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Ample vector bundles of small ¢ -sectional genera
By

Takao Fuinta

Introduction

Let & be a vector bundle of rank r on a compact complex manifold M of
dimension n. Let P = P(&) be the associated P""*-bundle and let H = H(&) be
the tautological line bundle @(1) on P. & is said to be ample if so is H on P. In
this case A = det (&) is also ample on M. The c¢,-sectional genus g of & is defined
to be g(M, A), which is determined by the formula 2g(M, 4) — 2 =(K + (n —
1)A)A"!, where K is the canonical bundle of M. Then g(M, A) is a non-negative
integer by [F5]. In this paper we establish a classification theory of the case
g(M, A) £2. The case r =1 was treated in [F6] and we study here the case
r>1. In §l, we study the case g =0 or 1. The case g = 2 is studied in §2. The
main theorem is in (2.25). In §3, we give a classification according to the sectional
genus of (P, H).

The author thanks Professor S. Mukai for helpful comments during the
preparation of this paper.

We employ similar notation to that in our previous papers on polarized
manifolds.

§1. Thecaseg <1

(1.1) Throughout this paper let & M, P, H, A and K be as in the introduc-
tion. We further assume that n =2 and r = 2.

(1.2) The canonical bundle K* of P is n*(K + A) — rH, where 7 is the
projection P—- M. So 2g(P,H)—2=(KP+(n+r—2)H)H"*"" 2=(n—2)H"" ' +
H™ " 2n*(K + A) = (n — 2)5,(8) + (K + A)s,_ (&), where s,(&) is the j-th Segre
class of & The total Segre class s(&) is related to the Chern class by the formula
s(€)c(€7) = 1. Thus, in particular, we have 2g(P, H)—2=(K + A)A =2g9(M, A) —
2 and g(P, H)=g(M, A) in case n = 2.

Remark. If M were a curve, both g(P, H) and g(M, A) would be equal to the
genus of M. However, if n = 3, g(P, H) # g(M, A) in general.

(1.3) Lemma. AC = r for any rational curve C in M.
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Proof. Let f:P!— C be the normalization. Then f*&. is ample and is a
direct sum of line bundles. Hence AC = deg (f*&:) =r.

Remark. If AC = r, then f*&. is a direct sum of ((1)’s.

(1.4) Theorem. If g(M, A)=0, then M ~P}, & = H,® H,, P ~ P} x P} and
H = H, + H,.

Proof. We have 4(M, A)=0 by [F5]. Using (1.3) and [F1] we infer
(M, A) ~ (P2, 2H,). Moreover & ~ O(1)® O(1) for any line £ in M. This implies
& ~H,® H, by [V].

Alternately, one can argue as follows: By (1.2) we have g(P, H)=0. So
A(P, H)=0. Obviously (P, H) is a scroll over P2, By the theory in [F1], this
implies (P, H) ~ (P? x P;, H, + Hp).

(1.5) Theorem. If g(M, A) =1, then (M, &) is one of the following:
1) M~P?and & ~2H,® H,.

2) M ~P?and & is the tangent bundle of P2.

3)) M=P2and & ~H,® H,® H,.

4 M~P)}xPjand & ~[H, + H;]@® [H, + H;].

5 M~P}and & ~H,® H,.

Proof. By (1.3), (M, A) cannot be a scroll. So (M, A) is a Del Pezzo mani-
fold. Moreover, by (1.3), the two-dimensional rung S of (M, A) contains no
exceptional curve. Hence S~ P2 or P! x P!. This implies (M, 4) ~ (P2, 3H,),
(P; x P, 2H, + 2H,) or (P;, 2H,) by [F2].

If n =2, we have g(P, H)=1 by (1.2). So (P, H) is also a Del Pezzo mani-
fold. Since b,(P) 2 2 and dim P = 3, using the theory in [F2] we infer that P is
either

1) the blowing-up of P* at a point,

2) a general member of |H, + Hy| on P? x P,?,

3) PZxP}or

4) P} xP; x P
In these cases we easily see that (M, &) is of the corresponding type in the
statement of the theorem.

If (M, A)~(P2,2H,), then & ~ O(1)® (1) for any line £ in M. So & ~
H,® H,. Thus we are in case 5).

Remark. In case 5), (P, H) is the Segre product of (P2, H,) and (P, Hy). So
g(P, H) = 0.

§2. The case g =2

(2.1) In this section we assume g(M, A) = 2. First we study the case n = 2.

(2.2) d(P,H)= H""' = 5,(6) = ¢,(6)* — ¢,(€). Since ¢, >0 by [BG], we
have 42 = d(P,H) + ¢, = 2.
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(2.3) In view of (1.3), (2.2) and the classification theory of polarized surfaces
of sectional genus two (see [F6; §4]), we infer that (M, A4) is one of the following
types:

1) K~0and A2 =2.

2) M is a P'-bundle over an elliptic curve C, AF =2 for any fiber F and
A% = 4.

3) M is as above and AF = A2 = 3.

4 —Kisample, A= —2K and K2=1. A*=4.

50) M=~P}xPjand A =2H,+3H; A*=12

5,) M is the blowing-up X, of P? at a point and A = 4H, — 2E, where E is
the exceptional curve. A42? = 12,

The case 1) will be studied after the others. See (2.11).

(2.4) Suppose that (M, A4) is of the type (2.3;2). Then M ~ P.(¥) for some
vector bundle # of rank two over C with f=¢;(¥)=0 or 1. Moreover, by
[F6;(4.5)], A = 2H(F) + p*B for some B e Pic(C) with b = deg B =1 — f, where
p is the map M — C and H(¥) is the tautological line bundle on P(%).

Since AF = 2, we have &y ~ O(1) ® O(1) for every fiber X of p. Hence ¥ =
(6 ®[—H(F)]) is a locally free sheaf of rank two on C and & ~ p*% ® H(¥%).
Clearly ¢,(%) = B, ¢,(6) = ¢,(9)H(F) + H(F)*> = 1 and d(P, H) = H® = 5,(6) = 3.

Since & ~ p*9 ® H(F), (P, H) can be viewed as a scroll over N = P.(9).
More precisely, P ~ Py(%#y ® H(%)) and H is the tautological line bundle on it.
Furthermore, P is the fiber product of M and N over C.

We claim that & and ¢ are semistable. By the above symmetry it suffices to
consider &# only. Let Q be a quotient line bundle of & and set g = ¢(Q). Then
p has a section Z with H(#)Z = q. Since 0 < AZ =2q + 1 — f, we have ¢ > 0 if
f=1,and g =20if f =0. This implies the claim.

(2.5) Conversely, let #, 4 be semistable vector bundles of rank two over an
elliptic curve C with (¢,(%), ¢,(9)) =(1,0) or (0,1). Then & = p*9 ® H(Z) is an
ample vector bundle on M = P.(¥) of the type (2.3; 2).

This is clear except the ampleness of &. We should show the ampleness of
H(&) on P =Py,(&). We may assume ¢,;(¥)=1 and ¢,(¥) =0 by symmetry.
Then H(¥) is ample on M and H(%) is nef on N =P(%) by the theory in
[M;§3]. So we easily see that H(¥) + H(%) = H(6) is ample on P. Thus we
complete the proof.

(2.6) Suppose that (M, A) is of the type (2.3;3). By [F6;(4.5)], M ~ P(¥)
for some indecomposable vector bundle # of rank two over C with ¢,(¥) =1 and
A =3H(¥)— F for some fiber F of p: M - C. We have r < AF =3 by (1.3).
Note that & is stable.

When r = 3, similarly as in (2.4), we see & ~ p*¥9 ® H(¥) for some vector
bundle ¢ of rank three on C. So c,(p*%) = —F, ¢,(8) = 2¢,(%)H(F) + 3H(F)?
=1 and d(P, H) = H* = 5,(6) = 2.

Let Q be any quotient bundle of 4 of rank one. Then Q + H(¥) is an ample
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line bundle since it is a quotient of &. Restricting to a section Z of p with
H(F)Z =1, we get deg (Q) = 0. We have t = deg (T) < 0 for any subbundle T of
% of rank one. Indeed, & = p*(%/T) ® H(¥) is ample since it is a quotient of &.
Hence 0 < c¢,(6')* = QH(F) — (t + 1)F)? = —4t. Combining these observations
we conclude that % is stable.

Conversely, for any stable vector bundle 4 of rank three with ¢,(¥)= —1 on
C, & = p*9 ® H(¥) is an ample vector bundle of the type considered here. This
is obvious except the ampleness. To see the ampleness, note that P = P(&) is the
fiber product of M and N = P(%) over C, and that H(6) = H(¥)p + H(%)p. By
the theory in [M;§3], 2H(&) — F is nef on M and 3H(%) + F’ is nef on N, where
F' is a fiber of N— C. Hence 6H(&) — F =3QH(¥) — F)p + 2(3H(9) + F')p is
nef on P. So H(&) is ample.

(2.7) Next we consider the case r = 2. Then &y ~ O(2) ® (1) for any fiber
X of p. So ¥ =p, (6 ®[—2H(F)]) is an invertible sheaf on C. We have an
exact sequence 0 — p*¥9 ® [2H(F)] —» & — O[Q] — 0 for some line bundle Q. Then
Q =det (&) — p*9 —2H(¥) = H(F) + p*T for some T e Pic (C) with deg(¥) +
deg (T)= —1. We have deg (T)=0 since Q is ample. On the other hand ¢,(€) =
(p*9 + 2H(F))(H(F) + p*T) =2+ 2deg(T) + deg(9) =1+ deg(T) and 0<
55(8) =3 —c,(8). Sodeg(T)=0or 1. Thus:

1) deg(T)=1,deg (%)= —2,¢c,(6)=2and H> =5,(&) =1, or

2) deg(T)=0,deg(9) = —1,c,(6)=1and H® =2.

Remark. Both types seem to exist really. But we have troubles in showing
the ampleness of &.

(2.8) Suppose that (M, A) is of the type (2.3;4). By (1.3), rank (&) = 2 since
AE = 2 for any exceptional curve E on M. We easily see that & is A-semistable.
We have ¢,(€) = 1, 2 or 3 since 4 = A% = ¢,(6) + 5,(&).

(2.8.1) In case c,(€) = 1, we have ¢,(F) =0 = c,(¥) for F =E®[K]. So
y(#F)=2 by the Riemann-Roch theorem. We have h*(#)=h%(&")=h°(®[2K])
and h°(M, —K) =2. Therefore 2 < h°%(F) = h°(P, H + n*K). For any member
D of |H + n*K|, we have H2D = s,(6) + 5,(§)K = 1. Hence D is irreducible and
reduced since H is ample. So dim (DND’)<2 for any other member D' of
|H + n*K|. We have HDD' = H(H + n*K)?> =0. Hence DND' = J since H is
ample. So D and D' are disjoint sections of 7. This implies # ~ 0@ ¢ and & ~
O[-K]® 0[—K].

(2.8.2) In case c,(€)=2, we have ¢,(#)=0 and c,(#)=1 for F =6R[K].
So y(#)=1. We have also h*(%) = h°(& ® [2K]) £ h°(#). Hence h°(#) >0
and we have D e |H + n*K|. Then H2D = s,(&) + s,(§)K = 0, contradicting the
ampleness of H. Thus this case is ruled out.

(28.3) In case c,(&) =3, we have H>=5,(6)=1 and x(&)=2. Since
h*(&) = h°(& ® [3K]), we infer h°(&) =2, so dim|H|=1. In fact we have
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dim |H| = 1. Indeed, otherwise, 4(P, H) <1 and hence b,(P) £2 by [F2; Part
IIT]). This contradicts b,(M) = 9.

For any D e |H|, we have H?D = 1, so D is irreducible and reduced. More-
over, for any other member D’ of |H|, the scheme theoretical intersection Z of D
and D’ is an irreducible reduced curve of arithmetic genus two with HZ =1. By
definition of the Segre class, C = n(Z) represents s,(&€), so C € |A|. For every fiber
X of n over xe C, either DNX or D'NX is a simple point because otherwise
X = Z. Ths implies Z ~ C. This section Z of = over C yields an exact sequence
0—-F — & — 2 -0 of vector bundles over C and 2 is identified with the restric-
tion of Hto Z ~ C. So deg(2) =1 and deg (¥) = 3.

Let & and &' be the section in H°(M, &) ~ H°(P, H) corresponding to D and
D'. Then the restrictions of them in H°(C, &) come from H°(C, &) by construc-
tion. Thus they define members Y and Y’ of |#|. Clearly x € Supp (Y) if and
only if n7*(x) = D. 1In particular YNY' = ¢&. The structure of D is related to Y
as follows:

If Y consists of three different points (this is the case if D is a general member
of |H|), then n;,: D — M is the blowing-up at Y since c,() = 3. We have an exact
sequence 0 » O[Ey] - &, - O[nA — Ey] — 0 of vector bundles on D, where Ey is
the exceptional divisor over Y consisting of three (— 1)-curves.

If Y=p, +2p, for some p, # p,, let M, be the blowing-up of M at p, and
p,. The strict transform of C meets the (—1)-curve E, over p, at a point
ps. Let M, be the blowing-up of M, at p;. Then the strict transform E, of E,
is a (—2)-curve. Contracting E’, to an ordinary double point we obtain D.

If Y =3p,, let M, be the blowing-up of M at p, and let E, be the exceptional
curve over p,. Let p, be the meeting point of E, and the strict transform of
C. Let M, be the blowing-up of M, at p, and let E, be the exceptional
curve. Let p; be the meeting point of E, and the strict transform of C. Let M;
be the blowing-up of M,. Then the strict transforms of E; and E, on M; are
(—2)-curves meeting transversally at a point. Contracting them to a rational
double point of type A,, we obtain D.

Having these observations in mind, we will now show that such a vector
bundle does really exist. We take three points p,, p,, p; on M in a generic
position. Since h°(M, A) = 4, there is a unique member C of |A4| containing Y =
(Jp:. Let D be the blowing-up of M at Y and let E, be the exceptional divisor.
Then h'(D,2Ey — Ap) = h*(D,[— K], — Ey) = 1 since Y is in a generic position.
Moreover, for any general element e of H!(D, 2Ey — Ap), the restriction of e to E,,
the (—1)-curve over p;, is not zero for each i, because 0 = h'(D,[— K], — E, —
E))=h'(D,[-Klp—E,—E;) = h'(D,[-Klp—E; —E,). Let 0> O[Ey] > & —
O[Ap — Ey] — 0 be the extension of vector bundles on D induced by e. The
restriction of it to E; is a non-trivial extension 0 - O{—1) = &; - O(1) > 0, so the
restriction & of &' to E; is trivial. Hence & is the pull-back of a vector bundle &
on M. Obviously ¢,(€) = A, c,(&) = 3 and h°(E) = y(§) = 2. Thus it suffices to
show the ampleness of &.

Note that dim |— K| =1 and every member F of |— K] is irreducible and
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reduced since (—K)F =1 and —K is ample. So there are only finitely many
singular members of | — K| and each of them has only finite singular points. Let S
be the union of all such singular points of members of |—K]|. Since Y is in a
generic position, C is a general member of |4|. So we may assume that SNC =
and C is smooth.

Let J be the Jacobian variety of C and we fix a point o on C. For any
divisor X in M, we define v(X) = [Xc — (XC)o] € J. This depends only on the
linear equivalence class of X, and gives a mapping v: Pic (M) —» J. The image N
of v is a countable subset of the abelian variety J.

For any triple m = (m,, m,, m3) of positive integers, let u,: C x C x C—J be
the morphism defined by u,(x;, X,, x3) = [m;x, + myx, + myxy — (my + m, +
my)o]. Note that u = pu, ,,,, factors through the symmetric product C x C x
C /S5 of C, which is a P!-bundle over J.

We claim that u,, is smooth at a = (a,, a,, a;) if a;’s are three different points
on C. To see this, set b= pu,(a) and let du,,: Texcxc,a ™ Te,a, ® Te,0,®@ Te,a, = Tj
be the differential. Write du,, = 6, ® 6, ® 05 for 4, e Hom (T ,, T;,,). Let p’ be
the map defined by u'(x) = u(x) — u(a) + beJ and let du’ = d; @ d; @ 63 be its
differential at a. Then §; = m;d;. Since a;’s are different, C x C x C is étale at a
over the symmetric product. So pu and u' are smooth at a. Hence the images of
6/ generate T;,, and so do the images of §; = m;6;. This implies that dy, is
surjective, as desired.

From this claim we infer that every fiber of u, is a curve for any m. So
Js = Um#(p,' (N)) is a union of countably many curves.

For any pair k = (k,, k,) of positive integers, let w,;:C x C—J be the
morphism defined by pu(x,, x,)=[k,x, +k,x,—(k,+k;)0]. Then, similarly as
before, we infer that u;'(b) is finite for every beJ except b = [w — 20], where
w is the canonical bundle of C. Therefore N' = {(x,, x,) € C x C|x; + x, ¢ |o|
and p(x,, x,) € N for some k} is a countable set. Let f:C x C x C— C x C be
the projection and let J, = u(f~*(N’)). Then J, is a union of countably many
curves.

Now, since p;s are in a generic position, we may assume u(p,,p,,ps)¢J, UJ;.
We may assume also Bs|Y| = on C. We will now prove that H = H(&) is
ample on P = P(&).

We will derive a contradiction assuming HX = 0 for some curve X in P.
Since h°(P, H) = h°(M, &) = 2, there is a member D' of |H| such that D'NX # .
Then X = D' since HX = 0. Let Y' = p] + p; + p3 be the member of | Y| corre-
sponding to D'. Then D’ is obtained from M by several belowing-ups over Y,
possibly followed by a contraction yielding a rational double point. In any case
D'ND = Z is the strict transform of C on D’. Since HX =0, we have ZNX = &.
So n(Z)Nn(X) = Supp(Y").

If 7(X)NC consists of three points, then so does Y’ and n(X). = m,p; +
myp5 + myps in Pic(C). This implies u,(p}, p3, p3) € N for m = (m;, m,, m3) and
u(py, P2, p3) € J5.  On the other hand, u(p}, p3, p3) = u(py, p2, p3) since Y' =Y in
Pic(C). This contradicts u(p,, p, P3) € J3-
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If 7(X)NC consists of two points, set n(X)c = kyp; + k,p5 and Y' =pj +
p, + p5. We have p; + p5 ¢ |w| because otherwise p3e Bs|Y'| = Bs|Y| Hence
(pi, py) € N' and u(py, p,» P3) = w(p1, 3, P3) € J,, contradicting the choice of Y.

If n(X) meets C at only one point p’, we claim that Y’ is of the form 2p’ + ¢’ for
some q' € C (possibly q' = p’). Indeed, otherwise, D’ is isomorphic to the blowing-
up M, of M at p’ over a neighborhood of p’. So the strict transforms X; and C,
of n(X) and C on M, do not meet. On the other hand, the member F of |- K|
passing p’ is smooth at p’ since SNC = . The strict transform F, of F on M, is
a member of |—K — E'| with F? =0, where E' is the exceptional curve and K
denotes the pull-back of K by abuse of notation. Then C, = —K + F; in Pic (M,)
and 0=X,C, = —K-n(X)>0. Thus we infer Y'=2p'+¢q’. This implies (p’,q') e
N’ as before and hence u(p,, p,, p3) = u(p1, 5, p3) € J,, a contradiction.

Now we have proved HX >0 for any curve X in P. We have H?D'=HZ =1
for any member D' of |[H|. For any irreducible surface W of P, there is a member
D' of |H| such that DNW # . So H*W = HD'W >0. Of course H>=1.
Conseuently H is ample by Nakai’s criterion.

(2.9) Suppose that (M, A) is of the type (2.3; 5,). For any fiber F of f: M —
P;, we have AF =2. So r=2 and & ~0O(1)® O(1). Hence & ~ f*4$® [H,]
for some vector bundle 4 on Pﬁ}. Restricting to a fiber of M — P!, we infer that
% is ample. So ¥ ~ (¢(2)® O(1). Thus we conclude & ~[H, + 2H,]1® [H, +
Hg]. Hence ¢,(&) = 3 and s5,(&) = 9.

(2.10) Suppose that (M, A) is of the type (2.3;5,). Set L = H,. There is a
morphism f: M — P; such that f*H; = L — E and every fiber F of f is P!. Since
AF =2, we infer & ~ O(1) ® O(1) for any F. So & ~ f*4 ® L for some vector
bundle % on P;. Since E is a section of f and Ly =0, ¢ can be identified with
6p. In view of AE =2, we infer ¥ ~ Hy® H;. So & ~[2L — E]® [2L — E].
Hence ¢,(€) = 3 and s,(8) = 9.

Remark. The polarized manifold (P, H) is the Segre product of (X', 2L — E)
and (P}, H,). On the other hand, (P, H) is a scroll over P; x P; via the morphism
i, x f, where i, is the identity of P!. This gives a vector bundle of the type
(2.9). Thus, the polarized manifold (P, H) in case (2.9) is isomorphic to that
here. This can be viewed also as a hyperquadric fibration over P;. Compare
[F6; (3.29)].

(2.11) From now on, we study the case (2.3;1). We have 2 =(K + A)4 =
A% = ¢,(&) + 5,(&). Therefore d(P, H) = s,(&) = c,(§) = 1. Hence (M, &)=
ry(M, ©) by Riemann—Roch theorem.

We have also h*(M, &) = 0. Indeed, otherwise, there would be a non-trivial
homomorphism & — 0),[K] by Serre duality. This is impossible since & is ample
and K ~ 0. Thus h°(M, &) = x(M, &) = ry(M, 0).

(2.12) We will derive a contradiction assuming y(M, 0) > 0. By classifica-
tion theory M is a K3-surface or an Enriques surface.
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If M is K3, we have h°(P, H) = h°(M, &) =2r. So AP, Hy=(r+1)+1—
h°(P,H) £ 2 —r. By the theory of 4-genus we infer r = 2 and (P, H) ~ (P3, 0(1)).
This is absurd.

If M is Enriques, let M be the universal covering of M. Let the pull-backs to
M be denoted by ~. We have h?(M, &) = 0 similarly as in (2.11). So h°(B, H) =
h(M, &) = (M, &) = 2y(M, &) = 2r. Since d(P, H) =2, this implies A(P, H) =
r+3-hP H<3-r=<i.

When 4(P, A) =0, then (P, H) is a hyperquadric. So b,(P)=1. This is
absurd since P is a scroll over M.

When 4(P, A) = 1, we infer from d(P, ) = 2 that P is a double covering of
P"*! with A being the pull-back of O(1) (see [F2]). Then, by [F3; (3.11)], by(P) =
1, yielding a contradiction.

(2.13) Thus we have (M, 0) <0. By the classification theory M is a com-
plex torus or a hyperelliptic surface. In the latter case, the Albanese variety is an
elliptic curve and the Albanese mapping makes M a fiber bundle over it with all
fibers being isomorphic to an elliptic curve. Moreover b,(M) = 2.

(2.14) Lemma. Let f:S — C be an analytic fiber bundle over a curve C with
all fibers being isomorphic to an elliptic curve. Let & be an ample locally free
sheaf on S of rank r = 2 such that ¢ (¥)X =1 for every fiber X of f. Then

1) &£ = f,F is an invertible sheaf on C with 6 = deg (¥) > 0,

2) € = Coker (f*¥ — £) is locally free,

3) % = f,¥ is an invertible sheaf of degree J,

4) f has a section Z such that det (¥) = Os[Z + f*B] for some line bundle B
on C of degree rd, and

5) ¢ (F)* = 2.

Proof. We have h°(X, %) =c,(#x) =1 for any fiber X. Moreover, any
section of %y comes from a trivial subbundle of #;. So & is invertible and ¥ is
locally free. We have also h'(X, %) =0 and R'f,# =0. So, using the exact
sequence 0 - f*¥ - F - € — 0, we infer f,€ ~ (R'f,)(f*¥). Let N be a line
bundle on C such that f*N is the relative canonical bundle of f. Then deg (N) =
0 since f is an analytic fiber bundle. By the Grothendieck duality we have
(R'f)(*P) ~f,(f*L) ® f*N)~ %  ® N. Putting things together we ob-
tain f, 4 ~ ¥ ® N~, which implies 3).

In order to show 4), we use the induction on r. If r = 2, € is invertible and
deg (¢x) = 1. So the support Z of Coker (f*% — %) is a section of f and € =
f*% ®[Z]. Hence det (F) = XL @ %) ®[Z], as desired. If r > 2, we apply
the induction hypothesis to € So det (¥) = O[Z + f*U] with deg (U) = (r — 1)é
by 3). Since det (¥) = det (%) ® f*.&, we get 4) for F.

By the adjunction formula we have (Z + N), =0. So Z? = 0, which implies
5). Finally we get 6 > 0 since det (#) is ample. Thus we complete the proof of
the lemma.
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(2.15) Lemma. Let f:S — C be the Albanese fibration of a hyperelliptic sur-
face S and let A be an ample line bundle on S with A> =2. Then |A| contains a
member of the form Z + X, where Z is a section of f and X is a fiber of f.

Proof. Tt is known (cf,, e.g., [BPV]) that there exists a curve Y in S such that
the restriction fy, of f to Y is étale and is of degree p < 3. Among such curves we
choose and fix a curve Y where u attains the minimum. Note that Y2 = 0.

Since h°(S, A) = x(S, A) = 1, the member D of |4] is unique. Let X be a fiber
of f. Then X and Y form a basis of H*(S; Q) since b,(S)=2. Set uAd ~yX +xY.
Then y = AY, x = AX and xy = u £ 3.

We will derive a contradiction assuming x > 1. This implies x = u4 and
y=1. We claim that D is irreducible and reduced. Indeed, otherwise, D =
D, + D, for some prime divisors D,, D, with AD, = AD, = 1. We may assume
YD, =1 and YD, =0 since YD =AY =1. Then D, is not a fiber of f because
u>1. So XD, >0. Hence XD, < AX = pu. On the other hand XD, > 0 since
Y+ tX is ample for t »0. From Y?=YD,=0 we infer D,> <0 by index
theorem. But S contains no rational curve and hence D,2>0. So D,>=0.
Hence D, — C is étale and of degree < u, contradicting the choice of Y. Thus we
prove that D is prime.

Let S’ be the fiber product of S and Y over C. Then G = Gal(Y/C) is a
cyclic group of order u. For each t€ G, let 6,: Y - §' be the morphism induced
by the inclusion Y— S and fyotw: Y—> C. Let Y, =1Im(0,). They are u disjoint
sections of f': S’ > Y. We have D'Y, = 1 for the pull-back D’ of D since AY = 1.

If §' is a complex torus, then Y’s are subtori and Q = S'/Y; is an elliptic
curve. Moreover D’ is a section of §'— Q since D'Y, = 1. This is absurd since
(D')* > 0 and g(D') > 1. Hence S’ is hyperelliptic and f’ is the Albanese fibration
of it.

For any fiber X' of f', we have D'~ X' + Y Y, since b,(S') =2. Hence
D'— X —Y% .Y, comes from Pic®($’)~ Pic®(Y). Hence D'=3 Y, in Pic(X’).
Let X be the image of X' in S. Then X'~ X and the above relation implies
Dy = Yy in Pic(X). Thus (4 — YY), = 0 in Pic (X) for every fiber X of f. Hence
¥ =f,(0[A —Y]) is invertible on C, O[A —Y]=f*¥ and 1 =Y(A4-Y)=
u-deg (&). This contradicts pu > 1.

Now we conclude x = 1. So y = u. Moreover h°(X, Ay) = 1 for every fiber
X and hence &£ = f,(O[A]) is invertible on C. The support Z of Coker (f*& —
O[A]) is a section of f and Z + X" € |A| for X" e |f*L|. We have AZ = AX" =1
and hence X" is a fiber of f. Thus we complete the proof.

(2.16) Suppose that M is hyperelliptic in (2.13). Let f: M — C be the
Albanese fibration. Then, by (2.15), AX =1 for any fiber X of f. So 2= A% =
2ré by (2.14;5). This contradicts r = 2. Thus we conclude that M is a complex
torus.

(2.17) Since h°(M, A) = (M, A) = 1, there is a unique member C of |A]|.
We claim that C is a smooth curve of genus two.
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Indeed, otherwise, C = X + Y for some elliptic curves X, Y with X2 = Y2 =0
and XY= 1. Then X is a subtorus and Q = M/X is an elliptic curve (in fact
M ~ X x Y). So, applying (2.14) to f: M — Q, we obtain a contradiction.

Thus M is the Jacobian variety of C.

(2.18) Before classifying vector bundles of the above type, we exhibit here
examples (cf. [S]).

Let 0 be a point on a smooth curve C of genus two. Let N,=Cx - x C
be the product of n-copies of C and let P, = N, /S, be the symmetric product. Let
M be the Jacobian variety of C and let n,: P, > M be the morphism induced by
the Albanese mapping of (C,0). Thus, =,(x,,...,x,) is the class of x; + - +
x, — no in Pic (C). It is well-known that =, is a P"~2-bundle for n > 2 and =, is
the blowing-up at the point p = [w — 20] € M.

Let fi: N,— C be the i-th projection and set 4, =7, fi*o. Let D, be the
divisor on P, whose pull-back to N, is 4,. Then D] =1 and D, is ample since so
is 4, on N, and 4}, = n!. Moreover D, ~ P,_, and the restriction of =, to D, is
identified with =,_;.

Let H, be the line bundle O[D,] on P,. We claim that the restriction of H,
to D, ~ P,_, is identified with H,_,. Indeed, N,_, ~ f;"!(0) and the pull-back of
H, via fi"'(0) —» D, is the restriction of [4,], so it is [4,_,]. Going down via
N,_, = D,, we prove the claim.

For any ye M, D,Nn;*(y) is a hyperplane in n,!(y) ~ P""2 unless n = 3 and
y =p. Hence (P,, H,) is a scroll over M and é,_, = (n,),0[H,] is a vector bundle
of rank n—1 for n>2. The section in H°P,, H)~ H°(M, &,_,) defining D,
yields an exact sequence 0 — Oy, > é6,_, > &,_, = 0 by the above claim. As for
&,, we have 0 > O[F] - u*&, - O[D,] - 0, where u: P, > M is the blowing-up at
p, F is the exceptional curve over p and D, ~ P, ~ C.

Now we see c,(6,) =s,(6,) = [u(D;)] = [,(P,)] and c,;(&) =1 =s,(5).
Thus &, is a vector bundle of the type in question. This will be called the
Jacobian bundle of rank r of (C,0) and will be denoted by &,(C, o). (P, H,) =
(P(&,-_,), O(1)) will be called the Jacobian scroll of (C, o).

(2.19) We continue to study vector bundles of the type (2.17).

Lemma. Let u: M' > M be a birational morphism and let 2 be a quotient
bundle of u*&. Then H*(M', 2® N') = 0 for any N’ € Pic® (M").

Proof. We have h*(2® N') £ h*(u*¢ ® N') = h*(M, & ® N), where N e
Pic® (M) ~ Pic(M’) and u*N = N’. If this is not zero, we have a non-zero
homomorphism & — N~ by Serre duality. This is impossible since & is ample.

(2.20) Lemma. Let p be a point on M and let uy: M' - M be the blowing-up
at p. Then there is no vector bundle 2 on M' satisfying the following properties:

1) g =rank (2) > 1.

2) 2 is a quotient bundle of u*é.

3) ¢,(2) = u*A — E,, where E, is the exceptional curve over p.
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4) ¢,(2)=0.
5) h°(2) = h'(2) > 0.

Proof. We will derive a contradiction from these conditions. We use the
induction on gq. Suppose that ¢ = 2. We have a non-zero homomorphism ¢ —» 2
by 5). Let 2° — € be the dual and let .# be the image of it. Let M”" — M’ be the
blowing-up of .# and let F be the divisor defined by the pull-back of £ Then we
have an exact sequence 0 » O[F] - 2" —» O[A" — E; — F] >0 of vector bundles
on M”, where the symbol " denote the pull-back to M”. Then 0 =c¢,(2") =
F(A — E, — F), where we omit the symbol " for the sake of convenience. We
consider the restriction of the above sequence over a general member I of |tA| for
t>0. Then A(A—E,— F)>0 since A—E,— F is a quotient of the ample
vector bundle . Moreover, A — E, — F is nef on M” since it is a quotient of
&". Therefore F(A — E, — F) =0 implies 0 < F(4 — E,) = F> <0 by the index
theorem. Thus (4 — E,)F = F2 = 0. Since (A — E,)? = 1, this implies F ~ 0 by
the index theorem. Hence # = @ and M" = M’'. We have 0> 0> 2 - O[A —
E,]—0 on M. Recall that A — E, is nef since it is a quotient of u*&. Hence
H'(E, — A) =0 by the vanishing theorem. Therefore the above sequence splits
and h2(2) = h*(0) = 1. This contradicts (2.19).

Now we consider the case ¢ = 3. Similarly as before, there is a birational
morphism M” — M’', an effective divisor F on M” and an exact sequence 0 —
O[F] - 2" - ¥ -0 of vector bundles on M". Since ¥~ is a quotient of &”, we
have ¢,(¥) =0 and ¢,(¥")= A — E, — F is nef (see Appendix). So 0 =c,(2") =
c,(7)+ ¢, (¥)F 20 and hence 0 = c,(¥") = ¢, (¥)F = F(A — E, — F). Similarly
as before we obtain A(4 — E, — F) > 0, hence F> £0,50 0 =(A4 — E,)F = F? and
F =0. Therefore M" = M’. 1t is then clear that ¥  satisfies 2), 3) and 4). So
x(¥)=0 by the Riemann-Roch theroem. Hence h°(¥")= h!(¥") by (2.19).
Moreover h*(¥") = h?(0) = 1 since h*(2”) =0 by (2.19). Thus ¥  satisfies 5) too,
contradicting the induction hypothesis.

(2.21) Lemma. Let & be an ample vector bundle on M such that r =
rank () > 1, det (&) = A4, c,(8) = 1 and h°(&) > 0. Then

1) h°%&) = h'(&) =1, and

2) the natural mapping H (&™) ® H°(&) - H'(Oy,) is injective, where &~ is the
dual bundle of &.

Proof. We use the induction on r.
i) When r =2, similarly as in (2.20), there are a birational morphism u:
M"” — M, an effective divisor F on M” and an exact sequence

(#) 0> O[F]> & — 0[A" — F] >0

of vector bundles on M”, where the symbol ” denote the pull-back to M". We
obtain A"(A” — F) > 0 by restricting over a general member of |tA4]| for ¢t » 0.

ii) Assume that A"F >0. Then A"F =1 since (4")*=2. So Z=u,F is
prime since AZ = A"F = 1. Moreover (A —2Z)A =0 implies 0 = (4 — 22)* =



12 Takao Fujita

4Z% — 2 by the index theorem. Hence Z2 =0 and Z is a subtorus of M. This
yields a contradiction as in (2.17). Thus we conclude A"F = 0.

iii) We have F2 = —1 since 1 = ¢,(§) = F(A” — F). Hence we may assume
that u is the blowing-up at a point p on M and F is the exceptional curve over p.

Using the exact sequence 0— Oy — Op[F]— Op(—1)—> 0O, we get hi(M”, F)=
hi(M", O\) = h'(M, O),) for any i. So, by the exact sequence (#), we have
h*(M”, A" — F) = h*(M", F) = 1 since h?*(€”)=0 by (2.19). On the other hand
¥(M”, A" — F) =0 by the Riemann-Roch theorem. Hence h°(M", A" — F) > 0.
This implies that p is a point on the unique member C of |4]. The strict
transform Y of C is the unique member of |[4” — F|.

iv) Let ee HY(M",2F — A") = H'(M", F — Y) be the extension class of the
exact sequence (#). Then er e H'(F, O(—2)) is not zero since & is trivial. On
the other hand Ker (H'(M",F — Y)— HY(F, O(-2)) = H'(M", —Y)=0 by Ra-
manujam’s vanishing theorem. Hence H!(M”", F — Y) is one-dimensional and e is
a generator of it.

v) Let 0—O[F — Y] - O[F] - Oy[F] >0 be the natural exact sequence.
Using the long exact sequence we infer that H'(M", F — Y) —» H'(M", F) is injec-
tive since h°(M", F — Y) =0, h°(M",F) =1 and h°(Y, F)=1. Hence H°(M", Y)®
H'(M",F — Y)— H*(M", F) is injective. So the mapping H°(M", Y) » H'(M", F)
induced by (#) is injective. This implies h°(M”, &") = h°(M”, F) = 1 and h'(M",
&) =1.

vi) Since H'(M”, 0) ~ H(M", F), the mapping ¢: H'(M", F)—> H*(M", &")
induced by (#) is essentially the Serre dual of H*(M, &) - H'(M, 0) induced by
a generator of H°(&)~ C. By the preceding observations we see that ¢ is
surjective. Combining them we prove 2).

vii) Now we consider the case r > 2. We claim that there is an exact
sequence

(##) 000->86->2-0

of vector bundles on M.

Indeed, since h°(&) > 0, there are a birational morphisrh u:M”"—> M, an
effective divisor F on M” and an exact sequence 0 — O[F] — " — 2 — 0 of vector
bundles on M”. It suffices to derive a contradiction assuming F # 0. We have
A"(A” — F)> 0 as in i), and A"F = 0 exactly as in ii). This implies F> <0 by the
index theorem. So 1 = c,(€") = ¢;(2) + F(A" — F) = ¢,(2) — F2. On the other
hand c,(2) =0 (see Appendix). Hence F?= —1 and c¢,(2)=0. So we may
assume that u is the blowing-up at a point and F is the exceptional curve. Since
H*(&") = 0, we have h'(2) = h*(M", F) = 1. Now we get a contradiction to (2.20).

viii) Since ¢,(2) = 4 and ¢,(2) = ¢,(8) = 1, we have x(2) = 0 by Riemann-
Roch theorem. We have also h'(2) = h*(0) — h?(6) = 1. Hence, by the induc-
tion hypothesis, h°(2) = h!(2) = 1 and H'(2") ® H°(2) - H'(0},) is injective.

ix) Let ee H'(2") be the extension class of the exact sequence (# #). The
mapping H%(2) » H'(0,;) in the long exact sequence is injective since e is a
generator of H'(2"). Hence h°(&) = h'(&) = 1, proving 1). Moreover, the map-
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ping H'(0,,) - H'(&) in the long exact sequence is surjective and is the Serre dual
of HY(€") —» H'(0,) induced by ¢ € H°(#) giving (# #). From this we obtain
2).

Thus we complete the proof of (2.21).

(2.22) Lemma. Let & be an ample vector bundle as in (2.21). Then there is a
point o on C such that & ~ &,(C, o).

Proof. We use the induction on r. When r = 2, for some point p on C, we
have an exact sequence 0 — O[F] —» u*& - O[u*A — F] -0 as in (2.21), where
u: M” — M is the blowing-up at p and F is the exceptional curve. Let o be the
point on C such that p + o is a canonical divisor on C. Then, by (2.18), we have
an exact sequence 0 - O[F] — u*&,(C, 0)> O[u*A — F]—>0. Since h'(2F — pu*A)
= 1, these sequences are isomorphic and hence & ~ &,(C,0). When r > 2, let
00— &—2-0 be the sequence (# #) in (2.21; vii). By the induction hy-
pothesis 2 ~ &,_,(C, 0) for some point 0 on C. So (# #) is isomorphic to
0> 0—-&(C,0)—&_,(C,0)—0 in (2.18) since h'(2°)=1. Thus we prove the
lemma.

(2.23) Now we come back to the situation (2.17). We claim h°(€ ® N) >0
for some N € M*, the Picard scheme Pic® (M) of M.

We will derive a contradiction assuming the contrary. Let L be the Poincaré
bundle on M x M* and let f (resp. g) be the projection onto M (resp. M*). Set
F =f*¢®L. Since y(§ ® N) =0 by Riemann—Roch theorem, we have h¥(§ ®
N) =0 for any ¢ 2 0 and N € M* by assumption and (2.19). So Ri,# =0 and
hence HI(M x M*, &) = 0 for any g.

Let o be the origin of M regarded as the Picard scheme of M*. Set M} =
f~Yx) for xe M and let L, (resp. #,) be the restriction of L (resp. #) to M%*.
Then h?(M¥, L) =0 for any q if x #0. So hi(M}¥, %) =0 since &£, is a direct
sum of Ls. Hence RY,# =0 on M — {0o}. We have in fact Supp (R*f, &) =
{0} since K2 (M}, #,) = rh*(M¥, L,) = r. Now, using the Leray spectral seugnce of
F with respect to f, we infer h*(M x M", #) = h°(M, R*f, %) > 0, contradicting
the preceding observation. Thus we prove the claim.

Combining this claim and (2.22), we infer & ~ &,(C, o) ® N for some point o
on C and a numerically trivial line bundle N on M. So (P, H)~(P,,,(C, o),
H, ., (C, 0) ® n*N), where (P.,,(C, 0), H,,,(C, 0)) is the Jacobian scroll of (C, o) as
in (2.18).

(2.24) Now we study the case n =dim M =3 and g(M, A) =2. Let D, ...,
D,_, be general members of [tA| for t »> 0 and let S = ();D;. Then S is a smooth
surface and & is ample. Hence A" %c,(&) =t2""c,(65)>0. Similarly 4" 2s,(8) >
0. So A" = (c,(&) + 5,(£))A" 2 = 2. In addition, by (1.3), we have AC2r =2
for any rational curve C in M. Therefore, using [F6; (1.10)], we infer that M is a
double covering of P? with branch locus being a smooth hypersurface of degree six
and A is the pull-back of H,. The intersection T of (n — 2) general members of
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|A| is a K3-surface. The restriction & is ample and g(T, det (7)) = 2. This
contradicts (2.12).
Thus, the case n = 3 is ruled out.

(2.25) Summarizing we obtain the following

Theorem. Let & be an ample vector bundle of rank r = 2 on a manifold M of
dimension n = 2. Suppose that g(M, A) =2 for A = det(&). Then n =2 and one
of the following conditions is satisfied. The associated scroll of (M, &) is denoted
by (P, H) below.

1) M is the Jacobian variety of a smooth curve C of genus two and & ~
&.(C,0)® N for some numerically trivial line bundle N on M, where &,(C, 0) is the
Jacobian bundle for some point o on C (cf. (2.18)). A% =2 and H™*' = 1.

2) M ~ P(Z) for some stable vector bundle & of rank two on an elliptic curve
C with ¢(#)=1. There is an exact sequence 0— Oy[2H(F) + p*G] - € —
Oy[H(F) + p*T] - 0, where G and T are line bundles on C and p is the morphism
M — C. A? =3 and we have either

2-) deg(T)=1,deg(G)= —2and H* =1, or

2-ii) deg(T)=0,deg(G) = —1 and H? = 2 (cf. (2.7)).

2#%) M, &F, C and p are as in 2) and & ~ p*4 ® H(F) for some stable vector
bundle % of rank three on C with ¢,(4) = —1. A% =3 and H* = 2 (¢f. (2.6)).

3) M~P(¥) and & ~ p*9 ® H(F) for some semistable vector bundles &
and % of rank two on an elliptic curve C, where p is the morphism M — C.
Moreover (c,(¥), ¢,(%)) = (1,0) or (0, 1). P is the fiber product of P(¥) and P(9)
over C. A* =4 and H? =3 (cf. (2.4)).

4) —K is ample, K> =1 and A= —2K. M is the blowing-up of P? at eight
points. Moreover we have either

4-a) & ~[—K1®[—K]and H®* =3, or

4-b) c¢,(&) =3, r=2and H*> =1 (¢f. (2.8)).

50) M~P!xP; and & ~[H,+2H,]®[H,+ H;]. A*=12 and H>=9
(f. (2.9)).

5,) M is the blowing-up of P? at a point and & ~[2H, — E]1® [2H, — E],
where H, is the pull-back of O(1) of P2 and E is the exceptional curve. A* =12
and H® = 9 (cf. (2.10)).

Remark. The existence of a vector bundle of the above type 2) is uncertain.
The others do really exist.

§3. ((1)-sectional genus

(3.1) For an ample vector bundle & of rank r =2 on a manifold M, the
O(1)-sectional genus is defined to be g(P, H), where P = P(§) and H is the tauto-
logical line bundle on it. As a part of classification theory of polarized manifolds
of small sectional genera (cf. [F5] and [F6]), we get the following results. Proofs
are easy and omitted.
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(3.2) Theorem g(P, H) =0 if and only if either
1) M=~P! or
2) M~Pland § ~H,® H,.

(3.3) Theorem. ¢(P, H) =1 if and only if

1) M is an elliptic curve,

2) M~P2?and & ~2H,® H,,

3) M~P?and § ~H,® H,® H,,

4) M ~P? and & is the tangent bundle, or

5 M~P!xP!and & ~[H,+ H]®[H, + H,].

(3.4) Theorem. g(P, H) =2 if and only if

1) M is a smooth curve of genus two,

2) (M, &) is of one of the types in (2.25), or

3) M is a hyperquadric in P* and & ~ O(1) ® O(1).

Appendix. Chern classes of semipositive vector bundles

Definition. A vector bundle & on a variety V is said to be semipositive if the
tautological line bundle H(&) on P,(&) is nef, ie., H(&)C = 0 for any curve C in
P, (&).

The following facts are obvious by definition.

(1) f*& is semipositive for any morphism f: W — V.

(2) Any quotient bundle of & is semipositive.

(3) & ® A is ample for any ample line bundle A.

Besides these, many (I should say most) results on ample vector bundles have
semipositive versions. For example we have:

Theorem. ¢,(&) =0 for n = dim V.

This fact is well-known among experts, but I do not know a good reference.
So we give here a proof since we use this in the text.

Proof of the theorem. By base change we may assume that V is smooth,
projective and hence is a submanifold of PY with homogeneous coordinate (og: ** - :
ay). We may further assume that the hyperplane section D; = VN {a; =0} is
smooth for each i and that D =Dy + -+ + Dy has no singularity other than
normal crossings. Suppose that c,(€) <0. Then ) j_,c,-;(§)Hj/m’ < 0 for some
large integer m. Let f:P}—PY be the morphism defined by f(Bo: - :By) =
(B&:-+:By). Then M =f"'(V) is smooth and f*H,=mH,;. Hence c,(y ® Hp) =
Yo Cne j(é*’M)H,’; < 0 by the choice of m. This contradicts [BG] since &, ® Hy is
ample on M by (1) and (3). Thus we conclude c,(&) = 0.

Corollary. ¢, (&) = det (&) is nef.

UNIVERSITY OF TOKYO
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