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Homotopy operations in symplectic and orthogonal groups

By

Albert T. LUNDELL

Using the Bott periodicity maps, we define the structure of a right stable
homotopy module on 7,(G) for G =S80 or G =Sp. Because of the simple
structure of 7,(G), most operations of stable homotopy n3 are trivial.

Specializing to Sp, we compute some non-trivial Toda brackets in 7, (Sp),
obtaining some new non-trivial primary operations in 7, (Sp).

Using these Toda bracket calculations and the non-stable Bott maps, we can
transfer the calculations to m,(SO) and to certain non-stable homotopy of
SO(n). This results in the fact that the generators of zng,,.,(SO), r = 0, 1, originate
in 7g,,+,(S0(6)).

Throughout this work we use the notation of Toda [T] with the modifications
of Mori [M] for generators of the various homotopy groups of spheres.

1. Generators of stable homotopy and primary operations

Since Sp(1) = S?, we choose B3, =135, B4, =1 and Bs,; =non=n? in
m(S?) for k =3,4,5. 1If j: Sp(1) - Sp is the inclusion, let f, =ju(Br.1). Let o 4
be the generator of #,(04)) for k=0,1, and if h: Sp(l) = S>> 0@4) is the
inclusion, let o3, = h,(1;)en;(0@). If i:0@4)— O is the inclusion, let a,
=1i,(ay ) for k=0, 1,3. Using the Cayley numbers, one can construct a cross-
section s: S7 — SO(8) of the fibre bundle SO(7) —» SO(8) —» S7 such that if S, (17)
= o7, g€7m4(SO(8)), then i (o7 g) = a;€7,(SO) is a generator. If k: SO(8) - Sp(8)
is the inclusion, set B ¢ = k, (a7 ¢) and f, =j, (B, s)€n,(Sp), both of which are
generators. Note that by following s or h by the inverse map, we can change the
sign of a; 5 or f;g.

We have Bott [Bol] maps B:Sp—Q*SO and B':0 — Q*Sp, and the
composites Bg, = (2*B')°B: Sp > Q%Sp, and B, = (2*B)°B': 0 —» Q%S0, all of
which are homotopy equivalences and yield isomorphisms

B: m(Sp) 25 m(240) L5 7,1 4(0),

B': 1,(0) 25 m,(2*Sp) 25 1y 1.4(Sp).
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BG m (G) —=> BG* Y (98 )_’nk+s(G)

where G =0 or Sp, and 07" is the inverse of the n-fold boundary operator
isomorphism in the path-space fibration.

By composing with the inverse map if necessary we may insure that B(S;) = o
and B'(x3) = f,.

Finally, set ag,,., = Bf(x,) for k =0, 1, 3, 7 (mod 8), and Bg,.; = Bsp(ﬂk ) for
k=3,4,5 17 (mod 8. We have B(f,) = 0., and B' (%) = By+4.

The following gives relations between these generators.

Lemma 1.1. For m> 1,
(1) Ogm = gm—1°7 aNd Ogpyy = 0gp°h = gy N>}
(2) Bsm+a =Bsm+3°n and Bguss = Bgm+a°N = Pagm+son

Proof. Part (1) is due to Kervaire [K Lemma 2]. For part (2), observe that
,B8m~+4 = BI(“Sm) B (aSm 10’7) (aSm 1 °n= B8m+3 °n, and ﬁ8m+5 = B’(a8m+1)
= B'(agm°n) = B'(ag)° 1 = Pgm+a°n, since n and n? are suspension elements in the
homotopy of spheres. W

We begin by describing #,(G) as a n$-module. If #erf and y,€en,(G),
choose n large enough that fem,,,.(8""®) =n}, and form
B;"(BL(y,)° 0)en, . (G), where B is the n-fold iterate of B;. Of course this
operation of 75 on m,(G) is often trivial. Non-trivial examples of this operation
are provided by Lemma 1.1 above, and we give others below.

Of course one might ask about the operation of non-stable homotopy of
spheres on 7,(G). The answer is provided by the following proposition. Let
E:n(X)— 7. (EX) be the suspension homomorphism.

Proposition 1.2. If Oen,(S*) and e Ker E" for some r > 0, then y,°60 = 0.

Proof. Note that Bg,(y,°0) = Bg,(1)°0 = 8% (s g) o0 = 0°(yerg° E®), by
Kervaire [K, Lemma 1]. Iterating this, we obtain (28"~ VBg), = ° Bg,(y.°0)
= 0% (7, 48,0 E®"0). If 8n>r, then E®"0 = 0. Since the maps (2% B;), and 9*"
are isomorphisms, we see that y,c6=0. W

It is worth observing that we have an operation of fen,(S*) on =,,(G) for m
< k, even if 0 does not desuspend. For later use we state the following.

Corollary 1.3. If j: S® = Sp(1) > Sp is the inclusion, then Ker E" = Kerj,.

Proof. For 0em(S®, we have 6 =1y°0. Thus if E"0 =0, then j,(6)
=jul13)e0=B320=0. A

The following limits the degrees of primary homotopy operations one needs to
consider in 7, (G).

Theorem 1.4. Any non-trivial primary homotopy operation of positive degree
in 7,(G) is of degree 4t + 1 or 4t + 2. In more detail, if m is even when G = 0
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and odd when G = Sp, then a non-trivial primary operation must be of the form
(1) 74m(G) = Tum+8+1(G);
(2) 74— 1(G) > 1y 145(G) where s=1,2;
(3) any composite operation 6 = 8,6, is of degree 8t + 2 with ¢; of degree
8t; + 1 and acts in dimension 4m — 1.

Proof. 1f 0 is a primary operation of the form 7,(G) - n,,-,(G), then 0 is
right composition by an element fen,,_,(S*). By applying the Bott isomorphism
B; n times, we calculate y,° 6 by calculating y,,5,° E®"6. But if 6 is of positive
degree, then E8"6 is an element of finite order, SO y4g,° E3"0€my, 4 8,-,(G) = Z is
of finite order and therefore 0.

Now suppose that 6 is a primary operation 7, +,(G) = 4, — 1 +5(G), where
m=m (mod 2). Since B; is an isomorphism, y,,,_;.,°0 is trivial if and only if
B2(Vam-1+r°0) = Vam+sp-14+,°E®P0 is trivial, and we may assume that
O€ns i —my+s—r- Then Ygp_ 14,00 =Y4p_yon 20 =7y4,_,°0cn". Since 6 is of
finite order, y,,,-,°60 = 0 when r = s, and since 74, _,(G) =0, we have y,,,_,°0
=0 whenr=2ands=1. Thus fen, -+, Where m —m’ is even and 0 acts in
dimension 4m. This establishes (1), and the only remaining possibility for a non-
trivial operation is of the type listed in (2).

For the statement about composite operations, an element y,© 6, °8,, we must
have 6, of degree 4t, + s, with s, =1, 2 for y,~ 6, to be non-trivial, and then 6,
must have degree 4t, + s, with s, = 1,2 for the final composite to be non-
trivial. But then 8, ° 8, has degree 4(¢, + t,) + s, + s,, and the only possibility is
s; =s, = 1. Consider the commutative diagram

Ta—1(G) = 7y +4p(0)

921 921
Tak+84(G0) e Tak+ap+8q+1(0).

We must have kK + p and k +2q even f G=0 and k+ p and k+ 2q odd if G
= Sp. This implies that k and p are even if G = O and k is odd and p is even if G
=Sp. N

2. Symplectic groups

Our next objective is to discuss some secondary homotopy operations in
n,(Sp). For this purpose we now describe the periodic family of elements
P, 3 € am+4(S3).  First, puo 3 = n3€m,(S?). Next, u, yem,,(S%) is Toda’s element
[T, pp. 54-58], (which he denotes by pu;). According to this description,
ty.3€{ns, EB, E*y} = m,(S®) with indeterminacy #n,°En,,(S%. Finally, for m
> 1, we define p,, 3 € {fy-1.3, 21, 80} < 7gp44(S?) with indeterminacy u,,_, 3°7§
+ Tgm-3(S*)°(80), and mg,,+4(S*)°(80) is of odd order, since 47, (S?) is of odd
order [J, Corollary 1.22]. We recall that p, 5 is of order 2, generates a direct
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summand of 7g,,,4(S?), has ec-invariant 3 (mod 1), and suspends non-trivially to
the stable (8m + 1)-stem, ie., E®"yu, 3y = p,€ns, ... See Mori [M, p. 72 and
Theorem 3.1 (ii)].

From the work of Walker [W], the inclusion SU(2) » SU (4m + 2) is such that
0 # hy(Um, 3)EMgm+4(SU@mM + 2)) = Z/(4m + 2)! (and h, maps the supplementary
summand to 0). From the commutative diagram

Tem+a(SP(1)  —2>  74,.4(SU(2))
lj, lh*

Mgm+4(SP(2m + 1)) = 7g,, 1 4(SU (4m + 2))

l; l;

YAY: Z/(4m + 2)!

and the fact that 0 # h,°g, = g, °j,. we see that g, is monomorphic and j, is a
projection onto a direct summand. Since 7g,+4(Sp(2m + 1)) and 7g,, . s(Sp(2m
+ 1)) are stable homotopy groups (both isomorphic to Z/2), we have proved the
following.

Proposition 2.1. For m > 0,
(D) Ju(tm,3) = Bam+as

V)] j*(ﬂm.SOn) = ﬂ8m+4on = ﬁ8m+5;
(3) Jjx is a projection onto a direct summand. W

If j: Sp(1)—> Sp(2m + 1 — k) is the inclusion map, then j,(u,, ;) generates a
Z/2 summand of 7g,, 4 ,(Sp(2m + 1 — k)) and j, (i, 3 °#) generates a Z/2 summand
of Mgm4s(Sp(2m + 1 —k)). Thus we have the following, see [Mo, Proposition
24].

Corollary 2.2, If 0<m and 0 <k <2m+ 1, then:
(1) Tgmea(SP2m + 1 — k) X Z/2® ng,,4+5(Sp/Sp2m + 1 — k) with the first
summand generated by j, (i, 3);
(2) Tgmas(SpCm + 1 — k) = Z/2@ g, +6(Sp/Sp(2m + 1 — k)) with the first
summand generated by j, (U, 3°1);
() Tgm+ (SP2m + 1 — k) = gps 1 +,.(Sp/Sp2m + 1 = k)) for r =0, 1,3, 7;
(4) the sequence

0 — Z— n8m+l+r(sp/sp(2m + 1 — k)) - 7.[Eim+r(Sp(2n1 + 1 - k)) — 0
is exact for r=2,6. W

We remark that the groups mg,,,(Sp(2m + 1 — k)) are known for r + k < 20
by the work of several authors (see [L]).

We next prove a lemma on the stable suspensions p,€nj, ., of the
Um 3. The proof is analogous to the proof of Toda’s Theorem 14.1(v) [T, p. 190],
and we use Toda’s material on pp. 189-190 and p. 33 without further reference.
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Lemma 2.3. For m>1 and k > 0, we have w,° p,, + pyymon = 0.

Proof. We have p,,€ {iy,_1, 21, 86) = {21, 80, p,_ 1> + <80, fp,_, 2t) (mod
Um—1°7s + 5,_3°(80)). Since 0 =22 -, 21>, we have 0e<21, p,_,, 21>
°(40) < 21, U1, 80> = (80, ,_1, 21y, and p,e{2i 80, U,,_,>. Forming the
composition, o u,, € u ° <21, 80, 1> = iy, 21, 86D p, . But gy o p,_
e { Y, 21, 8¢y °pu,,_,, and

Fe® P+ Byt 1 © P — 1 € Iy O T30 gy + iy 2% (80) ¢ oy = M0 TG
since (8¢)°u,,_, =0. Adding these relations,

m—1

m—1
My © P + Hiem © Mo = ‘zo Biwi®Mm—i + Mivivr " Pm—i—1 € .ZO His i T © fhy— g — .
i= i=

For m = 1, this says g,ou;, + s °nemonyon. For m > 1, we have
m—1 s
ukoum+uk+m°ne.20 Hic+i© Hm—1-:° g
£

m—1 m—2

-

s 5

€ Z (M sm-1°m + Zo MititjO T80 1 —j—j)° Ty
<0

J=
EU _ °7]°7Is
k+m-—1 8>

since 7§ o ny = 0.

Now observe that for n = 0, we have p,oneny = n?ony, and 0 = n?ceg = 2o
=nov?, while for n >0, we have p,onony < {pu,_, 21, 80)°neny < {u,—y, 2,
8aondony = {iy_y, 21,0)°875 =0, since 8c:n=8(1+¢e =0 Thus g pu,

= We+m®°N n
We can now give some new non-trivial primary operations in 7, (Sp).

Proposition 2.4. The composition elements Bg,, . 4 E8™*1 i35 Bam+3° EB™ g 3,
and Pgp+3° ES"’uk,g, on are non trivial.

Proof. By Lemma 2.3, we have p,, 3 E¥ "'y, 3 =y, 3°n + ¢ and g 301
=ncEw, 3+ ¢', where ¢ and ¢’ are in the kernel of some iterated suspension.
Applying Proposition 2.1 and Corollary 1.3, we see that fg, ,,oE*" !y, ,
=Bym+i)+4°N = Bgm+ny+s- If we now use Corollary 1.3 again, Bg,.3°E¥™yy 5
°N=PBams3o N E 3= Pomengach = Bsm+i+s- Since right composition by
n is an isomorphism g,y +4(SP) = Tgm+i+5(SP), We have Bg,43°EP™u,

= Bs(m+k)+4' u

Remark 2.5. An examination of generators and relations in the stable k-stem
for k <30 (see [T] [M-T] [M] [M-M-O] [02]) and application of Theorem 1.4,
shows that the only possibilities for non-trivial primary operations of degree < 30
are:
(1) m of degree O acting in dimensions 4m — 1 and in dimensions 8m + 4 and
8m+ 5 if nis odd;
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n of degree 1 acting in dimensions 8n + 3 and 8m + 4;
n? of degree 2 acting in dimension 8m + 3;
u, of degree 9 acting in dimensions 8m + 3 and 8m + 4;
uyon of degree 10 acting in dimension 8m + 3;
k of degree 14 acting in dimension 8m — 1;
u, of degree 17 acting in dimensions 8m + 3 and 8m + 4;
uyon and v* of degree 18 acting in dimension 8m + 3;
(9) pj of degree 25 acting in dimensions 8m + 3 and 8m + 4;
(10) uz°n of degree 26 acting in dimension 8m + 3;
(11) @ of degree 30 acting in dimensions 8m — 1.
We do not know whether the action of k, v*, or § is trivial.

o~ -~
O 3N b~ W

Next, we compute some secondary operations in 7, (Sp).

Lemma 2.6. For m > 2,

B3 € {fm— 1,35 21, 86} & {fp— 1.3, 41,40} < {113, 81, 20} < {,,_ 1 5, 161, 7},

with  respective  indeterminacies [, _, y°my + H, 1 3078 + H, 1 3°75
+ gm-3(8%)°(20), and p,_, 3°n8 + Tgy-3(S*) oo, where H is of odd order.

Proof. From Toda [T, Proposition 1.2 (ii)] and the fact that 2%-2* %¢
= 21029717024 495 is null-homotopic for g =1,2, 3,4, we get the string of
inclusion. Since 4mg,,_5(S®) is of odd order, for g=1,2, we have
Tgm-3(83%)°(2* %) = H is of odd order. W

Proposition 2.7. For m>1,r=4,5, and q =1, 2, 3, 4, the maps
(1) {_ , EB, EZY}13 m4(Sp) — m,2(Sp),
() {—,2s,0"}: n5(Sp) — 7,5(Sp),
3 {—.2%, 24_‘1‘7}1: Tgm+r(SP) — Tgum+ 1)+,(SP),
are isomorphisms.

Proof. The indeterminacy of {B,, EB, E*B}, is f4°Emn,(S): that of
{Bs, 215, 6" is  Bsom 3(8%) + ne(Sp)e20” = Bsom5(S%); and  that  of
{Bsmsrs 291, 2° 796} iS Pgpsr° T + Mgmar+1(Sp)°2* %6. By Theorem 1.4 all of
these indeterminacies are zero, and the brackets are a single homotopy class.

Now for the inclusion j: S* — Sp, we have B, = j,(11.3) = j«({ns, EB, E*7},)
c {Bs, EB, E*y};, and  since  the indeterminacy is  zero, f,
= {B4, EB, E*y},. Similarly in the other cases. W

3. The orthogonal groups

In order to study the homotopy of the orthogonal groups we take a more
detailed look at the Bott maps in the spirit of [B2] or [D-L]. The method is to
define maps B,: Sp(n) > 2*S0(8n) and B,: O(n) » Q*Sp(2n) which are natural with
respect to the standard inclusions. Then the diagrams
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Sp(n) 2 Q*S0(8n) 0(n) 25 Q*Sp(2n)
T I
Sp 2 Q4SO 0 2 @*Sp

are commutative. We set Bg,, = Q*Bg,°B, and B, , = Q*B,,°B,. We start
with the map B,: S* = Sp(1) » Q*SO(8) and observe that

§1(13) = ‘3—431*(13) = 7,8, Where i (a7 ) = a7

El('la) = 5_431*(773) = ag g, Where i (ag g) = ag;
and

Bx('l%) = (3'431*(11§) = ag g, Where i (ag g) = .

If ¢ is the boundary operator in the homotopy sequence of a fibration, then
d(y° ES) = (0y)°d, by [K, Lemma 1], and d{y, Ed, Ee}, < {dy, 6, ¢}, by [Mi,
Proposition 4.2]. In the case of the path-space fibration, 0 is an isomorphism,
and therefore a bijection of 7, , ,(X)° En,(S*) with 7, (2X)°x,(S*). From this, the
indeterminacy of {y, Ed, E¢} is mapped bijectively onto the indeterminacy of
{0y, 6, ¢}, and hence 0{y, Ed, Ec}, = {0y, 0, ¢} = m,(2X).

Proposition 3.1. For m > 1 the composition elements og,,° E®™ ™2 3, dgp— 1
cE8™= %y 5 and ag,_,° E¥ " *w, yon are non-trivial.

Proof. Applying the map B and using Proposition 24, we have

E(:B8m+4 o E8m! Mi,3) = 6_4(3*(ﬁam+4)° E®"* llik,s) = B(ﬂ8m+4) 0 E8m+sﬂk,3 =0gm+s8

cE®™*Su, 4. Since B is an isomorphism we have non-triviality of the element

tgms+g° E®™* 31, 5. Similarly for the other cases. M

Lemma 3.2. If B’ is one of the Bott maps B or B, then B'{y, , ¢}
= {B'(y), E*S, E*¢}4, and if B is one of the Bott maps By or Bs,, then B"{y, 5, ¢}
= {B"(y), E®5, E®e}s.

Proof. Since the map B’ is a homotopy equivalence, B"{y,§, ¢}
=07*By{y, 5, e} =07 *{B(y), 8, e} ={0"*Bj(y), E*S, E*e}, = {B"(y), E*5, E*¢},.
Similarly for B”'. W

The following gives some non-trivial secondary operations.
Proposition 3.3. In 7, (SO)
(1) {—,29,2379Eq'},: ng(SO) —=> 1,4(SO) for q =1, 2, 3;
(2) {—,29,2* 96} ,: 15(SO) —=> 7,,(SO) for k=9 and q =1, 2,3, 4;
() {—,29%,2* 96}, Mg+, (SO) = Mg 1)+,(SO) for m > 1 with r =0, 1, and
q=1,23 4

Proof. For (1), we have “16=§(/312)=§{ﬁ4’ EB, EZV}1={§(B4)’ E°B, E®y}s
= {og, E*B, ESy}s. Using [T. Lemma 6.5], we have {ag, E°f, E®y}s = {o;°1,
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E°B, E°y} o ay°{E*ns, E°B, E®y} o a;9E*{n;, Ep, E*y}y = oy 0 ({07, 25,
4Eo'}s + v3) = a;°{n,, 215, 4Ec’'}5, since a5 °v, = 0. Checking the indeterminacy,
one sees that this is a single homotopy class and a,¢ = a0 {n, 21, 4Ed'};
=o,0E*p, 5 = {ag, 21, 40'}.

Now as in Lemma 2.6, we have o, = {ag, 21, 4Ed’'} < {og, 41, 2E0'} < {og, 81,
Ec’'}, with respective indeterminacies (for g=3, 2, 1) ag° 7, 6(S®)+74(S0)©2* "9E?¢’
= 0g o7, 6(S%) + 2* 14 (S0) o 0o = agom,(S®). But by Theorem 1.4, agom ¢(S®)
=0, so the inclusions are equalities and a,¢ = {ag, 29, 2*"9Ec’} for ¢ = 1, 2, 3.

For parts (2) and (3), just note that B'(c,g) = Bis12 = {B'(x), 291, 24790}
= B'{a,, 2%,2* 96} and B is an isomorphism. W

From the commutative diagram

Tam—a+,(SP(1) 25 74, (SO(8))

l]’* li‘

Z/2 3 mgm_ui(SP) Lo 754 ,(SO)

and Proposition 2.1 (3), the map j, is a split epimorphism and we obtain a splitting
map for i, for r=0,1 and m > 1. From the fact that ng(¥, 4) = 0 [P], we see
that Z/24 =~ n4(S0(6)) SN ng(SO) = Z/2 is onto. Let ag, generate the 2-
component of 7z(SO(6)), so that ag ¢ is of order 8 and i, (ag ¢) = 2. Note that
for the bundle projection p: SO(6) —» S°, we have p, : ng(SO(6)) —> n4(S°) =~ Z /24,
and ag ¢ can be chosen so that p,(ag ) = vs, which generates the 2-component
of mg(S%). For the inclusion maps SO(6) —— SO(7) - SO(8), if i (og 6) = g 7,
we must have an element og g such that ij(a; g) = ag g — S,py(g ), and the
homotopy epimorphism induced by the inclusion SO(7) — SO splits under the map
Y(ag) = iy (05,6)-

Now i, (ag ¢c#) = dg°n = &g, SO iy is non-trivial, and since n4(SO(6)) = Z/2,
we see that i, is a projection (isomorphism) onto a direct summand. Moreover, if
®y 6 = 0g ¢ °1 then p, (g 6) = vs°ng, Which generates 74(S%). We have proved the
following.

Proposition 3.4. (1) There is an element og o€ ng(SO(6)) of order 8 such that
iy(ag6) = g and p,(ag ) = Vs;

(2) there is an element og ,€ng(SO(T) of order 2 and i,(ag 1) =ag, the
epimorphism 7g(SO(7)) —» ng(SO) splits;

(3) there is an element og ¢€mo(SO(6)) of order 2 such that i (g )= oy and
Py (09, 6) = Vs°ng, the epimorphism ng(SO(6)) = no(SO) splits. W

Remark 3.5. Since 75(SO(5)) = 0 = 74(SO(5)), the elements ag and oy cannot
originate in the homotopy of any smaller orthogonal group.

Recall the definition of the infinite family of elements {, s€mgum+1)(S°)
[M, p. 72][T, p. 59]. We set {o s =vs, {; s€{vs, 815, Ed'};, and {, s€{{,-1 5.
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81gm» 208w}, for m > 2. The elements {, s are of order 8 and suspend to stable
elements of order 8.

We define an infinite family of elements oy, ¢€73,,(SO(6)) for m>1 by
choosing ag ¢ as above, a6 6€{0g 6. 81, Ea'},, and ag, ¢€ {otgen-1). 81, 20}, for
m > 2. One can choose ag,, ¢ so that for the projection p: SO(6) —» S°, we have
Pu(@gm6) = {m—1.5. and by Proposition 3.3, i (dgy. 6) = Xgpm-

Now 8tgum+1).6 = %gm+1).6 ° Slam+1) € {%am.65 loms 208mf1 ° Slgm+1) = Ygm,6
o {8igm, 208y, Blgm+7}1- But we know {8ig,,, 20, 8igm+7}1=8lgm® EMgms-(SE™ 1)
+ g+ 8(S%™) © 8ig(m+ 1) by [T, Corollary 3.7], and we see {8ig,,, 205y, 8igm+7}1 =0
since 2m, , 5(S¥) = 0 for k > 6. This shows the order of ag,, ¢ is < 8 (with a minor
modification when m = 2). But since p,(dgn ¢) = (.- 1,5 the order of ag,, ¢ is = 8.
Thus ag,, ¢ has order 8.

Next we define a family of elements oy, ;€ mg,(SO(7)) by ag 5 = i, (g ), and
Ogm, 7€ {ix(Agum-1).6 81, 20} = {Agm—1),7. 81, 20}, for m >2. Then we see that
2068, 7€ {20tg(m—1),7, 81, 20},, and one inductively obtains 2ag, ; =0. The map
Y: mgm(SO) = 115, (SO(7)) defined by ¥ (ag,,) = og, 7 is a splitting map.

Finally, set dtg, 41,6 = %gm,6°NEMgm+1(SO(6)). Then it follows that ag,,,, ¢ is
of order 2, i, (tgm+1.6) = Xgm+1> ANd Py(@gm+1,6) = {m-1,5°1. The map Y (ogy+ )
= dgm+1,6 i5 @ splitting map for iy : 7gy4,(SO(6)) = 7g,,+1(SO).

We collect these definitions and results in the follovying.

Theorem 3.6. For m > 1
(1) there is an element ayg,, ¢ € 7g,(SO(6)) of order 8 such that i (ag,, ¢) = %g,, and
Ps(®m,6) = Lm—1,5 € Mgm(S°);
(2) there is a generator g, ;€mng,(SO(7)) of order 2 such that i, (dgy 1) = Ogm:
(3) there is a generator ag, . ¢€Mgy+1(SO(6)) of order 2 such that i, (0gm+1,6)
= Ogm+1 ANd Py(tgm+1.6) = (m-1,5°7n. W

If we now use the inclusion maps SO(6) — SO(n) on these generators we can
state the following.

Corollary 3.7. For m> 1
(1) 0—>mg,+,(80/SO(n)) — 7g,,(SO(n)) — 74, (SO) — 0 is exact for n>6 and
split exact for n > 17,
2) 0—>7g,+2(8S0/SO(n)) — mg, 4, (SO(n)) — 75,4 (SO) — 0 is split exact for
n>6. B

Remarks 3.8. (1) If ng,,(SO(6)) — 74,,(SO) splits for some m,, then it splits for
all m > my,.

) If g, 4,(SO(k)) — mg,,+,(SO) is onto (splits) for k =3, 4 or 5, r =0 or 1 and
m = my, then it is onto (splits) for all m > m,.

(3) If ng,,(SO(k)) — mg,,(SO) is onto (splits) for k = 3,4 or 5 and m = m,, then
composition with # shows that ng,,,(SO(k)) — 7g,,+,(SO) is onto (splits) for
m = myg.

(4) One can see that m,,(SO(5)) — 7,,(SO(6)) is trivial. Thus r,,(SO(5))
— 7,6(S0) is trivial.



190 Albert T. Lundell

(5) We do not know whether rg,,,,(SO(5)) — ng,,+,(SO) is an epimorphism for
r=0or 1 and m> 3.

(6) We have a reprint [D-M] confirming that the element og,, is the image of an
element in 7g,(SO(6)). This preprint states that rg,.,(SO(5)) — 7g,.,(SO) is
trivial for r =0 or 1.
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