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Cauchy problem for abstract evolution equations

of parabolic type

By

Showji KAWATSU

§ 0 .  Introduction

In this paper, we treat the Cauchy problem of the abstract evolution equation

—ddt u + A (t) tt = f(t) 0 < t To
(0.1)

u(0) = u0

in a Banach space E, where u(t) and f(t) are E-valued functions on [0, T0 ]. A(t) is
a  function on [0 , To ]  t o  the set of unbounded operators acting on E  and we
assume tha t the definition domain o f A(t) is  dense in  E  and independent of t.

O n this type of equation H. Tanabe [4] and P . E. Sobolevski [3] treated
under the condition that A (t )A (s ) '  is uniformly Hbrder continuous in  t  in the
uniform operator topology.

The object of this paper is to weaken such an assumption on the continuity of
A(t) A(s) -  .  O ur weaker assumptions are presented in §I (particularly condition
(A4 )). We prove the existence and uniqueness theorem about (0.1) by constructing
the fundamental so lu tio n . W e use Sobolevski's m ethod. (see also A . Friedman
[ 1]).

O ur new condition contains the case that

A(t)A(s) -  — A(T)A(s) -  11 t — T r,

in a neighborhood of t = T, where / < — 2 and C  is a positive constant. Remark
that co(r) = CI log IT is not uniformly Hiirder continuous near r = 0. R egard ing
the  case  th a t  th e  definition dom ain o f  A (t) depends o n  t, see  T . K a to  and
H. Tanabe [2] and A. Yagi [5].

The paper is organized as fo llow s. In  § I we present the basic assumptions
and, definitions and  the  statement of the M ain Theorem . In §II w e construct
fundamental solution and prove its strong continuity . In  § I I I  we prove local
strong differentiability of fundamental solution near the diagonal set. In §IV , by
establishing local uniqueness of fundamental solution near the diagonal set, we
prove global existence and uniqueness of fundamental so lu tio n . We then prove
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our Main Theorem in  §V . In  §V 1 we give an application of our Main Theorem
to an initial-boundary value problem of a parabolic equation. Finally, in §VII we
consider an  example about the necessity of regularity assumption.

The author wishes to express his deepest thanks to Professors S. Mizohata
and N. Shimakura for their kind advices and constant encouragements during the
preparation of this paper.

§ L  Assumptions and The Main Theorem

We consider the initial value problem of an  evolution equation

—

d

(1.1)
u(t) +  A (t)u (t ) = f(t )

dt

u(0) = u o ,

where 0 < t To <  oc  o r 0  <  t < co .
Here u(t) is the unknown function with values in a Banach space E, A(t) is an

unbounded linear operator acting on E, f (t ) is a  given function with values in E,
uo e E and To is a given positive number. W e denote by B(E) the Banach space of
all bounded linear operators in E endowed with the topology defined by operator
n o rm . In  what follows we restrict ourselves to the case of 0 < t To <  cc). We
need the following assumptions (AO, (A 2 ), (A 3 ) and (A 4 ) on A (t ) .  If the constants
C 1 , C2 and C3 appearing in (1.2), (1.3) and (1.4) can be chosen independently of To

a s  To o o ,  t h e n  T o is considered as finite but arbitrarily large.
(A1): For each t  [0, To ]  the domain of A (t) is dense in E and is independent

of t, and A(t) is  a  closed operator.
(A2): F or each t  [0 ,  To ]  (A(t) + /1) - 1  ex ists for any with Re). 0  and

(1.2) 1A(t) + ; J r  11
12 1 + 1 '

where C ,  is a positive constant independent both of t  and A'.
U nder th e  assumption (A 2 )  e a c h  — A(t)(t e[0, To ] )  generates a n  analytic

semigroup exp(— TA (t))(r  0) and there exists a positive constant C2 independent
both of t  and s suth that

(1.3) II A (t )  exp(—TA(t))1
C2

where n = 0, 1, 2, T > 0, t E [0, T 0 ] .
(A3): There exists a positive constant C 3 independent both of t  and s such

that

(1.4) 11 A (t)A(s) - C 3  f o r  t, s e [0, To ].

(A4): F or any t, S ,  T e [0, To]

(1.5) II (A (t) — A (r) )A(s) - 1 11 (a(lt — r1),

C,



Ev olution equations of  parabolic type 61

where w(r) is  a positive and monotone increasing function defined in
the interval (0, cc) a n d  satisfying the following cond itions (1.6) and
(1.7).
T hat is, putting 65(r) = w(r)/r,

(1.6)
i•or. 

0ti(r)I logr I dr < cc

(1.7) w(r)llogrl 0  as r

From  (1.6) it is easy to see that

(1.8)
j• To 

6(r)dr <  cc

Recall that in  Sobolevski [1] w(r)= ra (0 < a 1).
Here we define a  fundamental solution.

Definition. An operator-valued function U(t, r), with values in B(E), defined
and strongly continuous in t, T for 0 T t To is called a  fundamental solution
of the homogeneous equation

d
(1.9) —

d t  
u(t) + A (t)u(t) = 0 for 0 < t To

if
0

(1): th e  derivative —

O t  

U(t, r )  exists in  th e  strong topology a n d  belongs to

B(E) for 0 T < tT o ,  and  it is also strongly continuous in  t, r  for
0 T t To ;

(2): the range of U(t, r) is included in  DA  for 0 <  t T0 ;
and if

(3): for any x  E

0
(1.10) U(t, r)x + A (t)U (t, t)x  =  0 for 0 T t T,

(1.11) lim U(t, r)x = X.
tit

Proposition. A ssume that the conditions (A ,), (A 2 ), (A 3 ) and (A 4 )  hold. Then
there ex ists a f undam ental solution U (t , t )  of  the hom ogeneous equation (1.9).

W e now state the assumption (F ) for the inhomogeneous term f (t );
(F ) :  f ( t )  is  a  continuous function with values in E  and satisfies

f(t) — f (s) II (1.12)i
ds 0  as t — T  0 ,

j -

provided that 0 <  t T , .
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We define a  strong solution of the initial value problem (1.1).

Definition. A function u(t) with values in E is called a  strong solution of the
initial value problem (1.1), if

(1): u(t) is continuous in t  for 0 t To ;
(2): u(t) is continuously differentiable in  t  for 0 < t To ;

and if
(3): u(t) satisfies (1.1).

The main theorem of the prosent paper is the following.

Theorem. Assume that the condition (AO, (A 2), (A 3 ), and (A 4 ) for A (t) and (F)
f o r f ( t)  are  satisfied. T h e n  f o r any given ti o eE , there  ex istits a unique strong
sulution u(t) of  the initial value problem (1.1). Moreover, if  u o e D A then u(t) is
continuously differentiable up to t = O. This solution can be expressed by

(1.13) u(t) =  U(t, 0)u0  + 1 1 U(t, s)f (s)ds for 0 t To ,
o

where U(t, r) is a  fundamental solution of (1.9).

§ I I .  Construction and continuity of a  fundamental solution

In this section, we define at first a fundamental solution U(t, r) as a solution of
an integral equation. W e prove also the strong continuity of U(t, r) with respect
to  t ,  T. The differentiability with respect to  t  will be investigated in  th e  next
section.

II- 1. F o rm a l construction of a fundamental solution. By definition, U(t, r)  is  a
solution of the problem

(2.1)
I r) + A (OU(t, r) = 0 for T < t

U (r, r) = I.

So, if we put

W(t, r) = U(t, r) — exp(—(t — r)A(r)),

W(t, r) satisfies

{

'1  W(t, r) + A(t)W(t, r) = (A(r) — A(t))exp(—(t — r)A(r))at
w(T, ,r) — O.

So let us put

(2.2) 01 (t, r) = (A(r)— A(t))exp(—(t — r)A(r))
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Then by virtue of Duhamel's Principle we get

w(t, r) = U(t, s) 0 1 (s, t)ds.

Therefore U(t, r) is  a solution of the integral equation of Volterra type

(2.3) U(t, r) = exp(—(t — T)A(T)) + U(t, s) 0 1 (s, r)ds.

I n  (2.3) a n d  in  th e  sequel, th e  integrals o f  operator-valued functions are
defined in the sense of Riemann with respect to the strong topology. A solution of
(2.3) can be obtained by successive approximation, tha t is, if we put

(2.4)

for k  = 1, 2, 3, ,

(2.5)

and

k+ 1 ( t  t )  = I 4 0 k (t ,0 1 ( S 5  T ) C I S

ot,

0 (t ,  T ) = Ifik (t, t),
k

(2.6) U(t, r) = exp( —(t — T)A(r)) + exp(—(t — s)A(s))0(s, -c)ds,

then U(t, r) is a solution of (2.3). And if we use Fubini's theorem we see that
0(t, r) satisfies

(2.7) 0(t, r) = 014, + f t (01 (t, s) 0(s, t)ds.

11- 2. Convergence of the series 0 (t , t). Under the assumption (1.8), there exists a
positive constant 60 such that

C2 6(r)dr < 1/2
Jo

and le t us write

(2.8) C, = 2C 2  f  eb (r)d r ( < 1).

We prove the convergence of the series 0(t, r) for 0 < t — T Lç_ 60. For this,
we estimate the integral

J o
 6(r —  s)65(s)ds.

Lemma 2.1.
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rr(2.9) Cojr — s)6(s)ds 2 6 (r )  f  65(s)ds.
Jo o

Proof.

f
r  

6)(r — s)6(s)ds = Ca (r — s)6(s)ds + 
Cr

 en ' (r — , )6 (s) ds
0

. f r I2

0 Jr/2

2
Cr/2

o)(r — s) cti(s)ds= 
O

since co(r) is monotone increasing,

f r I2  6 ( s )

• 20)0 ds
▪ - S

f r I 2  (  1
= 2(5(0 + co(s)ds

0 -

• 26)(r) f• eb(s)ds.
Q.E.D.

Now we prove the convergence of 0 (t, r). By virtue of (1.3), (1.5) and (2.2)
we get

(2.10) (t, t) A (T))A (T) - 1  A(r)exp(—(t — T)A(T))II

C2 6)(t — r)

Using lemma 2.1, it is easy to see that

(2.11) Ok(t• '011 C2 C1,̀4.- 1 ( (t — t)

for k = 1, 2, 3, •
Since C 4  <  1, the series 0(t, r) converges and satisfies

(2.12)
C2

(t T ) ( 0 ( t  -  r)
— 1 — C4

II-3. Strong continuity. W e  p ro v e  th a t  U(t, r ) ,  w h ic h  is  g iv e n  b y  the
formura (2.6), belongs to  B(E) a n d  strongly continuous in  t ,  T  fo r 0 t — T

6 0 .  We need some lemmas.

Lemma 2.2. The following inequalities hold for all t, s, e [0, T0 ]  and ' I  >  0

(2.13) (A(t) — A(s))exp(— r/1())11 C 
0 )0  t  —  s i)

(2,14) (exP( — A(t)) exP( A(s)))A ()) -1  II 5 CT(.011t —  si)

(2.15) exP( (t)) ex13( — TA (s)) II 5 C co(I( —  si)

(2.16) II A()(exP( — TAW) — exP( — TA(s))) 0 1 ) -1  II 5 Ca)( —
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(2.17) II (exP(— A(t)) — exp(— 11(s)))11 C
a ) ( 1  t  

—  

s I) 

where C denotes a positive constant independent all of  t, s, )1, T.

P ro o f . Writing

(A(t) — A(s))exp(— TA ()) = (A (t) —  A (s))A () - 1  A ()ex p(—  TA())

and use (1.3) and (1.5), (2.13) holds.
Let us define a n  operator valued function

O G ) exp( —  — (t)) exp( — CA (s))A (s) - 1 .

Then 4'(C) is continuously differentiable in  the  sense of operator n o r m . So
integrating O '() from  0 to T, we have

(2.18) (exp( — TA (s)) — exp( — T A (t)))A (s)

= exp( — C)A(t))(A(t) — A(s))A(s) - 1  exp( —  A (s))4.

Using (1.3), (1.5) and (2.18), we get (2.14).
To prove (2.15), (2.16) and (2.17) we divide exp( — T A (t)) — exp( — T A (s)) into
several p a r t s .  Writing

= (e x p (  —  A  (t)) —  exp( —  A (s)))A (s) - 1  A (s)exp(—  A (s)),

/ 2 =  e x p (  —  A (t))(exp( — (t)) — exp — —
2 

A (s))),
2 2

we get

exp(— TAW) — exp(— T A(s))

+  I .

Writing

= exP( — A (t)) (A(s) — A(t)) A(s) - 1

J2 = A (t)ex p( —  A ( t ) ) ( e x p  —  A  (t)) — exp( — A (s))) A (s) -  1

2

J3 = ex p ( —  A (t)) (A (t) — A(s))A(s) - 1  e x p (  —  A (s)),

we get

/2 = J,  + J2 ± J3.

And writing
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K  =  (A (s) — A (t)) e x p ( —  A (0 )ex p ( —  A (s))

K2 = e x p ( —  A (t)) (A (t) — A (s)) e x p ( —  A (s))

K3 = (e x p (  —  A ( t))  —  exp( —  A  (s))) A  (s)exp( — -
2

A (s)),

we get

A(S) /1 = K1 + K2 + K 3 .

Using (1.3), (1.5) and (2.14), we get the bounds II I I II , II J1 II, II J2 II, II J3 II
cw(it — sp, so we have (2.15).

In view of (1.4) it suffices to consider the case s for the proof of (2.17).
Using (1.3), (2.13) and (2.15), we get the bounds

Il A ( s ) /2  ,  K ill, II K2 II, II K3 II C
w(1 t — s l)

 , so  w e  g e t (2 .1 7 ). The  p ro o f of

(2.16) is sim ilar to that of (2.17). Q.E.D.

Lemma 2.3. The following inequalities hold for all T, e [0, To ] and t, s 0.

(2.19) tA(T)) — exPl — sA(T))) A(n) -  II CI t — sl

(2.20) Il A ( )  texP( — tA(T)) — exl3( — s A (TM A(?1) -  1  II min(t, s)

where C denotes a constant independent all of  t, s, T,

P ro o f . Since

(2.21) A err (exp( — tA(r)) — exp( — sA(r))) A (T) -  1

= A (t) exp(— ÇA(r))d

where n = 0, 1 and t, s > 0  when n = 1,
using (1.3) and (1.4), we get (2.18) and (2.19). Q.E.D.

Lemma 2.4. The following inequality  hold for all t, s,

(2.22)I I  A ()1A (t) - 1  — A(s) -  1 ) II 5 cw(It — sl)

(2.13) II A(0 - 1  — A (s) - 1  II 5 Cw(lt —  sl)

where C denotes a positive constsant independent all of t, s,

Proof . U sing  (1.4) and (1.5) we see that

II A O  ( t ) -  1  — A (s) - 1 ) II =  II AO A (t) -  1  (A (t) — A (s)) A (s) - II
cw(lt — sl).

CI t —
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So w e get (2 .22). And (2.23) is clear from (2.22) and (1.4). Q.E.D.

Lemma 2.5. T h e  operator-valued function A(t)exp(— T A (s)) is uniform ly
continuous in the sense of  operator norm with respect to t, T, s where 0 To, e

T T o , 0 s T o f o r any  positive number E.

P ro o f .  If 0 t + To, F. T A T  T 0 , 0  S z l s  T o then

A (t + t)  exp(— (r +  AT) A(s + As)) — A(t)exp(— T A(s))

= (A (t + At) — A (t)) A (s + As)  A (s + A s) exp(—(t + AT) A (s + As))

+ (A  (t) (exp( —  (*; + A T) A (s + As))

—  exp( —  A (s +  s))) A  (s + s) -  A (s + A  s)ex p( —  A  (s + A s)))

+ A(t)(exp(— rA(s + As)) — exp(— /1(s)))

Applying (1.3), (1.5), (2.17) and (2.20), the lemma follows. Q. E. D.

Lemma 2.6. The operator-valued functions (A (T) —  A (t))exp(— (t —  T)A (t)),
(A(T) — A(t))exp(—(t — 'OA (t)), exp( — (t — A ( 0 ) ,  exp( — (t — T)A(T)) are uniformly
continuous in  the  sense o f  operator norm  w ith respect to  t, T provided t —  T E,
t, T E  [0, To ] , f o r any  positive number e.

P ro o f . T h e  continuity o f  (A(T) — A(t))exp(—(t — t) A (r)) a n d  (A (r)
— A(t))exp(—(t — T)A(t)) is obvious from lemma 2.5. Writing exp(—(t — r)A(r))
= A (T) exp(—(t — r) A (r)) A  ( r ) '  and exp( — (t — r) A (t)) = A (t) exp( —(t — r) A (t))
A ( t ) ' ,  the continuity o f  these two functions is obvious from (1.3), (2.23) and
lemma 2.5.

Lem m a 2 .7 .  F o r a n y  X E E , t h e  function  A (t)exp(—  T A (s)) A () - 1  x  is
continuous with respect to t, T, S, E [ 0 ,  T o ].

P ro o f . Writing

1, =(A(t + At)— A(t))A(s + As) -
1

 exp(—(T - AT) A(s + As)) A(s+ As) A( +

I , = A(t)exp(— (r+Ar)A(s+4s))A() - 1  (A(0— A( A (+ A 0 - 1

= A (t)(exp(— (t+ A T) A (s+ A s))— exp(— (r+ A T) A (s)))A () - 1

1 = A (t)A (s) 1 (exp(—(r + AT) A(s)) —exp( — T A(s))) A (s) A() - 1  ,

we get

A (t + A t) exp( +  A T) A (s + A s)) A ( + A 0 - 1  —  A (t)exp(—  r A (s)) A () - 1

=  +  / 2  +  13 +

Using (1.3), (1.4), (1.5) and (2.16) we see that 11/
1Co)(14t1 ), II /2 II Cco( A O

and 111 3C o )(1 4 .9 1 ) . A s  fo r  14 , from the strong continuity of the semigroup exp
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( A.(s)) and (1.4), for any x e E

/4.x11 —> as AT 0

Thus we have proved this lemma. Q.E.D.

Corollary. T he operator-valued functions exp(—(t — T ) A ( r ) ) ,  exp(—(t —
A(t)), (A(r) — A(t))exp(—(t — r)A(r))A(r) - 1  a r e  strongly  continuous i n  t ,  T,

w hereO r -.5_t To .

Lem m a 2.8. If 0 t — T (50. U(t, T ) ,  which is given by the formula (2.6),
defines a B(E)-valued func tion . And U(t, r) is strongly continuous with respect to
t ,  T. Morever if 0 < t — T So ,  U(t, T )  is continuous in  th e  sense o f operator
norm.

P ro o f . From the convergence of the series (t, r) in  the  sense of operator
norm  and  lemma 2.6, w e conclude that U(t, r )  is continuous in  th e  sense of
operator norm provided 0 < t — T 60 . From  the corollary to lemma 2.7 and

exP1 —  (t — s)A (s))0 (s, < co ,

we conclude that U(t, r) is strongly continuous in  t, T for 0 t — T So .Q.E.D.

§ I I I .  Local strong differentiability of a  fundamental solution

In  this section we prove that, for any x e E, the strong derivative —

. 0 t  

U(t, r)x

exists and is continuous with respect to  t, T  for 0 < t — T 6 0 , tha t U(t, r)x e DA ,
0

a n d  t h a t  — U(t, r)x + A(t)U(t, r)x = 0  holds. R e m a r k  th a t  t h is  i s  local
Ot

differentiability near the diagonal set. For the proof of global differentiability, we
need a  lemma on the uniqueness of solution of homogeneous equation, which will
be proved in  the  next section.

Let us consider a n  operator-valued function U p (t, r) for e t — T So ,

(3.1) Up(t, r) = exp(—(t — r) A(r)) + exp( — (t — s)A (s))0 (s, r)ds,

where E is any fixed positive number and 0 < p  <  v1 3 . By virtue of the continuity
o f  th e  continuity o f  0(s, r )  a n d  exp(—(t — s)A (s)) a n d  th e  differentiability of
analytic semigroup, w e see  tha t, fo r any  x e E, U p (t, r )x  is differentiable with
respect to  t. A nd U p (t, r) satisfies

0
(3.2) Up(t, r)x = — A (r) exp( —(t — r)A(r))x

+ exp( —  p A(t — p))0(t — p, r)x
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t - p
t A  ( s )  exp ( — (t — s) A (s)) (s, -r)x  ds.

Using (2.2) and (2.7), we see that

(3.3) Up(t, r)x = — A (t) exp( —  (t —  A(T))x

+ (exp(— pA(t — p)) — 1)0(t, -r)x

+ (1— exp(— p A(t —  p))) f 0 1 (t, s)0(s, -r)xds
- p

eX P( —  p A (r —  0(01(t —  P, t) 0 1 ( t , T ) )x
t -  p

eX P( —  p A (t —  p)) f (0 1 (t — p, —  01(t, s)) 0(s, t)x ds

t - p
— A(t) Je x p ( — ( t  —  s)A (s))0(s, r)xds

=  / 1  ±  / 2  ±  / 3  ±  / 4  ±  / 5  —  16.

Note tha t /1 — =  —  A(t) U p (t, T) so w e have

a
p (t, -ox + A(t)U p (t, -r)x = 1 2 + 1 3 + 1 4  + 1 5 .

a
To prove uniform convergence of — U (t, r)x as p I 0 with respect to  t, T for e

et
t — T So ,  we need the following lemma 3.1 and  lemma 3.2.

L em m a 3. 1 . II /2 II, 111311/11,x11, 111411/11x11, 11/511/11-xll tends t o  0  a s  p 10
uniformly with respect to  t ,  T  for E t  —  T 6 0 .

Lemma 3 .2 . / 6  tends to  a  lim it as p  0 uniformly with respect to  t. T for E
t — To .

Admitting lemma 3.1 and lemma 3.2 for the moment, let us finish the proof of
local differentiability. S in c e  A (t) is a  closed operator, it follows from lemma 3.2
that

ft exp(—(t — s)A(s))0(s, -c)xdse D

(3.4) lim A(t) exp(—(t —  s)A(s))0(s, -r)xds
pj0

ft—P

= A (t) f t  exp( —(t — s)A(s))0(s, -r)xds.
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a
In view of lemma 2.6, it is easy to see that U,(t, r)x and — U (t, r)x are uniformlyat
continuous with respect to  t, T  for E t  -  T . And it is clear that U p (t, r)x
tends to  U(t, r)x as p . 0. Moreover, from (2.6), (3.3), (3.4), lemma 3.1 and lemma

a
3.2, w e see that U(t, x)xe D A and —  U (t, r)x tends to — A (t)U(t, r)x uniformlyat
with respect to  t, T  for e t  — T 6 0  .  Thus we conclude that U(t, r)x e D A  and
a
—u(t -ox exists and is continuous with respect to  t, T for 0 < t — T So and  thatat
the equation

—
a 

u(t,T)x+ A (t)U(t, x)x = 0at
holds.

Before beginning the proof of lemma 3.1 and lemma 3.2, we divide 0 1 (s, 2)

- (t, T) and 0(s, x) — 0(t, r) into several parts and get the estimate of each part,
which will be used in the proof of lemma 3.1 and lemma 3.2, and we state these
estimates as lemma 3.3.

In what follows the letter C denotes various positve constants independent of
t, T, p , but possibly depending o n  So a n d  e. Using (2.2), we get

-r) — 0 1 (t, -r) = (A(t) — A(s))exp( —(t — x)A(r - ))

(3.5) +  (A (r) —  A (s))(exp( — (s — x) A (x)) — exp( — (t — x)A(r)))

= J i (t, s, -r) + J 2 (t, s, r)

and using (2.7) and (3.5), we get

(3.6) 0(s, T )  - (t, =  (0 1 (s, 2 )  - (t, -r))

+ (01(s, — 01 (t ,  r))0(r, -r)dr

- 01(t, r) ( r ,  r)dr

= 11t, J2(t, S ,

• 1(t, s, r) 0 (r , x)dr + J 2 (t, s, r) 0(r, -r)dr

01 (t , r) ( r ,  r)dr

= (t, J2(t, S ,

• K i(t, S, K2(t, S ,

- K 3 (t, S,
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Lemma 3 .3 .  If O r < s < t  T o w e  have the following inequalities.

(3.7) 1(t, s, -011 5  C
a* —  

s )

t —

71

(3.8) 11J 2 (t, s, '011 C
(t — s)6(s — r)

t —

(3.9) li K i (t, s, t) 11 -- CW(t — S) 
fs  

d i 
( r  —  r )  

d rj ,  t  —  r

(3.10) Il K 2 (t, s, "OM g t  —  s )  
Cs (7 )(s —  r ) 6 ( r  —  r )  

dr
t — ri T

(3.11) 11K3(t, s, '011 C 63(t — r)c- (r — t)dr
S

Proof  of lemma 3.3. ( 3 .7 )  follows from (2.13). Writing

J2(t , s, 1") = (A (s) —  A (r))A ery 1A  (-02 exp( —( — T)A (T))C",

and using (1.3) and (1.5), we have

r) II 5  cw(s —
s — ( lcf )21

t s
= C

—

(75 (s — r),
t —

thus we get (3.8). Using (3.7), (3.8) and (2.12), we get (3.9) and (3 .1 0 ) . And (3.11)
follows from (2.10) and  (2.12).

W e proceed now to the proof of lemma 3.1 and  lemma 3.2.

Proof  of lemma 3.1. At first, let us estimate 12 • S in c e  .0(t, t)x  is uniformly
continuous with respect to  t, T for E t  —  t  15_ ,  for any positive number y, there
exists a finite set To = {(t 1 , T,),•••,(t N , TN)} of points of the set F = { (t, T y e  t —

60 ,  t TO  such that, for any (t, r)e T , we can take (te, r e)e T o which satisfies

Y (3.12) 0(ti, T i)x — 0(t, r)xll
2(C 2 + 1)

where C 2  i s  the constant in  (1.3). By lemma 2.7, exp(—  A (ii))x is uniformly
continuous for e [0, To ], so there exists a positive num ber such  that, if p <
then

(3.13) II(exP(— PA (t — P)) — (t x 2

for any t e [E, To ] and i = 1,2,•••, N .  Therefore, if p < .5 then for any (t, T) E F  we
can take (t e , Ti ) E F o  which satisfies (3.12) and we see from (3.13) that for any t, r
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111 211 15 11(exP( — p A(t — p)) — 1)(0(t, 1.)x —  0(ti,

+  (exP( — P A(t P ) )  —  0 (t1, ti)x

Y Y
— 2 2

provided s t — r S o . So we conclude that II 1 2 11 tends to 0 as p  0 uniformly
with respect to t, T. for e t — 60.

To estimate 13 , we use (1.3), (2.10), (2.12) and e t — T 60 ,  p  < e l3 . If we
p u t t —  s = r, we see from (1.8) that

co(60) P -
II 1 311 C di(t — s)(76(s — -c)ds x C w (r)dr x .

J02e/3 0t —p

So we conclude that 111 3 II / II XI tends to 0 as p  0 uniformly with respect to t, T for
e t — 60.

To estimate 14 ,  we use (3.5). Then we have

111411 = 1 exp( — p A(t — p))(J 1 (t, t — p, T) J 2 ( t ,  t — p, T))x

Using (3.7), (3.8), e t — T 6 0  and p < e/3, we see that

1 4 II 5 c(
w ( p )

 + p a )  
(6  0 )

)  x  •
E 2e2/3

So we conclude that II 14 II / II X II tends to 0 as p  0 uniformly with respect to t, T for
e t — t (50 .

To estimate 15, we use (3.5) and (3.6). Then we have

15 = exp( — p A(t — p))(K i (t, t — p, K2(t, t — p, -c))x.

Using (1.3), (3.9) and (3.10), we have

r— P Co' (r — -r)
(3.14) /511 C  x  (1)(P)f

t t  —  r

d r

C  x  P f t - P  (13(t tir)rd)(r d r

As for the first term of the right hand side of (3.14), put t — T  =  T and Y — T  =

and use e T •  Jo , we see from (1.7) that

f t— P  65(r — -r)I T  - P  c '6 ( r ' )0 4 ) dr = co(p) dr'
t — rt o T — r'

= —1 co(p) I T p
 (

W

( r '
)  ±  (7)(0)dr'

T 0 T— r'

1 no
— (UW ( 0 ) 00)(1 10 001 110gP1) 65(r)dr')

0

0 as p  0,
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where the convergence is uniform with respect to  t, T  for E t — T = T  So . As
for the second term of the right hand side of (3.14), put t — t  =  T , then we have,

15. 1 = p (7)(t — p — r)(7)(r -c) 
d rt — r

p  ft - P  Cojt — p — r)co(r — T)p  f t - P
dr + —

T
(7)(t — p — 06) (r — t)dr,

=  T  j, t — r

put t — p — r = r' and apply (2.9) to  the second term and use e T  So , 0 < p
< E13, then we have

15 . 1
w(6 0) C T - P  6 (r ' ) P 2PW(60) f T  P

Eo p +  r '  
dr' + 

E ( T  —  p )

6° (7)(r)p
,  d r '  +  C p  f

0

< C
6  

( 7 ) ( r ') d r '
P + r

So, by dominated convergence theorem, the first term tends to 0 as p  0 uniformly
with respect to  t, T  for E t  —  T  So . And the second term obviously tends to  0
as p  0 uniformly with respect to t, T  for e t  —  T  6 0 . This completes the proof
of lemma 3.1. Q. E. D.

Before beginning the proof of lemma 3.2, we prove a  lemma, which will be
used in  the  proof of lemma 3.2 and  in  §V.

Lemma 3.4. There ex ists a constant C  independent o f  t, T ,  such that

A (t) exp( — (t — s) A ( s ) )d s

provided 0 < t —

Proof  of  lem m a 3.4. Let N p (t, T )  and N(t, T )  be  the  operators defined by
p

(3.16) N p (t, t)x = A(t) exp( —(t — s)A(s))xds, for x e E,

and

(3.17)

respectively.

N (t, t)x = A(t)

N ote tha t if x

exp( — (t — s) A (s)) xds,

E D A  and 0 < p <  p ' then

for x eD „ ,

(3.18) Np(t, r)x — N p j t ,  r)x11 C' p',

where C ' is  a constant independent of t, T , p , p '.

Indeed, since x e DA , if we write x = A(t) 1 x' = A(s) 1 A (s) A (r) -  x '  (3.18) is
obv ious. As for N p ( t ,  t ) ,  we prove that if 0 < t — T So a n d  0 < p then

(3.19) N p(t, T)II C",

(3.15) < C
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where C" is a constant independent of t, T, p.
Admitting (3.19) for the moment let us finish the proof of lemma 3.4. For

any positive number y > 0, there exists x'e  DA such that Ix  -  x '
3 C " •

 S o  if 0
-  

< P  <  <  3C'
 w e  s e e  f r o m  (3.18) and (3.19) that

N p (t, t)x  - N  p
, (t, t) xi II N p(t, r) (x -

+ N p (t, r)x ' - N  p
, (t, -c)x'

+ II N  p*, t)(x ' -  X )

Y Y  Y-  + - + - = y= 3 3  3

Thus, for any X E E, the  improper integral
t - p

lpiN N  p(t T) X  = liM A ( t ) e x p ( -  - s) A (s)) xds,
pi()

exists. S in c e  A (t) is a  closed operator we conclude that N (t, t) is defined for any
x e E  and, from the inequality (3.19), we have (3.15).

We proceed now to the proof of (3.19). Since N p (t, t) is a  bounded operator
for p > 0  and N p (t, t)x  = N  (t, t) x  - N  (t, t - p)x  for x e D A  it suffices to prove

(3.20) I N (t, t)x11 C  x  for x  D A.

In  view of Gronwall's inequality, (3.20) is derived from

(3.21) 11 N (t, -c)x C  x  +  Cf cii(t - )11 N ( ,  t ) x d f o r  x e D A.

So we prove (3.21). Using a variant of (2.18) we have

N (t, -c)x = (I -  exp(-(t -  -c) A (t)))(I - f s)ds)x

(3.22)+ A(t)exp(-(t- ),.4(t))d( J1

(t, s)ds + (01(t,  ) -  g ,  s f ld s ) x

A(t)exp(-(t - )A (t) ) (A (t)  -  A ())  AO -
 1 N  t )x g .

Using (1.3), (1.5), (1.8), (2.10), (3.5), we have

II N  .1 -)x C  x  + x  f 1 , g 6(t - s)ds
t  - 4

+ C lxi t d Il
 J1  (t, J2(t, ds

+ Cf  ( t  -  N
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So, using (3.5), (3.7) and  (3.8), we have

75

II N(t, T)x C x II
4

(3.23) + ClIx11( 6)(t — +f r t _
1

4:1 s)ds (7.5(t — dst s

(Nt _s) d5) C+ (.5 (t — 11 N (5 T) x

It is  easy  to  see  tha t th ree  double integrals in  th e  parenthesis a re  equal. To
estim ate the  second  doub le  in tegra l w e  p u t  t — T  =  T , t —  s = s' a n d  t —
= Then we see, from (1.6) and (1.8), that

I c1
-t f I T

(t — ds = 65(')cl' 
t — s s'

ao
(3.24) 5 I  640 (Ilog5 o l + 10g '1)g'

Jo< C  for 0 < t — 15o.

Using (3.24), we get (3.21) from (3.23). This completes the proof of lemma 3.4.

W e begin the proof of lemma 3.2. Writing

t —p

'6 =  A (t) exp(—(t — s)A (s))(0(s, t) —  0(t, T))xds

t - p

+ A (t) exp(—(t — s) A (s)) ( t  1. )XdS

=  1  (P ) L2(P),

it su ffices to  p rove  tha t 11 L 1 (p) —  4)11 a n d  IlL2( 9 ) — L21011 tends to  0 as
p, p' j O uniformly with respect to  t, T for e t  — T 5 .  A s  f o r  IlL2 (p) — L2(011,
le t p, p ' be 0 < p < p ' < e/3 and use (3.16), then we see that

t — p

L 2 (p)— L 2 (p') = A(t) exp(—(t —  s)A (s))0(t, t)xds
t-

= N p (t, T) 0(t, t)x — N p , (t, T)0(t, T)x.

Since 45(t, t)x  is uniformly continuous in t, T  for e t  —  T 6 0  and t To , for any
positive number y there exists a finite set T o  = { (t 1 , 1 ), (t 2 , 2 ), • • • (tN , TN )} of points
of the set I ' = {(t, -r) le t  —  T 6 0 ,  t To }  such that for any (t, T) e T we can take
(t„ T,)E  To which satisfies

(3.25) II 0(t, T)x — 0 (t 1, Ti)x — SC"

where C " is  the  constan t in  (3.19). A nd since DA is  dense  in  E, there exist
x l , x2 , • • • , x N e D A such that
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(3.26)
Y  

'15(ti, t i)x  -  xi for i = 1, 2, ,N.
-  SC"

So for any (t, r)e F take (t e, r de T o  which satisfies (3.25) and let p, p' be 0 < p < p'

Y< then we see from (3.18), (3.19) and (3.26) that
5C'

11 I-2(P) -  1, 2(011 11N ,,(t, -0(0 (t, r)x  - 0 (t 1, Ti)x)11

+ 11N p (t, t) (' (t, T - xt)11

+ 11N p (t, r)x e - N  p
, (t,

+ 11N p '((, r) (x  -  0 ((i, T1)x)11

+ 11N p'((, T)(0(te, r e)x  -  (P(t, T)x)11

Y Y Y  Y-  +  -  +  -  +  -  +  -  y.
-  5  5  5  5  5

Thus we conclude that II L2(P) 2(011 tends to  0  a s  p , p ' 0  uniformly with
respect to  t, t  for e t - 5 0 .  As for II Li(P) - L1(IY)11 , let p, p' be 0<  p < p'
<  e /3  and use (3.6), then we see that

t—p
L i(P ) —  L l(P ' ) = A (t)exp( - (t - s)A(s))(O(s, r) - 0(t, r))xds

t-p'
t— p

+ K 1 (t, s, r) + K 2 (t, s, r) - K 3 (t, s, r))xds,

then using (1.3), (3.7), (3.8), (3.9), (3.10), (3.11) and c t  - 6 0 , and writing

M IY) =
°  6 3 ( t  -  s )  

ds
t- p

' t T

=

M269 , P') = P  (5 (s t )  ds
t — T

M369 ,=0
f t—p

t—p'
6(t -  s)ds 6 i ( r t ) dr

j , t -  r

M4(19 , 09 ' ) =
f t —p

t—p'
d s

Co(s -  r)6 (r - r) 
d rt - r

M569 ,=0
ft—p

t—p'
d s f  (54 -  r )6 (r  - r)dr,

we see that

(3.27) L1(9) - (011

Chx1I(Mi(P ,M 2 ( 1 ) , + M369 ,M  4 ( P ,  1 9 )

M5(P , 0 ).

f A (t)exp( - (t -  s)A(s))(.- 11(t, s, T) + J s, r)
t —



It is obvious that M ,(p , p'), M 2 (p, p') tends to 0 as p, p' 10 uniformly with respect
to  t, T  for e t  -  t  6 0 .  To estimate M 3 (p, p'), put r -  T  =  r', t -  s = s', t -  T

= T  and use (1.6), (1.8) and e 6 0 ,  we have

1 I F

M3 (p, 6(s)ds' f (rldr'
0

±  a )(15
( s ' )  (I  lo g +  l o g s '  1 )d s ' 0  a s  p ,  p '
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uniformly with respect to  t, r  for e t  -  r 6 0 .
To estimate 11/13 (p, p'), put t  -  s = s', t - r = r', t - T  =  T and use 0 < p < p'

< el3, T  6 0 , T - r ' >  r ', we have

IM 5 (p, p') -= -  I P ' —1 CIS' I ' s '  ( 1 , + 1
T -  r' 

)w (r ') w (T- r')dr'
T  p  s '

I  

0 r

2 w ( 6 ° )  1 9'c l s '  s ' Co(r')dr'
& 0 s

2 a)

0

00) f (r)dr' f 
I, ' 1

= 6 -ds'
e /

-  2

s'

0 )0o) . { P ' 65(01logr' 1 dr' — > 0 as
e o

uniformly with respect to __T  for e t -  T (5 1 3 .
To estimate M4(P, P'), writing

t—p r+L
3 6 (s - r)6(r - r) 

M4.1 (P, P ' ) = ds d rt rt-p J
t— P s —  r )6 (r -

M 4 .2(p, p') = ds
,

,

t  —

3

we see that

M4(P1 p ' ) = M 4.1  (P,  P') + M 4.2 (P, P').

As for M 4 . 1 (p, p'), use t - r -
2

E, S  —  r w (s -  r )  c o ( 6 0)  and put r -  =  r',

then we have

W (c O)
E / 3

M4.1 (P,
2 e 2 / 9

P) f  6 .5 ( r )d r ' - - -*  0  as p , p ' 0

As for M4.2 (p, p'), use co(r -  T) w(60 ), r -  T and put t  -  r  =  r ',  s -  r = s',
-  3

then we have
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„  n <  w(6o)u s  i
s (7)(s — r) 

d r
t - p ' t r

ff (7)
' ( r )  

dr' ds' --> 0 as p' 10,
D  

where D = { (r', s')Ir' t — t __ So ,  s' 0, 0 r' — s' p'}.
Thus we conclude that M 4 (p, p') tends to 0 as p, p' 1, 0 uniformly with respect

to  t, T  for £ t  -  T  < T h i s  completes the proof of lemma 3.2.

§ IV. Uniqueness of fundamental solution

I n  th is  section w e prove global existence and uniqueness o f  fundamental
so lu tion . W e first prove local uniqueness near the diagonal set.

Definition. A function u(t) with values in E is called a  strong solution of the
initial value problem (4.1) o n  [T,

d—
(4.1)

u(t) + A (t)u(t)= 0
dt

u(T) = /to ,
if

(1): u(t) is continuous in  t  for T t

(2): u(t) is continuously differentiable in  t  T  <  t x;
and if

(3): u(t) satisfies (4.1)

Lem m a 4.1. L et the assumption (AO — (A 4 )  hold. T h e n , f o r any  uo E E and
E [0 , To), if  we put x  = min {T So , To }  there exists a unique strong solution of the

initial value problem  (4.1) o n  [T, z]. A nd it is g iv en by  u(t) = U(t, T)u o ,  where
U(t, T) is the local fundamental solution near the diagonal set.

Admitting lemma 4.1 fo r  th e  m o m e n t le t  u s  f in ish  th e  p roof of local
uniqueness of fundamental slution. Indeed, if there exists another fundamental
solution for 0 t — T 0  ,  sa y  CI(t, T), then ü(t) = 0(t, t) u 0 i s  a l s o  a  strong
solution of the initial value problem (4.1) on [T, x i .  W e  have û(t) = u(t) for _t  t

x ,  th a t  is, CI(t, -c)uo = U(t, -c)u o i f  T t Z  a n d  uo e E .  Therefore CI(t, T)

= (t, t).
Before beginning the proof of lemma 4.1 we prove the following lemma.

L em m a 4 .2 . F o r an y  x e E , the f unction W(t, =  A(t)U(t, x  is
continuous with respect to  t, T  for 0 t — T So .

P ro o f .  For T S  t ,  writing

IcP(s) = exp(—(t — s) A (t)) U (s, T) A (T) -  x

< t

its derivative is
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(4.2) 0'(s) = exp( — (t — s) A (t)) (A (t) — A (s)) U (s, T) A(t) x

Integrating (4.2) and applying A (t) to  the resulting equation, we have

(4.3) W(t, =  A (t) exp(— (t — t) A (t)) A  CO' x

+
 f

t A (t) exp( —(t — s) A(t))(A(t) — A (s)) A(s) W  (s , t )x d s .

By lemma 2.7 the first term on the right hand side of (4.3) is continuous with
respect to t, T  for 0 t — T 60  . And by (2.23) A(t) 1 is continuous, so W(t, T) is
continuous with respect to  t, T  for 0 < t — T 6 0 • T h u s  it rem a in s  to  show that
the second term on the right hand side of (4.3) tends to 0 as t — T  O. W riting  th is
term in  the  form

(4.4) f  T ( t ,  s) W(s, t)xds,

where T(t, s) = A(t)exp(— (t — s) A(t))(A(t) — A(s)) A(s) -  ,  and using (1.3) and (1.5)
we have

(4.5) f l t ,  s) C 6(t — s),

where C  is  a constant independent o f t, s. Hence,

W(t, t)x C  x  +  C  C o ( t  — s) W(s, r)x  ds.

So, by Gronwall's inequality, we have

(4.6) W(t, t)x C  x  ,

where C  is  a constant independent of t, T  provided 0 < t — T 6 0 .  From  (4.5)
and (4.6) it follows that the integral in (4.4) tends to 0 as t — T 10. T h i s  completes
the proof of lemma 4.2. Incidentally we have also proved the next corollary.

Corollary. For all t, T  with 0 t — T 60 ,

(4.7) II A (t) U (t, r) A (r) -
 

M c,
where C  is  a constant independent of t, T .

W e proceed now to the proof of lemma 4.1

Proof of lemma 4.1. Let U (t, s) be the local fundamental solution constructed
in § I I .  It is obvious that U(t, r)u o  is  a  strong solution of (4.1). So it remains to
prove th e  uniqueness o f  th e  strong so lu tio n . F o r  n = 1, 2, • • • , le t An ( t)  b e  the
bounded operators

1 -
A n (t) = A(t)(I 1-1 A ( t ) )  .

Then we have



From (1.2) and (1.4) we have, for any x eD A ,

C i C 3

„(s) — A(s))A(s) -  1  II 5_n + 1 II A(0) x II.
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(4.8) (An(t) + A/) - 1 11
+  1

(4.9) II (A  (t) — A (t)) A n (s) -  11 Co)(t — -r),

where Re). 0  and  C  is  a constant independent of t, s, T, n.
From (4.8), (4.9), §II and §III, it follows that the local fundamental solution

d
U (t, t )  of the homogeneous equation —

d t
u(t) +  A (t)u(t) = 0 exists and satisfies

(4.10)l i n ( t ,  T)11 C,

w h e r e  0  t — T 6 0  and  C  is  a constant independent of t, T , n.
At first we prove that a  strong solution u (t) is unique under the asuumption

tha t u (t) is continuously differentiable up to t = T.

Assume th a t u ( t )  is  a  strong solution of (4.1) on [T , x] and continuously
differentiable up to t = T. Since u n (t) =  U„(t,t)u o  i s  a  strong solution of

d
d t u(t)  +  A (t)u(t) = O for T  <  t X

(4.11)
u ( t )  =  /40 ,

o n  [-c, a  the function w(t) = u(t) — u ( t )  satisfies

—

d

(4 12)
w ( t )  +  A „(t) w „(t) = (A n (t) — A (t)) u(t) for T < tx

. dt
' w(t) = 0.

S in c e  A n (t)11 Cn, where C  is a constant independent of t, it follows from (4.9)
th a t (A„(t) — A (t))u(t) is continuous on [T, x i. T h u s w e  see  th a t (4 .1 2 ) h a s  a

unique strong solution on [T, x i  and it is written by

(4.13) w(t) = U„(t, s) (A „(s) — A(s))u(s)ds.

So, we have, for any x e E,

(4.14) (A „(s) — A(s)) A(s) -  1  x  — 0  0  a s n

uniformly with respect to  s  for T s x .
From the present assumption A(s)u(s) is uniformly continuous on [T, A .  So,

from (4.14), we have

(A„(s) — A(s))u(s) 0  as  n co .
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uniformly with respect to  s  for t  s x .  From this, (4.10) and (4.13) we have
ivn(t) — 0  a s  n oo , that is

14(t) = liM  u(t).n— oo

Since un ( t)  is uniquely defined a s  th e  strong solution of (4.11), w e  have the
uniqueness of u(t).

Now let u(t) be an  arbitrary strong solution of (4.1) on [T, xi (not necessarily
continuously differentiable up to t  = r). For any r <  s <  z, u(t) is a  continuously
differentiable s t r o n g  solution o n  [s, x ]. Writing U(t, s)u(s)
=  U (t, s)A(s) -

1
 (A (s)u(s)), w e  se e  f ro m  le m m a  4 .2  th a t U (t, s)u(s) is  a ls o  a

continuously differentiable s o lu t io n  o n  [s ,  x ] a n d  satisfies intial condidion
U(s, s)u(s) =  u(s). Thus we have u(t) =  U(t, s)u(s) for r <  s t  x. Taking s i t.
we have u(t) =  U(t, r)u o .

This completes the proof of lemma 4.1.

Corollary. The equality

(4.15) U(t, .r) = U(t, s)U(s, r) for r s t x

holds.

Now we prove global uniqueness of solution of the Cauchy problem of the
homogeneous equation.

Lemma 4.3. A ssum e that (A O — (A 4 ) hold. T h e n ,  f o r  an y  uo e E  and
E  [0 , To ), there ex ists a unique strong solution of  the initial value problem,

d
(4.16) cTt 

u (t )
 +  

A (t)u(t) = O for t  <  t To

u(r) = uo,

on [T, To ].

P ro o f .  L et u(t) and  v (t) be strong solutions of (4.16) on [r, To ]. And let
to , •••, t„ be t =  to  G  t, < • • • < t„ = To  and  ti  — ti _  <  So (j = n). Applying
lemma 4.1 sequentially, we have u(t) =  v(t) for T t T .

Finally we prove global existence and uniqueness of fundamental solution.

L e m m a  4 .4 .  If  t, t  are p o i n t s  with 0 r  <  t To a n d  i f
to , t i ,• • • t„„ so , s i ,• • • ,s„ are  p o in ts  w ith  T  =  to  < t 1 <  •  •  •  <  t m  =  t, O  <  ti  —
< 6 0 ( j  = 1, • • • m), =  So  . <  S i G  •  •  •  <  =  t an d  0 < s k — sk _ <  S o (k = 1,• • • ,n),
then

(4.17) U(t„„ t„,_,)•••U(t 2 ,  t ,)U ( t ,, to ) =  U(s„, s 1)•••U(s 2 , s i )U(s i , so ).

Proof. L e t  ro , r ,• • • , r, b e  p o in ts  w ith  f r o , r ,,• • • ,rp l  =  {t o , t i ,• • • >tin } U
{so , si ,• S and t  =  r, < r, < • • •  <r p =  t .  Then, in view of local uniqueness of
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fundamental solution and (4.15), it is clear that

U(t„„ U(t2, t2) U(t 1 , to) = U (r,r,-1)•••U (r2 , ri)U(ri, r1)
and

U(s,„ s _  , ) •  •  •  U(s 2 , s i ) U(s,, s c ,) = U(r p , rp _ 1 )••• U(r2 , r,) U(r i , r 1 )

holds. T hus w e have (4.17).

In  view of lemma 4.4, we can define U(t, t) by

U(t, t) = U(t„„ U(ti, t 0 ).

Then by lemma 4.3 we have global uniqueness of fundamental solution.

§V . Solution of the Cauchy problem

In this section we prove our main theo rem . In view of lem,ma 4.1 it remains
to prove that the function

(5.1) w(t) = U(t, s)f(s)ds

satisfies the equatoin

d
(5.2) —

d t  
w(t) + A(t)w(t) = f(t) for T  :5- t X

(5.3) w(r) = 0

d
a n d  tha t —

d t
w(t) is continuous for T x, where 0 G To a n d  y = m in t

+
By virtue of (2.6) we have 11U(t, '011 C, so, it follows that (5.3) h o ld s . As for

d
the proof of (5.2) and the continuity of w(t), we formally write, for h > 0,

dt

(5.4)

w(t + h) — w(t)1  f t + h

h hi +  h, s)f(s)ds
t

1
+ (--

h

(U(t + h, t) — 1) A(t) - 1 )(A (t) U(t, s)f(s)ds)
J t

=  1 (h) + 1 2 (h)L(t, -r)

(5.5) L(t, -r) = A (t)U(t, s)(f(s) —  f(t))ds

+  fA (t)(U(t, s) — exp(—(t — s)A(t)))dsf(t)
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+ A(t)exp(— (t — s) A (t)) f(t)ds

=  1-1(t, +  1, 2 (t, T )f(t) (/ exP( — (t — T)A (t)))f(t).

And we write

(5.6)L  ( t  -r) A(t)U(t, s)(f(s) — f ( t ) )  ds

(5.7) L2(t, = 11 A (t)(U (t, s) — exp(—(t — s) (t)))11 ds.

We need the  following two lemmas.

Lemma 5 . 1 .  For any  x eE

(5.8)
U (t + h) —  I 

A  ( t )  x —  x a s  it  ,t 0h

provided T t < x

Lemma 5.2.

(5.9) (t, T) 0  a s  t — T  0

and

(5.10) L2 ( t, r)  --*  0  as  t — T

where 0 T < t z .

And we borrow the following two lemmas from calculus.

Lemma 5 .3 .  For any  e > 0, let g(t, s) be a uniformly continuous function with
values in E, f or 0 r . . s < t and t —  s e. If  g(t, s) satisf ies

ftt g ( t , 0 as t — r10,

then g(t, s)ds is a  uniformly continuous function in t, r for

Lemma 5.4. L et f (s) be  a  continuous function w ith v alues in E f o r T < s
d

<  t. If (
y

—
d s  

f (s)= lim
f ( s  +  h )  _ f ( S )

 exists and is uniformly continuous for T < s
h i° h

d
< t then —

d
f (s) ex ists and —

ds
f ( s )= (— d  Y  f (s) f o r T s < t.

ds ds

Admitting lemma 5.1 and lemma 5.2 for the moment, let us finish the proof of (5.2)
d

a n d  th e  continuity of —
dt

w(t). Indeed , by  lem m a 2 .8 , 11(h) tends to  f ( t )  as
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h . 0 .  By lemma 5.1 and lemma 5.2 we have w(t)ED A  and  1 2 (h)L(t, t) tends to

— A(t)w(t) as h J,O . So, ( iz ,d w ( t )  exists and satisfies

( i1 ) + w(t)+ A(t)w(t) = f(t) f <for t < X

d
Then, by lem m a 5.2, lemma 5.3, lemma 5.4, w e see  that —w(t) exists a n d  isdt
continuous for t x  and that (5.2) holds.

W e proceed now to the proof of lemma 5.1.

Proof  of  lemma 5.1. Consider the function 4)(s) = exp(—(t — s) A(0) U (s, -r)x
for x e E. It is continuously differentiable in  (T, t) and

0'(s) = exp(—(t — s) A(t))(A(t) — A(s)) U (s, t)x.

Integrating the both sides, we have

(5.11)

U(t, t)x = exp(—(t — -r) A(t))x + exp(—(t — s) A(t))(A(t) — A (s)) U (s, r)xds.

In  view of (5.11), we can write, with A(t) -  x  instead of x,

U(t +
h

 h) — I 
A ( t )

-
 x  =  

exp(— hA(t + h)) — I 
A(t) -  1  x

 h

+  1:+ h  exp(— (t + h — s) A(t + h))(A(t + h)

— A (s)) A (s) ' (A(s)U (s, -r) A (t) -  1 )xds

= B 1 (h) + B 2 (h)

Using (1.3), (1.5), (4.7), we have

C f t "
B 20)11 —  x co(t ± h — s)ds c  x  w(h) 0  as h O .— h ,

And using lemma 2.7, we have

B i (h) = A(t + h)exp(— o- A(t + h)) A(t) -  1 xdo-—  x  as hi O.
h 0

This completes the proof of lemma 5.1.

W e proceed to the proof of lemma 5.2.

Proof  of  lemma 5.2. We write
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II A (t)(U(t, s) — exp( —(t — s) A (OD II IIf(s) — f(t)1 ds

+  f t A (t)ex p (— (t —  A(t)) II IIf(s) — f (t)Ilds

f II A (t) (U (t, s) — exp( — (t — s) A (t)))11ds

+  C
Ilf(t) — f( s )  II 

 ds,

where C denotes a constant independent of t, T. In view of (1.12), it suffices to
prove (5.7). So, we write

A (t)(U(t, s) — exp( — (t — s)A(t)))

= A(t)(exp(—(t — s)A(s)) — exp( — (t — s) A(t)))

+ A(t) exp( — (t — r) A(r)) 0(r, s)dr

= A(t)M,(t, s) + A(t)M 2 (t, s).

Using (2.17), we have
t - t

A(t)M s)IIds C  f  6 ) (t —  s)ds = C (r)dr —■ 0
J t

a s  t —T1O.
As for M2(t, s), we write

M2(t, =  f  e x p (  —(t — r)A(r))(0(r, s) —  0 (t, s))dr

+  f t exp( — (t — r)A(r))dr 0(t, s)

= M 2.14, + M 2 . 2 (t, s).

Using (3.24), (2.12), we have

II A (042.2((> c f  th ( t — s)ds = C 65(r)dr 0
t-t

as t —TIO.

Using (3.6) and lemma 3.3, we have
ft

A(t)M 2.1 (t , s)Ilds

f ds  II A(t)exp(—(t — r)A(r))II +  II J 2 (t, r, s)
T

0
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+ K i(t, r ,  s)I1 + 11 1(24, r, +  K 3 (t, r, s)II)dr

<  ds 6 5 4 d r  +  d s (rd r
„  t  —  s TT s t — s

+ f  ds (7 )(t —  r)dr f
r  65(u  —  s )  

du
S s t — u

+ ds dr (7 )(r t i ) 6 ) ( u s )  du
t —  u

+ft ds 1  dr 7(t — u)6(u — s)du
T S t r r

= N  + N 2 + N 3 + N 4  + N s.

It is easy to see that N 1 =  N 2 .  Putting t — s = s —  r = r', and using (1.6), (1.8),
we have

(5.13)
- T

eb(r)dr' 
t - T  1

7  ds' f
t

Cti (0(1 log (t — r)1 + )dr'
J r'JO s

0  as  t —

It is easy to see that =  N 4 .  Putting u — s =  u', t — r  =  ,  — s = s', we have

f t 1 — W (U )
N3 = ds' co(r')dr' (65(u) + )du '

J O  s o s' - u'

•j.
- t  1 t - T

7  ds' cb(r')dr' Cbtr')dr'
J o 5 J o Jo

t— r t —

ci)(s)1 logs' 'd s  f cb(r)dr'

- 2 I  - 2

CD(S)110gS 'C o " ( r ) d r '
Jo

— t —  r

I6 ( s ' )  (Ilog(t — r)1 + 311ogs'I))ds'.
Jo

Using (1.6), (1.8) we see that N3 tends to 0 as t — O. As for N ,, putting t — r
= r', t —  u = u', t —  s = s', we have

N , = ds' (u)C6(s' — tOdu' dr'
„, r

ds' (u')& (s' — du'

ft — r

d s '  f  Co' (u')C6 (s' —
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=  N 5 .1  ±  N 5 . 2.

As for N 5 1 , u s in g  (2.9), (1.6) and (1.8), we have

r i — t — T

N 5 1  2  j cb(s')l logs' eb(u)du' —■ 0 a s  t — r

87

As for N 5  1 , we write

f 
t—T sq2

N 5 . 2 ds' Co(u')ab(s' — u')1 log u' I du'
Jo Jo

t —r Ss,
ds' (76(u)63(s' — u')1 log u' du'

Jo J s/2

2 fr—T
65(s')ds' 0b(u')l log u' du'

f t —r i - t

+ 2 max( logs' 1, log(s72)1)6(s)ds' f co(r)dr

Using (1.6) and (1.8), we see that N 5 . 2  tends to 0 as t  —  10. This completes the
proof of lemma 5.2.

§ V I .  Application to  an initial-boundary value problem

(See A. Friedmann [1] Part 2.9) Let Q be a  bounded domain in the real n-
dimensional Euclidean space W. F o r  any 0 < T < oo , denote by Q T  the cylinder
{(x, t); x e t?, 0 < t < T } a n d  by OS2 the boundary of Q. We consider differential
operators

au Ou
(6.1) Lu = —

a t  
+  A(x, t ,  D )u  = - - -+  E acc (x, t)Decti

at icxI 2m

with complex coefficients aa (x, t) defined in Q T ,  where a  denotes the multi-index oc
0 "10

=  ( a 1 , • • • , a n ) , =  a i  +  • • •  +  a n a n d  DI =   .
Oxi O x n

Definition. For t, e [0, T ]  A (x, t°, D) is said to be strongly elliptic at a point
x° if

(— l)'"Re{ E a„(x
°
, t

°
) "} > 0

= 2m

f o r  any real vector = fl) 0 0, where =  '1 ••• a(„. L  is  s a id  to  b e
parabolic at a point (x° , t°) if A(x, t°, D) is strongly elliptic at x

°
. L is said to be

parabolic on a set U if L is parabolic at each point of U .  Lis said to be uniformly
parabolic in  Q T  if the coefficients t) are bounded in  Q T  and if
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(— i)m R el E C1Vm
IŒI = 2 m

for all (x, t)eQ T  and for all real where C is a positive constant independent of
x, t, and 11 = + ••• +

We consider the Cauchy problem of the evolution equation

6. 1)
Tdut + A (t) u = f (t) 0 < t T

( 
u(0) = u0 ,

in the Hilbert space L2 (Q), where for each t, f(t) is the function .f(x, t) belonging to
L2 (Q ), a n d  A (t) i s  th e  operator w ith dom ain D  =  H2  m (S2)n H(52) given by
A(t)v(x)= A(x, t, D )v(x). And u0  i s  a  function in  L2  (52).

Definition. u (t) is  sa id  to  b e  a  strong solution of (6.1) if  u(t)E C
°
([0, T ],

L2 ( 2)) n cl (0, TJ, L2 (Q)) and satisfies (6.1).

W e assume the following assumptions:
(E1) The coefficients ac,(x, t) are continuous in  OT, and

1 a.(x, — a.(x, Clloglt — Iv

for a ll x e ‘2, t e [0, T ]  a n d  t' E [0, T ] , where C, y  are constants independent of
x, t, t' and y < —  2.

(E2) The inhomogeneous term f (t )  is continuous in  [0, T], and

Ilf(t) —  f(011 clioglt —

for all t e [0, T], t' e [0, T], where C, .5 are constants independent of x, t, t' and (5
< — 2.

Proposition. A ssume that L is uniformly parabolic in  QT , that the conditions
(E 1 ), (E 2 )  hold, and that eg2 is  o f  class C 2 ". T h en  th e re  ex is ts  a unique strong
solution of  (6.1).

P ro o f . From the a priori inequality of the elliptic operator A(t), we see that,
for some positive constant k, ;1(0 = A(t) + kl satisfies the conditions (A 1 ). (A 2 ) and
(A3 ). From  the  assumption (E 1 )  and (E2 ), w e see that, for w (r) = 1 logy 1Y, ;4(0
satisfies the conditions (A 4 )  and f ( t )  satisfies the condition ( F ) .  Set v(t) = exp(
— kt)u(t). Then (6.1) take the equivalent form

(6.2)
dv

+ A(t)v = exp(— kt)f(t)

v(0) = u0 .

W e can thus apply our M ain Theorem to deduce this proposition. Q.E.D.
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§ VII. Necessity of regularity assumption

Though our conditions are not a set of necessary conditions to obtain general
existence and uniqueness theorem, here we give an example of the inhomogeneous
term  w hich fails to satisfy our condition (F) a n d  fo r  which the existence and
uniqueness theorem in  the  sense stated bellow fails to hold.

We consider the Chauchy problem

(6.3)
Ou
—
at

(t, x) = x) +f (t, x) — co <x  <  co, 1/2 < t T
a2 u

at2

u(1/2, x) = O.

W e  c a l l  u(t, x )  a  s t r o n g  s o lu t io n  o f  (6.3) if u(t, x )  belongs to
C° ([1/2, T ]; L 2

x (R))n ((1 2, T]; L 2
x (R)).

We show an example of f (t, x)e C° ([1/2, T]; L 2
x (R)) which fails to satisfy our

condition (F), and for which the existence and uniqueness of the strong solution in
th e  ab o v e  sen se  fa ils  to  h o ld .  R em ark  that f ( t ,  x )  is  in c lu d e d  a t  le a s t  in
C° ([1/2, T ]; O R )) . L et 1 < T < 3 /2  and f (t, x ) = F 4-  1  (g (t, )) for

 _  1 11/4
(t,

0 t = 1

where 0 < a I  and F  
1 is  the Fourier transform in  L2 w ith  respect to If the

existence and uniqueness of the strong solution of (6.3) hold then the solution must
take the form u(t, x) = F  

1
 (v (t, )) where

v(t, = exp(— 2(t —  s))g(s, )ds,
Jo

and v(t, must take the  form

(6.4) v(t, = g(t, +  f te x p ( — (t — s))g(s, )ds

So, to  deduce our assertion b y  contradiction it suffices to prove the  following
lemma.

Lemma.

(6.5)

(6.6)

(6.7)

C
1 / 2

i119( 1 , - -  g ( s ' ) 11  ds oo1 — sJ 112

g(t, )E  0[112, T]; L 2
4 (R))

d
—
d t

y ( t , )1$L  (R) a t  t = 1.

Remark that (6.5) indicates that f (t, x) fails to satisfy the condition (F).

It
— 1 Ila(1 11t -- 11112 -E 1)

t 1
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Pro o f . Since
1g ( 1 , — g (s , 011  d s

J 1121  —  s

=
 1

s ( j ' f  c °  

112 0 (1 (1 s)112 4)2 
d  

llog l 1 —
1 s)1/2

,s112')

1/2

> C 
r l

1

J 1/2 (I S)lOg(1 —
ds = oo ,

(6.5) ho lds. A s  fo r  (6.6) g (t, )e L 2
4 (R ) i s  clear. I f  t 0 1 then by Lebesgue

convergence theorem we have

And we have

+ h, — g(t, )12 (g 0

17.  I g(1 + h, g(1, )I 2 g

< c c. ( 1) 2 1h11/2

11/11/2 +
g

14)& 1 1 '

as h 0.

I h1'12 

< C 0 as h 0.

Thus (6.6) hols. As for (6.7), in  view of (6.4), it suffices to prove

exp( — (1 —  s))g(s, )ds 1, 2 (R).
1/2 

Writing

(1 —s) 1/4

I= c:1 ( f 2 exp( — V(1 s))
1°so 1/2 1 0  S— 111 (W1 1 —s1 1 /2 + 1) 

d s ) 2 ,

and putting 1 — s = a, we have

1 2
= 2 f exp( — 2a)

a
114

0 1/2 I loga
1 / 2  

± 1)
d a )  .

So putiing 2 a = x we have
. 4

I = 2 f - 1 ck ( i .

2

 e x p (  x )
X

1/4

dx
) 2

o 42/2 Ilo g(x/V)N,tx + 1)
. 422

2 I - 1 c g ( f exp( x) 
x 1/4

dx)
4 42/2 1100  g 2)1 ( /X + 1)

r o e1 7 C42y 1 / 4 2

9 4  1 1 0 g lœ g U
e x p (  x )  i d x  )

42/2 .,/x + 1
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C'D 1
 =  co

C j°
This completes the proof of the lemma.
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