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Cauchy problem for abstract evolution equations

of parabolic type

By

Showji KAwATsu

§0. Introduction

In this paper, we treat the Cauchy problem of the abstract evolution equation

gu+A(t)u=f(t) 0<t=T,
©.1) dr
u(0) = uq

in a Banach space E, where u(t) and f(t) are E-valued functions on [0, T,]. A(t) is
a function on [0, T,] to the set of unbounded operators acting on E and we
assume that the definition domain of A(¢) is dense in E and independent of t.

On this type of equation H.Tanabe [4] and P. E. Sobolevski [3] treated
under the condition that A(t) A(s)”' is uniformly Horder continuous in t in the
uniform operator topology.

The object of this paper is to weaken such an assumption on the continuity of
A(t)A(s)~'. Our weaker assumptions are presented in §I(particularly condition
(A,)). We prove the existence and uniqueness theorem about (0.1) by constructing
the fundamental solution. We use Sobolevski’s method. (see also A. Friedman
(1.

Our new condition contains the case that
| A()A(s)™" — A(1)A(s) ™|l < Clloglt — |°,

in a neighborhood of t = 7, where « < — 2 and C is a positive constant. Remark
that w(r) = C|logr|* is not uniformly Horder continuous near r = 0. Regarding
the case that the definition domain of A(t) depends on ¢, see T. Kato and
H. Tanabe[2] and A. Yagi[5].

The paper is organized as follows. In §1 we present the basic assumptions
and, definitions and the statement of the Main Theorem. In §II we construct
fundamental solution and prove its strong continuity. In §III we prove local
strong differentiability of fundamental solution near the diagonal set. In §IV, by
establishing local uniqueness of fundamental solution near the diagonal set, we
prove global existence and uniqueness of fundamental solution. We then prove
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our Main Theorem in §V. In §VI we give an application of our Main Theorem
to an initial-boundary value problem of a parabolic equation. Finally, in § VII we
consider an example about the necessity of regularity assumption.

The author wishes to express his deepest thanks to Professors S. Mizohata
and N. Shimakura for their kind advices and constant encouragements during the
preparation of this paper.

§1. Assumptions and The Main Theorem

We consider the initial value problem of an evolution equation

d
44O+ ADu©) = f(1)

u(0) = uo,

(1.1)

where 0 <t < Ty< o or 0 <t < 0.

Here u(t) is the unknown function with values in a Banach space E, A(t) is an
unbounded linear operator acting on E, f(t) is a given function with values in E,
uoeE and T, is a given positive number. We denote by B(E) the Banach space of
all bounded linear operators in E endowed with the topology defined by operator
norm. In what follows we restrict ourselves to the case of 0 <t < Ty, < 0. We
need the following assumptions (A4,), (4,), (4;) and (4,) on A(t). If the constants
C,, C, and C, appearing in (1.2), (1.3) and (1.4) can be chosen independently of T,
as T, — oo, then T, is considered as finite but arbitrarily large.

(A,): For each te[0, Ty] the domain of A(t) is dense in E and is independent

of t, and A(t) is a closed operator.

(A,): For each te[0, T,] (A(t) + AI)~! exists for any A with ReA = 0 and

_1 c,
(1.2) [(A@+ 2D £ oy

where C, is a positive constant independent both of t and A.
Under the assumption (A4,) each —A(t)(te[0, T,]) generates an analytic
semigroup exp(— tA(t))(r = 0) and there exists a positive constant C, independent
both of ¢t and s suth that

¢,

™’

(1.3) [A(t)" exp(— tA@)] <

where n=0,1,2, 0, te[0, T,].
(A3): There exists a positive constant C, independent both of t and s such
that

(1.4) |A(®)A(s)~ || £ C;4 for t, se[0, T,].
(44): For any t, s, te[0, Ty]
(1.5) 1(A(t) = A@)AE) ™ £ ot — 1),



Evolution equations of parabolic type 61

where w(r) is a positive and monotone increasing function defined in
the interval (0, co) and satisfying the following conditions (1.6) and
(1.7).

That is, putting &(r) = w(r)/r,

To
(1.6) J @(r)|logr|dr < oo

0
(.7) w(r)|logr| — 0 as r | 0.

From (1.6) it is easy to see that

To
(1.8) j a(r)dr <

0

Recall that in Sobolevski [1] w(r)=r* 0 <a = 1).
Here we define a fundamental solution.

Definition. An operator-valued function U(t, ), with values in B(E), defined
and strongly continuous in t, t for 0 £ t <t < Ty is called a fundamental solution
of the homogeneous equation

d
(1.9) a?u(t) + Au()=0 for 0<t < T,
if
. .. 0 CL
(1): the derivative EU (t, T) exists in the strong topology and belongs to
B(E) for 0 <t <t < T, and it is also strongly continuous in ¢, t for
0 § <t é To;
(2): the range of U(t, ) is included in D, for 0 <t <t = Ty;
and if
(3): for any xeE

(1.10) iU(t, )x + AU, 1)x =0 for 0<t<t=T,

ot
(1.11) l:llng u, 1)x = x.
Proposition. Assume that the conditions (A,), (A,), (A3) and (A,) hold. Then

there exists a fundamental solution U(t, t) of the homogeneous equation (1.9).

We now state the assumption (F) for the inhomogeneous term f{(t);
(F): f(¢) is a continuous function with values in E and satisfies

(1.12) J IO =T ye 6 ast—1)0,

t—s

provided that 0 <t <t < T,.
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We define a strong solution of the initial value problem (1.1).

Definition. A function u(t) with values in E is called a strong solution of the
initial value problem (1.1), if

(1): u(t) is continuous in t for 0 <t < Ty;

(2): u(t) is continuously differentiable in t for 0 <t < T
and if

(3):  u(t) satisfies (1.1).

The main theorem of the prosent paper is the following.

Theorem. Assume that the condition (A,), (A,), (A3), and (A,) for A(t) and (F)
for f(t) are satisfied. Then for any given uy€E, there existits a unique strong
sulution u(t) of the initial value problem (1.1). Moreover, if uyeD, then u(t) is
continuously differentiable up to t = 0. This solution can be expressed by

t

(1.13) u(t) = U(t, O)uy + J Uft, s)f(s)ds for 05t < Ty,

0

where U(t, 7) is a fundamental solution of (1.9).

§II. Construction and continuity of a fundamental solution

In this section, we define at first a fundamental solution U(t, 7) as a solution of
an integral equation. We prove also the strong continuity of U(t, T) with respect
to t, . The differentiability with respect to ¢ will be investigated in the next
section.

II-1. Formal construction of a fundamental solution. By definition, U(t, 1) is a
solution of the problem

.1 { %U(t’ )+ AQU@E 1)=0  for T <t

Ur, 1) = I.
So, if we put
Wit, 1) = Ut 7) — exp(—(t — ) A(1),
W, t) satisfies
( %wa, ?) + AW, 1) = (A[) — A exp(—(t — DA()
Wiz, 1) = 0.

So let us put
(2.2) @1(t. 1) = (A(r) — A1) exp(—(t — 1) A(7))
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Then by virtue of Duhamel’s Principle we get

w(t, 1) = JI Ul(t, s) ¢,(s, t)ds.

T

Therefore U(t, t) is a solution of the integral equation of Volterra type

t

(2.3) Ul(t, 1) = exp(—(t — 1)A(7)) + J U, s) ¢, (s, 1)ds.

In (2.3) and in the sequel, the integrals of operator-valued functions are
defined in the sense of Riemann with respect to the strong topology. A solution of
(2.3) can be obtained by successive approximation, that is, if we put

0.4 Buor () = j 190105, s

for k=1,2,3,.-,

(2.5) P(t, 1) = ki Pilt, 1),

and

(2.6) U(t, 1) = exp(—(t — 1) A(1) + Jr exp(—(t — s)A(s)) D(s, 7)ds,

then U(t, 1) is a solution of (2.3). And if we use Fubini’s theorem we see that
@(t, 1) satisfies

2.7) B, 1) = (L. 7) + f é,(t, 5)D(s, 1)ds.

II-2. Convergence of the series @(7, 7). Under the assumption (1.8), there exists a
positive constant &, such that

5o
sz a(r)ydr < 1/2
4]
and let us write
do
(2.8) C, = 2C2J a(r)dr (<1).
0

We prove the convergence of the series @(t, 1) for 0 <t — v <, For this,
we estimate the integral

Jr a(r — s)d(s)ds.

0o

Lemma 2.1.
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r

a(s)ds.

J

a(r — s)d(s)ds = f

0

r/2
0

since w(r) is monotone increasing,

a(r — s)a(s)ds < 2a~)(r)j

0

Proof.

J

r/2 r

a(r — s)a(s)ds

a(r — s)d(s)ds + j

r/2

a(r — s)a(s)ds

(fr/2

D) 4

o I—S$
(1

r—s
@(s)ds.

< 2u(r)

fr/2

1
+ —
N

= 2a@(r)

Y

)w(s)ds

0
(*r

IIA

26(r)

LY

Q.E.D.

Now we prove the convergence of &(t, 7).
we get

(2.10)

By virtue of (1.3), (1.5) and (2.2)

11t DIl = (A1) — A(1) A(D)™" A(r)exp(—(t — ) A())]|

=Co(t -1

Using lemma 2.1, it is easy to see that

2.11) It DI £ C,C57 ot — 1)

for k=1,2,3,---.

Since C, < 1, the series @(t, ) converges and satisfies

(2.12) 10, 9 < — 2 — 9
. bl = 1 _ C4

II-3. Strong continuity. We prove that U(t, 1), which is given by the
formura (2.6), belongs to B(E) and strongly continuous in ¢, 7 for 05t —1
<6,. We need some lemmas.

Lemma 2.2. The following inequalities hold for all t, s, £, ne[0, Ty] and 1 = 0

@.13) 1A — A exp(— cA@)] < c2U=5D

@.14) l(exp(— TA@) — exp(— A A1 | < Crao(lt — s])
2.15) lexp(— TA(1) — exp(— TA()] S Cor(li — s])

216 [ A@(exp(— TA®D) — exp(— TAEN)AM) ] < Calli — s))
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o(|t — s)
T

(2.17) I A(S) (exp(— TA(1) — exp(— TAE))I = C

where C denotes a positive constant independent all of t,s, &, n, T.
Proof. Writing
(A(r) — A(s) exp(— TA(E) = (A(t) — A(5) A(E) ™" A(&) exp(— TA(%))

and use (1.3) and (1.5), (2.13) holds.
Let us define an operator valued function

@) = exp(—(t — ) A1) exp(— L A(s) A(s) ™.

Then ¢({) is continuously differentiable in the sense of operator norm. So
integrating ¢'(¢) from 0 to 7, we have

(2.18) (exp(— tA(s)) — exp(— TA(1)A(s) ™"

= J exp(—(t — A1) (A(t) — A(s))A(s) " exp(— (A(s))dL.
0
Using (1.3), (1.5) and (2.18), we get (2.14).

To prove (2.15), (2.16) and (2.17) we divide exp(—tA(f)) — exp(— tA(s)) into
several parts. Writing

I, = <exp< - %A(t)) - exp< - %A(s)))A(s)“A(s)exp(— %A(s)),
I, = exp( — %A(t))(exp( - %A(t)) - exp( - %A(s))),

we get
exp(— tA(t)) — exp(— T A(S))
=1, +1,.

Writing

Jy = exp(— tA(@1))(A(s) — A1) A(s) ™!

J, = A(t)exp( - %A(t))(exp( - %A(t)) - exp( - %A(s))) A(s) ™!

Jy= eXP( - %A(t)>(A(t) — A(s))A(s)™! CXP( - %A(S)>,
we get

12=J1+J2+J3.

And writing
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K, = (A(s) — A(t))exp( - %A(t))exp( - %A@))

K, = exp( - %A(r))(A(t) - A(s))exp( - %A(s))
K, = (exp( - %A(t)) - exp< - %A(s)))A(s)exp( - %A@)),

A()I, =K, + K, + K.

we get

Using (1.3), (1.5) and (2.14), we get the bounds | I, ||J.|, 7.1, | /5]
< Cw(|t — s]), so we have (2.15).
In view of (1.4) it suffices to consider the case & = s for the proof of (2.17).
Using (1.3), (2.13) and (2.15), we get the bounds
t —
1A@L1. 1K L 1Kl 1K< P70 o we get 219 The proo of
(2.16) is similar to that of (2.17). Q.E.D.

Lemma 2.3. The following inequalities hold for all t, &, ne[0, Ty] and t, s = 0.

(2.19) I exp(— tA(®) — exp(— sA)) A() ™| < Clt —s]
Clt —
Q20 JAExp(- () — exp(— sA@N A | S

where C denotes a constant independent all of t, s, 1, &, 1.
Proof. Since
(2.21) A(t)"(exp(— tA(1)) — exp(— sA(1))) A(zx) !

_ J A exp(— LA@)dL

s

where n=0,1 and ¢, s >0 when n=1,
using (1.3) and (1.4), we get (2.18) and (2.19). Q.E.D.

Lemma 2.4. The following inequality hold for all t, s, &.
(2.22) 1A A@® ™" — A(s)™ DIl = Co(]t — s])
(2.13) IA® ™" = A@) 'l < Co(]t — s)
where C denotes a positive constsant independent all of t, s, &.

Proof. Using (1.4) and (1.5) we see that

[AGAD ™ = A@) ™D =11 AE) A@6)" (A1) — A(s) A(9) |
< Co(Jt — si).
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So we get (2.22). And (2.23) is clear from (2.22) and (1.4). Q.E.D.

Lemma 2.5. The operator-valued function A(t)exp(— t A(s)) is uniformly
continuous in the sense of operator norm with respect to t, 7, s where 0 <t < T, ¢
<t T, 05T, for any positive number e.

Proof. OZt+A4t<Ty, e<t+ 41Ty, 055+ 4s < T, then
A(t + At)exp(—(t + A1) A(s + 4s)) — A(t)exp(— T A(s))
= (A(t + At) — A(t)) A(s + 4s) "' A(s + As)exp(—(t + dt) A(s + 4s))

+ <A(t)<exp< - (% + At)A(s + As))
— exp( — %A(s + As)>>A(s 4+ 4s) LA(s + As)exp( - %A(s + As)))
+ A(t)(exp(— tA(s + 4s)) — exp(— TA(5)))

Applying (1.3), (1.5), (2.17) and (2.20), the lemma follows. Q.E.D.

Lemma 2.6. The operator-valued functions (A(t) — A(t))exp(—(t — 1) A(t)),
(A(r) — A@@))exp(—(t — 1) A(2)), exp(—(t — 1) A(t)), exp(—(t — t) A(7)) are uniformly
continuous in the sense of operator norm with respect to t, T provided t — T = &,
t, 7e[0, Ty], for any positive number e.

Proof. The continuity of (A(r) — A(t))exp(—(t —1)A(r)) and (A(1)
— A(t))exp(—(t — 1) A(t)) is obvious from lemma 2.5. Writing exp(—(t — 1) A(1))
= A(@exp(—(t — DA A(R) ™" and  exp(—(t — 1) A(1)) = A(t)exp(—(t — 1) A(1))
A(t)"', the continuity of these two functions is obvious from (1.3), (2.23) and
lemma 2.5.

Lemma 2.7. For any xe€E, the function A(t)exp(— 1t A(s)) A(E) " 1x s
continuous with respect to t, 1, s, £€[0, Ty].

Proof. Writing

I, =(A(t+4t)— A(t)) A(s + 4s) ' exp(—(t+ A1) A(s+ 4s)) A(s + As) A(E+ 4E)~*

I, = A(t)exp(—(t+47) A(s+45)) A(€) ™' (A(§)— A+ 48)) AL+ 487!

I3 = A(t)(exp(—(t + A1) A(s + 4s)) —exp(—(t + A1) A(s))) A(&) !

I, = A(t) A(s) "' (exp(—(t + 41) A(s)) —exp(— T A(s))) A(s) A(E) ™",

we get

A(t + At)exp(—(t + A1) A(s + 45)) A(E + 4E)™ ! — A(t)exp(— TA(s)) A(E) ™!

=1, +1,+1:+1,.

Using (1.3), (1.4), (1.5) and (2.16) we see that | I, | < Cw(|4t]), |I,| £ Cao(|4E])
and ||I;|| £ Cw(|4s]). As for I,, from the strong continuity of the semigroup exp
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(— 7 A(s)) and (1.4), for any xeE
[I,x| — 0 as 4t — 0
Thus we have proved this lemma. Q.E.D.

Corollary. The operator-valued functions exp(—(t —1)A(1)), exp(—(t — 1)
A1), (A(x) — A(®))exp(—(t — 1) A(x)) A(r)"' are strongly continuous in t, T,
where 0 =1 <t < T,.

Lemma 2.8. If 0<t— 1<, U(t, 1), which is given by the formula (2.6),
defines a B(E)-valued function. And U(t, 1) is strongly continuous with respect to
t, . Morever if 0 <t —1=4,, U(t, 1) is continuous in the sense of operator
norm.,

Proof. From the convergence of the series ®(z, 7) in the sense of operator
norm and lemma 2.6, we conclude that U(t, ) is continuous in the sense of
operator norm provided 0 <t — 1 <J,. From the corollary to lemma 2.7 and

j' llexp(—(t — 5) A(s)) P(s, 7)[|ds < o0,

we conclude that U(t, 7) is strongly continuous in ¢, t for 0 £t — 1 < §,.Q.E.D.

§III. Local strong differentiability of a fundamental solution

... 0
In this section we prove that, for any x€E, the strong derivative aU (t, 7)x
exists and is continuous with respect to ¢, t for 0 <t — 7 < d,, that U(t, t)xe D,
0
and that E U@, t)x + A()U(t, t)x =0 holds. Remark that this is local

differentiability near the diagonal set. For the proof of global differentiability, we
need a lemma on the uniqueness of solution of homogeneous equation, which will
be proved in the next section.

Let us consider an operator-valued function U,(t, 7) for e £t — 1 < d,

t—p
(3.1 U,(t, 1) = exp(—(t — 1) A(1)) + J exp(—(t — s)A(s)) D(s, 1)ds,
where ¢ is any fixed positive number and 0 < p < ¢/3. By virtue of the continuity
of the continuity of ®(s, 1) and exp(—(¢t — s)A(s)) and the differentiability of
analytic semigroup, we see that, for any xeE, U,(t, 1)x is differentiable with
respect to t. And U,(t, 1) satisfies

(3.2) %Up(t, 7)x = — A(t)exp(—(t — 1)A(1))x

+exp(— p At — p)) D(t — p, )
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- J"-p A(s)exp(—(t — s) A(s)) D(s, T)xds.

T

Using (2.2) and (2.7), we see that

0
(3.3) E U,(t, 1)x = — A(t)exp(—(t — 1) A(7))x

+ (exp(— pA(t — p)) — D D(t, 1)x
+ (I —exp(—p At - p)))f @1(t, 5) D(s, 1)xds
t=p

+exp(— pA(t — p)) (1t — p, T) — @y(t, T))x

+exp(— pA(t — p))f (@1t = p. 5) = ¢1(t, ) P(s, 7)xds

T

— A(t)f-p exp(—(t — s)A(s)) D(s, T)xds

=Il+12+13+14+15_16‘

Note that I, — Is = — A(t) U,(t, 1) so we have

B
S Unb DX+ AO U, Ox =1, + I + Ly + I,

. 0
To prove uniform convergence of % U,(t, ©)x as p | 0 with respect to ¢, 7 for ¢

<t—1=<J, we need the following lemma 3.1 and lemma 3.2.

Lemma 3.1. [[L |, [ 1511/ x|, [ 14ll/IxIl, I Is]l/Ix] tends to O as plO
uniformly with respect to t, T for e <t — 1 < §,.

Lemma 3.2. [, tends to a limit as p | 0 uniformly with respect to t, t for ¢
é t -7 é 60.

Admitting lemma 3.1 and lemma 3.2 for the moment, let us finish the proof of
local differentiability. Since A(t) is a closed operator, it follows from lemma 3.2
that

jt exp(—(t — s5)A(s)) D(s, 1)xdse D,

T
t=p

(3.4) Li{l")l A(t)f exp(—(t — s) A(s)) D(s, T)xds

T

= A(t) f exp(—(t — s) A(s)) D(s, t)xds.
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. . 0 .
In view of lemma 2.6, it is easy to see that U,(t, t)x and % U,(t, t)x are uniformly

continuous with respect to t, 7 for e <t — 1 < dy. And it is clear that U,(t, 7)x
tends to U(t, t)x as p | 0. Moreover, from (2.6), (3.3), (3.4), lemma 3.1 and lemma

0
3.2, we see that U(t, 1)xe D, and EU"(t’ 7)x tends to — A(t) U(¢, 7)x uniformly
with respect to ¢, v for e <t — 1 < J,. Thus we conclude that U(t, t1)xe D, and
0 .
— U(t, t)x exists and is continuous with respect to ¢, 7 for 0 <t — 7 < §, and that

ot
the equation

gU(t, )x + AU 1)x =0
holds.

Before beginning the proof of lemma 3.1 and lemma 3.2, we divide ¢,(s, 1)
— ¢,(t, 7) and PD(s, 1) — D(t, 7) into several parts and get the estimate of each part,
which will be used in the proof of lemma 3.1 and lemma 3.2, and we state these
estimates as lemma 3.3.

In what follows the letter C denotes various positve constants independent of
t, 7, p, but possibly depending on é, and &. Using (2.2), we get

P15, T) — @1 (t, ) = (A(t) — A(s)) exp(—(t — 1) A(7))
(3.5) + (A(7) — A(s)) (exp(—(s — 1) A(7)) — exp(—(t — 1) A(1)))
=Jy(t, s, 1)+ Jy(t, s, 1)
and using (2.7) and (3.5), we get

(B.6)  D(s, )= Dt D) =(hy(s, 7) — 94 (¢, 7))
(s

+ (¢1(S» r) - ¢1(tv l’))(b(r, r)dr

(Y
(*t

— | @.(t, r)D(r, 1)dr

=J,(t s 1)+ I, s, 7)

s s

+ Ji(t, s, r)®(r, T)dr + J J,(t, s, r)@(r, T)dr

JT T

't

— | @.(t, r)D(r, 1)dr

JSs

= Jl(ta S, T) + JZ([, Sa T)
+ K, (¢, s, 1) + Kyt s, 7)
- K3(t9 S, T)
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Lemma 3.3. I[f0<t<s<t=< T, we have the following inequalities.

(3.7) 1, s 1) < c 2=

t—1
(3.8) 1500, 5. 9] < c(i.‘st_’%(j‘—”
(3.9) 1K, (t s, 1) < Colt — S)r ar—9,
(3.10) IKa(t. 5. )] < Clt - s)r o6 =Nal =1,
(3.11) | K;5(t, s, 7| < CJ‘ @t — r)o(r — t)dr

Proof of lemma 3.3. (3.7) follows from (2.13). Writing

s

Jo(t, s, 1) = (A(s) — A(T))A(r)_‘J A()*exp(—({ — DAD)dL,

t

and using (1.3) and (1.5), we have

t

1
2@ s D)) = Coxs — f)L (?_—;)—de

t—s

=C (s — 1),

t—1
thus we get (3.8). Using (3.7), (3.8) and (2.12), we get (3.9) and (3.10). And (3.11)
follows from (2.10) and (2.12).

We proceed now to the proof of lemma 3.1 and lemma 3.2.

Proof of lemma 3.1. At first, let us estimate I,. Since @(t, T)x is uniformly
continuous with respect to t, T for e £t — 1 < J,, for any positive number 7, there
exists a finite set I’y = {(t;, 7,),-,(ty, Ty)} Of points of the set I' = {(t, 7)[e <t — 1
< 6o, t £ T,} such that, for any (t, 1)eI", we can take (t, t;)e I'y which satisfies

v

(3.12) [@(t;, t)x — D(t, D)x|| < m

where C, is the constant in (1.3). By lemma 2.7, exp(— £A(n))x is uniformly
continuous for & ne[0, Ty], so there exists a positive number J such that, if p <6
then

(3.13) [{exp(— pA(t — p)) — D P(t;, T)x|| =

N~

for any te[e, Tp] and i = 1,2,---,N. Therefore, if p < 6 then for any (¢, t)el” we
can take (t;, t;)e I, which satisfies (3.12) and we see from (3.13) that for any ¢, t
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121 = llexp(— pA(t — p)) — D(D(t, I)x — D(t;, T))x)|
+ l(exp(— pA(t — p)) — D P(t;, 1) x ||

IIA
=<

v _
+ 7= Y,
provided e £t — 1t =< J,. So we conclude that | I,] tends to 0 as p | 0 uniformly
with respect to t, 7 for e £t — 1 < d,.
To estimate 15, we use (1.3), (2.10), (2.12) and e St — 1 < J,, p < ¢/3. If we
put t —s =r, we see from (1.8) that

t S p
iisc |- got - aasix = 250 [ aaria
t—p (0]

So we conclude that || I5]|/| x| tends to O as p | 0 uniformly with respect to ¢, t for
eSt—1 =0,
To estimate I,, we use (3.5). Then we have

141l = llexp(— pA(t — p))(J(t, t — p, 7) + J5(t, ¢ — p, T))x]|.
Using (3.7), 3.8), et —1 =<, and p < ¢/3, we see that

1] < c(“’_i”l+”“’(‘5°)>||x||.

2e%/3

So we conclude that |1,/ x|l tends to O as p | O uniformly with respect to t, t for
8 é t — 7T é 50.
To estimate I, we use (3.5) and (3.6). Then we have

Is =exp(— pA(t — p))(K((t, t — p, 7) + K3(t, t — p, 7)) x.
Using (1.3), (3.9) and (3.10), we have

t=p &
(3.14) ||15||§cnxnw(p)J o =1y,

: t—r

TPt —-p—ror—-r«
+cux||pf C=p “ N0 = 9,

As for the first term of the right hand side of (3.14), putt —t=Tand r — 1 =r,
and use ¢ £ T< d,, we see from (1.7) that

w(P)Jwa(r ()f”“’(’
1T ()j ( ~(r))dr
do

w(p)( (00)(llogdo| + |logpl) + L a(r)dr)

— 0 as p |0,
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where the convergence is uniform with respect to ¢, 7 for e<t—1=T=<J,. As
for the second term of the right hand side of (3.14), put t — t = T, then we have,

POt —p—r)or—r1)
15.1=PJ t_r dr

T

_p|Trat—p—nor—1  p (7" Lo
_TJ p— dr+TJ a(t —p —r)d(r — 1)dr,

T T

put t —p —r =r" and apply (2.9) to the second term and use e < T< 6§y, 0 < p
< ¢/3, then we have

(60) [T~ "CU(")P 2pw(do) [T7% . .,
151_ f ot r +B(T—p) . a(r)dr
©a(r)p o
<C| ——dr+Cp| a@)dr
o pPFT 0

So, by dominated convergence theorem, the first term tends to 0 as p | 0 uniformly
with respect to t, 7 for e <t — 1 < J,. And the second term obviously tends to 0
as p | 0 uniformly with respect to t, 7 for e £t — 7 < J,. This completes the proof
of lemma 3.1. Q.E.D.

Before beginning the proof of lemma 3.2, we prove a lemma, which will be
used in the proof of lemma 3.2 and in §V.

Lemma 3.4. There exists a constant C independent of t, T, such that

(3.15) £C

‘A(t)fl exp(—(t — s) A(s))ds

provided 0 <t — 1 < §,.

Proof of lemma 3.4. Let N,(t, 1) and N(t, 1) be the operators defined by

(3.16) N,(t, 1)x = A(t) f,_p exp(—(t — s) A(s)) xds, for xeE,
and
(3.17) N(t, 1)x = A(t) jt exp(—(t — s) A(s)) xds, for xeD,,

respectively. Note that if xeD, and 0 < p < p’ then
(3.18) IN,(t, 1)x = Ny(t, x| < Cp'

where C’ is a constant independent of ¢, 7, p, p'.
Indeed, since xe D, if we write x = A(t)"'x" = A(s) ! A(s) A(1) ' x' (3.18) is
obvious. As for N,(t, t), we prove that if 0 <t —1 <6, and 0 < p then

(3.19) [N, 7] =C,
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where C” is a constant independent of t, 1, p.
Admitting (3.19) for the moment let us finish the proof of lemma 3.4. For

any positive number y > 0, there exists x'e D, such that || x — x'| = 7 Soif0

3C”
<p<p <=, we see from (3.18) and (3.19) that

3c"
[Nyt T)x = Ny(t, ) x| = [N, (¢ 1) (x — X))l
+ [N, (5, D)X = N (t, x|
+ N D)X =)

+

I\
W=

v
+3—y

W=

Thus, for any xeE, the improper integral
t=p
Llfl(’)l N, 1)x = Ll}’!ol L A(t)exp(—(t — s) A(s))xds,

exists. Since A(t) is a closed operator we conclude that N(t, 7) is defined for any
xeE and, from the inequality (3.19), we have (3.15).

We proceed now to the proof of (3.19). Since N,(t, ) is a bounded operator
for p >0 and N,(t, 1)x = N(t, t)x — N(t, t — p)x for xe D, it suffices to prove

(3.20) IN(t, ©)x|| < Clx| for xeD,.

In view of Gronwall’s inequality, (3.20) is derived from

t

(3.21) IN@, x| £ Cllx|l + Cf a(t — &INE, x| dé for xeD,.

T

So we prove (3.21). Using a variant of (2.18) we have
N(t, t)x = —exp(—(t — r)A(t)))(I — J' . (t, s)ds)x
(3.22) +f A(t)eXp(—(t—é)A(t))d€<J é1(1,9) dS+J (@1(t.8)— P(&. S))dS>

+ J A(exp(—(t — &) A(D) (A1) — A(£) A N(¢, 1)xd¢.

T

Using (1.3), (1.5), (1.8), (2.10), (3.5), we have

t 1 t
NG, o)x| = Clix| + CIIXIIj E——édéj @(t — s)ds
4 z
|
+ CIIXHJ t—_—édﬁllJl(t, ¢, 5) + Ja(t, & 5)llds

+ CJ ot —§INE, 1)x|de.
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So, using (3.5), (3.7) and (3.8), we have
IN@ x| < Clix|l

(3.23) + C||x||<J‘r —l—dé f a(t — s)ds + ‘[' a(t — &)de r : ds

tt_é & T t—3Ss

t é ~ _ 13
" f ¢ J ) ds)+ CJ Bl ~ OINE x| dE.

T

It is easy to see that three double integrals in the parenthesis are equal. To
estimate the second double integral we put t —1=T, t —s=s and t— ¢
=¢. Then we see, from (1.6) and (1.8), that

t [ S| T T 1
f Dt — é)déf ; ds =f a")(é’)df/f —ds’
. =S 0 ¢S

S0
(3.24) < J @(&)([logdo| + [logl'[)de’

0

SCfor0<t—1=0,.
Using (3.24), we get (3.21) from (3.23). This completes the proof of lemma 3.4.
We begin the proof of lemma 3.2. Writing

I = A(2) va exp(—(t — s) A(S))(D(s, 1) — D(t, T))xds

+ A(t) -r_p exp(—(t — s) A(s)) @(t, t)xds

= L,(p) + L,(p).

it suffices to prove that ||L,(p) — L,(p)|| and | L,(p) — L,(p')|| tends to O as
p, p' 1 0 uniformly with respect to t, tfore <t — 1 < d,. Asfor |L,(p) — L,(p)|,
let p,p’ be 0 <p <p <e/3 and use (3.16), then we see that

t—p

L,(p) — Ly(p") = A(I)J ,exp(—(t — 5) A(s)) P(t, 7)xds

t—p

= N,(t, 1) D(t, )x — N (¢, 1) D(t, 7)x.

Since &(t, t)x is uniformly continuous in ¢, t fore £t — 7 < §, and ¢t £ T, for any
positive number y there exists a finite set I'y = {(t,, 7,), (t5, T,),-(ty, Ty)} of points
of the set I' = {(t, 7)[e £t — T < Jy, t < T, } such that for any (¢, 7)e I" we can take
(t;, 1) ey, which satisfies
Y

. D(t, — P, T; < —.
(3.25) I @(, 1)x (t, T)x| 5C
where C” is the constant in (3.19). And since D, is dense in E, there exist
Xy, X5,-+,Xy€D, such that



76 Showji Kawatsu

. D(t, 1)x — x| £
(3.26) 1@ wx — xill S 55

for i=1,2,---,N.
So for any (t, t)e I take (¢, 7)€ I', which satisfies (3.25) and let p, p’ be 0 < p < p’
< % then we see from (3.18), (3.19) and (3.26) that
[L2(p) — La(p) Il = [N, (5, D) (P(t, T)x — P(t;, T)x)l
+ [IN, (@, D)(P(t;, T)x — X))l
+ IN, (1, 1)x; — Ny (t, O]
+ Ny (6, 1) (x; — P(;; 1)x) |
+ Nyt D)(P(t, T)x — P(t, I)x) |

14
5

?
5

lIA

Y Y _
+stststs=
Thus we conclude that ||L,(p) — L,(p")|| tends to O as p, p' | O uniformly with
respect to t, T fore <t — 1 <d,. Asfor |L,(p) — Li(p)],let p, p’be 0 < p < p’
< ¢/3 and use (3.6), then we see that
t=p
Ly(p) — Ly(p) = J  A@®)exp(—(t — 5) A(s))(P(s, 1) — D(t, 7))xds

t=p

= ft_pl A(t)exp(—(t — s) A(s))(J (L, s, T) + J,(¢, s, T)

t=p

+ K, (t, s, 1) + K,(t, s, 1) — K5(t, s, 7)) xds,
then using (1.3), (3.7), (3.8), (3.9), (3.10), (3.11) and ¢ £t — 1 £ §,, and writing

(=7 @t — s)

M(p, p') = ds
! Jioy t—1
) ("=° (s — 1)
M;,(p, p') = T ds
Jit—p

M;(p, p') = o a(t — s)ds r o Ul T)dr

Ji-p' . t—r

dr

rr- S =0 W (e
Moo )= | ds f bls —nar — 1)

Ji-p' N t—r

ft—p t
Msp, p)=| dsf a(t — r)d(r — 1)dr,

Ji—p s

we see that
(3.27) I Ly(p) — Ly(p)l
S Cllx|(My(p, p') + My(p, p') + M3(p, p') + Malp, p')
+ Ms(p, p)-
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It is obvious that M, (p, p'), M,(p, p') tends to 0 as p, p' | 0 uniformly with respect
tot,tforest—1<3d, To estimate Ms(p,p), putr—t=r,t—s=s,t—1
= T and use (1.6), (1.8) and ¢ < T< 6,, we have

P do
Mo, p) S+ f @(s)ds’ f (r)dr

o 0
3o) [*
+%O—)J @(s')(1log T| + |logs'|)ds’ — 0 as p, p' |0
p

uniformly with respect to t, t for e <t — 1 < 6.

To estimate Ms(p, p'), putt —s=s,t—r=r,t—t=Tand use 0 <p <p’
<¢g/3, e<TL 6y, T—r >r, we have

’ 1 pl 1 ’ ¥ 1 1 ’ 7 ’
Ms(p,p)—?L ;ds L <r’+ T— r,>a)(r)a)(T rydr
o1 st
<2 f —,ds’f &()dr’
& oS 0

o’ |
=2——w(5°)f @(r’)dr’J ;ds’

0 ’

r

do) [*
= 2@[ a(r)|logr'|dr — 0 as p' |0,
[
uniformly with respect to t, 7 for e <t —1 < d,.
To estimate M,(p, p’), writing

€
T+

N 3 a(s — nar — 1)
M4.1(P’P)=J /dSJ —(—?———dr
t—p T
, e S od(s—rar—1)
My(p, p) = [ , dsj —‘?‘—d",
t—p 4k
we see that

M,(p, p') = M1 (p, p)) + M4s(p, p).

2 & ,
As for M, ,(p, p'), use t —r gge, s—rgg, w(s —r) S w(dy) and put r —t ="+,
then we have

5 €/3 oy ) ,
M,.(p, p) S ‘2‘;(2 /°9)(p’ - ) j &(r)dr' — 0 as p, p' L0
0

€ ,
As for M, ,(p, p)), use w(r — 1) S w(dp), r — 12 3 and put t —r=r,s—r=s,
then we have
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I =
P

= &/3 ), . t—r

=JJ cl)(")dr’ds’—> 0as p |0,
D

S/

where D= {(r,s)|r £t —1<80, 5§20, 0=r —s <p'}.
Thus we conclude that M (p, p’) tends to 0 as p, p’ | O uniformly with respect
tot,t for e<t—1=<8, This completes the proof of lemma 3.2.

§IV. Uniqueness of fundamental solution

In this section we prove global existence and uniqueness of fundamental
solution. We first prove local uniqueness near the diagonal set.

Definition. A function u(t) with values in E is called a strong solution of the
initial value problem (4.1) on [z, x]

d

4.1 { a“(t) + ANu(®)=0 (t<t=<y)
u(t) = uo,

if

(1):  u(t) is continuous in t for T <t < y;

(2): u(t) is continuously differentiable in t T <t < y;
and if

(3):  u(t) satisfies (4.1)

Lemma 4.1. Let the assumption (A,) ~ (A,) hold. Then, for any uyeE and
t€[0, Tp), if we put x = min{t + ¢, T,} there exists a unique strong solution of the
initial value problem (4.1) on [1, y]. And it is given by u(t) = U(t, TVuy, where
U(t, 1) is the local fundamental solution near the diagonal set.

Admitting lemma 4.1 for the moment let us finish the proof of local
uniqueness of fundamental slution. Indeed, if there exists another fundamental
solution for 0 <t — 1 < J,, say (7(t, 7), then i(t) = U(t, T)u, is also a strong
solution of the initial value problem (4.1) on [, y]. We have #(t) = u(t) for t <t
<y, that is, U(t, ug=U(t, D)up, if 1<t<y and upeE. Therefore U(t, 1)
= U(t, 7).

Before beginning the proof of lemma 4.1 we prove the following lemma.

Lemma 4.2. For any xe€E, the function W(t, 1) = AQ)U(t, 1) A(t)" ' x is
continuous with respect to t, 7 for 0 <t — 7 < J,.

Proof. For 1 <s <t, writing
@(s) = exp(—(t —5) A1) U(s, 1) A(r) "' x

its derivative is
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(4.2) ¢'(s) = exp(—(t — 5) A1) (A(t) — AE) U(s, 1) A(t) ' x
Integrating (4.2) and applying A(f) to the resulting equation, we have

4.3) Wit 1)=A{t)exp(—(t — 1) A@)) A(t) "' x
+ j A(t)exp(—(t — s) A()) (A1) — A(s)) A(s) " W (s, t)xds.

By lemma 2.7 the first term on the right hand side of (4.3) is continuous with
respect tot, t for0 <t — 7 £ 6,. And by (2.23) A(r) "' is continuous, so W(t, 1) is
continuous with respect to ¢, T for 0 <t — 1 < J,. Thus it remains to show that
the second term on the right hand side of (4.3) tends to O as t — 7| 0. Writing this
term in the form

T

(4.4) J l Y(t, s) W(s, 7)xds,

where P(t, s) = A(t)exp(—(t — s) A(t))(A(t) — A(s)) A(s)” !, and using (1.3) and (1.5)
we have

(4.5) (. s)|| = Ca(t —s),

where C is a constant independent of t, s. Hence,

t

W, x| = Clix] + CJ @t — 5)[|Ms, t)x||ds.

T

So, by Gronwall's inequality, we have
(4.6) W, x| = Clixl,

where C is a constant independent of ¢, t provided 0 <t — 1t < J,. From (4.5)
and (4.6) it follows that the integral in (4.4) tends to O as ¢t — t [ 0. This completes
the proof of lemma 4.2. Incidentally we have also proved the next corollary.

Corollary. For all t,t with 0 <t — 1 <9,
(4.7) [A@B U, DA™ < C,
where C is a constant independent of t, .
We proceed now to the proof of lemma 4.1

Proof of lemma 4.1.  Let U(t, s) be the local fundamental solution constructed
in §I1. It is obvious that U(t, T)u, is a strong solution of (4.1). So it remains to
prove the uniqueness of the strong solution. For n=12,---, let 4,(t) be the
bounded operators

-1
A1) = A(t)(l + %A(t)) .

Then we have
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(4.8) [(4.(0) + AD7 £ <1

(4.9) 1(A4a(6) — Ax(1) A4,() || < Coo(t — 1),

where Rel = 0 and C is a constant independent of ¢, s, 7, 4, n.
From (4.8), (4.9), §IT and §1II, it follows that the local fundamental solution

. d . .
U,(t, t) of the homogeneous equation &u(t) + A, (t)u(t) = 0 exists and satisfies

(4.10) [Ua(t Ol = C,

where 0 <t — 1 <J, and C is a constant independent of ¢, 1, n.

At first we prove that a strong solution u(t) is unique under the asuumption
that u(t) is continuously differentiable up to t = 7.

Assume that u(t) is a strong solution of (4.1) on [z, ¥] and continuously
differentiable up to t = t. Since u,(t) = U,(t,t)u, is a strong solution of

(4 11) %u"(t) + A"(t)un(t) =0 for t <t < X

on [t, x], the function w,(t) = u(t) — u,(t) satisfies

{iwn(t) + A (O wa(0) = (A,(0) — A@D)u()  for T<t <y

4.12) de

w,(t) = 0.

Since ||4,(t)| £ Cn, where C is a constant independent of ¢, it follows from (4.9)
that (A4,(t) — A(t))u(t) is continuous on [r, x]. Thus we see that (4.12) has a
unique strong solution on [, x] and it is written by

4.13) w,(t) = j U, (t, 5)(A,(s) — A(s))u(s)ds.

T

From (1.2) and (1.4) we have, for any xeD,,
c,C
_ -1 < 1%¥3 .
1(An(s) — ABAS) Il = - —— 1 1 4(0)x |l

So, we have, for any x€E,
4.14) (A,(s) — A(s)) A(s)"'x —> 0 as n —> o0,

uniformly with respect to s for t <s < .
From the present assumption A(s)u(s) is uniformly continuous on [z, x]. So,
from (4.14), we have

(A,(s) — A(s))u(s) — 0 as n — o0.



Evolution equations of parabolic type 81

uniformly with respect to s for t <s < y. From this, (4.10) and (4.13) we have
w,(t) > 0 as n— oo, that is

u(t) = ,.h_,rﬂ) u,(t).

Since wu,(t) is uniquely defined as the strong solution of (4.11), we have the
uniqueness of u(t).

Now let u(t) be an arbitrary strong solution of (4.1) on [, x](not necessarily
continuously differentiable up to t = 7). For any © < s < g, u(t) is a continuously
differentiable strong solution on [s, x]. Writing U(t, s)u(s)
= Ul(t, s)A(s) ' (A(s)u(s)), we see from lemma 4.2 that U(t, s)u(s) is also a
continuously differentiable solution on [s, y] and satisfies intial condidion
U(s, s)u(s) = u(s). Thus we have u(t) = U(t, s)u(s) fort <s <t £ y. Taking s,
we have u(t) = U(t, t)u,.

This completes the proof of lemma 4.1.

Corollary. The equality
4.15) U, 1)=U(t, s)U(s, 1) for t<s<t=Zy
holds.

Now we prove global uniqueness of solution of the Cauchy problem of the
homogeneous equation.

Lemma 4.3. Assume that (A,) ~(A,) hold. Then, for any upeE and
t€[0, T,), there exists a unique strong solution of the initial value problem,

(4.16) %“(t) + AQu(t)=0 fort<t=T,

u(t) = ug,
on [1, T,].

Proof. Let u(t) and v(t) be strong solutions of (4.16) on [1, T;]. And let
to,utpbet=ty <t <--<t,=Tyand t; —t;_; <do(j=1,2,---,n). Applying
lemma 4.1 sequentially, we have u(t) = v(t) for 1<t < T,.

Finally we prove global existence and uniqueness of fundamental solution.

Lemma 4.4. [If t,t are points with 0Zt<t=<T, and if
to, Lys s So» Sy50*»S, are points with 1=t <t; <. <t,=t 0<t;—1t;_,
<dg(j=1,-m), T=5,<s;<--<8§,=t and 0<s — 8- <0gk=1,---,n),
then

4.17) Uty 1) Ulty, t)U(ty, to) = U(sy, Su—1)-- U(sy, s1)U(sy, So)-

Proof. Let ry, ry,---,r, be points with {ro,ry,---,r,} = {to, ty.-=,tu}U
{so» S1,°++,8,p and T=ry <r, <--- <r,=t. Then, in view of local uniqueness of
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fundamental solution and (4.15), it is clear that

U(tm’ tm—l)”’U(tZ’ t2) U(tl? tO) = U(rp’ rp—l)"' U(rZ’ rl)U(rl, rl)
and

U(Sys Sp—1)--U(82, s)) U(sy, 89) = Ulry, rp— )= Ulry, ) U(ry, 1y)
holds. Thus we have (4.17).
In view of lemma 4.4, we can define U(t, 1) by
Ut, 1) = Ut t-1) Ulty, to).

Then by lemma 4.3 we have global uniqueness of fundamental solution.

§V. Solution of the Cauchy problem

In this section we prove our main theorem. In view of lem,ma 4.1 it remains
to prove that the function

5.1) w(o) = J UG, 9)f(s)ds
satisfies the equatoin

52) S+ AOWO =10 for S 1<
(5.3) wit) =0

d . . .
and that aw(t) is continuous for 1 <t <y, where 0<t < T, and y = min{t

+ 60, To}.
By virtue of (2.6) we have | U(t, 7)| < C, so, it follows that (5.3) holds. As for

_— d .
the proof of (5.2) and the continuity of aw(r), we formally write, for h > 0,

(5.4)
w(t + h) — w(t) IJ‘”'

t

U(t + h, s)f(s)ds

+ <%(U(r +ht)— I)A(t)‘1><A(t) f uf, s)f(s)ds)

=1,(h) + L(h)L(t 7)

(5.5 Lito= j AU, 9)(f(s) — f(D)ds

+ J AU, s) — exp(—(t — ) A(1)))dsf(2)

T
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+ jt A(t)exp(—(t — s) A1) f(t)ds
= L,(t, 1) + Ly(t, 1) f(t) + (I — exp(—(t — 7) A(0))f(2).

And we write

(5.6) L1 =J IA@ U, s)(f(s) — f(D)lIds

(5.7) Lyt 0= J IA@U(t, s) — exp(—(t — 5) A())) || ds.

We need the following two lemmas.
Lemma 5.1. For any x€E

Ue+h-1,

(5.8) ;

O 'x— —x as h|0

provided 1 <t <

Lemma 5.2.
(5.9) Lt t)— 0ast—10
and
(5.10) L,t,)— 0 ast—1]0

where 0 £t <t < y.
And we borrow the following two lemmas from calculus.
Lemma 5.3. For any ¢ > 0, let g(t, s) be a uniformly continuous function with

values in E, for 0St<s<t<yand t—sze If gt s) satisfies

J lg(t, s)|ds — O as t — 10,

T

t
then f g(t, s)ds is a uniformly continuous function in t,t for 0 ST <t =7y.

T

Lemma 5.4. Let f(s) be a continuous function with values in E for t <s

<t lf<%>+f(s) - limj:(s——*%——f(s—)

lim exists and is uniformly continuous for 1 <'s

<t then ;j—sf(s) exists and diis—f(s) = <%> f(s) for t<s<t.

Admitting lemma 5.1 and lemma 5.2 for the moment, let us finish the proof of (5.2)

d
and the continuity of aw(t). Indeed, by lemma 2.8, I,(h) tends to f(t) as
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h}0. By lemma 5.1 and lemma 5.2 we have w(t)eD, and I,(h)L(t, 1) tends to

+
— A(t)w(t) as h|0. So, <c(ij_t> w(t) exists and satisfies

<%>+ w(t) + A(t)w(t) = f(t) for t<t<y

d
Then, by lemma 5.2, lemma 5.3, lemma 5.4, we see that aw(t) exists and is

continuous for t <t < y and that (5.2) holds.
We proceed now to the proof of lemma 5.1.

Proof of lemma 5.1. Consider the function ¢(s) = exp(—(t — s) A(t)) U(s, t)x
for xeE. It is continuously differentiable in (z, t) and
@' (s) = exp(—(t — 5) A(1)) (A(t) — A(s)) U(s, 7)x.
Integrating the both sides, we have

(5.11)

t

U, )x = exp(—(t — 1) A(t))x + J exp(—(t — s) A(t))(A(t) — A(s)) U(s, t)xds.

T

In view of (5.11), we can write, with A(t)”!x instead of x,

Uit+h—1
— A

L exp(— hA(t + h)) — 1
*= h

)~ A" 'x

t+h
+%J exp(—(t+ h—s)A(t + h)) (At + h)

— A(S) A(s)"H(AGB) U(s, T) A(t) V) xds
= By(h) + B,(h)

Using (1.3), (1.5), (4.7), we have
C t+h
[ B2(h) [ = ZIIXIIj ot +h—s)ds <cllx|wh)—> 0 as h|O0.
t

And using lemma 2.7, we have
_ h
Bl(h)=—h—lf A(t+h)exp(— g A(t + h)) A(t)"*xde — — x as h|0.
0

This completes the proof of lemma 5.1.
We proceed to the proof of lemma 5.2.

Proof of lemma 5.2. We write
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L= J IAG@)(U(t, s) — exp(—(t — s) AW 1f(s) —f(©)[Ids
+J [A@®)exp(—(t — ) AD)Il [1f(s) — f(1) [l ds

< Cj [A@) UL, s) — exp(—(t — s) A(1))) Il ds

e J Lf® = f9 4

. t—s

where C denotes a constant independent of ¢, . In view of (1.12), it suffices to
prove (5.7). So, we write

A@R)(U(t, 5) — exp(—(t — 5) A(1)))
= A(t)(exp(—(t — 5) A(s)) — exp(—(t — 5) A(r)))

+ A(t) j’ exp(—(t — r) A(r)) @(r, s)dr

s

= A()M (t, s) + A(t)M,(t, s).
Using (2.17), we have

t t—t

a(t — s)ds = CJ a(r)dr— 0

0

Jl | A()M (¢, s)||ds < cj

T

ast—1]0.
As for M,(t, s), we write
M,(t, s) = Jl exp(—(t — r) A(r))(D(r, 5) — D(¢, s))dr
+ J‘t exp(—(t — r) A(r))dr ®(t, s)
=M, (t, s) + M, ,(t, ).
Using (3.24), (2.12), we have
fl |A@E)M, ,(t, s)[|ds < Cf’ a(t — s)ds = Cj'_t a(rydr— 0
T T 0
as t—1]0.

Using (3.6) and lemma 3.3, we have

J IA@)M, (¢, 5)llds

éf dSJ I A@exp(—( —r) AT (& v s) | + 120 7, 9)

N
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+ Kyt o)l + 1Ko 91 + [ K5(E 7. s)[)dr

t [T t 1 Y
§J dsJ o —n dr+J~ dsl[ blr S)dr
. s t—s . s t—s

rt 't r o~ _
+ | ds| o — r)drj wt(u_ us) du

J1 Js

s

~ rt o N
drj O — wd(u s)du

+ | ds
s t—u

JT JSs

t rt t
+ | ds drj ot — uyd(u — s)du

J1 Js b r

=N1+N2+N3+N4+N5.

It is easy to see that N, = N,. Puttingt—s=s"t—r =7 and using (1.6), (1.8),
we have

(5.13)

t—t t—t 1 t—t
N, = J a(rdr J, ;ds’ < J a(r)(|log(t — )| + |logr'|)dr’
0

0

—0ast—1|0

It is easy to see that Ny = N,. Puttingu—s=u',t—r=r,t—s=s", we have

t—T 1 st st —r/ ’
N;= J —,ds’j w(r’)dr'J‘ <(I)(u’) + c/o(u ),>du’

| st ft—1
§j ?ds’f a(rdr a(r)dr

0 JO

t—t ft—t
+ j @(s")|logs’|ds’ a(r')dr

0 JO

+ J @(s')|logs’|ds’ a(r)dr

0 Vo
< J o(r)dr f () ([log(t — 7)| + 3{logs'))ds

Using (1.6), (1.8) we see that N, tends to 0 as t — 7] 0. As for Ny, putting t —r
=r,t—u=u,t—s=s, we have

t—t st s

N = f ds’j dW)d(s' — u’)du’J —dr
0 0 w
t—t s/

I ds’f oW)a(s' — u')|logs'|du’
0 0

IIA

t—t s/
+ J ds’j dW)d(s — u')|logu’'|du’

0 0
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= N5+ Ns.,.
As for N5 ;, using (2.9), (1.6) and (1.8), we have

N5_1§2J |logs|f dWw)ydw — 0 as t —1|0.
0

As for N, ,, we write

t—t s//2
Ns, = f ds’f oW — u)|logu'|du’
0 0
t—1t s/
+ j ds’f/ oW)d(s — u)|logu'|du’
(0] s/2

t—t t—1t
§2J d)(s’)ds'j o) logu'|du’

0

t—t

+ ZJI_I max(|logs’|, |log(s’/2)|)(b(s')ds’j w(r)dr

0 0

Using (1.6) and (1.8), we see that N5, tends to 0 as t — 7| 0. This completes the
proof of lemma S5.2.

§ VL. Application to an initial-boundary value problem

(See A. Friedmann [1] Part 2.9) Let Q be a bounded domain in the real n-
dimensional Euclidean space R". For any 0 < T< oo, denote by Q the cylinder
{(x,1); xeQ,0<t < T} and by 02 the boundary of Q. We consider differential
operators

ou

ou
. = — A s I = — (X, &
(6.1) Lu="+ A(x. . Dju =7+ M}ézma (x, )D*u

with complex coefficients a,(x, t) defined in @, where a denotes the multi-index «

) o\ 8\
z(ala""an)v |a| = + o +a" and D% = (a_xl> <axn> '

Definition. For t,e[0, T] A(x, t° D) is said to be strongly elliptic at a point
x0 if

(— D"Re{ Y a,(x%1%&}>0
2l S2m

for any real vector & =(&,,---,&,) #0, where & =¢&---&. L is said to be
parabolic at a point (x°, t°) if A(x, t° D) is strongly elliptic at x°. Lis said to be
parabolic on a set U if Lis parabolic at each point of U. Lis said to be uniformly
parabolic in Qg if the coefficients a,(x, t) are bounded in Q; and if
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(= D"Re{ ), a,(x, )&} = ClEP™

la|=2m

for all (x, t)e QO and for all real & where C is a positive constant independent of
x,t, & and [¢] = (] + - + &)V

We consider the Cauchy problem of the evolution equation

du
6.1 o HAQu=f0  0<i=<T
u(0) = Ug,

in the Hilbert space 12(2), where for each t, f(¢) is the function f(x, t) belonging to
I2(R2), and A(t) is the operator with domain D, = H*™(Q)nH}(2) given by
A(t)v(x) = A(x, t, D)v(x). And u, is a function in [*(£).

Definition. u(t) is said to be a strong solution of (6.1) if u(t)e C°([0, T],
I2(2))nC((0, T,], I2(2)) and satisfies (6.1).

We assume the following assumptions:
(E,) The coefficients a,(x, t) are continuous in @, and

lag(x, 1) — a,(x, )| < Cllog|t — 1| [

for all xeQ, te[0, T] and t'€[0, T], where C,y are constants independent of
x, t,t' and y < — 2.
(E,) The inhomogeneous term f(t) is continuous in [0, T], and

If) = () < Cllog|t —¢'| |°

for all te[0, T], t' €[0, T], where C, ¢ are constants independent of x, t, t' and ¢
< —2.

Proposition. Assume that L is uniformly parabolic in Qr, that the conditions
(E,), (Ey) hold, and that 8Q is of class C*™. Then there exists a unique strong
solution of (6.1).

Proof. From the a priori inequality of the elliptic operator A(t), we see that,
for some positive constant k, A(t) = A(t) + kI satisfies the conditions (4,). (4,) and
(A;). From the assumption (E,) and (E,), we see that, for w(r) = |logr/|?, Z(t)
satisfies the conditions (4,) and f(f) satisfies the condition (F). Set v(t) = exp(
— kt)u(t). Then (6.1) take the equivalent form

dv
(6.2) 5 T AWy =exp(— kf ()
b(0) = ug.

We can thus apply our Main Theorem to deduce this proposition. Q.E.D.
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§ VII. Necessity of regularity assumption

Though our conditions are not a set of necessary conditions to obtain general
existence and uniqueness theorem, here we give an example of the inhomogeneous
term which fails to satisfy our condition (F) and for which the existence and
uniqueness theorem in the sense stated bellow fails to hold.

We consider the Chauchy problem

d 82
(6.3) {a_l:(t”‘)=5;?‘(‘~x)+f(f,x) —w<x<ow, 1)2<t<T
u(1/2, x) = 0.

We call u(t,x) a strong solution of (6.3) if u(f, x) belongs to
C°([1/2, T1; LYR)NCH((1/2, T]; LA(R)).

We show an example of f(t, x)e C°([1/2, T]; L2(R)) which fails to satisfy our
condition (F), and for which the existence and uniqueness of the strong solution in
the above sense fails to hold. Remark that f{(¢, x) is included at least in
C°([1/2, T]; L4(R)). Let 1 <T<3/2 and f(t, x) = F; '(g(t, &)) for

[t — 1|14 (1
g0, ¢) = { lloglt — 1IF(Ellt — 1172 + 1)
0 t=1

where 0 <« <1 and F; ! is the Fourier transform in L* with respect to ¢ If the
existence and uniqueness of the strong solution of (6.3) hold then the solution must
take the form u(t, x) = F; ' (v(t, £)) where

v(t, &) = J exp(— &3(t — 5))g(s, &)ds,
0
and o(t, £) must take the form
(6.4) v(t, &) =g(t, ) + J &2 exp(— E3(t — 9))g(s, &)ds
0

So, to deduce our assertion by contradiction it suffices to prove the following
lemma.

Lemma.
6.5) f‘ lg(t. O — g O, _
172 1 —5
(6.6) g(t, e C°([1/2, T1; Li(R))
6.7) c—(lj?v(t’ H¢LI(R) at t = 1.

Remark that (6.5) indicates that f(t, x) fails to satisfy the condition (F).
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Proof. Since
f‘ lg(l, &) —g(s, Ol d
s

1/2 I‘S

1 0 l (1 _5)1/2 >1/2
jl/l s(L (IE1(1 =)' + 1) éllogll — s[>

1
1
=C ds = o0,
B JI/Z (1 — s)|log(l —9)I*

(6.5) holds. As for (6.6) g, é)eLé(R) is clear. If t# 1 then by Lebesgue
convergence theorem we have

Jw lg(t +h, &) —g(t, YI’dE — 0 as h— 0.

-

And we have

F g1+ h, &) — g(1, OAde

— o0

© 1 Zd |h|1/2
<C
= f <¢|h|”2+1> $Tlog HI™

1k
|17 log h] [

C

IIA

—s 0 as h— 0.

Thus (6.6) hols. As for (6.7), in view of (6.4), it suffices to prove

1
f Exexp(— & (1 — 9))g(s, &) ds¢ LE(R).
1/2
Writing /

=" ae( " eexp—z (1-9 d>z
_ i v
L ¢<L/25 P g TSR el —sI 7+ 1)

and putting 1 — s = a, we have

© . 1 5 a1/4 2
= ZL : dé(fuz P D ogar(Ea + 1)d“> |

So putiing &%a = x we have

© . &2 x1/4 i 2
I1=2 ' dﬁ(J exp(— x) — x)
L a0 Y logle/EN(Jx + 1)

© . &2 x1/4 4 2
2 4 — _

L : 5<LG P e/ + 1) x>

£ 1 4 &2 x1/4 i 2
C — —

L EllogEr” é(LZ/z A ")

v

v
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completes the proof of the lemma.
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