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Some Numerical invariants of hyperelliptic fibrations

By

Shigeru MATSUSAKA

0. Introduction

In this paper we shall define certain numerical invariants of hyperelliptic
fibrations and study their properties. A proper surjective morphism IT: X — C is
called a hyperelliptic fibration of genus g if X is a smooth surface, C is a smooth
curve and the general fiber of IT is a hyperelliptic curve of genus g.

Hyperelliptic fibrations of genus 2 have been studied by several
mathematicians. Ueno [U] and Xiao [X ] proved that the topological index i,,,(x)
= g(cl(X)2 — 2¢,(X)) is non-positive if X has a hyperelliptic fibration of genus 2
over a smooth compact curve.

In this paper we will show the following inequalities for every relatively

minimal hyperelliptic fibration /7: X — C over a smooth compact curve:

;gggll.mzce,(x)si,o,,(X)gg_zz;ngf%l.mzcel(X) - (0.1.1)
if g is even,

—g—1 . g*—2g

29 + 1 ',ezcle'(x)s lop(X) < 29+ 1 'lezce,(X) +(0.1.2)

if g is odd.

where e(X) = (Euler number of I (1)) — (2 — 2g). (See Theorem 4.0.1 below).
To prove these inequalities, we need a section D of (/1 Iy, )43+ D,
For every hyperelliptic fibration IT: X — C, there exist a P!-bundle p: Y- C
and a double covering /7: X — Y such that X is birational to X over C. There
exists an open set C° in C which satisfies the following:

i) p~YC° is isomorphic to P! x C%

ii) I77'(C° can be identified with the closure of {(x,t, y)eC x C x C; y?
= ¢(x, 1)}, where x is an inhomogeneous coodinate of P! and ¢ is a polynomial of
x of degree 2g + 1 or 2g + 2 with coefficients in the rational function field of C°.

The section D of (/1 T,wy,c)®* %% Y is defined to be
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D= A((p)”-<d—x Ax% 4 xﬂ-ld—x>®4(zg+“
y y y

€ rrar(co, (/f ”*wX/C)®4(29+1))
= ral(cy (/1 H*(J)x/c)®4(29+ 1))

where A(g) is the discriminant of ¢ as a polynomial of x (cf. [U]). The definition
of D is independent of the choice of Y, C° x, y and ¢ (see Proposition 3.1.2
below). Moreover we shall show that D is a regular section of (A4 IT wy,)®*?* Y
on C (see Corollary 4.0.8 below).

The numerical invariant d(X) of a hyperelliptic fibratinon /7: X — C is defined
to be

d(X) = ord, D.

1
429 + 1)
Then we have the following:

Theorem 4.0.4. Let I1: X — C be a relatively minimal hyperelliptic fibration of

genus g. For every closed point t in C, we have

2

9 g

mer(x)ﬁd,(x)ﬁme,(X) ++(0.1.3)
if g is even,
g g*+ 1
mer(X)Sdr(X)Sme,(X) -(0.1.4)
if g is odd.

To prove the Main Theorem we shall use the theory of cananical resolutions
of double coverings studied by Horikawa and other mathematicians (see [H1], for
example).

In chapter 1 we shall summerize the definitions and fundamental facts
concerning with canonical resolutuions and hyperelliptic fibration. In (1.3), we
shall prove that, for every hyperelliptic fibration I7: X — C, there is a double
covering X over a P'-bundle Y such that the covering space X is birational to
X. Using this double covering, we can express the invariants d(X) and e(X) in
the language of canonical resolutuions (see Chapter 3 below). And this expression
and some calculation in Chapter 4 lead to the inequalities (0.1.3) and (0.1.4). In
the course of the calculation in Chapter 4, the double covering X needs to satisfy
some conditions (see Proposition 2.0.1). We devote Chapter 2 to construct such a
double covering. In the construction of such a double covering, the auther is
inspired by Debarre’s paper [D] and Tokunaga’s suggestions.

He would like to express his thanks to Hiré6 Tokunags for his useful
suggestions. He would also like to express his thanks to Professor Kenji Ueno
and Kazuhiko Kurano for many stimulating discussions.
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Notation and Convention. All algebraic schemes are defined over the complex
number field C. A surface is an algebraic scheme of dimension 2. A curve is an
algebraic scheme of dimension 1.

A blowing-up means a blowing-up at a point if a center of the blowing-up is
not mentioned. While f: Y’' — Yis called a blowing-down if f ~! is a blowing-up of
Y.

In the following we shall use the following notation freely.

FV : dual sheaf of & ;

[Z] : spectrum of the symmetric algebra on the dual sheaf of a locally
free sheaf & ;

S7YB] : union of all the irreducible divisors on a smooth surface X whose

images of a proper surjective morphism f: X — Y are components
of a reduced effective divisor B on a smooth surface Y.

For simplicity, we call f ~![B] the proper transform of B by f~'. (This coincides
with the usual notation when f is a proper surjective birational morphism.)

A curve C on a smooth surface is called a (— i)-curve if C is isomorphic to P!
and C*= —i.

Let IT: X — C be a proper surjective morphism from a smooth surface X to a
smooth curve C. The surface X is called relatively minimal if each fiber of IT: X
— Y contains no (— 1)-curves.

Let IT: X — C be a surjective morphism from a smooth surface X to a smooth
curve C and let B= B + V be a reduced effective divisor on X where B > 0 and
V>0, IT|B is finite and Vis contained in fibers of /7. Then B is called a horizontal
part of B and V is called a vertical part of B.

1. Preliminary

In this chapter we shall state definitions and fundamental facts concerning
with double coverings, canonical resolutions and hyperelliptic fibrations.

(1.1) Let X be a normal surface and Y a smooth surface. The morphism f: X
— Yis called a double covering if f'is a finite surjective morphism of degree 2. By
purity of branch loci, the branch locus B of f is a divisor on Y.

For every line bundle Land a reduced effective divisor B on a smooth surface
Y satisfying 0(L)®? ~ (O0y(B), we obtain a double covering Spec(0y @ Oy(L)") over
Y whose branch locus is B. In this paper this double covering is denoted by
X(Y, L, B).

Conversely, for every double covering f: X — Y, there exist a line bundle Land
a reduced effective divisor B on Y such that 0,(L)®* ~ Oy(B) and X
~ X(Y, L, B)(cf. [T] or [12, Th. 2. 24]).

Let g: Y > Y be a proper surjective birational morphism between smooth
surfaces, B a reduced effective divisor on Y and L a line bundle on Y such that

0y(L)®* ~ 0y(B). We define integers a;s by g*(B) = ¢’ '[B] + ). a;E; where Es
i=1
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are the exceptional curves of g'.

Definition 1.1.1. Under the above notation, a divisor By, and a line bundle
Ly, on Y' are defined as

By, =g*B — 2;[%] E,

i=1

OriLy) = g*0HL) ® coy(— ¥ [%] E)

i

a; |. . .
where [5‘] is an greatest integer not exceeding 5

Note that the divisor By, is reduced and effecive, Oy, (By,) is isomorphic to
Oy(Ly)®? and X(Y, Ly, By) is the normalization of X(Y, L, B) X Y (see

[H1]). Moreover, for every proper surjective birational morphisms g': Y’ - Y and
g":Y" =Y between smooth surfaces we have By, = (By,)y, and Ly, = (Ly,)y,.
The following fact is well-known.

Proposition 1.1.2 [H1, Chap. 2]. Let X be a double covering of a smooth
surface Y. Then X is smooth if and only if the branch locus of X — Y is smooth.

Proposition 1.1.3 (Canonical resolution and its universality).

Let Y be a smooth surface, X a double covering over Y, L a line bundle on Y and
B a reduced effective divisor on Y such that Oy(L)®*~ OyB) and X
~ X (Y, L, B). Then there exist a unique smooth surface Y.p and a proper surjective
birational morphism gcg: Yeg — Y which satisfy that:

1) the double covering Xcr = X(Ycg, Ly.p> By.g) over Yeg is smooth;

i) if g Y > Y is a proper surjective birational morphism between smooth
surfaces and the divisor By, is smooth, then there is a unique morphism g": Y' = Yop
such that g' = gcreog'.

Proof. Let i be an involution on X(Y, L, B) such that X(Y, L, B)/{i>~Y
and h,,: X,.,— X(Y, L, B) the minimal resolution of X(Y, L, B). There exists a
unique involution i’ on X, such that h,i' =ioh,,,. We define Y.z to be the
minimal resolution of X,./<i’>. Then there exist proper birational surjective
morphisms gcg: Yeg = Yand h: X(Yeg, Ly, By.p) = X,.s. Since the singularities
of X,,.,/<i') are of A,-type, the rational map h™': X, --- > X (Ycg, Ly.p Bycp) is @
blowing-up at isolated fixed points of i'.

If ¢:Y —>Yis a proper surjective birational morphism between smooth
surfaces and the divisor By, is smooth, then X(Y’, Ly, By,) is smooth and there
exists a unique morphism h': X(Y’, Ly,, By,) = X,,,. Let i” be an involution on
X(Y', Ly, By) such that Y' ~ X(Y’, Ly,, By,)/<i">. Then we have i'°h’ = h'<i".
Since Y’ is smooth, the involution i” on X(Y’, Ly, By,) does not have any isolated
fixed points. Since h™!' is a blowing-up at the isolated fixed points of the
involution i’ on X, universality of blowing-ups induces the proper surjective
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birational morphism h": X(Y', Ly,, By,) = X(Ycg, Ly p, By.,) such that i = heh".
Therefore we have a desired morphism g”: Y' — Y.x (see Proposition 1.1.2). O

In the following we shall often use X instead of X (Ycg, Ly.,. By.p). The
resolution X g — X (Y, L, B) is called a canonical resolution of a double covering
X(Y, L, B) over Y(see [H1]).

Remark 1.1.4. Let (Y, L, B) be a triple such that Oy(L)®* ~ (¢0y(B). Put Y,
= Yand let Y, be a blowing-up of Y;_, at a singular point of By, ,. If By, is non-
singular and for every i < n — | By, has some sinularities, then Y, is isomorphic to
Ycr(see [H1]).

(1.2) Let Y and Y’ be smooth surfaces and g': Y' > Y a proper surjective
birational morphism. In the section (1.1) we constructed a double covering over
Y’ from a double covering over Y. In this section we will make a double covering
over Y from that over Y’ and prove that this process is the converse process of
(1.1).

Let L' be a line bundle on Y' and B’ a reduced effective divisor on Y’ such that
Oy(L')®* ~ Oy(B). Then L=y’ L' is a line bundle on Y and B=¢' B is a
effective reduced divisor on Y such that O(L)®? ~ 0,(B). Hence we obtain a
double covering X (Y, L, B) over Y from a double covering X(Y’, L', B') over Y

Lemma 1.2.1. Under the above notation, L' and Ly, B and By, are both
isomorphic. That is, we can identify X(Y', L', B) with X(Y', Ly,, By)).

Proof. On a dence open set, the morphism g': Y — Yis an isomorphism and
L' (or B') is isomorphic to L(or B, resp.). Hence there is a natural birational map
hW:X'-->X. Put X =X(Y L, B), X' =X(Y,L, B) and X"
= X(Y', Ly,, By). Moreover, let ¢": X" > Y, h": X" > X and ¢: X' >Y be
natural morphisms.

Then the homomorphism (¢")*: R(Y’) » R(X ") between rational function fields
can be identified with (¢')*: R(Y)— R(X') under the identification
(W~ Yeh"y: R(X")> R(X'). Therefore the universality of normalization implies
that we can identify X' with X"”. Under this identification, the equalities ¢’ = ¢”
and h' = h" holds. Consequently, the branch locus B’ of X' — Y’ coincides with
the branch locus By, of X" — Y. Since Oy,(Ly) & Oy} a; E;) (E’s are curves
contracted by g¢'), the equality B’ = By, induces L' = Ly,.i

(1.3)

Definition 1.3.1. For every hyperelliptic fibration IT7: X — C, a triple (Y, L, B)
is called a triple associated with /7 if p: Y— C is a P'-bundle over C, Lis a line
bundle on Y and B is a reduced effective divisor on Y such that X(Y, L, B) is
birational to X.

Lemma 1.3.2. For every hyperelliptic fibration I1:X — C, there is a triple
(Y, L, B) associated with II.

Proof. 1f f: X .- - Proj(IT,wy,c) is a rational map associated with the
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relative linear system over C of the relative dualizing sheaf wy, of II, then the
general fiber over Im(f) is P! and f: X --- - Im(f) is of degree 2. Therefore, there
exists a donimant rational map f:X --- — Y of degree 2 from X to a P'-bundle Y
over C. If X denotes the normalization of Yin the rational function field R(X), X
is the double covering over Y which is birational to X. By the argument of (1.1),
there exist a line bundle Lon Y and a reduced effective divisor B on Y such that
X(Y, L, B) is birational to X. O

Since, for every hyperelliptic fibration, the fibers do not contain any (— 1)-
curves which intersect other (— 1)-curves, we obtain the following lemma.

Lemma 1.3.3. Let I1: X - C and IT': X' = C be hyperelliptic fibrations such
that there is a birational map f': X'--- - X over C. If Il is relatively minimal, f’
can be extended to a unique regular morphism.

2. Triples associated with relatively minimal hyperelliptic fibrations
(2.0) The purpose of this chapter is to prove the following proposition.

Proposition 2.0.1. If I1: X — C is a relatively minimal hyperelliptic fibration,
then there is a triple (Y, L, B) associated with II satisfying the following conditions.

Let Xcgp = X(Yer, Lyens Byor) be the canonical resolution of the double
covering X (Y, L, B) over Y, X, the minimal resolution of X (Y, L, B), and let p, pcg,
Heg, o hy hys fors fress and geg in the following diagram 2.0.2 be natural
morphisms (c¢f. Proposition 1.1.3 and Lemma 1.3.3). Then the surfaces and
morphisms satisfy that: '

(A) the horizontal part B of B has multipicity < g + 1 at every point in B;

(B) every curve F' = Xg contructed by h: Xcg = X is a (— 1)-curve on Xcg
and the image of the curve F' to Ycp is a (— 2)-curve contained in By_,:

(C) if O,X(t) contains a curve F contructed by h,g, then following conditons
are satisfied:

(C1) the curve F is the proper transform of p~'(t) to X,
(C2) I Yt) is a fiber of multiplicity 2, that is, if IT~(t)
=Y a; F;(Fjs are irreducible components of IT~'(t)), all
i

aj's are even numbers.

h
Xcr /T;\ X
hCR hrex
Ser
g
9cr

Diagram 2.0.2.
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In the following sections of this chapter we are devoted to construct a triple
(Y, L, B) satisfying above conditions.

(2.1) Let IT: X - C be a relatively minimal hyperelliptic fibration. Since
every hyperelliptic fibration has a triple associated with it (see Lemma 1.3.2), there
is a birational map i: X --- - X such that ici =id. By the minimality of I7 and
Lemma 1.3.3 we may regard the rational map i as a morphism.

Let ¥ be a quotient space of X by a group generated by this involution i and
Y. the minimal resolution of ¥, The normal surface ¥ has singularities of 4!-type
at the image of isolated fixed points of i. Let X g be a blowing-up at isolated
fixed points of i. By the universality of blowing-ups, there is a morphism f-z: Xcg
— Ycg. Since fcg is a quasi-finite projective morphism of degree 2, it is finite of
degree 2. That is, X is a double covering of Y.;. Let L g be a line bundle on
Y-z and By a reduced effective divisor on Y.y such that Xcg = X(Ycg, Lcr, Ber)
(see (1.1)). Note that, since X g is smooth, B¢y is smooth (see Proposition 1.1.2).

For convenience we summarize the properties of Xp and Y.

Lemma 2.1.1.

(i) h: Xcg— X is a contraction of all (— 1)-curves on Xcg.
() fcr: Xcr— Ycr maps every curve contracted by h onto a (— 2)-curve contained
in Beg.

Proof. The assertions are clear by the construction of Xz and Y. O

Since the general fiber of pcg: Yo — C is isomorphic to P!, after applying a
succession of blowing-downs, we obtain a P!-bundle Y’ over C. We may assume
that the sequence of blowing-downs

Yr=Y,— Y _ |, —Y ,— - — Y — Y=Y
9, 9 -1 9,

-(2.1.2)
satisfies the following condition (cf.[H2]).

Condition 2.1.3. Let E/ c Y/ be the (— 1)-curve contracted by g; and B] the
horizontal part of B =(g{+1°gi+2°°gn)4(Bcr). Then for every i(1 <i <n) we
have E/-Bi <g + 1.

In fact, the general fiber of the structure morphism pcg: Yogr — C is isomorphic
to P!. Hence every irreducible component E; of a singular fiber pcg(t) is
isomorphic to P' and the invertible sheaf wy.,c|E; has degree > — 1. The
equality of this inequality holds if and only if E; is a (— 1)-curve. Therefore, since
Pcr (8) wy., = — 2, the singular fiber pcg (f) contains either a (— 1)-curve along
which pcg (f) has (geometric) multiplicity > 2 or two (— 1)-curves. On the other
hand, the intersection number of pcg (f) against the horizontal part B.x of By is
2g + 2. There exists a (— l)-curve E,c Y, contained in pgg(t) such that
E,-B,<g+ 1. Ifg,: Yop=Y,_, is a blowing-down contracting E, to a point in
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Y,_,, the condition 2.1.4 holds when i = n.
After applying a succession of above processes, we obtain a sequence of
blowing-downs satisfying the condition 2.1.4 for all i. O

In the following we assume that the sequence of blowing-downs (2.1.2) satisfies
the condition 2.1.3.

Lemma 2.1.4. The horizontal part B' of B = (g¢g)y Ber has multiplicity < g
+ 1 at every point in B'.

Proof. We will inductively show that, for each i(0 <i <n), the reduced
effective divisor B; = (g;+1°Gi+2°-°9s)«Bcr has multiplicity <g + | at every
point in B]. Since B’ = By, it is sufficient to prove this assertion.

If i=n, the assertion follows from the smoothness of B,
= Bcg(see Proposition 1.1.2).

Assume that B| satisfies the assertion. Since g/ !'[B;.,]= B/, we have
mult, (Bj_,)= B;-E; where a/_; = g/(E{). Hence the condition 2.1.3 implies
that mult,, (Bj_,)<g + 1. On the other hand, by the assumption of induction,
B;_, has 'multiplicity <g + 1 at every point in B;_, except the point
aj_,. Therefore B;_, satisfies the assertion.

Consequently, for every i(0 < i < n), B; has multiplicity < g + 1 at every point
in B;. O

Let L' be a line bundle (geg)xLcg on Y and B’ a reduced effective divisor
(ger)«Ber on Y. By Lemma 1.2.1, Lcg and (L)y.,, Bcg and (B')y.., are both
isomorphic to each other.

h
X /I’_x;”\
N hcr ! e,
fCR ”CR fres
ger J

=
o
=

Diagram 2.1.5.

Let X,

res

be a minimal resolution of X(Y’, L', B'), II,,,: X,.,— C its structure
morphism and f,,: X,.,— Y., a composite morphism of the resolution X,
- X(Y', L', B') and the covering X (Y, L', B’y > Y. By the minimality of X, we

have heg: Xcp — X,es » and by Lemma 1.3.3, there is a morphism h,,,: X,,, — X.

Lemma 2.1.6. Under the above notation, we have the following:
(i) (Y, L, B’) is a triple associated with II,
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(ii)  Xcg is the canonical resolution of the double covering X(Y', L', B') over
Y’;
(i) (fl) *[p' "' ()] is a unique curve which is contained in (I1.,)~*(t) and

’

contructed by h,,,.

Proof. (i) By the construction of Y’, the assertion is clear. (ii) Let Xg
= X(Yeg» Ljop> Bo,) be a canonical resolution of the double covering
X(Y', L, B)over Y. By the universality of canonical resolutions (see Proposition
1.1.2), there exist morphisms §: Yeg — Yor and h: Xog = Xcg. By lemma 1.3.3
we obtain a morhism fz’:XCR—>X such that h=Ah'oh. Therefore, h is a
morphism contructiong some (— 1)-curves on X (see Lemma 2.1.1 (i)). Assume
that F is a (— 1)-curve contructed by h. Then fcx(F) is contructed by g: Yer
— Y. By Lemma 2.1.1 (i), fcg(F) is a (— 2)-curve, and hence Y. has a
singularity at the image of F. This is a contradiction to the smoothness of
Ycr- Therefore X g contains no curve which is contructed by h. Consequently,
we have Xop = Xcp and Yeg = Yoi. (iii) Assume that h/,, contructs a curve F in
IT,;'(t) other than f,7; '[p'"'(r)]. By Lemma 2.1.1 (i), F is a (— l)-curve in
IT;;'(t). This is a contruction to the minimality of X,,,. O

(2.2) By Lemma 2.1.1, Lemma 2.1.4 and Lemma 2.1.6, the triple (Y, L', B’)
constructed in (2.1) satisfies the conditions (A), (B) and (Cl) in Proposition
2.0.1. But the condition (C2) is not always satisfed. In this section we shall
construct a triple (Y, L, B) satisfying (C2) as well as (4), (B) and (C1) by changing
the sequence of blowing-downs (2.1.2) partially. Throughout this section we
continue using the same notation in (2.1).

Let p{ be the structure morphism of Y/, E{¥ (i < j) the proper transform of the
exceptional curve E; to Yj and (p'~'(1))¥ the proper transform of the fiber p'~1(¢)
to Y;. Moreover we put
{I1,;s'(t;)}jes = {fibers of IT/,;: X, — C which contain some curves contructed by
hies}. «-+(2.2.1)

Lemma 2.2.2. Under the above notation we have the following for every t;

(jeJ).

(i) ger'lp'~'t)] is a (— 2)-curve contained in Bcg.

(ii) Two of the blowing-ups g ', g5~ "',-+-,g,~ " are the blowing-ups at points
in the proper transforms of p'~(t)).

(ili) Let g, ' and gy, " (k; > £;) be the two blowing-ups in (i) above. Then the
fiber p;7'(t)) has a configuration in Figure 2.2.3 or 2.2.4.

(iv) If pi; '(t)) has a configuration in 2.2.3, we have E;; & By, E*) & By, and
(7)) B, =0.

And if p,;j_l(tj) has a configuration in 224, we have E; & By, and
(p'~ 1)) *) - By, = 0.
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Figure 2.2.3. Figure 2.2.4.
(=1 (=2
EIL,» E’l(;‘j)
prHE)™ 1 (=2) Ei [ (=1)
(=1 (=2
E'l(;tj) p- 1 (tj)(kj)

Proof. (i) By Lemma 2.1.6 (iii), f,os '[p'~'(z;)] is the unique curve which is
contained in /7/;'(t;) and contructed by h,,. Since h = hy°hcg, h contructs
(9cr°fer) " '[p'~'(t)]. Hence Lemma 2.1.1 (ii) implies the assertion.

(ii) By (i) above we have gcr'[p'~'(t)1> —p' " '(t)> = — 2. Therefore the
assertion follows from the fact that each blowing-up at a point on a curve reduces
the self-intersection of the curve by one.

(i) If gi ' is a blowing-up at (p' '(t))* " VnES™Y, the configuration of
p,:j‘l(tj) is that in Figure 2.2.4. Otherwise, it is in Figure 2.2.3.

(iv) By () above, (p' ()" is contained in By,
=@ +1°9+2°°9dn)xBcr- On the other hand, B is smooth and
g+1°9d’+2°°g, is isomorphic in a neiborhood of g¢cg[p' ™ (t)](see (ii)
above). Therefore we obtain the assertion (cf. Figures 2.2.3 and 2.2.4). O

We shall inductively construct a sequence of blowing-downs

YCR=Y;:—g—’ Yn—1g_l’ Y ,— o — YlT Yo=Y
" -

-+(2.2.5)

Assume that we constructed Y. Then we define the morphism g;: Y, —
— Y,_, to be a contraction of the following curve E; c Y; to a point.

Definition of E. If i # /; for all jeJ (for the definition of £; and J, see (2.2.1)
and Lemma 2.2.2 (iii)), then we define E; to be a direct image of E/™ to Y. Ifi

1

=¢; for some jeJ, we define E; to be a direct image of gcg [p'~'(t;)] on ¥,
By the following Lemma 2.2.6 (i), the sequence (2.2.5) is well-defined.

Lemma 2.2.6.

(i) Each E; is a (— 1)-curve.
(i) Y is a P'-bundle over C.

Proof. Considering fiberwise, we have the assertions (cf. Figure 2.2.3 and
2.2.4). a

Let EY(i <j) be the proper transform of E; to Y;, (p~'(t))? the proper
transform of p~'(t) to Y, p; the structure morphism of Y;, B; the direct image of
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Bcg to Y; and B, the horizontal part of B;. Then we have the following Lemmas.

Lemma 2.2.7. Assume that II1,,}(t) contains a curve contracted by h,,,. Then
t equals t; for some jeJ. And we have the followning.

(i) ger(p~ (1)) is a (— 2)-curve contained in Bcg.

(ii) In a neiborhood of p,‘_j‘(tj)(for the definition of k;, see Lemma 2.2.2 (iii)),
Y,, is naturally isomorphic to Y;,. Under this isomorphism, EGD (Ey, or p~ ()™
corresponds to p'~'(t)*) (Ey, or E{, resp.).

(iiiy p'~*(t) has a configuration in Figure 2.2.4. And we have (p‘l(tj))”‘f’-gkj
=0 and E§? < By,

(iv) The mtersectzon number of (p~'(t))* and B,, vanishes.

Proof. By the definition of the sequence (2.2.5) and t;, if I7,;,'(t) contains a
curve contructed by h,., then we have t = t; for some jeJ.

(i) We have the assertion in the same way in Lemma 2.2.2 (i).

(ii) By the definition of the sequence (2.2.5) we can show the assertion easily.

(iii) By (i) and (ii) above, By, contains the curve E{%). Hence p;; '(t;) has a
configuration in Figure 2.2.4 (see Lemma 2.2.2 (iv)). Therefore an equality
(p~1(t;))*?- By, = 0 follows from Lemma 2.2.2 (iv) and the correspondence in (ii)
above. And by the correspondence and Lemma 2.2.2 (i) we have an inclusion E‘,";”
< By,.

(iv) In the same way in Lemma 2.2.2 (iv) we ave a desired equality. O

Lemma 2.2.8. For every i(l <i<n) we have E;"B; <g + 1.

Proof. By the definition of the sequence (2.2.5) and the condition 2.1.3, a
desired inequality holds if i is not equal to any #;(jeJ). Hence it it sufficient to
prove the inequality when i =/;.

Since gy,' is a blowing-up at point on E{J™", we have

E(fl(f_l)'ﬁk,-l = E‘;‘f_l)'((gkj)*gk,-)
— (E¥) + Ey) By,.
By the correspondence in Lemma 2.2.7 (ii) we have
(E¥? + E,)-B,, = {p'~'(t)™ + E;,} - By,

Therefore, when i = #;, a desired inequality follows from Lemma 2.2.2 (iv) and the
condition 2.1.3. O

Proof of Proposition 2.0.1. We will show that the triple (Y, L, B) constructed
above satisfies the conditions in Proposition 2.0.1.

Since the double covering X (Y, L, B) is birational to X, the triple (Y, L, B) is
associated with I7. In Lemma 2.1.6 (iv) we showed X, is the canonical
resolution of the double covering X (Y, L, B). Note that, by Lemma 1.2.1 and the
definitions of L and B, we have the equalities Log = Ly, and Bgg = By.,.

(A) In the same way in Lemma 2.1.4, the divisor B satisfies the condition (A).
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(B) We have aleady shown the assertion in Lemma 2.1.1.

(Cl) We can show (C1) in the same way in Lemma 2.1.6 (iii).

(C2) By Lemma 2.2.7, if I7,.;! (1) contains a curve contructed by h,,,, then there
is a number jeJ such that t =¢;. Hence it is sufficient to prove the assertion
when t = t;.

By Lemma 2.2.7 (ii) and (iii), g,,‘jl is a blowing-up at the intersection
E§=Unp~i(t)* ™" (see Figure 2.2.4). Hence we have a equality

pk—jl(tj) = p‘l(tj)(kj) + 2'Ekj + E(zkj)-

By Lemma 2.2.7 (iii) and (iv), both E¢? and p~'(t)*? does not intersect
B,,. Hence we obtain

Per (t) = P_l(tj)(") + 2:(gi;+1°Gh,42° 0 g ¥ Ex, + E‘,";

By Lemma 2.2.7 (i) and (iii), E{) and p~'(t)" (= g¢g(t;) are contained in
Bcg. Hence we obtain  f&(p™'(t)") =2-fcg' [p7'(t)™] and  fER(ET)
= 2-fcg'[EV)]. Therefore we have

Mg (t) = 2 (fer' [P_l(tj)(")] + (Gi;+1°9k+2°°9n°Ser)* Ex, +fc_Rl(E(¢",~) ).

That is, 1! (t;) is a fiber of multiplicity 2. Therefore I77'(t;) = h, (I17'(t)) is a
fiber of multiplicity 2. O

3. Local canonical degrees and local Euler numbers

(3.1) First we will introduce a local canonical degree d,(X) and a local Euler
number e(X) for every hyperelliptic fibration I7: X — C and point teC.

Let I7: X > C be a hyperelliptic fibration of genus g, (Y, L, B) a triple
associated with I7 and p: Y— C the structure morphism. Then there exists an
open set C° in C such that:

I) X° is isomorphic to a double covering X(Y°, L% B°) and
the structure morphism I7°: X° — C° is smooth;

I1) Y° is isomorphic to P! x C° over C°;

) 0,°(L°) ~ p*(U,.(g + 1)) where p, is the first projection of P' x C°.
Here X°0=11-'(C%, H°=1|X° Y°=p 'C% L°=L|Y® and B°
= BnY° And we denote the isomorphism from Y° to P! x C° by j°

Let x be an inhomogeneous coordinate of P* and W an open set {(x, t)e P!
x C°% x # oo} in P! x C° Take trivializations L°|W= {(x, t, y)eC x C° x C}
and [0,°(B®)]|W = {(x, t, 1)eC x C° x C} such that y> =v. Let ¢ is a regular
section of @y°(B%)|W such that div(g) = B°nW. Then ¢ is a polynomial of x of
degree 2g + 2 or 2g + 1 with coefficients in the rational function field of C°. We
regard X as a closure of {(x,t, y)eC x C x C; y? = ¢(x, 1)} in L°. Then the

. dx
sections {x’—e I(Twy®);i=0,1,--,9 — 1} spans the vector bundle IT wx°°.
Yy

Definition 3.1.1. Under above notation, We put
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dx \®4(2a+1)
D= A.q.(d_xA xd_xA...A xg—l_{)
y y y
eFra,(CO, (/i H*wX/C)®4(Zg+1))
=T,,(C, (/i H*wX/C)®4(2g+ n)

where A = A () is the discriminant of ¢ as a polynomial of x and I,,(C, %) is a
set of rational sections of a sheaf & on C.

Proposition 3.1.2 (Ueno, see [U2]). The rational section D is independent of
the choice of (Y, L, B), C° Y° ]—“;> P! x C% x, y and o.

Proof. We can show the assertion in a similar way to [U]. O

Definition 3.1.3. For every point t in C we put

d(X) ord,D,

Ta2g+ 1)
edX) = YuopIT ™' (1) — (2 — 29).

We call the numerical invariant d(X) a local canonical degree of the fibration I1: X
— C at a point t in C and e(X) a local Euler number of II: X - C at t.

By Proposition 3.1.2, d(X) is independent of the choice of triples associated
with the hyperelliptic fibration I7: X — C.

Proposition 3.1.4. Let I1: X — C be a hyperelliptic fibration of genus g where
C is a complete smooth curve of genus b. Then we have

degIT*wy,c = ; d(X),
te!

Xiop(X) = (2 —29)(2 — 2b) + Zé e(X).
te
Proof. The first equality follows from the definition of d(X). For the
second one we can refer to [B-P-V, Proposition III.11.4]. O

(3.2) In order to estimate local canonical degrees by local Euler numbers, we
need two numerical invariants determined by the singularities of the divisor B of a
triple (Y, L, B) associated with a hyperelliptic fibration.

Let p: Z —» D be a smooth morphism from a smooth surface Z to a smooth
curve C and let H be a reduced effective divisor on Z such that p|H is a finite
morphism. We define a homomorphism 1y,,: p*wp|H — wy by

* d
(IH,DIUnH)(h-u)=h°ResH<p(m#> -(3.2.1)

where U is an open set in Z, ¢ is a regular function whose zero locus is BN U, h is
a section in I'((UNnH). Oy) and p is a section in I'(U, p*wp). Here p*(u) is the
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pull-back of u as a 1-form from p*QL(U) to 23(U) and Resy, is the residue map on
H (see [B-P-V, 11. 4]).

Lemma 3.2.2. The homomorphism iy, p*wp|H — wy is well defined and it is
injective.

Proof. Take another regular function ¢ on U whose zero locus is
BnU. There exists a unit element u in (U, O0;) such that ¢’ = u-¢. Thus we
can make calculation as follows:

h'ResH< p*(u)(p//\ d(ﬂ’) _ g , ResH< P /\(pd(uwp) )

* . *
_ h.ReSH<M>+<P_’1.ReSH<P_@A_W>
0] u [

%
z”'Res'*(W)'

Hence 1, is well-defined. For every closed point g in H such that (p|H), is
étale, (14,), an isomorphism. Therefore the injectivity of 15, follows from the fact
that, for every reduced curve K, the homomorphism ¢: ¥ — % between invertible
sheaves on K is injective if ¢ is isomorphic in a dence open set on K. O

Remark 3.2.3. If #: Hn— H is the normalization of H, the homomorphism
n*(gp): (pen)*wp = n*wy is the composite of natural homomorphisms (p°n)*wy
— Wy, and oy, = n*oy (cf. [B-P-V,11. 1]).

Let IT: X - C be a hyperelliptic fibration of genus g, (Y, L, B) a triple
associated with I7 and B is a horizontal part of B. By Lemma 3.2.2 we have an
exact sequence of sheaves

0__’P*wc|§§_’ w|B— M — 0. +(3.2.4)
R:7

Note that the support of # is empty or 0-dimensional.
Definition 3.2.5. For every point ¢ in C, we define an integer 6,(B) to be
0(B) = lengthy_ (pyM), if p~'(t) = B,
lengthe.. (pyt), + (49 + 2) if p7(t) ¢ B,
where (p,.#), is the stalk of the sheaf p,.# at t.

Let Xz be a canonical resolution of the double covering X (Y, L, B) over Y
and gcg: Yor — Y a morphism between the base spaces of X and X (Y, L, B)(see
Proposition 1.1.2). Since gcg: Yeg — Yis a proper surjective birational morphism,
gcr is decomposed into a succession of blowing-downs

1 —_— e —— Yl —_ Y -(3.26)
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Definition 3.2.7. For the seqence of blowing-downs (3.2.6), the divisor E; is
the proper transform of the exceptional curve of g; to Y.z and the positive integer
m; is the multiplicity of By,_, at the point g; where Y, is obtained from Y,_, blown-
up at g

(3.3) Let IT: X — C be a hyperelliptic fibration of genus g. Then Tcg: Xcg
— C is a hyperelliptic fibration of genus g and we can define the local canonical
degree d(Xg) and the local Euler number e(Xcg). The numerical invariants
d(Xcg) and e (X g) can be expressed by J,(B) and m; in the following forms.

Proposition 3.3.1 (cf. [H1, Lemma 6]). Let IT: X - C be a hyperelliptic
fibration of genus g, (Y, L, B) a triple associated with Il and X p the canonical
resolution of the double covering X (Y, L, B) over Y. Then, for every point t in C we

have
g ! Al m|
WUXer) = 324 +1)5(B) 2 erlts- {[7] <[2] 1>}
er(XCR)ZfSr( (E) l( |: ] —I:%]-—1>7

m;

where pcg is the structure morphism of Ycp and [7] is the greatest integer not

.oomy
exceeding >

(3.4) Proof of the first equality of Proposition 3.3.1.

Throughout this proof we use the notation in (3.1) freely. Let C° be an open
set defined in (3.1). Since 7°: X° — C° is smooth, B® = Bn Y° is smooth (see the
condition (I) in (3.1) and Proposition 1.1.2). Hence, in the sequence (3.2.6), no
rational map g;/'(1 <i<n) is a blowing-up at a point in the fiber on
te C% Therefore, if te C the right side of the first equation vanishes. On the
other hand, since the section D in Definition 3.1.1 is regular at te C°, the left hand
of the equation also vanishes for every teC°. Thus we have the first equality
when teC° In the following we will prove the first equality when té C°.

Assume that ¢ is not contained in C° Since d(X) equals d,(/T~}(V)) for every
neiborhood Vof t in C, we may replace C by any neiborhood of t in C. Therefore
we may assume the following conditions (a) ~ (f) (cf. (3.1)).

(a) C°=C— {1.
(b) There is an isomorphism s: Y—— P! x C such that ;#|Y° = ;.

In the following we identify Y with P! x C.

() L~p,*0, (g + 1) where p, is the first projection of P! x C.

(d) {(x,t)eP! x C: x # 0} nB = ® where x is an inhomogeneous coodinate
of P! and B is a horizontal part of B.

(e) The dualizing sheaf w. is generated by a section y,.
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(f) There is a function 7 on C such that div(z) = {¢}.
The proof is separated into two parts (for the definitions of ¢ and y, see (3.1)).

Part 1. ord,A(p) =9,

dx dx dx 1 m; m;
Part 2. ord| —Ax—A--Ax""'— | = — = 1= =1).
'( y oy y ) 2pc.};)=:[ 2 ] ([ 2 ] )

Since Xcg is birational to X, a triple (Y, L, B) is associated with ITcg: Xcg
—C as well as IT: X > C. Hence we have d(Xg) =d(X). Therefore, if we
show Part 1 and Part 2 above, we have a desired equality (see Definitions 3.1.1
and 3.1.3).

Proof of Part 1. Let ¢ be a function on U = {(x, t)e C x C} = P! x C whose
zero locus is B.  We defined the homomorphism 150t P*oc| B > wj to be 1gc(h- p)

*w) Add ~
=h-Resg<wzp—£—i£> for every heI'(BnU, Op) and pel(C, we). If uy is a
P*(Mo)Adx>

generator of w. (see the condition (e) above), then the section Resg(

A *
p Resﬁ(p (ko) A dx

generates wg. Since 15,c(io) = . 7 > we have

0
lengthg. (py M), = ord,<r(—é§, <Z)>> = ord, A (@) ~(3.4.1)

where r(f, g) is a resultant of f and g as polynomials of x.
On the other hand, if we put

c=0 if p~i(t) £ B,
1 if p~'(t)c B,

then we have ¢ = u-t’- @ for some unit element u of I'(C, O) (for the definition T,
see the consition (f) above). Therefore the assertion follows from Definiton 3.2.5
and the equation (3.4.1).

Proof of Part 2. Let EY be the proper transform of the exceptional curve of
g; to Y; for i <j (see Definition 3.2.7). And let F be a divisor on Y satisfying

Wy p/C ® Oy (LyCR) ~ gér (wy,c ® 0y(L) ® Oy (— F).

Then the divisor F is expressed in the form

F= '=i1 (gi+1 °"'°gn)*<<|:%] - 1>'E?’>~ --+(3.4.2)

By the minimality of Y., m; is greater than 1, hence F is effective or
empty. Therefore we have an exact sequence

0— Wycgic ® (. (L}'CR) — g&r (w}'/c ® Oy(L)) — O — 0. +(3.4.3)
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Lemma 3.4.4. Under the above notation, we have
R'pcry (Wyerje @ Oy (Lyep)) = R'pcry (9Er (wy,c ® Oy(L))) = 0.
Proof. By the relative duality we have isomorphisms
RlpCR*(ggR (wY/C ® 0y(L))) ~ RIP*(CUY/C & Oy(L))
~ (py(Oy(L)"))",
RlpCR(wYCR/C ® (OYCR(LYCR)) =~ (Perse(Oyer (Lycg) "))
~ (p,(Oy(L)"))”

where the last isomorphism is given by the fact that

(OYCR(LYCR) ~ géR ((OY(L)) ® @YCR < 'il (gi+ 10°00° gn)*<<— I:%:I) ' E?) )) .

Since the intersection number p '(f):L>0, we have p,(Oy(L)")
~ (0. Therefore we obtain the assertion. O

By Lemma 3.4.4 and the exact sequence (3.4.3) we have H Y(F, Og) = 0 and an
exact sequence
0— pCR*(wYCR/C ® (OYCR (Lycn)) I PCR*(QER (w}’/C & Oy(L)))

— PcryOF — 0.

On the other hand, we have
lengthe,. (Pcry @p), = dim HO(F, O)
= x(Of)

=55

where the last equality follows from the equation (3.4.2) and the following two
equalities:

Wyer = 9ER Wy @ Oy ‘Z’x Givr oo g)*EP).

F(F + wy.g)

10p) = ———rene,

Let € be the cokernel of the injection
A per@yenic ® OpenLye)) — A pyoye ® 04(L).

Since lengthe,. (pcry OF) = lengthe. (€), by [Ful. Lemma A.2.6], the proof of Part
2 will be completed if we shall show the following equation:

Lemma 3.4.5.
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d d
lengthy,. (6), = — ord,<—x/1 MLl Axa—ld_x).
' y y y

Proof. The composite morphism of

Ioxie = HepyOxorje = HCR*(ng((OYCR(LYCR) ® Wy cg/c)
~ pers(Lycr @ Oy i)

and

pCR*(LYCR ® wycn/c) — p,(Oy(L) ® CU)’/c)

maps the rational section Py_C to p-{ for every rational sections p in Oy(L)|Y° and

{in wy,c| YO, Since the regular sections {x'dxe I'(p,(Oy(L) ® wy,c)); i =0,1,-.g
— 1} span the locally free sheaf p,(0y(L) ® wy,) on C, we have

lengthe,. (€), = lengthe,. (Coker(IT wx,c — p,(Oy(L) @ wyc)),

= —ord,<d—xAxd—xA-~-Ax””1£1i>. 0O
y y y

(3.5) Proof of the second equality in Proposition 3.3.1. We shall use the same
notation in (3.4). Since ¢,(X) is a local invariant, in the following we assume
p~'(X) contains all the singulalities of the divisor B. For the sequence of
blowing-downs (3.2.6) we put G; = g,°g,°---°g;. Let V, be a vertical part of By,
and ; the cokernel of 155, (see the exact sequence below).

0—— (poG)*oc —— w1 f M 0
G, (Byc

If we put
ui = lengthe.. ((p° G, M), + degwy, + 2G;'[B1'V;,
then we have the following lemma.

Lemma 3.5.1. For every i (1 <i < n), we have

e {3)((3])

Proof. Put n; = mult,((G;- ;)" '[B]) and let g; be the point on Y;,_, such that
Y; is obtained from a blowing-up of Y;_, at ¢, By straightforward calculation we
obtain the following equalities:

degwy, — degwy, , = — (m; — n)(m; —n; — 1) + Z(mi - 2[%])("1,' —n)

A5 {30
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G{I[E]' V. — (Gi—l)_l[E]' V.= ni(”" B 2[%}>’

lengthe. ((p° Gy M), — lengthe. ((po G )y M),
= —nyn; —1).

By these three equations above we have a desired equality. O

Considering the cell decomposition of IT7;!(t), we have

Ziop(UTcR' (1) = 2 Y10p (P (1) = Xeop(Byen NPCR (1))
Since By, intersects pcq (1) at V,U(G, '[BInpcg (), we obtain the following:
e(Xcr) = Xuop(Tcr (1) — (2 — 29)
=22+ n) — {top(V) + 29 + 2 — lengtho,. (pcry-#,))} — 2 — 29)

=2n+ Iengthwc,.(pCR* n)t) me( )
=u,+2n

n m. 2 m-
-2 ACE N U |
ACEIREIR
n m; |? m;
_ S
L0053
Therefore a desired equality is proved. O

4. Main theorems

(4.0) The purpose of this chapter is to prove the following two theorems.
Theorem 4.0.1. Let I1: X — C be a hyperelliptic fibration of genus g over a

smooth compact curve C. Then we have

—g—1 . 9> -2 -1
11 ‘r;:ez(x) Spp(X) < W“@Zé&(x) ---(4.0.2)
if g is even,

. 9> —2g
. X)< X)< . X
2+ 1 ‘GZCe,( ) < g )_2ng1 ’EZCe,( ) (4.0.3)

if g is odd.

Theorem 4.0.4. Let IT: X — C be a hyperelliptic fibration of genus g. Then,
for every point t in C, we have

g g
oG+ 1) e(X) <d(X) < 09+ 1) e(X) -++(4.0.5)

if g is even,
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g g*+1
10+ 1) e(X) <d(X) < i+ 1)

if g is odd.

e(X) .--(4.0.6)

If IT: X - C is a hyperelliptic fibration of genus 2 over a smooth compact

curve C, then the coefficient of ) e(X) in the left term of (4.0.2) is
teC

negative. Hence we have the following collorary.

Collorary 4.0.7. If a smooth compact surface X is a family of genus 2 curves
over a smooth compact curve, then the topological index of X is non-positive.

Proof. If IT: X - C is a fibration of genus 2, then IT is a hyperelliptic
fibration of genus 2. And it is well known that the integer ¢,(X) is non-negative
for every (hyperelliptic) fibration I7: X - C and point ¢t in C. Therefore the
assertion follows from the inequality (4.0.2) in Theorem 4.0.1. O

Since the in teger ¢(X) is non-negative for every (hyperelliptic) fibration IT: X - C
and point t in C, the second inequalities of (4.0.5) and (4.0.6) in Theorem 4.0.4
imply that:

Collotrary 4.0.8. for every t in C, the integer d(X) is non-negative.

By this collorary, the section D in Definition 3.1.1 is a regular section (see
Definition 3.1.3).

(4.1) Theorem 4.0.1 follows from Theorem 4.0.4. In fact, by Leray's
spectral sequence we have x(0x) = (1 — g)(1 — b) + degwy,c where b is the genus of
C. Hence we obtain

1
hop(X) = 3'(01()()2 — 2:¢5(X))
= 4-degwy,c — {c:(X) — (2 — 29)(2 — 2b)}

= ;{4dl(X) - ez(X)}
te
where the last equality follows from Proposition 3.1.4. Apply Theorem 4.0.4 to
the last equation. We obtain inequalities in Theorem 4.0.1.
In the following sections we will prove Theorem 4.0.4.

(4.2) In order to prove Theorem 4.0.4, we need some lemmas. In this section
we state notation used in these lemmas.

Let IT: X — C be a relatively minimal hyperelliptic fibration and (Y, L, B) a
triple mentioned in Proposition 2.0.1. We use the notations in Diagram 2.0.3
freely. Moreover we define

n,: the number of irreducible curves which is contained in a

fiber pcg (t) and contructed by gcg.
For every proper surjective birational morphism ¢:Z — W between smooth
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surfaces over C, an integer fB,(¢) is defined as
B{¢p) = (Euler number of the fiber of Z — C on )
— (Euler number of the fiber of W— C on t).
Let

YCR = Xl-g—") Y;l—l m see T Y1 T') Yo = Y “‘(4.2-1)

be a decomposition of gcr into a succession of blowing-downs and let
E¥’s(1 <i<j<n) be curves defined in Definition 3.2.7 and ms (1 <i<n)
integers defined in Definition 3.2.7. Moreover we denote By, (see definition 1.1.1)
by B;.

4.3)
Lemma 4.3.1. Under notation in (4.2), the following equality holds at every
point t in C:

i 7|
4029 +1)-d(X)—g-e(X cr) = _2-”“;‘,”):'([7]_1) <[ > ] g>.

Proof. Since (Y, L, B) is a triple associated with [Tog: Xcp — C as well as
IT: X - C, we have d(X) = d(Xcg)(see Definition 3.1.1 and 3.1.3). Therefore a
desired equality follows from Proposition 3.3.1. a

Lemma 4.3.2. For every point t in C we have Byhcg) < = .

Proof. PB(hcg) and n, depends only on Euler number of 75 (1),
I1..' (). Hence, if necessary, replacing C by a neiborhood of ¢t in C, we may
assume that the reduced effective divisor B in Y (see (4.2)) has singuralities only in
the fiber p~!(t). Note that, under this assumption, the integer n, agrees with n
= (the number of blowing-downs of the sequence (4.2.1)).

Let Bz be the horizontal part of Bcg = By., and put pcg ()N Beg
= {ay, ay,---,a,}. If necessary, changing the order of blowing-downs, we may
assume that the sequence of blowing-downs (4.2.1) satisfies the following
conditions (cf. Remark 1.1.4).

There are integers ng, ny,-+-,N, ., Such that

(I) O=ny<n, <ny <--<Npyy=h =n,;

(I1) For every i, j such that 1 <i<m and n;_, +1<j<n,
g; ' is a blowing-up at the image of a; on Y;_,;

(IT)  For every i(1,<i<m), g, +1°Gn;+2°"*"°Gn,.., iS isomorphic
in a neiborhood of a;.

By the conditions (B) and (C1) in Proposition 2.0.1, an irreducible component
F, of ITR' (¢) is contracted by hcg if and only if the direct image of F, to Ycp is
contained in

D={E{";j=1,2,---,n E{ c Bcg and (E)? = —2}.
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Since the inverse image of E{"eD is irreducible, the number of curves in
I1* (t) which is contructed by hqg coincides with the number of the element of
D. That is, we have fB,(hcg) = (the number of elements of D). Therefore the
assertion follows from the following Lemma 4.3.3. In fact, Lemma 4.3.3 implies
that the number of elements of D is smaller than or equal to a half of n,,,, = n,.

Lemma 4.3.3.

(i) For every i=1,2,---,m, we have E{’¢D.

(ii) For every i, j such that i =1,2,---,mand n,_, + 1 <j < n; — 1, E{"¢ D implies
E{) eD.

(i) If np+1<j<n,, . we have E{"¢D.

Proof. (i) Since Beg is non-singular and the curve E intersect B¢y at a;,
E{” is not contained in Bcg. Therefore the assertion follows.

(ii) Assume a contrary to E{};¢D. Then both E{” and E{), are contained
in B, = Bcg. Hence the smoothmess of Bcg implies that E{” does not intersect

(). Therefore one of the blowing-ups g, '’s (j + 2 < ¢ < n) is a blowing-up at
the point a{* ' =(g;42°9;43°-°g,-1) "(EYTVNEYSD). Hence we obtain
(E{)? < (EY*Y)> —1 = —3. This is a contradiction with E{"eD.

(iii) By the condition (IT) above, the divisor B, =
(Gnpt1°Gn+2°°Ynn. JsBcr 18 non-singular at the intersection points B, np. o
where B, is a horizontal part of B, and p, :Y, —C is the structure
morphism. Hence each singularity of B,  is a singularity of p, '(f) and it is not
contained in ﬁ,,m. Since no three curves in p, '(f) meet at one point and every
irreducible curve in p, !(t) is non-singular, B, has multiplicity 2 at the point g;
where g¢,! is a blowing-up of Y, at g, Hence we have (g, +,)*B,,
= (9gn,+1) '[B,, ]+ 2°E, +. Therefore the divisor B, ., = By, ., does not
contain E, ., (see Definition 1.1.1). Consequently, E, is not contained in
D. In a similar way, we can also show E;¢D for every j such that n,

+2<j <Ny o
Lemma 4.3.4. For every t in C, we have e(Xcg) = n, + (2g — b,(IT ~1(¢))).

Proof. Since Iy is a proper surjective morphism, /7.x can be decomposed
into a succession of blowing-downs. Since the blowing-downs does not affect the
first Betti number of fibers, we obtain b,(I1:%'(t)) = b,(IT ~'(t)). On the other
hand, we have b,(IT:z (1)) > b,y(pcy (¢)) = n, + 1. Therefore a desired inequality
follows from the equality e(Xcg) = xiop(ITcx' (1)) — (2 — 29). O

Lemma 4.3.5. For every teC, we have e(Xg) < 2-e(X).

1
Proof. By Lemma 4.3.2 and Lemma 4.3.4, we have f,(hcg) si-{e,(XCR)
— (29 — b,(IT "*(1))}. Since e,(X,.,) = e(Xcg) — Bdhcr), we obtain

eXcr) < 2 e(X,e) — (29 — by (ITT1(1)). -++(4.3.6)
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Assume that h,, contructs a curve contained in [I7,.;'(t). Then, by the
condition (C1) in Proposition 2.0.1, we obtain e(X)=¢/(X,.) — 1. By the
condition (C2), there exists a divisor F = X such that IT " !(t)=2-F. The
dualizing sheaf wy is of degree g — 1. Since degwy is even, g is odd. Hence we

have g > 3. On the other hand, since b,(/T ~!(t)) < (the arithmetic genus of F), we
. 1 .
obtain b,(/1 (1)) < % Thus we obtain 2g — b, (/T ~'(t)) > 2. Therefore a

desired inequality follows from (4.3.6).
Assume that h,, contracts no curves contained in I7,.'(t). Then we have

e{Xcgr) = e(X). Since 2g > b,(IT ~'(t)), (4.3.6) also lead us to obtain a desired
inequality. O

Lemma 4.3.7. For every i (1 <i<n), we have 2 <m; <g + 1.

Proof. By the mnimality of Y. (cf. Remark 1.1.4) every g; ! is a blowing-up
at a singular point of B;. Therefore we obtain m; > 2.

By the condition (A) in Proposition 2.0.1, B;=(g,°g,°--°g) '[B] has
multiplicity < g + 1 at every point in B;. Since no three curves meet at one point,
we have mult,(B;) < mult,(B;) + 2 for every point a in B;. Therefore the second
inequality follows. O

(4.4) Proof of Theorem 4.0.2. First we will prove the first inequalities of
(4.0.5) and (4.0.6).

By Lemma 4.3.7, for every i (1 <i<n) we otain 1 < [%:I < g. Therefore

the first inequalities follows from Lemma 4.3.1.
Next we will prove the second inequalities of (4.0.5) and (4.0.6).

. m; . . . .
Since [?]s are integer, the theory of quadratic equation leads us to obtain

g B[ 56 5D

Hence Lemma 4.3.1 implies that

-1 _1
4-(29 +1)-d(X) —g-e(Xcp) < 2'":'[%]-<g -1- [gTD

On the other hand, since 2g>b,(IT '(t)), Lemma 4.3.4 implies
e (Xcr) = n,. Thus we obtain

4-Qg + 1)-d(X) < 2-([%](&; 11— [%]) + g>-e,(XCR).

Therefore desired inequalites follows from Lemma 4.3.5 and some calculation.

(4.5) Examples and Problems. First we will construct an example such that g
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gZ

is even and the equality d(X) = me,

(X) holds.

Example 4.5.1. Let Y be P! x C and g an even number. Put

g+1

g+1
B={(x,y)eP' x C; y =0}U({J {(x, »); x = ap*Hu( {(x, »); = = ay?})
i=1 i=1

x| —

where a/’s are complex numbers such that a;#a; if i#j Then we make
2

calculation and obtain §, = 4g(g + 1), eo(X) = 2 and dy(X) = ﬂf]-—l)
If g is odd, I cannot find any examples which satisfy the equality d(X)
2

g+ o

T 1)e,(X) if g is odd.

Problem 4.5.2. Find the upper bound of d,(X)/e(X) when g is odd.

Miyaoka proved ¢?(X) < 3c,(X) if X is a projective general type surface (see

(M]).

Problem 4.5.3 (cf. [C]). Are there any hyperelliptric fibrations which satisfy
(c1(X))? = 3cy(X) and k(X)=2?

The local Euler number e (X) can be defined even if I7: X —» C is not
hyperelliptric.

Problem 4.5.4 (cf. [S1] and [W]). Define the local canonical degree d,(X) for
every fibration I7: X - C. And find the upper bound of d(X)/e(X) when
e(X) #0.

Problem 4.5.5. Find the relation between d(X) and the number of fixed
points in a fiber on ¢ of the relative canonical map.
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