is an invertible sheaf of  degree 6,
4) f  has a section Z  such that det (F )  = e s [Z + f*B ] f or some line bundle B

on C of  degree r6, and
5 ) c 1 (F ) 2 = 2r6.

Pro o f . W e have h° (X , ri ,
x ) = c i (..Fx ) =  1  fo r any fiber X .  Moreover, any

section of .9-,x  comes from a trivial subbundle of .Fx . So ...99  is invertible and (e is
locally free. W e have also hi (X, gix ) = 0  and  R i f * ,97  = O. So, using the exact
sequence 0 - q .*.29 -> .97  ( e  0, we infer f * W  (R if * ) ( f * 2 ) .  Let N be a line
bundle on C such that f  *N is  the relative canonical bundle of f. Then deg (N) =
0  since f  is  a n  analytic  fiber bundle . B y the Grothendieck duality w e have
((R if * )(f*..29 ))' f , ( ( f * Y r  f * N )  2 -  N .  Putting things together we ob-
tain fW  (D N ,  which implies 3).

In  order to show 4), we use the induction on r. If r  =  2 , ' is invertible and
deg ((ex ) =  1 .  So the support Z  of Coker ( f *5 c e )  is  a section of f  and W' =
f  [ Z ] .  Hence det (F) = f * (2 () W) [ Z ] ,  a s  desired . If r >  2 , we apply
the induction hypothesis to (e. So det (W) = (9[Z + f * U] with deg (U) = (r -  1)6
by 3). Since det (F) = det (W) 0 f '2 '  we get 4) for

By the adjunction formula we have (Z + N), = O. S o  Z 2 =  0, which implies
5). Finally we get 6 > 0 since d e t ( ,)  is a m p le . Thus we complete the proof of
the lemma.
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(2.15) Lemma. L et f: S —> C be the Albanese fibration o f  a hyperelliptic sur-
face S and let A  be an am ple line bundle on S with A2 =  2. Then 1,41 contains a
member of the form Z + X , where Z is a section o f f  and X is a fiber off.

P roo f. It is known (cf., e.g., [BPV]) that there exists a curve Y in S such that
the restriction f  o f  f  to  Y is étale and is of degree p  3 .  Among such curves we
choose and fix a  curve Y where p attains the m inim um . N ote tha t Y2 = 0.

Since Ii° (S, A) = x(S, A) =  1, the member D of IA1 is un ique . L e t X be a fiber
of f. Then X and Y form a  basis of H2 (S; Q) since b2 (S )=  2 . Set pA yX + x Y.
Then y = A Y, x  =  AX and x y  =  p  3 .

W e w ill derive a contradiction assum ing x>  1. T h is  implies x  =  p  and
y =  1 .  W e c la im  tha t D  is irreducible a n d  reduced. Indeed, otherwise, D =
D, + D2 for some prime divisors D1 , D2 with AD, = AD2 =  1. W e may assume
YD, = 1 a n d  YD2 =  0  since YD = A Y =  1 .  Then D, is  no t a  fiber of f  because
p >  1. So XD, >  0 .  Hence XD 2 <  AX = p. O n the other hand XD2 >  0  since
Y+ tX  i s  am ple  fo r t »  O. F r o m  Y2 = YD 2  = 0  w e  in f e r  D2

2 0  b y  index
theorem . B u t S  contains n o  rational curve a n d  hence D2 2 0 .  SO D2 2 =  0.
Hence D 2  C is kale and of degree < p, contradicting the choice of Y. T h u s  w e
prove that D is prime.

L et S ' b e  the fiber product of S and  Y  over C .  Then G = Gal (Y/C) is  a
cyclic group of order p. F o r  each t e G, let a r : Y —> S' be the morphism induced
by the inclusion Y  S and f y  o T: Y -4 C .  Let Y, = Im (ac). They are p  disjoint
sections of f ':  S' —> Y. W e  have D'Y, = 1 for the pull-back D' of D since AY = 1.

If  S ' is  a  com plex torus, then Yt 's  a re  subtori a n d  Q = S'/Y, is  a n  elliptic
curve. M oreover D ' is a section of S' —> Q since D'Y, = 1. This is absurd since
(D') 2 > 0 and g(D ') > 1. Hence S' is hyperelliptic and f '  is the Albanese fibration
of it.

F o r any fiber X ' of f ' ,  we have D' — X ' + E,E  G Y, since b2 (S') =  2 .  Hence
D' — X ' — Et  Y, comes from Pic

°
 (S') Pic

°
 (Y). Hence D' = Y 1 in  P ic  (X').

Let X  be  the im age of X ' in  S. Then X '  X  and  the  above relation implies
Dx  = Yx  in Pic (X ) .  Thus (A  — Y)x  = 0 in Pic (X ) for every fiber X  of f. Hence

= f,(0[A — Y ]) is invertible o n  C , (9[A — Y ] = f * .29 a n d  1 = Y(A — Y) =
p• deg (29 ). This contradicts p>  1.

Now we conclude x  =  1 .  So y = p. Moreover 1P(X, Ax ) = 1 for every fiber
X and hence 2  = f * (0 [A ]) is invertible on C .  The support Z  of Coker (f *.29 —>
C[A]) is a section of f  and Z + X " E IA1 for X " e lf  * L I. W e  have AZ = AX" = 1
and hence X " is a fiber of f. Thus we complete the proof.

(2 .1 6 )  Suppose th a t  M  i s  hyperelliptic i n  (2.13). L e t f :  M  C  b e  the
Albanese fibration. Then, by (2.15), AX = 1 for any fiber X  of f. So 2 = A 2 =
2r6 by (2.14; 5). This contradicts r 2 .  Thus we conclude that M  is a  complex
torus.

(2 .1 7 )  Since h° (M, A) = x(M, A) = 1, the re  is  a  un ique  member C  o f  I A .
We claim that C is a  smooth curve of genus two.



10 Takao Fujita

Indeed, otherwise, C =  X  + Y  for some elliptic curves X , Y  with X 2 = Y 2 =  0
and  X Y  =  1 . Then X  is  a  subtorus and Q  = M /X  is  a n  elliptic curve (in fact
M  X  x  Y). S o ,  applying (2.14) to f :  M  Q ,  we obtain a contradiction.

Thus M  is the Jacobian variety of C.

(2.18) Before classifying vector bundles of the  above type, we exhibit here
examples (cf. [S]).

Let o be a point on  a smooth curve C of genus tw o. Let N„ = C x • • • x C
be the product of n-copies of C and let P„= N n /S„ be the symmetric product. Let
M  be the Jacobian variety of C  and let 7r,,: M  be the morphism induced by
the  Albanese mapping o f (C, o). Thus, n r,(x,, , x,,) is th e  class of x 1 + • • • +
x,, - no in Pic (C). It is well-known that n„ is a  r - 2 -bundle for n >  2  and n 2 is
the blowing-up at the point p = [co -  2o] e M.

Let f i : C  be  the i-th projection and set An = E7=, f * o .  Let D„ be  the
divisor on P„ whose pull-back to N„ is An . Then D ,, =  1  and Dr, is ample since so
is An o n  Nn  a n d  4,1 =  n ! .  Moreover D ,,  P„_, and the restriction of  it , ,  to  D„ is
identified with n,,_,

Let H„ be the line bundle e [ k ]  on  P„. W e claim that the restriction of H,,
to  D„ , - P„_, is identified with H,,_ 1 . In d e e d , N„_, f i

-
1 (o) and the pull-back of

H,, via f i

-
1 (o) - ,  D„ is  the restriction of [A n ],  so it is [61,,_ 1 ]. G o in g  d o w n  via

N„_, D , „  we prove the claim.
For any y e M, D„(17ç l  (y) is a hyperplane in n,V - (y) Pn-2  unless n = 3 and

y  = p .  Hence (P,,, H,,) is a  scroll over M and 6%_, = (n,)(9[H„] is a vector bundle
o f rank  n -  1  fo r  n  >  2 . T h e  sec tio n  in  H

°
(P„, H°(M , gn _i )  defining D,,

yields an exact sequence 0 -> 0 -> -> en -2 0  b y  the  above c la im . As for
we have 0 -> (9[F] - 0 p*g2  ( 9  ED 2 ] -  0, where p: P2 -■ M  is the blowing-up at

p, F is the exceptional curve over p and D 2  P, C .
N o w  w e  s e e  c i (,.) = = [p(D 2 )] =  [n ,( P ,) ] a n d  c 2 (6"r ) = 1 = s 2 (6;.).

Thus e r i s  a  vector bundle o f  th e  ty p e  in  q u estio n . T h is  w ill be called the
Jacobian bundle of rank  r  of (C, o) and will be denoted by gr (C, o). (P„, H „)=
OP( -1) ,  (9(1)) will be called the Jacobian scroll of (C, o).

(2.19) We continue to study vector bundles of the type (2.17).

Lem m a. L et p: M ' M  be  a birational m orphism  and let .2 be  a quotient
bundle o f  p * g . Then 11 2 (M ',  0  N ') =  0 f or any  N ' e Pic° (M').

Pro o f . W e  h a v e  h2 (.2 N') h 2 (p*S  0 N ') = h 2 (M ,  g  N ) ,  w h ere  N  e
Pic° (M) P i c  (M ')  a n d  p * N  = N '. I f  th is  is  n o t  zero , w e  have a non-zero
hom om orphism  -> N'" by Serre d u a lity . This is impossible since 6' is ample.

(2.20) Lem m a. L et p  be a point on M  and let p: M ' M  be the blowing-up
at p. Then there is no vector bundle 2  on M ' satisfying the following properties:

1) q = rank (.2) > 1.
2) 2  is a quotient bundle of p*g.
3) c 1 (.2) = p*A  - E p , where Ep  is the exceptional curve over p.
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4) c2 (.2) = O.
5) h° (.2) =  h1(.2) > O.

Pro o f . W e will derive a contradiction from these conditions. W e use the
induction on g. Suppose that g = 2. We have a non-zero homomorphism —> .2
b y  5 ) . Let .2' —0 0' be the dual and let f  b e  the image of it. Let M"  M '  be the
blowing-up of f  and let F be the divisor defined by the pull-back of 5 .  Then we
have an exact sequence 0 —> e [F] —0 J" —0 0[A" — Ep" — F] —0 0  of vector bundles
o n  M ", where th e  sym bol " denote th e  pull-back  to  M ". T hen  0  =  c 2 (.2") =
F(A  — Ep  — F), where we om it the  sym bol " fo r the  sake o f convenience. We
consider the restriction of the above sequence over a  general member T of ItA for
t »  O. T h e n  A(A — Ep  — F )> 0  since  A — E — F  i s  a  quotient of the  am ple
vector bundle M o r e o v e r ,  A  — Ep  — F  is nef on M " since it is a quotient of
Sr'. T h e re fo re  F(A  — Ep  — F)= 0 implies 0 F(A  — Ep ) = F 2 0  b y  the index
theorem . Thus (A  — Ep )F = F 2 = O. S in c e  (A  — Ep )2 =  1, this implies F  0 by
the index th e o re m . H e n c e  f  =  e  and M " = M '.  We have 0 —■ — > _2 —0 (9[A —
Ep ] —0 0  on  M '.  Recall that A  — Ep  i s  nef since it is a quotient of lee. Hence
1-11(Ep  — A ) = 0  b y  the  vanishing theorem. Therefore the  above sequence splits
and h 2 (.2) h2 (0) = 1. T h i s  contradicts (2.19).

Now we consider the case g 3. Similarly a s  before, there is a birational
morphism M" —> M ', an effective divisor F  o n  M " an d  an  ex ac t sequence 0
0[F] —> .2" —+ — 0 of vector bundles o n  M " . Since Pr' is a quotient of e", we
have c 2 (17 ) 0  a n d  c ,(V ) = A  — Ep  — F is nef (see Appendix). So 0 = c 2 (.2") =
c2 (17 -) + c i ( r ) F  0  a n d  hence 0 = c,(V) = c1 (-17)F = F(A  — El, — F ) .  Similarly
as before we obtain A(A  — Ep  — F)> 0, hence F 2 0 ,  s o  0  =  (A — Ep )F = F 2 and
F = O. T here fo re  M " =  M '. It is  then  c lea r tha t 1 7  satisfies 2), 3) a n d  4 ) .  So
x (r) =  0  b y  the Riem ann— Roch theroem . Hence h ° (^K) = 10(^K) by (2.19).
Moreover h1(-K) h2 (0) = 1 since h 2 (/") =  0 by (2.19). Thus 17 . satisfies 5) too,
contradicting the induction hypothesis.

(2.21) Lem m a. L et (5 ' b e  an  am ple  v ector bundle o n  M  such  that r =
rank (s') > 1, det (6v) = A, c 2 (e) = 1 and h ° (&)> O. Then

1) h° (&) = h 1(g)= 1 , and
2) the natural mapping 1-1 1(r )0 Ir(g) — 0 I-1 1 (0m ) is injective, where 6" is the

dual bundle of g.

Pro o f . We use the induction on r.
i) W hen r = 2, sim ilarly as in (2.20), there are a birational morphism

M" —0M , an effective divisor F on M" and an exact sequence

(# ) C[F] (9[A" — F] 0

of vector bundles on M ", where the symbol " denote the pull-back to M " .  We
obtain A"(A" — F)> 0 by restricting over a general member o f  tA l for t »  O.

ii) Assume th a t A "F > 0. T h e n  A "F = 1 since (A") 2 =  2 .  S o  Z  = p * F  is
prime since A Z = A "F = I. M o re o v e r  (A  — 2Z)A  = 0  im p l ie s  0  (A — 2Z) 2 =
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4Z 2 -  2  by the index theorem . Hence Z 2 =  0  and Z  is a subtorus of M .  This
yields a contradiction as in (2.17). Thus we conclude A "F = O.

iii) We have F 2 =  - 1  since 1 = c 2 (e) = F(A " -  F). Hence we may assume
that it is the blowing-up at a point p on M and F is the exceptional curve over p.

Using the exact sequence O-+ (9w , -› [F] -o CF( - 1) - -0 0, we get h1(M ", F)=
h i (M", Ow ) = h i (M, (9 m ) f o r  a n y  i. S o , b y  the  exac t sequence  (# ), w e  have
h l (M" , A" -  F) h 2 (M ", F) = 1 since h2 (g") = 0  b y  (2 .1 9 ). O n  th e  other hand
x(M", A" -  F) = 0  b y  the R iem ann-Roch theorem . H ence h°  (M", A" -  F) > O.
T his im plies that p  i s  a  p o in t o n  th e  u n iq u e  m em ber C  o f  I A I. T h e  s t r ic t
transform Y of C is the unique member of IA " -  FI.

iv) Let e e .111 (M ", 2F -  A") = 11 1 (M ", F -  Y) be the extension class of the
exact sequence (#). T hen  eF e H i  (F, 0( -2 ))  is  n o t zero since e; is  trivial. O n
th e  other hand K er (111 (M" , F -  Y) - > H1 (F, 0 - 2)) =  111 (M" , -  Y ) = 0  by Ra-
manujam's vanishing theorem. Hence 111 (M ", F -  Y ) is one-dimensional and e is
a generator of it.

v) Let 0 --+ (9[F -  Y ] - o C[F] -+ e y [F] - o 0  b e  th e  natural exact sequence.
Using the long exact sequence we infer that 111 (M" , F -  Y) - > 111 (M ", F) is injec-
tive since 1MM" , F -  Y ) = 0, (M " , F)= 1 and h° (Y , F) = 1. Hence H°(M", Y)C)
111 (M ", F -  Y) - > 111 (M ", F) is injective. So the mapping H

°
(M", Y) -■ 111 (M", F)

induced by (#) is injective. This implies h° (te , e") = V (M ", F) = 1 and h l (M",
e") = 1.

vi) Since 111 (M", 0) 1 1 1 (M ", F), th e  m apping cp: 111 (M", F) -> 11 1 (M", g")
induced by (#) is essentially the Serre dual of H i  (M, - > 111 (M , 0) induced by
a  generator o f H ° (g) C .  B y  th e  preceding observations w e see  that cp  is
surjective. Combining them we prove 2).

vii) N ow  w e consider the case r>  2 . W e  c la im  th a t  th e re  is  an exact
sequence

(# 4 6 )  0 - oe - og - o.2 - o0

of vector bundles on M.
Indeed, since h° (&) > 0 , th e re  are a birational m orphism  kt: M" - o M , an

effective divisor F on M " and an exact sequence 0 --0 (9[F] - o g" - 0.2 -0  of vector
bundles o n  M " . It suffices to derive a contradiction assuming F  O. W e  have
A"(A" -  F)> 0 as in i), and A "F = 0 exactly as in ii). T h i s  implies F 2 <O  by the
index theorem . So 1 =  c 2 (&") = c 2 (.2) + F(A " -  F) = c 2 (.2) -  F 2. O n  th e  other
hand c 2 (.2) 0  (se e  A p p e n d ix ) . H e n c e  F 2 =  - 1  and  c 2 (.2) = 0. So w e m ay
assume that i t  is the blowing-up at a point and F is the exceptional curve. Since
H 2 (" )  = 0, we have /IV )  h2 (M ", F) = 1 . Now we get a contradiction to (2.20).

viii) Since c i (.2) = A  and c 2 (.2) = c 2 (&) = 1, we have x(..2) = 0 by Riemann-
Roch theorem . W e have also 111(..2) . h 2( e )  h 2(

)
-  =6 1. Hence, by the induc-

tion hypothesis, h ° (.2) = h'(.92) = 1  and 111 (.2' ) 0  H ° (.2) - o 111 (em ) is injective.
ix) L e t  e E 111 (. ) be the extension class of the exact sequence  (#  # ). The

mapping H ° (.2) - o 111 ((9m )  in  the  long  exac t sequence is injective since e  i s  a
generator of 111 (2' ). Hence h°() = h1 (g) = 1, proving 1). M oreover, the map-
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ping 111 ((9m ) —■ W ( )  in the long exact sequence is surjective and is the Serre dual
of H 1 ( ) —> 111 ((9,,,,) induced by cp e W ( )  giving (#  # ) .  From this we obtain
2).

Thus we complete the proof of (2.21).

(2.22) Lem m a. L et g  be an ample vector bundle as in (2.21). Then there is a
point o on C such that g g ,.(C , o).

Proo f . We use the induction on r .  When r = 2, for some point p on C, we
have an exact sequence 0 —■ (9[F] p * g  C [p * A  —  F ]  0 a s  in  (2.21), where
p: M "  M  is the blowing-up at p  and F  is the exceptional curve. Let o  be the
point on C such that p + o is a  canonical divisor on C .  Then, by (2.18), we have
an exact sequence 0 —> (9[F] —■ ii*S2 (C, o) (9[1.1* A —  F ] 0. Since 111 (2F — *A )
= 1, these sequences a re  isomorphic a n d  hence g  g 2 (C, o). W hen  r>  2, let
0 g —> .2 —0 b e  th e  sequence (#  # ) in  (2.21; vii). B y the induction hy-
pothesis .2 o )  fo r  som e po in t o  o n  C .  S o  (#  # ) is isom orphic to
0-4(9 —> o)—> er _1 (c, 0 in  (2.18) since h' ( )) = 1. Thus w e prove the
lemma.

(2 .23) Now we come back to the situation (2.17). We claim k V  0  N )> 0
for some N e M *, the Picard scheme Pic

°
 (M) of M.

We will derive a contradiction assuming the c o n tra ry . Let L  be the Poincaré
bundle on M  x M* and let f  (resp. g) be the projection onto M (resp. M * ) . Set

= f  *g  0  L .  Since x(g 0 N )= 0 by Riemann—Roch theorem, we have OW  0
N) = 0 for any g 0 and N  e M * by assumption and (2.19). So Rgg* ,  =  0 and
hence Hq(M x M*, gi;) = 0 for any g.

Let o  be  the  origin o f M  regarded as the P icard scheme of M * .  Set M: =
f 1(x) for x e M  and le t Lx  (resp. gx ) be  the restriction of L  (resp. g) to
Then hq(M:, L x ) = 0 for any g  if x 0 .  So hq(M:, ..Fx ) = 0 since g x  i s  a direct
sum of Lx 's. Hence R f ,..F = 0 on  M — {o}. W e have in fact Supp (R 2f , F)  =
{o} since h2 (M:', g o ) = rh 2 (M :, L a ) =  r .  Now, using the Leray spectral seuqnce of
F  w ith  respect to  f ,  we infer h2 (M x M", = h° (M, R 2f * g )  > 0, contradicting
the preceding observation. Thus we prove the claim.

Combining this claim and (2.22), we infer g ‘,.(C, o) 0 N  for some point o
o n  C  a n d  a  numerically trivial line bundle N  o n  M .  S o  (P, H) (P„,(C , o ) ,
H„,(C, o) C) n* N), where (P„,(C, o), H„,(C, o)) is  the Jacobian scroll of (C, o) as
in (2.18).

(2 .24) Now we study the  case n = dim M  3  and g(M, A ) = 2. L e t  D I , ,
D0 _2 be general members o f  tA l for t  »  0 and let S = n D Then S  is a  smooth
surface and gs  is a m p le . Hence il" - 2 c2 (g) = t 2 - "c2 (g5 ) > 0. Similarly An- 2 s2 (S)>
0. So A" = (c 2 (g) + s 2 ( g ) ) A " ' 2. In addition, by  (1.3), w e have A C  r  2
for any rational curve C in  M .  Therefore, using [F6; (1.10)], we infer that M is a
double covering of Px" with branch locus being a  smooth hypersurface of degree six
and A  is the pull-back of HOE. The intersection T  of (n — 2) general members of
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I Al i s  a K3-surface. The restriction g r  i s  ample and g(T, det (gT )) = 2. T h is
contradicts (2.12).

Thus, the case n 3 is ruled out.

(2.25) Summarizing we obtain the following

Theorem. L et e be an ample vector bundle of  rank r 2 on a manifold M  of
dimension n 2. Suppose that g(M , A) = 2 f or A  = det (e). Then n = 2 and one
of  the following conditions is satisfied. The associated scroll o f  (M , g) is denoted
by (P, H) below.

1) M  is  the Jacobian variety  o f  a  sm ooth curve C o f  genus tw o and & a
g,.(C, o) 0  N  f or some numerically trivial line bundle N  on M , where gr (C, o) is the
Jacobian bundle for some point o on C (cf. (2.18)). A 2 = 2 and Hr + 1  =  1.

2) M  P(F) f or some stable vector bundle i; of  rank two on an elliptic curve
C  w ith  c ,(g )  = 1 . T h e re  is  an  e x ac t sequence 0 + p*G] —> g —>
(9„[H(F) + p*T] — > 0, where G and T  are line bundles on C and p  is the morphism
M —> C .  A 2 = 3 and we have either

2- i) deg (T) = 1, deg (G) =  — 2 and IP  = 1, or
2- ii) deg (T ) = 0, deg (G) = — 1 and 113 = 2 (cf. (2.7)).
2# ) M ,  S ,  C and p  are as in 2) and g  a  p *  0  M g ')  f or some stable vector

bundle S of  rank three on C with c "  =  — 1 .  A 2  = 3 and 114  = 2 (cf. (2.6)).
3) M  P (.1 (7 )  and & a p*W  0 H(.5/7 ) f o r some semistable vector bundles .37:-

and  S  o f  rank  tw o o n  an  elliptic  curv e C , w here p is th e  morphism M —> C.
Moreover (c i (,F), c " )  =  ( 1 ,  0) or (0, 1). P is the f iber product of  P(F) and P(S)
over C .  A 2 = 4 and 112 =  3 (cf. (2.4)).

4) — K is ample, K 2  =  1 and A  = — 2 K . M  is the blowing-up of  P2 at eight
p o in ts . Moreover we have either

4-a) g  [ — K] 0  [— K] and 113 = 3, or
4-b) c2 (g) = 3, r = 2 and 112 =  1 (cf. (2.8)).
5 ,) M P x P  a n d  e  [H„ + 21-10 ] C)[11,, + Hp ]. A 2 = 12 and 113 = 9

(cf. (2.9)).
5 1) M  is  the blowing-up o f  P,2,  at  a point and & a [2H 2  —  E] 0 [2H 2  — E],

where HOE i s  the pull-back o f  0(1) o f  P,2,  and E  is the exceptional curve. A 2 =  12
and 113 = 9 (cf. (2.10)).

Remark. The existence of a vector bundle of the above type 2) is uncertain.
The others do really exist.

§3. CM-sectional genus

(3.1) For an ample vector bundle g  of rank  r 2  on a manifold M, the
C9(1)-sectional genus is defined to be g(P, H), where P = P(‘) and H  is the tauto-
logical line bundle on it. As a part of classification theory of polarized manifolds
of small sectional genera (cf. [F5] and [F6]), we get the following results. Proofs
are easy and omitted.
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(3.2) Theorem g(P, H) = 0 if and only if  either
1) M P 1 , or
2) M  P :  and g  HOE C) HOE.

(3.3) Theorem. g(P, H) = 1 if and only if
1) M  is an elliptic curve,
2) M 11,2,  and g 2HOE () HOE ,
3) M PI, and HOEC) HOE C)11„,
4) M PG', and e is the tangent bundle, or
5) M P,} x Pr'  and g [H , + C)[H, +

(3.4) Theorem. g(P, H) = 2 if and only if
1) M  is a smooth curve of genus two,
2) (AI, e) is of one of the types in (2.25), or
3) M  is a hyperquadric in 13 4  and e  cm () c(1).

Appendix. Chern classes of semipositive vector bundles

Definition. A vector bundle e on a variety V is said to be semipositive if the
tautological line bundle H(e) on P(g) is nef, i.e., H ( S ) C  0  for any curve C  in
P ( ) .

The following facts are obvious by definition.
(1) f . e  is semipositive f or any morphism f: W-+  V.
(2) Any quotient bundle of  e is semipositive.
(3) g 0  A  is ample for any ample line bundle A.
Besides these, many (I should say most) results on ample vector bundles have

semipositive versions. For example we have:

Theorem. c ( g )  0 f or n = dim V.

This fact is well-known among experts, but I do not know a  good reference.
So we give here a  proof since we use this in the text.

Proof o f  the  theorem. B y base change w e m ay assume th a t  V  is smooth,
projective and hence is a  submanifold of 1) :1 with homogeneous coordinate (oco : • • • :
cx,„). W e m ay further assume th a t  th e  hyperplane section Di =  v n {a, = 0 } i s
sm ooth fo r  each  i  a n d  th a t  D = Do  + •••  + D , h a s  n o  singularity other than
normal crossings. Suppose that c„(g) < O. T h e n  z3= 0 cn _ i vodmi < O for some
large integer m . L e t  f :1 1  - + b e  th e  m orphism  defined by f (A o : • • • : fk) =

• : /V ). T hen  M =f  '( V )  is smooth and f *1-1„ = m il l i . Hence c„(Sm  01-4)=
Z 7, 0  c„_i (gm )Hif i < O by the choice o f m . T h is contradicts [B G ] since gm 0  Hp is
ample on M  by (1) and (3). Thus we conclude en (g) O.

Corollary. c 1 (g) =  det (e) is nef.

UNIVERSITY OF TOKYO
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