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Differentially separable extension

of positive characteristic p
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§ O. Introduction

It is w ell know n in the field theory that if a1 ,..., as  a r e  separably algeraic
elements o f  an  ex ten sio n  o f  a  f ie ld  K , there exists a n  elem ent b  such that
K(a i ,..., as ) =  K (b ). It is  in te resting  to  see  if  this result can be extended to
differential fields.

In [2], Kolchin showed that for the usual derivation, such an extension can be
done under a  condition : if  elements al , , as  o f  a  differential extension of a
differential field K  a re  differentially separably dependent over K  i.e. for each i
(1 < i <s), th e re  is  a  differential polynomial F i (X Xs) over K  such that
F i (ai , . . . ,  0 =  0  and (eF i l0(0,X))(a 1 ,..., as ) 0 0  for some differential operator
there exists a n  element b such  tha t th e  differential field K<a 1 ,..., as >  i.e. the
smallest differential extension field of K containing a ,  , as  is equal to K<b> (see
Proposition 9  of Chapter 2  of [2]).

Since Hasse's differentiation gives m o re  n a tu ra l re su lts  th a n  t h e  usual
derivation which in some cases gives pathological results for positive characteristic,
we show in this paper that by using Hasse's differentiation a formulation of the
extension mentioned at the top of this section can also be performed for positive
characteristic p.

§ 1. Definitions* )

L et R  b e  a com m utative unitary ring  containing some f ie ld  a s  a  unitary
su b r in g . A derivation 6 of R  means an iterative higher derivation of infinite rank
i.e. an  infinite sequence 6 = (6,; y e N, the set of natural numbers including 0) of
mappings 6„ of R  in to  R  which satisfies the following conditions :

D 1 60  =  id , (the identity m apping of R),

D2 (5,(x + y )  = (5„x + 6,y,

D 3 6,(xy) = E, +,= 0 5,x • 6,y,

Communicated by Prof. Nagata Feb. 6, 1989
*) A t la rge  see Okugara [4]
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for x, y e R  and A, i, v  e N .  Let 6 = (6„; v EN) and 6' = (6', ; v e N) be derivations
of the ring R .  If 62 6', = 6„' 6 , for all A, 1i eN , w e say  that 6  commutes with 6'.

Let I  be a finite or infinite set of indices. A ring R  is said to be a  differential
ring if R  is associated with a nonempty set 41 = {6 1 ; ie I} of mutually commutative
derivations 6i = (6 1„; y e N ) (i E I). If the ring R  is  a field, it is referred to as a
differential field.

For every finite number of distinct indices i ..... i e I  and v 1 , , vn e N, the
product 0 = ô,,,, ô , , , , , ,  is  a  well-defined endomorphism of the additive group R +

of the  ring  R , and  called a  derivative operator of the  differential ring R .  The
number v, + • • • + v„ is called the order of 0 and denoted by ord O. The set of all
derivative operators of the differential ring R  is denoted by O.

L e t k  b e  a  differential field of positive characteristic p  a n d  k { X }  b e  a
differential polynomial ring in a differential indeterminate X .  W e say that e is
independent on k  if the differential polynomial A (X )Ek{ X }  which vanishes at all
elements of k equals ze ro . A n  element a of a differential extension field of k is said
to  be  differentially separable over k  if k<oz> is separable over k.

We define a partial order of 0  as fo llow s. Let 6 = (6„; v eN ) be a  derivation
of k. F or two positive integers v and A with the p-adic expressions

v = E a i pi (0 p — 1)

and

=  b i pi (0 I);  < p — 1),

we say 6, 6 ,  if a;  b i  fo r  every j e N.

F o r 0, 0 ' e 0 with 0 = fl ô , . and O' = fl 6i ,  ,  we say 0 > O' if 51,,, > ô ,  for
leii e l

every i e /.

§ 2. Results

The following lemma is Lemma 1 of §2 of Chapter 0 in Kolchin [2].

Lemma (K olchin). L e t K  be  a f ield and  u 1 ..... u r , v 1 , ,  v s w ith  r < s be
elements of  an ex tension of  K .  I f  each V, (1 h s )  is separably algebraic over
K(u i , u„), then  there  ex ists a polynomial A (X ,,..., X  s )e K [X  X s] such that
A (v ,,...,v s ) = 0  and (0A10X ; )(v 1 , . . . ,  vs ) 0  0  for s o m e  (1 j s).

Theorem 1. L et a  be an  element o f  a differential extension f ield of k.
(a) If  tr deg k <a> lk is finite, then there exists a nonzero differential polynomial

F(X )Ek{ X }  such that F(a) = O.
(b) If , in addition, a  is dif ferentially  separable ov er k , then there ex ists a

nonzero d if f e re n t ial p o ly n o m ial G (X )e k { X }  s u c h  th at  G O O  = 0 and
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(OGIO(OX))(a) 0 0 f o r som e 6e 0.

P ro o f . Let r be the transcendence degree of k<a> over k and O r , . . . ,  O. with
s > r  b e  distinct s  elements o f  e .  Since s> r, O i a,..., O s a  a re  algebraically
dependent over k i.e . there is a  nonzero polynomial M(Yi , ,  y je  k [Y i , ,  Y s]
such t h a t  M(O i a, ,  O s a) = O. The differential polynomial F(X)
= M(0 1 X,..., 0 ,X )ek{X } vanishes at Œ. T h i s  p roves t h e  p a r t  ( a )  o f  our
theorem . If, in addition, k<a> is separable over k, then k(01 a, , Os a) is separable
over k and thus has a  finite separating transcendence basis v1 , pi over k. Since
each one of Oi a, Os a is separably algebraic over k(v i ,..., vt) and t r < s, there
exists, by Lem m a, a  nonzero polynomial A(Y,, )ÇE k[Y,, ,  Y s]  such that

Os a) = 0  a n d  (aAlaYi )(0 1 a,..., 0z ) 0 0  f o r  som e j(1 j  s ) .  The
differential polynomial G(X) = A(O i X , 0,X) e k{X} satisfies the condition of the
part (b) of our theorem. q.e.d.

For a differential polynomial F, the set of 0 e e  which appears effectively in F
is denoted by 0(F).

Corollary 1. L et a  be an element of  a differential extension f ield of  k .  If  a is
differentially  separable over k and the transcendence degree of  k<a> over k is finite,
then there ex ists a  nonzero differential polynomial F(X )ek{X } which satisfies the
following three conditions:

(i) e (F ) has the highest element O.
(ii) F(a)= O.
(iii) (0F1.0(00 X))(a) 0 O.

P ro o f . B y  T h e o re m  1(b), t h e r e  i s  a  nonzero differential polynomial
G(X)e k{X} such that G(a) = 0 and

(1) (OG I O(OX))(a) 0 0 for some 0 e 0(G).

L et s b e  th e  num ber o f  elements o f  th e  finite se t 0 (G ).  Choose a  finite
number of distinct elements of I  such that all the elements of e(G) are Oi

i,v,, (1 j s). Each vi ,  has the p-adic expression6 —

V ik  —  C ik o C jk  p + ••• + cikePe (0 p —1, 1 <m ,  0 <1  e ).

W e may assume tha t the condition (1) is satisfied for 01 . W e denote by 00  the
derivative operator 6i ,(A _

v 1 1 )
 • • • t51 ( _ V I ) w h e re  A = (p — 1) + (p — 1)p + • • • + (p

— 1)pe. If 00  =  id, then Oi  i s  the highest element of e(G) and thus G(X) satisfies
the required three conditions. O n the contrary, if 00  0 id, we denote by F(X) the
differential polynomial

(2) 90G(X)= 
 O G

 (X )• 0 0 01 X + (—)0(0,X)

OGA  \  7  A  \

= lin )6 " . . .  im A x
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Taking Lemma 1  of §1.2  of [4 ]  into consideration, we see that

(m od p)( 2 11) . . . (/lim)
\ Vi m /

13
11 \

a n d  th a t  e a c h  0  w hich appears effectively i n  ( • • • )  o f  ( 2 )  is  lo w er th an
6i i ,•••54 ,,,. Now, it is obvious that the above F(X) is  the  required differential
polynomial. q.e.d.

Theorem 2. L et 0  be independent on k and let a and [3 be two elements of a
differential extension field of  k. If  the  transcendence degree of  k<a, fi> over k is
finite and k<a, fl> is separable over k, then there exists an element z of  k such that
k<a, 13> = k<a + zfi>.

P ro o f  Let X , Y  and Z  be differential indeterminates over k <a, 13>. Since
k<Z> and k<a, fi> are algebraically disjoint over k and k <a, fi> is separable over k,
k<Œ, fi , Z> is separable over k<Z> by Proposition 7  of §9.3 in Bourbaki [1]. By
Proposition 6  of §7.4 loc. cit., a + Z13 is differentially separable over k<Z>. The
following inequalities are  obvious :

tr  deg k<Z> <a +  Z fl> lk<Z>  tr  deg k<a, f i ,
 Z> lk<Z>

<  tr  deg k<a, Z> lk<Z> + tr  deg k<13, Z> lk<Z>

tr  deg k<a>lk + tr  deg k<13>lk < co.

By Corollary 1, there exist a  nonzero differential polynomial F (X) E k<Z> {X }  such
that 0(F) has the highest element 00 , F(a + 4) = 0 and (aF10(00 X ) ) (a  +  4 )  O.
Let O s ,... , 0 ,  b e  a l l  th e  elements o f  0 (F ) a n d  n  b e  th e  degree o f  F (X ) in
00 X .  Then, we can choose a  finite number of monomials M o (X), ,  M„,(X) in
01 X, ..., 05 X  such that F(X ) is written in  the  form

(00 X)"
A(Z)

+ + 
A o i (Z)M o (X )+ ••• + Ami(Z)Mm(X) 

( 0 0 X )A(Z)

+  

A 0 0 (Z)M 0 (X) + -•• + A„, ø (Z)M m (X)
A(Z)

w h e re  A (Y ), A 0 0 (Y), • • • A „ , o (Y), • •• , Aon (Y), •-• , A,n„ ( Y )  a r e  relatively prime
differential polynomials of 10 1 .  The differential polynomial

B(X, Y )=(A0.( 17)m o(x )+ ••• +  A m n(Y )m .(x))090x)n  +  ••• +

(fl o i (Y)M,(X)+ ••• + 24,,,(Y)M„,(X))(0 0 X)+ A 0 0 (Y)M 0 (X)

+ ••• + A,,,ø (Y)M m(X)

of kIX, Y1 satisfies the following two conditions :

A0 5 (Z)M 0 (X)+ ••• + A,„„(Z)M,„(X)
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B(a + ZI3, Z)= 0,

(0B10(00 X))(a + Z13, Z) O.

For every 0 = 0, we havev • • • i,v, 6

(3 ) 0(a + Z 13) = OZ • /3 + (0a + E S " ,  • • • (5„,,,Z • c5 13)•

where the  summation E runs over all (A,,  ,  21, , E N21 w ith +
=  ..., A, +  =  v 1,  (A i , , lib ..., p i) 0 (v i ,..., y l ,  0, ,  0 ) .  S in c e  0 0  i s  the
highest element of { O ,..., 0 ,} , the equation (3) implies that none of M h (a + ZI3)
(0 h < m) contains 00 Z .  Computing 0B(Œ + Zfi, Z)10(0 0 Z ), we obtain

OB 013 
(4)

0(00X) 
+  Zfl, Z)• 13 +

Y) 
(a + Z f l, Z )= O.

0 ( 0 ,  

We can choose linearly independent elements c1 , . . . ,  Cr over k in the coefficients of
the differential polynomial (01310(00 X))(a + Z13, Z) of k<Œ, 13> IZ I su ch  th a t the
differential polynomial is written in  the  form

c i B i (Z)+ • • • + CB(Z)

where B i (Z), , .13,(Z )ek { Z }  and B i (Z) 0 O. S in c e  B i (Z) 0  and e is indeped-
ent on  k , there is a n  element z of k  such that B i (z) 0 0  and  thus we have

OB
(00X) 

(a + z) = c i B i (z) + •-• + c r B,.(z) O.
0 

From  the equation (4), we have

OB

16' =
a(O

0
Y)

ek<a + z13>
013

a n d  th en  a  be longs to  k<Œ + z13>. T hus, w e  ob ta in  th e  equality k<a + 43>
= k<I, 13>. q.e.d.

The following corollary is an  immediate consequence of Theorem 2.

Corollary 2. Let 9 be independent on k  and let an be elements of  a
differential extension f ield of k. If  the transcendence degree of  k<a 1 , . . . ,  an > over k
is finite and k<a l , . . . ,  an > is separable over k, then there exists an element y such that
k<a i , . . . ,  an > = k<y>.

F o r  a  subset 4 ' o f A , k  is regarded a s  a  differential field associated with
S .  Let a i , ,  an be elements of a differential extension field of k. We denote the
smallest differential extension field associated with 4 ' of k  containing a n  b y
k<a 1 , ...a n ; 4' >. I t  is  e a sy  to  p ro v e  th e  following corollary by th e  proof of
Theorem 2.

(a + z13, z)

(0,X ) (a + zfi, z)
0 
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Corollary 3. Let ce„ be elements o f  a differential extension f ield of  k
associated w ith A . If  there exists a nonempty subset A ' of A  such that the set 0 ' of
derivative operators of  the differential field k  associated with A ' is independent on k,
th at  th e  transcendence degree o f  k<1 1 ,..., a„; A '> ov er k  is  f in ite  an d  that
k<a 1 , . . . ,  an ; t r> is separable over k , then there exists a n  element y such that
k <a,,..., an > = k<y> (as differential extension fields associated with A).

§ 3 .  Remark

As was mentioned in the introduction, Kolchin's condition of Proposition 9 of
Chapter 2 of [2] is simpler than the one we adopted in C orollary  3 . This is due
to  the more complicated structure of the differential field in the case of Hasse's
differentiation than in the case of usual derivation. Corollary 2 is adequate for the
kind o f differential extensions which a re  considered in  th e  theories of strongly
normal extensions, Picard-Vessiot extensions and Liouvillian extensions of [4] or
[5 ] and  Corollary 3 is a  generalization.
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