Ample vector bundles of small \boldsymbol{c}_{1}-sectional genera

By

Takao Fujita

Introduction

Let \mathscr{E} be a vector bundle of rank r on a compact complex manifold M of dimension n. Let $P=\mathbf{P}(\mathscr{E})$ be the associated \mathbf{P}^{r-1}-bundle and let $H=H(\mathscr{E})$ be the tautological line bundle $\mathcal{O}(1)$ on P. \mathscr{E} is said to be ample if so is H on P. In this case $A=\operatorname{det}(\mathscr{E})$ is also ample on M. The c_{1}-sectional genus g of \mathscr{E} is defined to be $g(M, A)$, which is determined by the formula $2 g(M, A)-2=(K+(n-$ 1) A) A^{n-1}, where K is the canonical bundle of M. Then $g(M, A)$ is a non-negative integer by [F5]. In this paper we establish a classification theory of the case $g(M, A) \leqq 2$. The case $r=1$ was treated in [F6] and we study here the case $r>1$. In $\S 1$, we study the case $g=0$ or 1 . The case $g=2$ is studied in $\S 2$. The main theorem is in (2.25). In §3, we give a classification according to the sectional genus of (P, H).

The author thanks Professor S. Mukai for helpful comments during the preparation of this paper.

We employ similar notation to that in our previous papers on polarized manifolds.

§1. The case $g \leqq 1$

(1.1) Throughout this paper let \mathscr{E}, M, P, H, A and K be as in the introduction. We further assume that $n \geqq 2$ and $r \geqq 2$.
(1.2) The canonical bundle K^{P} of P is $\pi^{*}(K+A)-r H$, where π is the projection $P \rightarrow M$. So $2 g(P, H)-2=\left(K^{P}+(n+r-2) H\right) H^{n+r-2}=(n-2) H^{n+r-1}+$ $H^{n+r-2} \pi^{*}(K+A)=(n-2) s_{n}(\mathscr{E})+(K+A) s_{n-1}(\mathscr{E})$, where $s_{j}(\mathscr{E})$ is the j-th Segre class of \mathscr{E}. The total Segre class $s(\mathscr{E})$ is related to the Chern class by the formula $s(\mathscr{E}) c\left(\mathscr{E}^{\circ}\right)=1$. Thus, in particular, we have $2 g(P, H)-2=(K+A) A=2 g(M, A)-$ 2 and $g(P, H)=g(M, A)$ in case $n=2$.

Remark. If M were a curve, both $g(P, H)$ and $g(M, A)$ would be equal to the genus of M. However, if $n \geqq 3, g(P, H) \neq g(M, A)$ in general.
(1.3) Lemma. $A C \geqq r$ for any rational curve C in M.

Proof. Let $f: \mathbf{P}^{1} \rightarrow C$ be the normalization. Then $f^{*} \mathscr{E}_{C}$ is ample and is a direct sum of line bundles. Hence $A C=\operatorname{deg}\left(f^{*} \mathscr{E}_{C}\right) \geqq r$.

Remark. If $A C=r$, then $f^{*} \mathscr{E}_{C}$ is a direct sum of $\mathcal{O}(1)$'s.
(1.4) Theorem. If $g(M, A)=0$, then $M \simeq \mathbf{P}_{\alpha}^{2}, \mathscr{E}=H_{\alpha} \oplus H_{\alpha}, P \simeq \mathbf{P}_{\alpha}^{2} \times \mathbf{P}_{\beta}^{1}$ and $H=H_{\alpha}+H_{\beta}$.

Proof. We have $\Delta(M, A)=0$ by [F5]. Using (1.3) and [F1] we infer $(M, A) \simeq\left(\mathbf{P}_{\alpha}^{2}, 2 H_{\alpha}\right)$. Moreover $\mathscr{E}_{\ell} \simeq \mathcal{O}(1) \oplus \mathcal{O}(1)$ for any line ℓ in M. This implies $\mathscr{E} \simeq H_{\alpha} \oplus H_{\alpha}$ by [V].

Alternately, one can argue as follows: By (1.2) we have $g(P, H)=0$. So $\Delta(P, H)=0$. Obviously (P, H) is a scroll over \mathbf{P}^{2}. By the theory in [F1], this implies $(P, H) \simeq\left(\mathbf{P}_{\alpha}^{2} \times \mathbf{P}_{\beta}^{1}, H_{\alpha}+H_{\beta}\right)$.
(1.5) Theorem. If $g(M, A)=1$, then (M, \mathscr{E}) is one of the following:

1) $M \simeq \mathbf{P}_{\alpha}^{2}$ and $\mathscr{E} \simeq 2 H_{\alpha} \oplus H_{\alpha}$.
2) $M \simeq \mathbf{P}^{2}$ and \mathscr{E} is the tangent bundle of \mathbf{P}^{2}.
3) $M \simeq \mathbf{P}_{\alpha}^{2}$ and $\mathscr{E} \simeq H_{\alpha} \oplus H_{\alpha} \oplus H_{\alpha}$.
4) $M \simeq \mathbf{P}_{\alpha}^{1} \times \mathbf{P}_{\beta}^{1}$ and $\mathscr{E} \simeq\left[H_{\alpha}+H_{\beta}\right] \oplus\left[H_{\alpha}+H_{\beta}\right]$.
5) $M \simeq \mathbf{P}_{\alpha}^{3}$ and $\mathscr{E} \simeq H_{\alpha} \oplus H_{\alpha}$.

Proof. By (1.3), (M, A) cannot be a scroll. So (M, A) is a Del Pezzo manifold. Moreover, by (1.3), the two-dimensional rung S of (M, A) contains no exceptional curve. Hence $S \simeq \mathbf{P}^{2}$ or $\mathbf{P}^{1} \times \mathbf{P}^{1}$. This implies $(M, A) \simeq\left(\mathbf{P}_{\alpha}^{2}, 3 H_{\alpha}\right)$, $\left(\mathbf{P}_{\alpha}^{1} \times \mathbf{P}_{\beta}^{1}, 2 H_{\alpha}+2 H_{\beta}\right)$ or $\left(\mathbf{P}_{\alpha}^{3}, 2 H_{\alpha}\right)$ by [F2].

If $n=2$, we have $g(P, H)=1$ by (1.2). So (P, H) is also a Del Pezzo manifold. Since $b_{2}(P) \geqq 2$ and $\operatorname{dim} P \geqq 3$, using the theory in [F2] we infer that P is either

1) the blowing-up of \mathbf{P}^{3} at a point,
2) a general member of $\left|H_{\alpha}+H_{\beta}\right|$ on $\mathbf{P}_{\alpha}^{2} \times \mathbf{P}_{\beta}^{2}$,
3) $\mathbf{P}_{\alpha}^{2} \times \mathbf{P}_{\beta}^{2}$ or
4) $\mathbf{P}_{\alpha}^{1} \times \mathbf{P}_{\beta}^{1} \times \mathbf{P}_{\tau}^{1}$.

In these cases we easily see that (M, \mathscr{E}) is of the corresponding type in the statement of the theorem.

If $(M, A) \simeq\left(\mathbf{P}_{\alpha}^{3}, 2 H_{\alpha}\right)$, then $\mathscr{E}_{f} \simeq \mathcal{O}(1) \oplus \mathcal{O}(1)$ for any line ℓ in M. So $\mathscr{E} \simeq$ $H_{\alpha} \oplus H_{\alpha}$. Thus we are in case 5).

Remark. In case 5), (P, H) is the Segre product of $\left(\mathbf{P}_{\alpha}^{3}, H_{\alpha}\right)$ and $\left(\mathbf{P}_{\beta}^{1}, H_{\beta}\right)$. So $g(P, H)=0$.

§2. The case $\boldsymbol{g}=\mathbf{2}$

(2.1) In this section we assume $g(M, A)=2$. First we study the case $n=2$.
(2.2) $d(P, H)=H^{r+1}=s_{2}(\mathscr{E})=c_{1}(\mathscr{E})^{2}-c_{2}(\mathscr{E})$. Since $c_{2}>0$ by [BG], we have $A^{2}=d(P, H)+c_{2} \geqq 2$.
(2.3) In view of (1.3), (2.2) and the classification theory of polarized surfaces of sectional genus two (see $[\mathrm{F} 6 ; \S 4]$), we infer that (M, A) is one of the following types:

1) $K \sim 0$ and $A^{2}=2$.
2) M is a \mathbf{P}^{1}-bundle over an elliptic curve $C, A F=2$ for any fiber F and $A^{2}=4$.
3) $\quad M$ is as above and $A F=A^{2}=3$.
4) $-K$ is ample, $A=-2 K$ and $K^{2}=1 . \quad A^{2}=4$.
$\left.5_{0}\right) \quad M \simeq \mathbf{P}_{\alpha}^{1} \times \mathbf{P}_{\beta}^{1}$ and $A=2 H_{\alpha}+3 H_{\beta} . \quad A^{2}=12$.
5_{1}) M is the blowing-up Σ_{1} of \mathbf{P}_{α}^{2} at a point and $A=4 H_{\alpha}-2 E$, where E is the exceptional curve. $A^{2}=12$.

The case 1) will be studied after the others. See (2.11).
(2.4) Suppose that (M, A) is of the type (2.3; 2). Then $M \simeq \mathbf{P}_{C}(\mathscr{F})$ for some vector bundle \mathscr{F} of rank two over C with $f=c_{1}(\mathscr{F})=0$ or 1 . Moreover, by [F6; (4.5)], $A=2 H(\mathscr{F})+\rho^{*} B$ for some $B \in \operatorname{Pic}(C)$ with $b=\operatorname{deg} B=1-f$, where ρ is the map $M \rightarrow C$ and $H(\mathscr{F})$ is the tautological line bundle on $\mathbf{P}(\mathscr{F})$.

Since $A F=2$, we have $\mathscr{E}_{X} \simeq \mathcal{O}(1) \oplus \mathcal{O}(1)$ for every fiber X of ρ. Hence $\mathscr{G}=$ $\rho_{*}(\mathscr{E} \otimes[-H(\mathscr{F})])$ is a locally free sheaf of rank two on C and $\mathscr{E} \simeq \rho^{*} \mathscr{G} \otimes H(\mathscr{F})$. Clearly $c_{1}(\mathscr{G})=B, c_{2}(\mathscr{E})=c_{1}(\mathscr{G}) H(\mathscr{F})+H(\mathscr{F})^{2}=1$ and $d(P, H)=H^{3}=s_{2}(\mathscr{E})=3$.

Since $\mathscr{E} \simeq \rho^{* \mathscr{G}} \otimes H(\mathscr{F}),(P, H)$ can be viewed as a scroll over $N=\mathbf{P}_{C}(\mathscr{G})$. More precisely, $P \simeq \mathbf{P}_{N}\left(\mathscr{F}_{N} \otimes H(\mathscr{G})\right)$ and H is the tautological line bundle on it. Furthermore, P is the fiber product of M and N over C.

We claim that \mathscr{F} and \mathscr{G} are semistable. By the above symmetry it suffices to consider \mathscr{F} only. Let Q be a quotient line bundle of \mathscr{F} and set $q=c_{1}(Q)$. Then ρ has a section Z with $H(\mathscr{F}) Z=q$. Since 00 if $f=1$, and $q \geqq 0$ if $f=0$. This implies the claim.
(2.5) Conversely, let \mathscr{F}, \mathscr{G} be semistable vector bundles of rank two over an elliptic curve C with $\left(c_{1}(\mathscr{F}), c_{1}(\mathscr{G})\right)=(1,0)$ or $(0,1)$. Then $\mathscr{E}=\rho^{*} \mathscr{G} \otimes H(\mathscr{F})$ is an ample vector bundle on $M=\mathbf{P}_{C}(\mathscr{F})$ of the type (2.3; 2).

This is clear except the ampleness of \mathscr{E}. We should show the ampleness of $H(\mathscr{E})$ on $P=\mathbf{P}_{M}(\mathscr{E})$. We may assume $c_{1}(\mathscr{F})=1$ and $c_{1}(\mathscr{G})=0$ by symmetry. Then $H(\mathscr{F})$ is ample on M and $H(\mathscr{G})$ is nef on $N=\mathbf{P}(\mathscr{G})$ by the theory in [$M ; \S 3$]. So we easily see that $H(\mathscr{F})+H(\mathscr{G})=H(\mathscr{E})$ is ample on P. Thus we complete the proof.
(2.6) Suppose that (M, A) is of the type $(2.3 ; 3) . \quad$ By $[\mathrm{F} 6 ;(4.5)], M \simeq \mathbf{P}_{C}(\mathscr{F})$ for some indecomposable vector bundle \mathscr{F} of rank two over C with $c_{1}(\mathscr{F})=1$ and $A=3 H(\mathscr{F})-F$ for some fiber F of $\rho: M \rightarrow C$. We have $r \leqq A F=3$ by (1.3). Note that \mathscr{F} is stable.

When $r=3$, similarly as in (2.4), we see $\mathscr{E} \simeq \rho^{*} \mathscr{G} \otimes H(\mathscr{F})$ for some vector bundle \mathscr{G} of rank three on C. So $c_{1}\left(\rho^{*} \mathscr{G}\right)=-F, c_{2}(\mathscr{E})=2 c_{1}(\mathscr{G}) H(\mathscr{F})+3 H(\mathscr{F})^{2}$ $=1$ and $d(P, H)=H^{4}=s_{2}(\mathscr{E})=2$.

Let Q be any quotient bundle of \mathscr{G} of rank one. Then $Q+H(\mathscr{F})$ is an ample
line bundle since it is a quotient of \mathscr{E}. Restricting to a section Z of ρ with $H(\mathscr{F}) Z=1$, we get $\operatorname{deg}(Q) \geqq 0$. We have $t=\operatorname{deg}(T)<0$ for any subbundle T of \mathscr{G} of rank one. Indeed, $\mathscr{E}^{\prime}=\rho^{*}(\mathscr{G} / T) \otimes H(\mathscr{F})$ is ample since it is a quotient of \mathscr{E}. Hence $0<c_{1}\left(\mathscr{E}^{\prime}\right)^{2}=(2 H(\mathscr{F})-(t+1) F)^{2}=-4 t$. Combining these observations we conclude that \mathscr{G} is stable.

Conversely, for any stable vector bundle \mathscr{G} of rank three with $c_{1}(\mathscr{G})=-1$ on $C, \mathscr{E}=\rho^{*} \mathscr{G} \otimes H(\mathscr{F})$ is an ample vector bundle of the type considered here. This is obvious except the ampleness. To see the ampleness, note that $\mathbf{P}=\mathbf{P}(\mathscr{E})$ is the fiber product of M and $N=\mathbf{P}(\mathscr{G})$ over C, and that $H(\mathscr{E})=H(\mathscr{F})_{P}+H(\mathscr{G})_{P}$. By the theory in [$M ; \S 3], 2 H(\mathscr{F})-F$ is nef on M and $3 H(\mathscr{G})+F^{\prime}$ is nef on N, where F^{\prime} is a fiber of $N \rightarrow C$. Hence $6 H(\mathscr{E})-F=3(2 H(\mathscr{F})-F)_{P}+2\left(3 H(\mathscr{G})+F^{\prime}\right)_{P}$ is nef on P. So $H(\mathscr{E})$ is ample.
(2.7) Next we consider the case $r=2$. Then $\mathscr{E}_{X} \simeq \mathcal{O}(2) \oplus \mathcal{O}(1)$ for any fiber X of ρ. So $\mathscr{G}=\rho_{*}(\mathscr{E} \otimes[-2 H(\mathscr{F})])$ is an invertible sheaf on C. We have an exact sequence $0 \rightarrow \rho^{* \mathscr{G}} \otimes[2 H(\mathscr{F})] \rightarrow \mathscr{E} \rightarrow \mathcal{O}[Q] \rightarrow 0$ for some line bundle Q. Then $Q=\operatorname{det}(\mathscr{E})-\rho^{*} \mathscr{G}-2 H(\mathscr{F})=H(\mathscr{F})+\rho^{*} T$ for some $T \in \operatorname{Pic}(C)$ with $\operatorname{deg}(\mathscr{G})+$ $\operatorname{deg}(T)=-1$. We have $\operatorname{deg}(T) \geqq 0$ since Q is ample. On the other hand $c_{2}(\mathscr{E})=$ $\left(\rho^{*} \mathscr{G}+2 H(\mathscr{F})\right)\left(H(\mathscr{F})+\rho^{*} T\right)=2+2 \operatorname{deg}(T)+\operatorname{deg}(\mathscr{G})=1+\operatorname{deg}(T)$ and $0<$ $s_{2}(\mathscr{E})=3-c_{2}(\mathscr{E})$. So $\operatorname{deg}(T)=0$ or 1 . Thus:

1) $\operatorname{deg}(T)=1, \operatorname{deg}(\mathscr{G})=-2, c_{2}(\mathscr{E})=2$ and $H^{3}=s_{2}(\mathscr{E})=1$, or
2) $\operatorname{deg}(T)=0, \operatorname{deg}(\mathscr{G})=-1, c_{2}(\mathscr{E})=1$ and $H^{3}=2$.

Remark. Both types seem to exist really. But we have troubles in showing the ampleness of \mathscr{E}.
(2.8) Suppose that (M, A) is of the type (2.3; 4). By (1.3), rank $(\mathscr{E})=2$ since $A E=2$ for any exceptional curve E on M. We easily see that \mathscr{E} is A-semistable. We have $c_{2}(\mathscr{E})=1,2$ or 3 since $4=A^{2}=c_{2}(\mathscr{E})+s_{2}(\mathscr{E})$.
(2.8.1) In case $c_{2}(\mathscr{E})=1$, we have $c_{1}(\mathscr{F})=0=c_{2}(\mathscr{F})$ for $\mathscr{F}=\mathscr{E} \otimes[K]$. So $\chi(\mathscr{F})=2$ by the Riemann-Roch theorem. We have $h^{2}(\mathscr{F})=h^{0}\left(\mathscr{E}^{\check{v}}\right)=h^{0}(\mathscr{E} \otimes[2 K])$ and $h^{0}(M,-K)=2$. Therefore $2 \leqq h^{0}(\mathscr{F})=h^{0}\left(P, H+\pi^{*} K\right)$. For any member D of $\left|H+\pi^{*} K\right|$, we have $H^{2} D=s_{2}(\mathscr{E})+s_{1}(\mathscr{E}) K=1$. Hence D is irreducible and reduced since H is ample. So $\operatorname{dim}\left(D \cap D^{\prime}\right)<2$ for any other member D^{\prime} of $\left|H+\pi^{*} K\right|$. We have $H D D^{\prime}=H\left(H+\pi^{*} K\right)^{2}=0$. Hence $D \cap D^{\prime}=\varnothing$ since H is ample. So D and D^{\prime} are disjoint sections of π. This implies $\mathscr{F} \simeq \mathcal{O} \oplus \mathcal{O}$ and $\mathscr{E} \simeq$ $\mathcal{O}[-K] \oplus \mathcal{O}[-K]$.
(2.8.2) In case $c_{2}(\mathscr{E})=2$, we have $c_{1}(\mathscr{F})=0$ and $c_{2}(\mathscr{F})=1$ for $\mathscr{F}=\mathscr{E} \otimes[K]$. So $\chi(\mathscr{F})=1$. We have also $h^{2}(\mathscr{F})=h^{0}(\mathscr{E} \otimes[2 K]) \leqq h^{0}(\mathscr{F})$. Hence $h^{0}(\mathscr{F})>0$ and we have $D \in\left|H+\pi^{*} K\right|$. Then $H^{2} D=s_{2}(\mathscr{E})+s_{1}(\mathscr{E}) K=0$, contradicting the ampleness of H. Thus this case is ruled out.
(2.8.3) In case $c_{2}(\mathscr{E})=3$, we have $H^{3}=s_{2}(\mathscr{E})=1$ and $\chi(\mathscr{E})=2$. Since $h^{2}(\mathscr{E})=h^{0}(\mathscr{E} \otimes[3 K])$, we infer $h^{0}(\mathscr{E}) \geqq 2$, so $\operatorname{dim}|H| \geqq 1$. In fact we have
$\operatorname{dim}|H|=1$. Indeed, otherwise, $\Delta(P, H) \leqq 1$ and hence $b_{2}(P) \leqq 2$ by [F2; Part III]). This contradicts $b_{2}(M)=9$.

For any $D \in|H|$, we have $H^{2} D=1$, so D is irreducible and reduced. Moreover, for any other member D^{\prime} of $|H|$, the scheme theoretical intersection Z of D and D^{\prime} is an irreducible reduced curve of arithmetic genus two with $H Z=1$. By definition of the Segre class, $C=\pi(Z)$ represents $s_{1}(\mathscr{E})$, so $C \in|A|$. For every fiber X of π over $x \in C$, either $D \cap X$ or $D^{\prime} \cap X$ is a simple point because otherwise $X \subset Z$. Ths implies $Z \simeq C$. This section Z of π over C yields an exact sequence $0 \rightarrow \mathscr{F} \rightarrow \mathscr{E}_{C} \rightarrow \mathscr{Q} \rightarrow 0$ of vector bundles over C and \mathscr{Q} is identified with the restriction of H to $Z \simeq C . \quad$ So $\operatorname{deg}(2)=1$ and $\operatorname{deg}(\mathscr{F})=3$.

Let δ and δ^{\prime} be the section in $H^{0}(M, \mathscr{E}) \simeq H^{0}(P, H)$ corresponding to D and D^{\prime}. Then the restrictions of them in $H^{0}\left(C, \mathscr{E}_{C}\right)$ come from $H^{0}(C, \mathscr{F})$ by construction. Thus they define members Y and Y^{\prime} of $|\mathscr{F}|$. Clearly $x \in \operatorname{Supp}(Y)$ if and only if $\pi^{-1}(x) \subset D$. In particular $Y \cap Y^{\prime}=\varnothing$. The structure of D is related to Y as follows:

If Y consists of three different points (this is the case if D is a general member of $|H|)$, then $\pi_{D}: D \rightarrow M$ is the blowing-up at Y since $c_{2}(\mathscr{E})=3$. We have an exact sequence $0 \rightarrow \mathcal{O}\left[E_{Y}\right] \rightarrow \mathscr{E}_{D} \rightarrow \mathcal{O}\left[\pi_{D}^{*} A-E_{Y}\right] \rightarrow 0$ of vector bundles on D, where E_{Y} is the exceptional divisor over Y consisting of three (-1)-curves.

If $Y=p_{1}+2 p_{2}$ for some $p_{1} \neq p_{2}$, let M_{2} be the blowing-up of M at p_{1} and p_{2}. The strict transform of C meets the (-1)-curve E_{2} over p_{2} at a point p_{3}. Let M_{3} be the blowing-up of M_{2} at p_{3}. Then the strict transform E_{2}^{\prime} of E_{2} is a (-2)-curve. Contracting E_{2}^{\prime} to an ordinary double point we obtain D.

If $Y=3 p_{1}$, let M_{1} be the blowing-up of M at p_{1} and let E_{1} be the exceptional curve over p_{1}. Let p_{2} be the meeting point of E_{1} and the strict transform of C. Let M_{2} be the blowing-up of M_{1} at p_{2} and let E_{2} be the exceptional curve. Let p_{3} be the meeting point of E_{2} and the strict transform of C. Let M_{3} be the blowing-up of M_{2}. Then the strict transforms of E_{1} and E_{2} on M_{3} are (-2)-curves meeting transversally at a point. Contracting them to a rational double point of type A_{2}, we obtain D.

Having these observations in mind, we will now show that such a vector bundle does really exist. We take three points p_{1}, p_{2}, p_{3} on M in a generic position. Since $h^{0}(M, A)=4$, there is a unique member C of $|A|$ containing $Y=$ $\bigcup p_{i}$. Let D be the blowing-up of M at Y and let E_{Y} be the exceptional divisor. Then $h^{1}\left(D, 2 E_{Y}-A_{D}\right)=h^{1}\left(D,[-K]_{D}-E_{Y}\right)=1$ since Y is in a generic position. Moreover, for any general element e of $H^{1}\left(D, 2 E_{Y}-A_{D}\right)$, the restriction of e to E_{i}, the (-1)-curve over p_{i}, is not zero for each i, because $0=h^{1}\left(D,[-K]_{D}-E_{1}-\right.$ $\left.E_{2}\right)=h^{1}\left(D,[-K]_{D}-E_{2}-E_{3}\right)=h^{1}\left(D,[-K]_{D}-E_{3}-E_{1}\right)$. Let $0 \rightarrow \mathcal{O}\left[E_{Y}\right] \rightarrow \mathscr{E}^{\prime} \rightarrow$ $\mathcal{O}\left[A_{D}-E_{Y}\right] \rightarrow 0$ be the extension of vector bundles on D induced by e. The restriction of it to E_{i} is a non-trivial extension $0 \rightarrow \mathcal{O}(-1) \rightarrow \mathscr{E}_{i}^{\prime} \rightarrow \mathcal{O}(1) \rightarrow 0$, so the restriction \mathscr{E}_{i}^{\prime} of \mathscr{E}^{\prime} to E_{i} is trivial. Hence $\mathscr{E}^{\prime \prime}$ is the pull-back of a vector bundle \mathscr{E} on M. Obviously $c_{1}(\mathscr{E})=A, c_{2}(\mathscr{E})=3$ and $h^{0}(E)=\chi(\mathscr{E})=2$. Thus it suffices to show the ampleness of \mathscr{E}.

Note that $\operatorname{dim}|-K|=1$ and every member F of $|-K|$ is irreducible and
reduced since $(-K) F=1$ and $-K$ is ample. So there are only finitely many singular members of $|-K|$ and each of them has only finite singular points. Let S be the union of all such singular points of members of $|-K|$. Since Y is in a generic position, C is a general member of $|A|$. So we may assume that $S \cap C=\varnothing$ and C is smooth.

Let J be the Jacobian variety of C and we fix a point o on C. For any divisor X in M, we define $v(X)=\left[X_{C}-(X C) o\right] \in J$. This depends only on the linear equivalence class of X, and gives a mapping $v: \operatorname{Pic}(M) \rightarrow J$. The image N of v is a countable subset of the abelian variety J.

For any triple $m=\left(m_{1}, m_{2}, m_{3}\right)$ of positive integers, let $\mu_{m}: C \times C \times C \rightarrow J$ be the morphism defined by $\mu_{m}\left(x_{1}, x_{2}, x_{3}\right)=\left[m_{1} x_{1}+m_{2} x_{2}+m_{3} x_{3}-\left(m_{1}+m_{2}+\right.\right.$ $\left.m_{3}\right) o$]. Note that $\mu=\mu_{(1,1,1)}$ factors through the symmetric product $C \times C \times$ C / S_{3} of C, which is a \mathbf{P}^{1}-bundle over J.

We claim that μ_{m} is smooth at $a=\left(a_{1}, a_{2}, a_{3}\right)$ if a_{i} 's are three different points on C. To see this, set $b=\mu_{m}(a)$ and let $d \mu_{m}: T_{C \times C \times C, a} \simeq T_{C, a_{1}} \oplus T_{C, a_{2}} \oplus T_{C, a_{3}} \rightarrow T_{J, b}$ be the differential. Write $d \mu_{m}=\delta_{1} \oplus \delta_{2} \oplus \delta_{3}$ for $\delta_{i} \in \operatorname{Hom}\left(T_{C, a_{i}}, T_{J, b}\right)$. Let μ^{\prime} be the map defined by $\mu^{\prime}(x)=\mu(x)-\mu(a)+b \in J$ and let $d \mu^{\prime}=\delta_{1}^{\prime} \oplus \delta_{2}^{\prime} \oplus \delta_{3}^{\prime}$ be its differential at a. Then $\delta_{i}=\mathrm{m}_{i} \delta_{i}^{\prime}$. Since a_{i}^{\prime} 's are different, $C \times C \times C$ is étale at a over the symmetric product. So μ and μ^{\prime} are smooth at a. Hence the images of δ_{i}^{\prime} generate $T_{J, b}$, and so do the images of $\delta_{i}=m_{i} \delta_{i}^{\prime}$. This implies that $d \mu_{m}$ is surjective, as desired.

From this claim we infer that every fiber of μ_{m} is a curve for any m. So $J_{3}=\bigcup_{m} \mu\left(\mu_{m}^{-1}(N)\right)$ is a union of countably many curves.

For any pair $k=\left(k_{1}, k_{2}\right)$ of positive integers, let $\mu_{k}: C \times C \rightarrow J$ be the morphism defined by $\mu_{k}\left(x_{1}, x_{2}\right)=\left[k_{1} x_{1}+k_{2} x_{2}-\left(k_{1}+k_{2}\right) o\right]$. Then, similarly as before, we infer that $\mu_{k}^{-1}(b)$ is finite for every $b \in J$ except $b=[\omega-2 o]$, where ω is the canonical bundle of C. Therefore $N^{\prime}=\left\{\left(x_{1}, x_{2}\right) \in C \times C\left|x_{1}+x_{2} \notin\right| \omega \mid\right.$ and $\mu_{k}\left(x_{1}, x_{2}\right) \in N$ for some $\left.k\right\}$ is a countable set. Let $f: C \times C \times C \rightarrow C \times C$ be the projection and let $J_{2}=\mu\left(f^{-1}\left(N^{\prime}\right)\right)$. Then J_{2} is a union of countably many curves.

Now, since p_{i} 's are in a generic position, we may assume $\mu\left(p_{1}, p_{2}, p_{3}\right) \notin J_{2} \cup J_{3}$. We may assume also $\mathrm{Bs}|Y|=\varnothing$ on C. We will now prove that $H=H(\mathscr{E})$ is ample on $P=\mathbf{P}(\mathscr{E})$.

We will derive a contradiction assuming $H X=0$ for some curve X in P. Since $h^{0}(P, H)=h^{0}(M, \mathscr{E})=2$, there is a member D^{\prime} of $|H|$ such that $D^{\prime} \cap X \neq \varnothing$. Then $X \subset D^{\prime}$ since $H X=0$. Let $Y^{\prime}=p_{1}^{\prime}+p_{2}^{\prime}+p_{3}^{\prime}$ be the member of $|Y|$ corresponding to D^{\prime}. Then D^{\prime} is obtained from M by several belowing-ups over Y, possibly followed by a contraction yielding a rational double point. In any case $D^{\prime} \cap D=Z$ is the strict transform of C on D^{\prime}. Since $H X=0$, we have $Z \cap X=\varnothing$. So $\pi(Z) \cap \pi(X) \subset \operatorname{Supp}\left(Y^{\prime}\right)$.

If $\pi(X) \cap C$ consists of three points, then so does Y^{\prime} and $\pi(X)_{C}=m_{1} p_{1}^{\prime}+$ $m_{2} p_{2}^{\prime}+m_{3} p_{3}^{\prime}$ in $\operatorname{Pic}(C)$. This implies $\mu_{m}\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}\right) \in N$ for $m=\left(m_{1}, m_{2}, m_{3}\right)$ and $\mu\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}\right) \in J_{3}$. On the other hand, $\mu\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}\right)=\mu\left(p_{1}, p_{2}, p_{3}\right)$ since $Y^{\prime}=Y$ in $\operatorname{Pic}(C)$. This contradicts $\mu\left(p_{1}, p_{2}, p_{3}\right) \notin J_{3}$.

If $\pi(X) \cap C$ consists of two points, set $\pi(X)_{C}=k_{1} p_{1}^{\prime}+k_{2} p_{2}^{\prime}$ and $Y^{\prime}=p_{1}^{\prime}+$ $p_{2}^{\prime}+p_{3}^{\prime}$. We have $p_{1}^{\prime}+p_{2}^{\prime} \notin|\omega|$ because otherwise $p_{3}^{\prime} \in \operatorname{Bs}\left|Y^{\prime}\right|=\mathrm{Bs}|Y|$. Hence $\left(p_{1}^{\prime}, p_{2}^{\prime}\right) \in N^{\prime}$ and $\mu\left(p_{1}, p_{2}, p_{3}\right)=\mu\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}\right) \in J_{2}$, contradicting the choice of Y.

If $\pi(X)$ meets C at only one point p^{\prime}, we claim that Y^{\prime} is of the form $2 p^{\prime}+q^{\prime}$ for some $q^{\prime} \in C$ (possibly $q^{\prime}=p^{\prime}$). Indeed, otherwise, D^{\prime} is isomorphic to the blowingup M_{1} of M at p^{\prime} over a neighborhood of p^{\prime}. So the strict transforms X_{1} and C_{1} of $\pi(X)$ and C on M_{1} do not meet. On the other hand, the member F of $|-K|$ passing p^{\prime} is smooth at p^{\prime} since $S \cap C=\varnothing$. The strict transform F_{1} of F on M_{1} is a member of $\left|-K-E^{\prime}\right|$ with $F_{1}^{2}=0$, where E^{\prime} is the exceptional curve and K denotes the pull-back of K by abuse of notation. Then $C_{1}=-K+F_{1}$ in $\operatorname{Pic}\left(M_{1}\right)$ and $0=X_{1} C_{1} \geqq-K \cdot \pi(X)>0$. Thus we infer $Y^{\prime}=2 p^{\prime}+q^{\prime}$. This implies $\left(p^{\prime}, q^{\prime}\right) \in$ N^{\prime} as before and hence $\mu\left(p_{1}, p_{2}, p_{3}\right)=\mu\left(p_{1}^{\prime}, p_{2}^{\prime}, p_{3}^{\prime}\right) \in J_{2}$, a contradiction.

Now we have proved $H X>0$ for any curve X in P. We have $H^{2} D^{\prime}=H Z=1$ for any member D^{\prime} of $|H|$. For any irreducible surface W of P, there is a member D^{\prime} of $|H|$ such that $D^{\prime} \cap W \neq \varnothing$. So $H^{2} W=H D^{\prime} W>0$. Of course $H^{3}=1$. Conseuently H is ample by Nakai's criterion.
(2.9) Suppose that (M, A) is of the type $\left(2.3 ; 5_{0}\right)$. For any fiber F of $f: M \rightarrow$ \mathbf{P}_{β}^{1}, we have $A F=2$. So $r=2$ and $\mathscr{E}_{F} \simeq \mathcal{O}(1) \oplus \mathcal{O}(1)$. Hence $\mathscr{E} \simeq f^{*} \mathscr{G} \otimes\left[H_{\alpha}\right]$ for some vector bundle \mathscr{G} on \mathbf{P}_{β}^{1}. Restricting to a fiber of $M \rightarrow \mathbf{P}_{\alpha}^{1}$, we infer that \mathscr{G} is ample. So $\mathscr{G} \simeq \mathcal{O}(2) \oplus \mathcal{O}(1)$. Thus we conclude $\mathscr{E} \simeq\left[H_{\alpha}+2 H_{\beta}\right] \oplus\left[H_{\alpha}+\right.$ $\left.H_{\beta}\right]$. Hence $c_{2}(\mathscr{E})=3$ and $s_{2}(\mathscr{E})=9$.
(2.10) Suppose that (M, A) is of the type $\left(2.3 ; 5_{1}\right)$. Set $L=H_{\alpha}$. There is a morphism $f: M \rightarrow \mathbf{P}_{\beta}^{1}$ such that $f^{*} H_{\beta}=L-E$ and every fiber F of f is \mathbf{P}^{1}. Since $A F=2$, we infer $\mathscr{E}_{E} \simeq \mathcal{O}(1) \oplus \mathcal{O}(1)$ for any F. So $\mathscr{E} \simeq f^{*} \mathscr{G} \otimes L$ for some vector bundle \mathscr{G} on \mathbf{P}_{β}^{1}. Since E is a section of f and $L_{E}=0, \mathscr{G}$ can be identified with \mathscr{E}_{E}. In view of $A E=2$, we infer $\mathscr{G} \simeq H_{\beta} \oplus H_{\beta}$. So $\mathscr{E} \simeq[2 L-E] \oplus[2 L-E]$. Hence $c_{2}(\mathscr{E})=3$ and $s_{2}(\mathscr{E})=9$.

Remark. The polarized manifold (P, H) is the Segre product of $\left(\Sigma_{1}, 2 L-E\right)$ and $\left(\mathbf{P}_{\alpha}^{1}, H_{\alpha}\right)$. On the other hand, (P, H) is a scroll over $\mathbf{P}_{\alpha}^{1} \times \mathbf{P}_{\beta}^{1}$ via the morphism $i_{\alpha} \times f$, where i_{α} is the identity of \mathbf{P}_{α}^{1}. This gives a vector bundle of the type (2.9). Thus, the polarized manifold (P, H) in case (2.9) is isomorphic to that here. This can be viewed also as a hyperquadric fibration over \mathbf{P}_{β}^{1}. Compare [F6; (3.29)].
(2.11) From now on, we study the case $(2.3 ; 1)$. We have $2=(K+A) A=$ $A^{2}=c_{2}(\mathscr{E})+s_{2}(\mathscr{E})$. Therefore $\quad d(P, H)=s_{2}(\mathscr{E})=c_{2}(\mathscr{E})=1$. Hence $\quad \chi(M, \mathscr{E})=$ $r \chi(M, \mathcal{O})$ by Riemann-Roch theorem.

We have also $h^{2}(M, \mathscr{E})=0$. Indeed, otherwise, there would be a non-trivial homomorphism $\mathscr{E} \rightarrow \mathcal{O}_{M}[K]$ by Serre duality. This is impossible since \mathscr{E} is ample and $K \sim 0$. Thus $h^{0}(M, \mathscr{E}) \geqq \chi(M, \mathscr{E})=r \chi(M, \mathcal{O})$.
(2.12) We will derive a contradiction assuming $\chi(M, \mathcal{O})>0$. By classification theory M is a K3-surface or an Enriques surface.

If M is K3, we have $h^{0}(P, H)=h^{0}(M, \mathscr{E}) \geqq 2 r$. So $\Delta(P, H)=(r+1)+1-$ $h^{0}(P, H) \leqq 2-r . \quad$ By the theory of Δ-genus we infer $r=2$ and $(P, H) \simeq\left(\mathbf{P}^{3}, \mathcal{O}(1)\right)$. This is absurd.

If M is Enriques, let \tilde{M} be the universal covering of M. Let the pull-backs to \tilde{M} be denoted by ${ }^{\sim}$. We have $h^{2}(\tilde{M}, \tilde{E})=0$ similarly as in (2.11). So $h^{0}(\widetilde{P}, \tilde{H})=$ $h^{0}(\tilde{M}, \mathscr{E}) \geqq \chi(\tilde{M}, \widetilde{E})=2 \chi(M, \mathscr{E})=2 r$. Since $d(\widetilde{P}, \tilde{H})=2$, this implies $\Delta(\widetilde{P}, \tilde{H})=$ $r+3-h^{0}(\widetilde{P}, \tilde{H}) \leqq 3-r \leqq 1$.

When $\Delta(\widetilde{P}, \tilde{H})=0$, then $(\widetilde{P}, \tilde{H})$ is a hyperquadric. So $b_{2}(\widetilde{P})=1$. This is absurd since \tilde{P} is a scroll over \tilde{M}.

When $\Delta(\widetilde{P}, \tilde{H})=1$, we infer from $d(\widetilde{P}, \tilde{H})=2$ that \widetilde{P} is a double covering of P^{r+1} with \tilde{H} being the pull-back of $\mathcal{O}(1)$ (see [F2]). Then, by $[F 3 ;(3.11)], b_{2}(\widetilde{P})=$ 1 , yielding a contradiction.
(2.13) Thus we have $\chi(M, \mathcal{O}) \leqq 0$. By the classification theory M is a complex torus or a hyperelliptic surface. In the latter case, the Albanese variety is an elliptic curve and the Albanese mapping makes M a fiber bundle over it with all fibers being isomorphic to an elliptic curve. Moreover $b_{2}(M)=2$.
(2.14) Lemma. Let $f: S \rightarrow C$ be an analytic fiber bundle over a curve C with all fibers being isomorphic to an elliptic curve. Let \mathscr{F} be an ample locally free sheaf on S of rank $r \geqq 2$ such that $c_{1}(\mathscr{F}) X=1$ for every fiber X of f. Then

1) $\mathscr{L}=f_{*} \mathscr{F}$ is an invertible sheaf on C with $\delta=\operatorname{deg}(\mathscr{L})>0$,
2) $\mathscr{C}=\operatorname{Coker}\left(f^{*} \mathscr{L} \rightarrow \mathscr{F}\right)$ is locally free,
3) $\mathscr{G}=f_{*} \mathscr{C}$ is an invertible sheaf of degree δ,
4) f has a section Z such that $\operatorname{det}(\mathscr{F})=\mathcal{O}_{S}\left[Z+f^{*} B\right]$ for some line bundle B on C of degree $r \delta$, and
5) $c_{1}(\mathscr{F})^{2}=2 r \delta$.

Proof. We have $h^{0}\left(X, \mathscr{F}_{X}\right)=c_{1}\left(\mathscr{F}_{X}\right)=1$ for any fiber X. Moreover, any section of \mathscr{F}_{X} comes from a trivial subbundle of \mathscr{F}_{X}. So \mathscr{L} is invertible and \mathscr{C} is locally free. We have also $h^{1}\left(X, \mathscr{F}_{X}\right)=0$ and $R^{1} f_{*} \mathscr{F}=0$. So, using the exact sequence $0 \rightarrow f^{*} \mathscr{L} \rightarrow \mathscr{F} \rightarrow \mathscr{C} \rightarrow 0$, we infer $f_{*} \mathscr{C} \simeq\left(R^{1} f_{*}\right)\left(f^{*} \mathscr{L}\right)$. Let N be a line bundle on C such that $f^{*} N$ is the relative canonical bundle of f. Then $\operatorname{deg}(N)=$ 0 since f is an analytic fiber bundle. By the Grothendieck duality we have $\left(\left(R^{1} f_{*}\right)\left(f^{*} \mathscr{L}\right)\right)^{\wedge} \simeq f_{*}\left(\left(f^{*} \mathscr{L}\right)^{\vee} \otimes f^{*} N\right) \simeq \mathscr{L}^{\vee} \otimes N$. Putting things together we ob$\operatorname{tain} f_{*} \mathscr{C} \simeq \mathscr{L} \otimes N^{*}$, which implies 3).

In order to show 4), we use the induction on r. If $r=2, \mathscr{C}$ is invertible and $\operatorname{deg}\left(\mathscr{C}_{X}\right)=1$. So the support Z of $\operatorname{Coker}\left(f^{* \mathscr{G}} \rightarrow \mathscr{C}\right)$ is a section of f and $\mathscr{C}=$ $f^{*} \mathscr{G} \otimes[Z]$. Hence $\operatorname{det}(\mathscr{F})=f^{*}(\mathscr{L} \otimes \mathscr{G}) \otimes[Z]$, as desired. If $r>2$, we apply the induction hypothesis to \mathscr{C}. So $\operatorname{det}(\mathscr{C})=\mathscr{O}\left[Z+f^{*} U\right]$ with $\operatorname{deg}(U)=(r-1) \delta$ by 3). Since $\operatorname{det}(\mathscr{F})=\operatorname{det}(\mathscr{C}) \otimes f^{*} \mathscr{L}$, we get 4$)$ for \mathscr{F}.

By the adjunction formula we have $(Z+N)_{Z}=0$. So $Z^{2}=0$, which implies 5). Finally we get $\delta>0$ since $\operatorname{det}(\mathscr{F})$ is ample. Thus we complete the proof of the lemma.
(2.15) Lemma. Let $f: S \rightarrow C$ be the Albanese fibration of a hyperelliptic surface S and let A be an ample line bundle on S with $A^{2}=2$. Then $|A|$ contains a member of the form $Z+X$, where Z is a section of f and X is a fiber of f.

Proof. It is known (cf., e.g., [BPV]) that there exists a curve Y in S such that the restriction f_{Y} of f to Y is étale and is of degree $\mu \leqq 3$. Among such curves we choose and fix a curve Y where μ attains the minimum. Note that $Y^{2}=0$.

Since $h^{0}(S, A)=\chi(S, A)=1$, the member D of $|A|$ is unique. Let X be a fiber of f. Then X and Y form a basis of $H^{2}(S ; \mathbf{Q})$ since $b_{2}(S)=2$. Set $\mu A \sim y X+x Y$. Then $y=A Y, x=A X$ and $x y=\mu \leqq 3$.

We will derive a contradiction assuming $x>1$. This implies $x=\mu$ and $y=1$. We claim that D is irreducible and reduced. Indeed, otherwise, $D=$ $D_{1}+D_{2}$ for some prime divisors D_{1}, D_{2} with $A D_{1}=A D_{2}=1$. We may assume $Y D_{1}=1$ and $Y D_{2}=0$ since $Y D=A Y=1$. Then D_{1} is not a fiber of f because $\mu>1$. So $X D_{1}>0$. Hence $X D_{2}0$ since $Y+t X$ is ample for $t \gg 0$. From $Y^{2}=Y D_{2}=0$ we infer $D_{2}{ }^{2} \leqq 0$ by index theorem. But S contains no rational curve and hence $D_{2}{ }^{2} \geqq 0$. So $D_{2}{ }^{2}=0$. Hence $D_{2} \rightarrow C$ is étale and of degree $<\mu$, contradicting the choice of Y. Thus we prove that D is prime.

Let S^{\prime} be the fiber product of S and Y over C. Then $G=\operatorname{Gal}(Y / C)$ is a cyclic group of order μ. For each $\tau \in G$, let $\sigma_{\tau}: Y \rightarrow S^{\prime}$ be the morphism induced by the inclusion $Y \rightarrow S$ and $f_{Y} \circ \tau: Y \rightarrow C$. Let $Y_{\tau}=\operatorname{Im}\left(\sigma_{\tau}\right)$. They are μ disjoint sections of $f^{\prime}: S^{\prime} \rightarrow Y$. We have $D^{\prime} Y_{\tau}=1$ for the pull-back D^{\prime} of D since $A Y=1$.

If S^{\prime} is a complex torus, then Y_{τ}^{\prime} 's are subtori and $Q=S^{\prime} / Y_{\tau}$ is an elliptic curve. Moreover D^{\prime} is a section of $S^{\prime} \rightarrow Q$ since $D^{\prime} Y_{\tau}=1$. This is absurd since $\left(D^{\prime}\right)^{2}>0$ and $g\left(D^{\prime}\right)>1$. Hence S^{\prime} is hyperelliptic and f^{\prime} is the Albanese fibration of it .

For any fiber X^{\prime} of f^{\prime}, we have $D^{\prime} \sim X^{\prime}+\sum_{\tau \in G} Y_{\tau}$ since $b_{2}\left(S^{\prime}\right)=2$. Hence $D^{\prime}-X^{\prime}-\sum_{\tau} Y_{\tau}$ comes from $\operatorname{Pic}^{0}\left(S^{\prime}\right) \simeq \operatorname{Pic}^{0}(Y)$. Hence $D^{\prime}=\sum_{\tau} Y_{\tau}$ in $\operatorname{Pic}\left(X^{\prime}\right)$. Let X be the image of X^{\prime} in S. Then $X^{\prime} \simeq X$ and the above relation implies $D_{X}=Y_{X}$ in Pic (X). Thus $(A-Y)_{X}=0$ in $\operatorname{Pic}(X)$ for every fiber X of f. Hence $\mathscr{L}=f_{*}(\mathcal{O}[A-Y])$ is invertible on $C, \mathcal{O}[A-Y]=f^{*} \mathscr{L}$ and $1=Y(A-Y)=$ $\mu \cdot \operatorname{deg}(\mathscr{L})$. This contradicts $\mu>1$.

Now we conclude $x=1$. So $y=\mu$. Moreover $h^{0}\left(X, A_{X}\right)=1$ for every fiber X and hence $\mathscr{L}=f_{*}(\mathcal{O}[A])$ is invertible on C. The support Z of $\operatorname{Coker}\left(f^{*} \mathscr{L} \rightarrow\right.$ $\mathcal{O}[A]$) is a section of f and $Z+X^{\prime \prime} \in|A|$ for $X^{\prime \prime} \in\left|f^{*} L\right|$. We have $A Z=A X^{\prime \prime}=1$ and hence $X^{\prime \prime}$ is a fiber of f. Thus we complete the proof.
(2.16) Suppose that M is hyperelliptic in (2.13). Let $f: M \rightarrow C$ be the Albanese fibration. Then, by (2.15), $A X=1$ for any fiber X of f. So $2=A^{2}=$ $2 r \delta$ by (2.14; 5). This contradicts $r \geqq 2$. Thus we conclude that M is a complex torus.
(2.17) Since $h^{0}(M, A)=\chi(M, A)=1$, there is a unique member C of $|A|$. We claim that C is a smooth curve of genus two.

Indeed, otherwise, $C=X+Y$ for some elliptic curves X, Y with $X^{2}=Y^{2}=0$ and $X Y=1$. Then X is a subtorus and $Q=M / X$ is an elliptic curve (in fact $M \simeq X \times Y)$. So, applying (2.14) to $f: M \rightarrow Q$, we obtain a contradiction.

Thus M is the Jacobian variety of C.
(2.18) Before classifying vector bundles of the above type, we exhibit here examples (cf. [S]).

Let o be a point on a smooth curve C of genus two. Let $N_{n}=C \times \cdots \times C$ be the product of n-copies of C and let $P_{n}=N_{n} / S_{n}$ be the symmetric product. Let M be the Jacobian variety of C and let $\pi_{n}: P_{n} \rightarrow M$ be the morphism induced by the Albanese mapping of (C, o). Thus, $\pi_{n}\left(x_{1}, \ldots, x_{n}\right)$ is the class of $x_{1}+\cdots+$ $x_{n}-n o$ in Pic (C). It is well-known that π_{n} is a \mathbf{P}^{n-2}-bundle for $n>2$ and π_{2} is the blowing-up at the point $p=[\omega-2 o] \in M$.

Let $f_{i}: N_{n} \rightarrow C$ be the i-th projection and set $\Delta_{n}=\sum_{i=1}^{n} f_{i}^{*} o$. Let D_{n} be the divisor on P_{n} whose pull-back to N_{n} is Δ_{n}. Then $D_{n}^{n}=1$ and D_{n} is ample since so is Δ_{n} on N_{n} and $\Delta_{n}^{n}=n!$. Moreover $D_{n} \simeq P_{n-1}$ and the restriction of π_{n} to D_{n} is identified with π_{n-1}.

Let H_{n} be the line bundle $\mathcal{O}\left[D_{n}\right]$ on P_{n}. We claim that the restriction of H_{n} to $D_{n} \simeq P_{n-1}$ is identified with H_{n-1}. Indeed, $N_{n-1} \simeq f_{i}^{-1}(o)$ and the pull-back of H_{n} via $f_{i}^{-1}(o) \rightarrow D_{n}$ is the restriction of $\left[\Delta_{n}\right]$, so it is [Δ_{n-1}]. Going down via $N_{n-1} \rightarrow D_{n}$, we prove the claim.

For any $y \in M, D_{n} \cap \pi_{n}^{-1}(y)$ is a hyperplane in $\pi_{n}^{-1}(y) \simeq \mathbf{P}^{n-2}$ unless $n=3$ and $y=p$. Hence $\left(P_{n}, H_{n}\right)$ is a scroll over M and $\mathscr{E}_{n-1}=\left(\pi_{n}\right)_{*} \mathcal{O}\left[H_{n}\right]$ is a vector bundle of rank $n-1$ for $n>2$. The section in $H^{0}\left(P_{n}, H_{n}\right) \simeq H^{0}\left(M, \mathscr{E}_{n-1}\right)$ defining D_{n} yields an exact sequence $0 \rightarrow \mathcal{O}_{M} \rightarrow \mathscr{E}_{n-1} \rightarrow \mathscr{E}_{n-2} \rightarrow 0$ by the above claim. As for \mathscr{E}_{2}, we have $0 \rightarrow \mathcal{O}[F] \rightarrow \mu^{*} \mathscr{E}_{2} \rightarrow \mathcal{O}\left[D_{2}\right] \rightarrow 0$, where $\mu: P_{2} \rightarrow M$ is the blowing-up at p, F is the exceptional curve over p and $D_{2} \simeq P_{1} \simeq C$.

Now we see $c_{1}\left(\mathscr{E}_{r}\right)=s_{1}\left(\mathscr{E}_{r}\right)=\left[\mu\left(D_{2}\right)\right]=\left[\pi_{1}\left(P_{1}\right)\right]$ and $c_{2}\left(\mathscr{E}_{r}\right)=1=s_{2}\left(\mathscr{E}_{r}\right)$. Thus \mathscr{E}_{r} is a vector bundle of the type in question. This will be called the Jacobian bundle of rank r of (C, o) and will be denoted by $\mathscr{E}_{r}(C, o) . \quad\left(P_{n}, H_{n}\right)=$ $\left(\mathbf{P}\left(\mathscr{E}_{n-1}\right), \mathcal{O}(1)\right)$ will be called the Jacobian scroll of (C, o).
(2.19) We continue to study vector bundles of the type (2.17).

Lemma. Let $\mu: M^{\prime} \rightarrow M$ be a birational morphism and let 2 be a quotient bundle of $\mu^{*} \mathscr{E}$. Then $H^{2}\left(M^{\prime}, \mathscr{Q} \otimes N^{\prime}\right)=0$ for any $N^{\prime} \in \operatorname{Pic}^{0}\left(M^{\prime}\right)$.

Proof. We have $h^{2}\left(\mathscr{2} \otimes N^{\prime}\right) \leqq h^{2}\left(\mu^{*} \mathscr{E} \otimes N^{\prime}\right)=h^{2}(M, \mathscr{E} \otimes N), \quad$ where $\quad N \in$ $\operatorname{Pic}^{0}(M) \simeq \operatorname{Pic}\left(M^{\prime}\right)$ and $\mu^{*} N=N^{\prime}$. If this is not zero, we have a non-zero homomorphism $\mathscr{E} \rightarrow N^{\wedge}$ by Serre duality. This is impossible since \mathscr{E} is ample.
(2.20) Lemma. Let p be a point on M and let $\mu: M^{\prime} \rightarrow M$ be the blowing-up at p. Then there is no vector bundle 2 on M^{\prime} satisfying the following properties:

1) $q=\operatorname{rank}(2)>1$.
2) $\mathscr{2}$ is a quotient bundle of $\mu^{*} \mathscr{E}$.
3) $c_{1}(2)=\mu^{*} A-E_{p}$, where E_{p} is the exceptional curve over p.
4) $c_{2}(2)=0$.
5) $h^{0}(2)=h^{1}(2)>0$.

Proof. We will derive a contradiction from these conditions. We use the induction on q. Suppose that $q=2$. We have a non-zero homomorphism $\mathcal{O} \rightarrow \mathscr{2}$ by 5). Let $\mathscr{Q}^{\wedge} \rightarrow \mathcal{C}$ be the dual and let \mathscr{I} be the image of it. Let $M^{\prime \prime} \rightarrow M^{\prime}$ be the blowing-up of \mathscr{I} and let F be the divisor defined by the pull-back of \mathscr{I}. Then we have an exact sequence $0 \rightarrow \mathcal{O}[F] \rightarrow \mathscr{2}^{\prime \prime} \rightarrow \mathcal{O}\left[A^{\prime \prime}-E_{p}^{\prime \prime}-F\right] \rightarrow 0$ of vector bundles on $M^{\prime \prime}$, where the symbol " denote the pull-back to $M^{\prime \prime}$. Then $0=c_{2}\left(\mathscr{2}^{\prime \prime}\right)=$ $F\left(A-E_{p}-F\right)$, where we omit the symbol " for the sake of convenience. We consider the restriction of the above sequence over a general member Γ of $|t A|$ for $t \gg 0$. Then $A\left(A-E_{p}-F\right)>0$ since $A-E_{p}-F$ is a quotient of the ample vector bundle \mathscr{E}_{Γ}. Moreover, $A-E_{p}-F$ is nef on $M^{\prime \prime}$ since it is a quotient of $\mathscr{E}^{\prime \prime}$. Therefore $F\left(A-E_{p}-F\right)=0$ implies $0 \leqq F\left(A-E_{p}\right)=F^{2} \leqq 0$ by the index theorem. Thus $\left(A-E_{p}\right) F=F^{2}=0$. Since $\left(A-E_{p}\right)^{2}=1$, this implies $F \sim 0$ by the index theorem. Hence $\mathscr{I}=\mathcal{O}$ and $M^{\prime \prime}=M^{\prime}$. We have $0 \rightarrow \mathcal{O} \rightarrow \mathscr{Q} \rightarrow \mathcal{O}[A-$ $\left.E_{p}\right] \rightarrow 0$ on M^{\prime}. Recall that $A-E_{p}$ is nef since it is a quotient of $\mu^{*} \mathscr{E}$. Hence $H^{1}\left(E_{p}-A\right)=0$ by the vanishing theorem. Therefore the above sequence splits and $h^{2}(2) \geqq h^{2}(\mathcal{O})=1$. This contradicts (2.19).

Now we consider the case $q \geqq 3$. Similarly as before, there is a birational morphism $M^{\prime \prime} \rightarrow M^{\prime}$, an effective divisor F on $M^{\prime \prime}$ and an exact sequence $0 \rightarrow$ $\mathscr{O}[F] \rightarrow \mathscr{Q}^{\prime \prime} \rightarrow \mathscr{V} \rightarrow 0$ of vector bundles on $M^{\prime \prime}$. Since \mathscr{V} is a quotient of $\mathscr{E}^{\prime \prime}$, we have $c_{2}(\mathscr{V}) \geqq 0$ and $c_{1}(\mathscr{V})=A-E_{p}-F$ is nef (see Appendix). So $0=c_{2}\left(\mathscr{Q}^{\prime \prime}\right)=$ $c_{2}(\mathscr{V})+c_{1}(\mathscr{V}) F \geqq 0$ and hence $0=c_{2}(\mathscr{V})=c_{1}(\mathscr{V}) F=F\left(A-E_{p}-F\right)$. Similarly as before we obtain $A\left(A-E_{p}-F\right)>0$, hence $F^{2} \leqq 0$, so $0=\left(A-E_{p}\right) F=F^{2}$ and $F=0$. Therefore $M^{\prime \prime}=M^{\prime}$. It is then clear that \mathscr{V} satisfies 2), 3) and 4). So $\chi(\mathscr{V})=0$ by the Riemann-Roch theroem. Hence $h^{0}(\mathscr{V})=h^{1}(\mathscr{V})$ by (2.19). Moreover $h^{1}(\mathscr{V}) \geqq h^{2}(\mathcal{O})=1$ since $h^{2}\left(\mathscr{Q}^{\prime \prime}\right)=0$ by (2.19). Thus \mathscr{V} satisfies 5) too, contradicting the induction hypothesis.
(2.21) Lemma. Let \mathscr{E} be an ample vector bundle on M such that $r=$ rank $(\mathscr{E})>1, \operatorname{det}(\mathscr{E})=A, c_{2}(\mathscr{E})=1$ and $h^{0}(\mathscr{E})>0$. Then

1) $h^{0}(\mathscr{E})=h^{1}(\mathscr{E})=1$, and
2) the natural mapping $H^{1}\left(\mathscr{E}^{`}\right) \otimes H^{0}(\mathscr{E}) \rightarrow H^{1}\left(\mathcal{O}_{M}\right)$ is injective, where $\mathscr{E}^{\curvearrowleft}$ is the dual bundle of \mathscr{E}.

Proof. We use the induction on r.
i) When $r=2$, similarly as in (2.20), there are a birational morphism μ : $M^{\prime \prime} \rightarrow M$, an effective divisor F on $M^{\prime \prime}$ and an exact sequence

$$
\text { (\#) } 0 \rightarrow \mathcal{O}[F] \rightarrow \mathscr{E}^{\prime \prime} \rightarrow \mathcal{O}\left[A^{\prime \prime}-F\right] \rightarrow 0
$$

of vector bundles on $M^{\prime \prime}$, where the symbol " denote the pull-back to $M^{\prime \prime}$. We obtain $A^{\prime \prime}\left(A^{\prime \prime}-F\right)>0$ by restricting over a general member of $|t A|$ for $t \gg 0$.
ii) Assume that $A^{\prime \prime} F>0$. Then $A^{\prime \prime} F=1$ since $\left(A^{\prime \prime}\right)^{2}=2$. So $Z=\mu_{*} F$ is prime since $A Z=A^{\prime \prime} F=1$. Moreover $(A-2 Z) A=0$ implies $0 \geqq(A-2 Z)^{2}=$
$4 Z^{2}-2$ by the index theorem. Hence $Z^{2}=0$ and Z is a subtorus of M. This yields a contradiction as in (2.17). Thus we conclude $A^{\prime \prime} F=0$.
iii) We have $F^{2}=-1$ since $1=c_{2}(\mathscr{E})=F\left(A^{\prime \prime}-F\right)$. Hence we may assume that μ is the blowing-up at a point p on M and F is the exceptional curve over p.

Using the exact sequence $0 \rightarrow \mathcal{O}_{M^{\prime \prime}} \rightarrow \mathcal{O}_{M^{\prime \prime}}[F] \rightarrow \mathcal{O}_{F}(-1) \rightarrow \mathcal{O}$, we get $h^{i}\left(M^{\prime \prime}, F\right)=$ $h^{i}\left(M^{\prime \prime}, \mathcal{O}_{M^{\prime \prime}}\right)=h^{i}\left(M, \mathcal{O}_{M}\right)$ for any i. So, by the exact sequence (\#), we have $h^{1}\left(M^{\prime \prime}, A^{\prime \prime}-F\right) \geqq h^{2}\left(M^{\prime \prime}, F\right)=1$ since $h^{2}\left(\mathscr{E}^{\prime \prime}\right)=0$ by (2.19). On the other hand $\chi\left(M^{\prime \prime}, A^{\prime \prime}-F\right)=0$ by the Riemann-Roch theorem. Hence $h^{0}\left(M^{\prime \prime}, A^{\prime \prime}-F\right)>0$. This implies that p is a point on the unique member C of $|A|$. The strict transform Y of C is the unique member of $\left|A^{\prime \prime}-F\right|$.
iv) Let $e \in H^{1}\left(M^{\prime \prime}, 2 F-A^{\prime \prime}\right)=H^{1}\left(M^{\prime \prime}, F-Y\right)$ be the extension class of the exact sequence (\#). Then $e_{F} \in H^{1}(F, \mathcal{O}(-2))$ is not zero since $\mathscr{E}_{F}^{\prime \prime}$ is trivial. On the other hand $\operatorname{Ker}\left(H^{1}\left(M^{\prime \prime}, F-Y\right) \rightarrow H^{1}(F, \mathcal{O}(-2))=H^{1}\left(M^{\prime \prime},-Y\right)=0\right.$ by Ramanujam's vanishing theorem. Hence $H^{1}\left(M^{\prime \prime}, F-Y\right)$ is one-dimensional and e is a generator of it.
v) Let $0 \rightarrow \mathcal{O}[F-Y] \rightarrow \mathcal{O}[F] \rightarrow \mathcal{O}_{Y}[F] \rightarrow 0$ be the natural exact sequence. Using the long exact sequence we infer that $H^{1}\left(M^{\prime \prime}, F-Y\right) \rightarrow H^{1}\left(M^{\prime \prime}, F\right)$ is injective since $h^{0}\left(M^{\prime \prime}, F-Y\right)=0, h^{0}\left(M^{\prime \prime}, F\right)=1$ and $h^{0}(Y, F)=1$. Hence $H^{0}\left(M^{\prime \prime}, Y\right) \otimes$ $H^{1}\left(M^{\prime \prime}, F-Y\right) \rightarrow H^{1}\left(M^{\prime \prime}, F\right)$ is injective. So the mapping $H^{0}\left(M^{\prime \prime}, Y\right) \rightarrow H^{1}\left(M^{\prime \prime}, F\right)$ induced by $(\#)$ is injective. This implies $h^{0}\left(M^{\prime \prime}, \mathscr{E}^{\prime \prime}\right)=h^{0}\left(M^{\prime \prime}, F\right)=1$ and $h^{1}\left(M^{\prime \prime}\right.$, $\left.\mathscr{E}^{\prime \prime}\right)=1$.
vi) Since $H^{1}\left(M^{\prime \prime}, \mathcal{O}\right) \simeq H^{1}\left(M^{\prime \prime}, F\right)$, the mapping $\varphi: H^{1}\left(M^{\prime \prime}, F\right) \rightarrow H^{1}\left(M^{\prime \prime}, \mathscr{E}^{\prime \prime}\right)$ induced by (\#) is essentially the Serre dual of $H^{1}\left(M, \mathscr{E}^{\vee}\right) \rightarrow H^{1}(M, \mathcal{O})$ induced by a generator of $H^{0}(\mathscr{E}) \simeq \mathbf{C}$. By the preceding observations we see that φ is surjective. Combining them we prove 2).
vii) Now we consider the case $r>2$. We claim that there is an exact sequence

$$
(\# \#) \quad 0 \rightarrow \mathcal{O} \rightarrow \mathscr{E} \rightarrow \mathscr{Q} \rightarrow 0
$$

of vector bundles on M.
Indeed, since $h^{0}(\mathscr{E})>0$, there are a birational morphism $\mu: M^{\prime \prime} \rightarrow M$, an effective divisor F on $M^{\prime \prime}$ and an exact sequence $0 \rightarrow \mathcal{O}[F] \rightarrow \mathscr{E}^{\prime \prime} \rightarrow \mathscr{Q} \rightarrow 0$ of vector bundles on $M^{\prime \prime}$. It suffices to derive a contradiction assuming $F \neq 0$. We have $A^{\prime \prime}\left(A^{\prime \prime}-F\right)>0$ as in i), and $A^{\prime \prime} F=0$ exactly as in ii). This implies $F^{2}<0$ by the index theorem. So $1=c_{2}\left(\mathscr{E}^{\prime \prime}\right)=c_{2}(2)+F\left(A^{\prime \prime}-F\right)=c_{2}(\mathscr{2})-F^{2}$. On the other hand $c_{2}(\mathscr{2}) \geqq 0$ (see Appendix). Hence $F^{2}=-1$ and $c_{2}(\mathscr{Q})=0$. So we may assume that μ is the blowing-up at a point and F is the exceptional curve. Since $H^{2}\left(\mathscr{E}^{\prime \prime}\right)=0$, we have $h^{1}(\mathscr{2}) \geqq h^{2}\left(M^{\prime \prime}, F\right)=1$. Now we get a contradiction to (2.20).
viii) Since $c_{1}(\mathscr{2})=A$ and $c_{2}(2)=c_{2}(\mathscr{E})=1$, we have $\chi(2)=0$ by RiemannRoch theorem. We have also $h^{1}(\mathscr{Q}) \geqq h^{2}(\mathcal{O})-h^{2}(\mathscr{E})=1$. Hence, by the induction hypothesis, $h^{0}(\mathscr{Q})=h^{1}(\mathscr{Q})=1$ and $H^{1}\left(\mathscr{Q}^{\breve{ }}\right) \otimes H^{0}(\mathscr{Q}) \rightarrow H^{1}\left(\mathcal{O}_{M}\right)$ is injective.
ix) Let $e \in H^{1}\left(\mathscr{Q}^{`}\right)$ be the extension class of the exact sequence (\#\#). The mapping $H^{0}(\mathscr{2}) \rightarrow H^{1}\left(\mathcal{O}_{M}\right)$ in the long exact sequence is injective since e is a generator of $H^{1}\left(\mathscr{Q}^{`}\right)$. Hence $h^{0}(\mathscr{E})=h^{1}(\mathscr{E})=1$, proving 1). Moreover, the map-
ping $H^{1}\left(\mathcal{O}_{M}\right) \rightarrow H^{1}(\mathscr{E})$ in the long exact sequence is surjective and is the Serre dual of $H^{1}\left(\mathscr{E}^{\vee}\right) \rightarrow H^{1}\left(\mathcal{O}_{M}\right)$ induced by $\varphi \in H^{0}(\mathscr{E})$ giving (\#\#). From this we obtain 2).

Thus we complete the proof of (2.21).
(2.22) Lemma. Let \mathscr{E} be an ample vector bundle as in (2.21). Then there is a point o on C such that $\mathscr{E} \simeq \mathscr{E}_{r}(C, o)$.

Proof. We use the induction on r. When $r=2$, for some point p on C, we have an exact sequence $0 \rightarrow \mathcal{O}[F] \rightarrow \mu^{*} \mathscr{E} \rightarrow \mathcal{O}\left[\mu^{*} A-F\right] \rightarrow 0$ as in (2.21), where $\mu: M^{\prime \prime} \rightarrow M$ is the blowing-up at p and F is the exceptional curve. Let o be the point on C such that $p+o$ is a canonical divisor on C. Then, by (2.18), we have an exact sequence $0 \rightarrow \mathcal{O}[F] \rightarrow \mu^{*} \mathscr{E}_{2}(C, o) \rightarrow \mathcal{O}\left[\mu^{*} A-F\right] \rightarrow 0$. Since $h^{1}\left(2 F-\mu^{*} A\right)$ $=1$, these sequences are isomorphic and hence $\mathscr{E} \simeq \mathscr{E}_{2}(C, o)$. When $r>2$, let $0 \rightarrow \mathcal{O} \rightarrow \mathscr{E} \rightarrow \mathscr{Q} \rightarrow 0$ be the sequence (\#\#) in (2.21; vii). By the induction hypothesis $\mathscr{2} \simeq \mathscr{E}_{r-1}(C, o)$ for some point o on C. So (\#\#) is isomorphic to $0 \rightarrow \mathcal{O} \rightarrow \mathscr{E}_{r}(C, o) \rightarrow \mathscr{E}_{r-1}(C, o) \rightarrow 0$ in (2.18) since $h^{1}\left(\mathscr{Q}^{`}\right)=1$. Thus we prove the lemma.
(2.23) Now we come back to the situation (2.17). We claim $h^{0}(\mathscr{E} \otimes N)>0$ for some $N \in M^{*}$, the Picard scheme $\operatorname{Pic}^{0}(M)$ of M.

We will derive a contradiction assuming the contrary. Let L be the Poincaré bundle on $M \times M^{*}$ and let f (resp. g) be the projection onto M (resp. M^{*}). Set $\mathscr{F}=f^{*} \mathscr{E} \otimes L$. Since $\chi(\mathscr{E} \otimes N)=0$ by Riemann-Roch theorem, we have $h^{q}(\mathscr{E} \otimes$ $N)=0$ for any $q \geqq 0$ and $N \in M^{*}$ by assumption and (2.19). So $R^{q} g_{*} \mathscr{F}=0$ and hence $H^{q}\left(M \times M^{*}, \mathscr{F}\right)=0$ for any q.
Let o be the origin of M regarded as the Picard scheme of M^{*}. Set $M_{x}^{*}=$ $f^{-1}(x)$ for $x \in M$ and let L_{x} (resp. \mathscr{F}_{x}) be the restriction of L (resp. \mathscr{F}) to M_{x}^{*}. Then $h^{q}\left(M_{x}^{*}, L_{x}\right)=0$ for any q if $x \neq 0$. So $h^{q}\left(M_{x}^{*}, \mathscr{F}_{x}\right)=0$ since \mathscr{F}_{x} is a direct sum of L_{x} 's. Hence $R^{q} f_{*} \mathscr{F}=0$ on $M-\{o\}$. We have in fact $\operatorname{Supp}\left(R^{2} f_{*} \mathscr{F}\right)=$ $\{o\}$ since $h^{2}\left(M_{o}^{*}, \mathscr{F}_{o}\right)=r h^{2}\left(M_{o}^{*}, L_{o}\right)=r$. Now, using the Leray spectral seuqnce of \mathscr{F} with respect to f, we infer $h^{2}\left(M \times M^{\prime \prime}, \mathscr{F}\right)=h^{0}\left(M, R^{2} f_{*} \mathscr{F}\right)>0$, contradicting the preceding observation. Thus we prove the claim.

Combining this claim and (2.22), we infer $\mathscr{E} \simeq \mathscr{E}_{r}(C, o) \otimes N$ for some point o on C and a numerically trivial line bundle N on M. So $(P, H) \simeq\left(P_{r+1}(C, o)\right.$, $\left.H_{r+1}(C, o) \otimes \pi^{*} N\right)$, where $\left(P_{r+1}(C, o), H_{r+1}(C, o)\right)$ is the Jacobian scroll of (C, o) as in (2.18).
(2.24) Now we study the case $n=\operatorname{dim} M \geqq 3$ and $g(M, A)=2$. Let D_{1}, \ldots, D_{n-2} be general members of $|t A|$ for $t \gg 0$ and let $S=\bigcap_{j} D_{j}$. Then S is a smooth surface and \mathscr{E}_{S} is ample. Hence $A^{n-2} c_{2}(\mathscr{E})=t^{2-n} c_{2}\left(\mathscr{E}_{S}\right)>0$. Similarly $A^{n-2} s_{2}(\mathscr{E})>$ 0 . So $A^{n}=\left(c_{2}(\mathscr{E})+s_{2}(\mathscr{E})\right) A^{n-2} \geqq 2$. In addition, by (1.3), we have $A C \geqq r \geqq 2$ for any rational curve C in M. Therefore, using [F6; (1.10)], we infer that M is a double covering of \mathbf{P}_{α}^{n} with branch locus being a smooth hypersurface of degree six and A is the pull-back of H_{α}. The intersection T of $(n-2)$ general members of
$|A|$ is a K3-surface. The restriction \mathscr{E}_{T} is ample and $g\left(T, \operatorname{det}\left(\mathscr{E}_{T}\right)\right)=2$. This contradicts (2.12).

Thus, the case $n \geqq 3$ is ruled out.
(2.25) Summarizing we obtain the following

Theorem. Let \mathscr{E} be an ample vector bundle of rank $r \geqq 2$ on a manifold M of dimension $n \geqq 2$. Suppose that $g(M, A)=2$ for $A=\operatorname{det}(\mathscr{E})$. Then $n=2$ and one of the following conditions is satisfied. The associated scroll of (M, \mathscr{E}) is denoted by (P, H) below.

1) M is the Jacobian variety of a smooth curve C of genus two and $\mathscr{E} \simeq$ $\mathscr{E}_{r}(C, o) \otimes N$ for some numerically trivial line bundle N on M, where $\mathscr{E}_{r}(C, o)$ is the Jacobian bundle for some point o on $C(c f .(2.18)) . \quad A^{2}=2$ and $H^{r+1}=1$.
2) $M \simeq \mathbf{P}(\mathscr{F})$ for some stable vector bundle \mathscr{F} of rank two on an elliptic curve C with $c_{1}(\mathscr{F})=1$. There is an exact sequence $0 \rightarrow \mathcal{O}_{M}\left[2 H(\mathscr{F})+\rho^{*} G\right] \rightarrow \mathscr{E} \rightarrow$ $\mathcal{O}_{M}\left[H(\mathscr{F})+\rho^{*} T\right] \rightarrow 0$, where G and T are line bundles on C and ρ is the morphism $M \rightarrow C . \quad A^{2}=3$ and we have either
$2-\mathrm{i}) \quad \operatorname{deg}(T)=1, \operatorname{deg}(G)=-2$ and $H^{3}=1$, or
2-ii) $\operatorname{deg}(T)=0, \operatorname{deg}(G)=-1$ and $H^{3}=2(c f$. (2.7)).
$\left.2^{\#}\right) \quad M, \mathscr{F}, C$ and ρ are as in 2) and $\mathscr{E} \simeq \rho^{* \mathscr{G}} \otimes H(\mathscr{F})$ for some stable vector bundle \mathscr{G} of rank three on C with $c_{1}(\mathscr{G})=-1 . \quad A^{2}=3$ and $H^{4}=2(c f .(2.6))$.
3) $M \simeq \mathbf{P}(\mathscr{F})$ and $\mathscr{E} \simeq \rho^{*} \mathscr{G} \otimes H(\mathscr{F})$ for some semistable vector bundles \mathscr{F} and \mathscr{G} of rank two on an elliptic curve C, where ρ is the morphism $M \rightarrow C$. Moreover $\left(c_{1}(\mathscr{F}), c_{1}(\mathscr{G})\right)=(1,0)$ or $(0,1) . \quad P$ is the fiber product of $\mathbf{P}(\mathscr{F})$ and $\mathbf{P}(\mathscr{G})$ over $C . \quad A^{2}=4$ and $H^{3}=3(c f$. (2.4)).
4) $-K$ is ample, $K^{2}=1$ and $A=-2 K . \quad M$ is the blowing-up of \mathbf{P}^{2} at eight points. Moreover we have either

4-a) $\mathscr{E} \simeq[-K] \oplus[-K]$ and $H^{3}=3$, or
4-b) $\quad c_{2}(\mathscr{E})=3, r=2$ and $H^{3}=1(c f .(2.8))$.
$\left.5_{0}\right) \quad M \simeq \mathbf{P}_{\alpha}^{1} \times \mathbf{P}_{\beta}^{1}$ and $\mathscr{E} \simeq\left[H_{\alpha}+2 H_{\beta}\right] \oplus\left[H_{\alpha}+H_{\beta}\right] . \quad A^{2}=12$ and $H^{3}=9$ (cf. (2.9)).
$\left.5_{1}\right) \quad M$ is the blowing-up of \mathbf{P}_{α}^{2} at a point and $\mathscr{E} \simeq\left[2 H_{\alpha}-E\right] \oplus\left[2 H_{\alpha}-E\right]$, where H_{α} is the pull-back of $\mathcal{O}(1)$ of \mathbf{P}_{α}^{2} and E is the exceptional curve. $A^{2}=12$ and $H^{3}=9(c f .(2.10))$.

Remark. The existence of a vector bundle of the above type 2) is uncertain. The others do really exist.

§3. $\mathcal{O}(1)$-sectional genus

(3.1) For an ample vector bundle \mathscr{E} of rank $r \geqq 2$ on a manifold M, the $\mathcal{O}(1)$-sectional genus is defined to be $g(P, H)$, where $P=\mathbf{P}(\mathscr{E})$ and H is the tautological line bundle on it. As a part of classification theory of polarized manifolds of small sectional genera (cf. [F5] and [F6]), we get the following results. Proofs are easy and omitted.
(3.2) Theorem $g(P, H)=0$ if and only if either

1) $M \simeq \mathbf{P}^{1}$, or
2) $\quad M \simeq \mathbf{P}_{\alpha}^{n}$ and $\mathscr{E} \simeq H_{\alpha} \oplus H_{\alpha}$.
(3.3) Theorem. $g(P, H)=1$ if and only if
3) M is an elliptic curve,
4) $\quad M \simeq \mathbf{P}_{\alpha}^{2}$ and $\mathscr{E} \simeq 2 H_{\alpha} \oplus H_{\alpha}$,
5) $M \simeq \mathbf{P}_{\alpha}^{2}$ and $\mathscr{E} \simeq H_{\alpha} \oplus H_{\alpha} \oplus H_{\alpha}$,
6) $M \simeq \mathbf{P}_{\alpha}^{2}$ and \mathscr{E} is the tangent bundle, or
7) $M \simeq \mathbf{P}_{\sigma}^{1} \times \mathbf{P}_{\tau}^{1}$ and $\mathscr{E} \simeq\left[H_{\sigma}+H_{\tau}\right] \oplus\left[H_{\sigma}+H_{\tau}\right]$.
(3.4) Theorem. $g(P, H)=2$ if and only if
8) M is a smooth curve of genus two,
9) (M, \mathscr{E}) is of one of the types in (2.25), or
10) $\quad M$ is a hyperquadric in \mathbf{P}^{4} and $\mathscr{E} \simeq \mathcal{O}(1) \oplus \mathcal{O}(1)$.

Appendix. Chern classes of semipositive vector bundles

Definition. A vector bundle \mathscr{E} on a variety V is said to be semipositive if the tautological line bundle $H(\mathscr{E})$ on $\mathbf{P}_{V}(\mathscr{E})$ is nef, i.e., $H(\mathscr{E}) C \geqq 0$ for any curve C in $\mathbf{P}_{V}(\mathscr{E})$.

The following facts are obvious by definition.
(1) $f^{*} \mathscr{E}$ is semipositive for any morphism $f: W \rightarrow V$.
(2) Any quotient bundle of \mathscr{E} is semipositive.
(3) $\mathscr{E} \otimes A$ is ample for any ample line bundle A.

Besides these, many (I should say most) results on ample vector bundles have semipositive versions. For example we have:

Theorem. $\quad c_{n}(\mathscr{E}) \geqq 0$ for $n=\operatorname{dim} V$.
This fact is well-known among experts, but I do not know a good reference. So we give here a proof since we use this in the text.

Proof of the theorem. By base change we may assume that V is smooth, projective and hence is a submanifold of \mathbf{P}_{α}^{N} with homogeneous coordinate ($\alpha_{0}: \cdots$: α_{N}). We may further assume that the hyperplane section $D_{i}=V \cap\left\{\alpha_{i}=0\right\}$ is smooth for each i and that $D=D_{0}+\cdots+D_{N}$ has no singularity other than normal crossings. Suppose that $c_{n}(\mathscr{E})<0$. Then $\sum_{j=0}^{n} c_{n-j}(\mathscr{E}) H_{\alpha}^{j} / m^{j}<0$ for some large integer m. Let $f: \mathbf{P}_{\beta}^{N} \rightarrow \mathbf{P}_{\alpha}^{N}$ be the morphism defined by $f\left(\beta_{0}: \cdots: \beta_{N}\right)=$ $\left(\beta_{0}^{m}: \cdots: \beta_{N}^{m}\right)$. Then $M=f^{-1}(V)$ is smooth and $f^{*} H_{\alpha}=m H_{\beta}$. Hence $c_{n}\left(\mathscr{E}_{M} \otimes H_{\beta}\right)=$ $\sum_{j=0}^{n} c_{n-j}\left(\mathscr{E}_{M}\right) H_{\beta}^{j}<0$ by the choice of m. This contradicts [BG] since $\mathscr{E}_{M} \otimes H_{\beta}$ is ample on M by (1) and (3). Thus we conclude $c_{n}(\mathscr{E}) \geqq 0$.

Corollary. $\quad c_{1}(\mathscr{E})=\operatorname{det}(\mathscr{E})$ is nef.

References

[A] M. F. Atiyah, Vector bundles over an elliptic curve, Proc. London Math. Soc., (3) 7 (1957), 414-452.
[BPV] W. Barth, C. Peters and A. Van de Ven, Compact Complex Surfaces, Ergebnisse der Math. u. ihr. Grnzg. 3. Folge, Band 4, Springer, 1984.
[BG] S. Bloch and D. Gieseker, The positivity of the Chern classes of an ample vector bundle, Invent. Math., 12 (1971), 112-117.
[F1] T. Fujita, On the structure of polarized varieties with Δ-genera zero, J. Fac. Sci. Univ. of Tokyo, 22 (1975), 103-115.
[F2] T. Fujita, On the structure of polarized manifolds with total deficiency one, part I, II, III, J. Math. Soc. Japan, 32 (1980), 709-725 \& 33 (1981), 415-434 \& 36 (1984), 75-89.
[F3] T. Fujita, On hyperelliptic polarized varieties, Tôhoku Math. J., 35 (1983), 1-44.
[F4] T. Fujita, Polarized manifolds of Δ-genus two, J. Math. Soc. Japan, 36 (1984), 709-730.
[F5] T. Fujita, Polarized manifolds whose adjoint bundles are not semipositive, in Algebraic Geometry Sendai 1985, pp. 167-178, Advanced Studies in Pure Math. 10, Kinokuniya, Tokyo, 1987.
[F6] T. Fujita, Classification of polarized manifolds of sectional genus two, in Algebraic Geometry and Commutative Algebra, in Honor of Masayoshi NAGATA, pp. 73-98, Kinokuniya, Tokyo, 1988.
[Ha] R. Hartshorne, Ample vector bundles, Publ. Math. I. H. E. S., 29 (1966), 63-94.
[Hi] H. Hironaka, Flattening theorem in complex analytic geometry, Amer. J. Math., 97 (1975), 503-547.
[M] Y. Miyaoka, The Chern classes and Kodaira dimension of a minimal variety, in Algebraic Geometry Sendai 1985, pp. 449-476, Advanced Studies in Pure Math. 10, Kinokuniya, Tokyo, 1987.
[S] R. L. E. Schwarzenberger, Jacobians and symmetric products, Illinois J. Math., 7 (1963), 257-268.
[V] A. Van de Ven, On uniform vector bundles, Math. Ann., 195 (1972), 245-248.

