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Birational endomorphisms of the affine plane

By

D. DAIGLE*

Let A ' be the affine plane over a n  algebraically closed field k .  The birational
endomorphisms of A ' are  those maps A2 —>A2 g iven  by endomorphisms 0 of the poly-
nomial algebra k[X , Y ] such that k(0(X ), 0(Y ))=k(X , Y ) .  The simplest non-automor-
phic example that comes to mind is the q50 defined by 0 0 (X)--= X and 0 0 (Y) ,  X Y . The
birational endomorphisms of A2 g iven  by 0 = u .0 0 .v , where u  and y are any automor-
phisms o f k[X , Y ], are called simple a ffin e contractions in A '.  The question whether
every birational endomorphism of A ' is  a composite of simple affine contractions arose
in the early seventies, in Abhyankar's sem inar at Purdue University. That question
was answered negatively by K . P. Russell who, in conversations w ith A . Lascu, con-
structed an irreducible birational endomorphism with three fundam ental points. H e
soon exhibited a  whole zoo of irreducible endomorphisms, some of them having infinitely
near fundamental points. Its diversity shows that to give a  reasonably complete classi-
fication of a l l  birational endomorphisms of A ' is likely to be interesting and difficult.
The aim of this paper is to make some contributions to that problem.

The methods by which Russell constructed those endomorphisms and proved their
irreducibility consist in  a  detailed analysis of the configuration of missing curves (see
(1.2f) for definition). Our approach is essentially an elaboration of Russell's methods,
and includes the use of some graph-theoretic techniques (weighted graphs, dual trees).
Note that the last section of this paper is in fact an appendix which gathers some de-
finitions and facts in the theory of weighted graphs.

The first th ree  sections study birational morphisms  f :  X --Y  of nonsingular sur-
faces, and the fourth section concentrates on the case X = Y=A 2 . The most interest-
ing  resu lts a re , we think, those numbered (2.1), (2.9), (2.17), (4.3), (4.4), (4.11), (4.12)
and (4.13). We point out that the last section of our paper [2] classifies the irreducible
f :  A 2 -+A2 with two fundamental points.

Throughout this paper, our ground field is  an arbitrary algebraically closed field k,
all curves and surfaces are irreducible and reduced, all surfaces are nonsigular and the
word "point" means "closed point". The domain (dom ( f ) )  and codomain (codom ( f ) )  of
any birational morphism f  under consideration will be tacitly assumed to be (nonsingular)
surfaces. If X  i s  a su rface , Div (X )  is  its  g ro up  of divisors and Cl (X ) its divisor
class group ;  "X is factorial" means that X is  the affine spectrum of a U. F. D.; "X  has
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trivial units" means F (X , O x)*=k*, where Ox is the structure sheaf, F(X, Ox )  i s  the
ring of global sections and "* "  means "group of units of •••" ; if  DEDiv (X) and X->X
is a  monoidal transformation (resp. Xc__,X' is an open immersion) then the strict trans-
form  o f  D  in  21Z (rasp. th e  closure o f  D  in  X ') is denoted by D  whenever no confusion
seems likely to a r ise . N , Z  and Q denote respectively the sets of positive integers,
integers and rational numbers.

This work grew out of our doctoral thesis. We would like to thank our professor,
K. P. Russell, for having introduced us to these problems and for the numerous discus-
sions we had about them.

1. Basic concepts

The following fact, in which the surfaces X  and Y are not necessarily complete,
is easily deduced from the basic properties o f birational transformations of complete
nonsingular surfaces.

Lemma 1 . 1 .  Let f :  X -> Y  be a birational morphism. Then there exists a commuta-
tive diagram

X c  Y

sk 7 7z

Ni• :71

Y o

where n_0, Xc_,Y 7, is  an open immersion and 7 r ,: is the blowing-up o f  Y i _, at
some point (1._i n).

Two birational morphisms fl X1->Y2, f2: X 2 ->Y 2 a re  said to be equivalent (write
f  ' - f )  i f  there are isomorphisms x: : Y1 - 4 Y 2  such that f 1 =y - ' - f 2 ox.

Definitions and Remarks 1 .2 .  Let f :  X ->Y be a  birational morphism.
(a) T he least n such that there exists a  diagram as in  (1.1) is denoted by n(f).

Clearly, fr.-g n (f)=n (g ).
(b) A fundamental point of f  is a point P  of Y such that f ' ( P )  contains more than

one point. By (1.1), there are at most n (f )  fundamental points.
Given a  diagram as in (1.1) and i>0 , a  fundamental point of X 1 1.

7,-> •-• ->Y i  which
belongs to a  curve that is contracted by 7ri . •-• . 7 r ,  is sometimes called an infinitely near
fundam ental point of  f ;  su c h  a point is not a  fundamental point of f ,  according to
definition (b). I f  f  h as no  infinitely near ( i .  n .) fundamental points we say f  has
ordinary fundamental points ; that is the case if  f  has n (f) distinct fundamental points
in its codomain.
( c )  Consider a  diagram a s  in  (1.1), where n n ( f ) .  Let Pa be the center of 7ri , let

E i =7cV(P0 and let f ,  be the composite X c Y .->  •• • ->Y z . Then the following are
equivalent :

• n=n (f);
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• for i = 1 , • ,  n , P , is a  fundamental point of f--1 ;
• fo r i= 1 , ••• , n, E i n X = Ø  in  17 . .E.l< —1 i n  any nonsingular completion of

37
7,  (where E i is  the self-intersection number o f  E s).

(d) A  contracting curve o f  f  i s  a  curve E  in  X  such that f (E )  is a  (fundamental)
p o in t . T h e  number o f contracting curves, which is an  invarian t o f — , is denoted
by c(f).

(e) f  is said to be triv ial i f  it is  an open immersion  ( i f  c (f )= 0 ,  i f  n (f )= 0 ).
( f )  The one dimensional irreducible components o f  th e  closure ( in  Y )  o f  Y \ f (X ) are

called t h e  m issing curves o f  f. T h e  number o f missing curves, which is a n  in-
variant o f  — , is denoted by q ( f ) .  Given a  curve C  in  Y , th e  following are equi-
valent:

• C  is a  missing curve ;
• C n f (X )  is contained in  th e  se t o f  fundamental points;
• fo r some diagram a s  in  (1 .1 )  (equivalently f o r  every such diagram ) the stric t

transform o f  C  in  Y n  i s  disjoint from X.
( g )  L e t  qo ( f )  denote th e  number o f  missing curves disjoint from f ( X ) .  Clearly q 0 ( f )

is an invariant of
( h )  A  minimal decomposition o f  f  i s  a  diagram a s  in  (1 .1 ), with n = n (f ) ,  together

with a n  ordering of the  se t o f missing curves (i. e., the missing curves are  labelled
C i , ,  C , where q = q ( f ) 0 ) .  Minimal decompositions will be denoted by 2 , 2 ',
etc. Each time we choose a  m in im a l decomposition 2 ,  t h e  following notations
a re  used :

• For the  d iagram , the notation is a s  in  (1.1).
• T h e  center of r 1 i s  th e  p o in t Pi  o f  37

1 _1 a n d  th e  corresponding exceptional
curve is E i  (1<i_<n).

• T h e  missing curves a re  C i , • ,  C ,  where q=q(f).
• 2  determines a  subset j = j g  o f  {1, •••, n}, defined by

J={ i lE ira =0  in  Y„}.

Thus the  curves o f  Y „  which are disjoint from X  a re  precisely C i , ••• . C , and
t h e  E s w ith  tE J . O n  th e  other hand, the contracting curves o f f  are the
E ,n X  such that ic {1, ••• , n } \ J. W e see that I JI-f -c(f )=n(f ), s o  I »  is  an
invariant of That number will be denoted by i ( f ) .  Hence

c (f )+ i(f )= 1 2 (f ).

• 0  determines a  subset 4 = 4 0  o f  {1, •••, n}, defined by

4 = I i1 P 1 O C I U  U C , in  Yi_11.

T h e  card in a lity  o f J  can be seen to be an invariant of We denote it by
3(f).

By (c ) , if  iE J  then E !< -1  in  any nonsingular completion o f Y n .
If  g: Y--+Z is a  b irational m orph ism , we denote by 4c(f, g )  th e  number o f mis-
sing curves of f  which a re  contracted by g.
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Lemma 1 . 3 .  Let f :  X—*Y and  g : Y —>Z be birational morphisms.
(a) c(gef)=c(f)-Pc(g )— Jc(f, g) and q (go f)=q (f)-1 -q (g )-4 c(f, g).
(b) n(gof)5..n(f)-Pn(g) and j (g o f )5 . j (f )+ j(g )+ 4 c (f ,  g).
( c )  I f  q0 ( f )= 0  then n(g. f)=n(f)-1-n(g) and j(g . f)=  A P+ j(g)-1-dc(f , g).

P ro o f .  T he verification o f (a) is left to the  reader. Choose a m inim al decomposi-
tion o f f  and one of g ,  and  consider th e  corresponding commutative diagram :

w here c >  means open im m ersion and n = n (f )+ n (g ) .  By definition, n(g. n. The
second inequality o f (b )  follows from this and (a), so (b )  is  clear. T o prove ( c ) ,  de-
note the  center of by P, and  le t h, b e  the com posite X c X ,, ( f)c-»Z— •••
B y  (1 .2 c ) , it 's  en o ugh  to  ch eck  that P , is a  fundamental poin t o f h1 _1 (1  n ) .  If
n ( g ) < i n  then that condition holds, by (1 .2 c )  applied to  the  m inim al decomposition
of f. If l i n (g ) then by (1 .2c) P , is  a  fundamental poin t o f Y oc,Z ,, ( , ) —> •-• —>Zi ,  so
there is a  curve I '  in  Y  whose im age in  Z , is  Pi . If  q0 ( f )= 0  then f - 1 (T )  contains a
curve, so P , is a  fundamental point of Hence n (g . f)=n (f)-Fn (g ), and the second
equation follows from that and (a).

R em ark 1.4. From th e  proof o f (1 .3 ), w e see that if f :  X-1/ - a n d  g :  Y —>Z are
b ira t io n a l m o rp h is m s  a n d  qa ( f )= 0  then each pair (.0 f , 2,.) of minimal decompositions
(of f ,  g  respectively) determines a  minimal decomposition o f g. f—the commutative
diagram is a s  in  th e  proof and the missing curves a re  labelled a s  follows : Let •-•,

T'0 ( r e s p .  C 1 , ••• , C , ( , ) )  be th e  missing curves of f  ( re s p . g )  and  le t P i p  ••• , r i ,  be
those missing curves o f f  which a re  not contracted by g ,  where ••• <ik - q ( f) ;
if  fo r  j= 1 ,  • • •  ,  k w e let r; be the  closure in  Z  o f g ( P )  then th e  missing curves of
go f  a re  C I , ••• , Cq (g ), ••• r h ,  in  that order.

C orollary  1.5 . Let f :  X - -Y  and  g : Y —*Z be birational morphisms. Then

c(g. f)— q(g. f)=(c(f)— q(f))+(c(g)— q(g)) ,

i .e . ,  the num ber c--q  is "additive".

2 .  Properties of the domain and eodomain

In  this section we study how the  structure  of a  b ira t io n a l m o rp h is m  is related to
some properties o f its domain and c o d o m a in . We consider properties possessed by A',
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su c h  a s  affineness, factoriality, th e  property o f  hav ing  triv ia l un its , th e  property of
having no loops at infinity, etc.

P ro p o sitio n  2 .1 . Let f :  X—, Y  b e  a  b ir a t io n a l tn o rp h ism , w ith m issing curves
C i , • ••  , C , (q_ 0 ). Consider the following conditions:
(a) Y  is affine, X is connected at infinity  and no contracting curve of f  is complete;
(b) X  is affine;
( c )  all fundamental points of f  are in C i l.) ••• UC, and the interior o f  f (X )  (int f(X ))

is Y\(C i l.) ••• UC,) and is affine.
Then (a) (b) (c).

Corollary 2 .2 .  Let f :  X-->Y be a b ira tion a l m orph ism  and suppose that Y  is affine.
Then the following are equivalent:
(a) X  is affine,
(b) X  is connected at infinity  and no contracting curve o f f  is complete.

The m ain ingredients o f  th e  proof o f  (2.1) a r e  th e  N akai-M oishezon Criterion and
th e  following, fo r w hich one can  see  [6 ] , theorem 2 , p .  168 o r  [7 ], theorem 4.2, p. 69:

Theorem 2.3 (G oodm an). Let U  be an open subset of a complete nonsingular surface
S. Then U  is affine i f  S\U  is  the support of an effective ample divisor of S.

Before we prove the proposition, we find it convenient to define some terminologies
a n d  to  s ta te  tw o  fac ts . T h ese  co n sid e ra tio n s  a re  elementary an d  m ay w ell exist, in
one form o r another, in  th e  literature.

L e t  S  b e  a  com plete nonsingular su rfa c e . F o r  De Div (S ) , le t th e  symbol D »0
m ean that D  is  effective, D O  and  every irreducible component C  o f  D  satisfies C • D
> 0 .  T h e n  t h e  s e t  P (S )  o f  divisors D  such  tha t D »0  is  a  nonempty additive semi-
g r o u p . Say th a t a  subset Z  o f  S  i s  positive if  Z=supp (D ) fo r some D > 0 . T hen the
set of positive subsets o f  S  is  stable under finite unions.

Lemma 2 .4 .  L e t S  be a complete nonsingular surface and Z  a subset o f  S .  Then
the following are equivalent :
(a) Z  is positive;
(b) Z  is closed, Z * 0  and every connected component o f Z  is positive;
( c )  Z  is closed 0 * Z * S  and every connected component of Z  contains a positive set.

Lemma 2 .5 .  Let x : be the blowing-up of a nonsingular complete surface S  at
som e point. Then:
(a) I f  Z  is a positive subset o f g  then r (Z )  is a positive subset o f S ;
(b) I f  Z S ,  t h e n  Z  is positive in S iff 2r - i(Z ) is positive in g .

Proof  of (2.1.). Assume th a t (a) o r (b) holds. C hoose a minimal decomposition of
f ,  w ith  notation as in  (1.2h), imbed Y o in  a  complete nonsingular su rface  Vo a n d  "com-
plete the  diagram" :
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X c—  Y  > Y„
rn n

7c1 Fri
Y Y0 >

where Tr, is th e  blowing-up of at P i  (1 - i n). Then Y„ \ X  is connected and  con-
tains a  curve, hence is a  nonempty u n io n  o f curves. So Y \ X  is a  (possibly empty)
union of curves, i. e.,

Yn\X =C iU  ••• l J C ,U  E ,
JEJ

Yn \ X =  U  •  •  • C ,U  U  E j k._) L I U  •••
EJ

where is e ither t h e  closure o f  C i i n  ? a o r  its stric t transform in  Y , ,  and  where
L 1 , • ,  L .  are the one-dimensional irreducible components o f 17 ,\Y , (for any j= 0, n).
Let

• • •  U L , in  Yo ,

r0=c4u • • •  u c ,  in  Vo,

A n =L iU  •••  J L ,

r  C

Z „=P„U U  E J U A n  in  V,,,

denote by
JEJ

F  th e  se t o f  fundamental points of f  and let n= ri° •-• or,, and Tr=  2T10 • - •  °En.

CLAIMS

(1) V. X=Z i i  is connected a n d  Yo\Y0=A0U points,
(2) F g r o  a n d  - '(F)=E,.) .•• E .,
(3) 77- 1 (A 0)=A n ,
(4) int f(X )=Y o\ro .
We verify that F Ç T , and  leave th e  rest to th e  reader. I f  aG F  then r - 1 (a) can't

contain Z n  (indeed, suppose Z„..7r - i(a ) then Z.=‘..).,EJE, and  P=q=0 ; in  particular
Yo\Y , contains no curve, so Y o is not affine ; since (a) o r  (b) holds by assumption, X
m ust be affine, so Z „ i s  positive  b y  (2.3) a n d  th e  Nakai-Moishezon Criterion, so is
r(Z n )= {a} b y  (2.5) and  this is absurd) and Z„nn- 1 (a )*0  because no contracting curve

o f  f  is com plete. T hus there is a n  irreducible component C  o f Z „ such that 0 *
Cn7 - 1 (a )*C , by connectedness o f Z n . Clearly, s o  aG T , and  F ç Y o .

Proof o f (a) (b). I f  (a) holds then Y o\ Yo =A 0 a n d  A ,  is  positive , b y  (2.3) and
Nakai-Moishezon. Hence A n  is  positive, by (3) and  (2.5b), and  Z . is positive by con-
nectedness o f Z„ and (2.4). L et D e P ( Y,i ) be such that Zn=supp (D ); since a  straight-
forward argum en t show s th at Z „  meets every curve i n  V„, D is ample by Nakai-
Moishezon and  X is affine by (1) and (2.3). Hence (b) holds.

Proof o f (b) (c). Statements (2) and  (4) show  that f  restricts to a n  isomorphism

r i( in t  f (X)) --->  int f (X ) ,

and that f - 1 (int f (X ) )=X \(E i u  u E n ), which is just the open set obtained by remov-
ing the  contracting curves from X .  B ut if (b) holds then X  i s  affine, thus so  is X
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minus the contracting curves, since removing a  curve from an  affine nonsingular sur-
face yields an affine su rface . Hence we are done.

The next properties (for a surface) that will interest us a re  the  property o f  hav-
in g  a  tr iv ia l divisor class group and the property of having trivial units. To begin
with, we recall a  well-known fact :

Lemma 2 .6 . L et V be a complete nonsingular algebraic variety an d  U * ( )  an open
subset o f  V .  A mong the irreducible components o f  V\U, let P i ,  • • • ,  r  (r>.0) be those
of  cod im en sion  one in V , and let r , . . •  ,  Pr be  their im ages in Cl (V).
(a) Cl(U)=04=)Fi , ••• , p r  generate Cl(V).
(b) F(U, Ou)*= k*— ri, ••• , Pr are  linearly independent.

2.7. Let Y o be any nonsingular surface and consider

2r.
> Y o( n

where r :  Y i —*Y,. 1 is  the blowing-up of Y i _i at some point Pi  a n d  l e t  Ei=z,V(Pi)
Div (Y i ) n). Given integers i , y  such that 1 n and O v n  and given DE
Div (17

1)  we define p (P i , D) to be the multiplicity of Pi  on  the  appropriate strict trans-
form of D  if  i - 1 y, a n d  we define it to be zero if i - 1 <  v. Then we define

p (P i , D)
P(D )= [ 1E Z

p(P ,„ D)

and we have the following n X n  matrix :

e= (e ij) --=( ite(E1) • • • te(E n ))

where, of course, ei i =0  whenever iS j .  If  R i  i s  the it"  row  o f  t h e  identity matrix
I ,, define an  n X n  m atrix  = ( )  by letting the first row be R , and

(ski. ••• kn) —  R k + ( e k i  "• ek k -1( 6 2.01i<k ( 1 < k .
i j n

SO 6  is completely determined by e, is a  lower triangular matrix with s„-=1
and has det (s)=1. For 1 n, define

Z n Z

[

1111— > ( E l l e i n ) [1 1 1 .
Xn X n

Let D *
E  Div (Y ,,) be the total transform of DE Div  (Y 1 ). One shows that, if  we define

s i (D )=  i (p(D))E  Z, then

D *  D +  si (D)E 1( i n  Yn)i=1

Next, one checks that
: Cl (Y0)E1)Zn Cl (Y.)
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(15 
a. =1

is an isomorphism (where D*EDiv (Y) is the total transform of DE Div (Y o )). By the
above calculation, one sees that if DEDiv (Y o) and if the strict transform of D  in  Y.
is also denoted by D , then

0-'(17))=(D, ---sp(D))

(where the D 's on  the right hand side a re  in  Div (Y 0)). Clearly, O '( )= (0 ,  K i ) ,
1. i.<n, where K i  denotes the i t h  column of the identity matrix

Definition 2 .8 .  Let f :  X—+Y be a  birational morphism and write n = n (f), c= c (f)
and q = q (f ) .  Let 2  b e a m inim al decomposition for f ,  with notation as in (1.2h).
Then we define the following matrices :

p=p0=- (p(C,)•-• p(C,)) (nXq)

e=e0=(p(Ei) • • •  p(E.)) (n X n)

s=sg=(s i i ) (n x n) defined as in  (2.7) ,

and we let s '= 6  be the cXn sub-matrix of s  obtained by deleting the i t "  row when-
ever iE J.

Observe that the product s 'tt is a  cXq matrix ;  its q columns will be regarded as
elements of Zc, even if  c=0 or q = 0 . To make sense out of these extreme cases, let
u s  agree th at (1 ) th e columns o f a  0 x q matrix generate Z°, and are linearly inde-
pendent if q= 0 ; (2) the columns of a c x 0 matrix are linearly independent, and generate
Z °  iff c= 0 ; and (3) the 0 x 0 matrix has determinant equal to 1. With these conven-
tions, we have :

Proposition 2 .9 .  Let f :  X--11 - b e  a birational morphism and 2  a minimal decom-
position; let the notation be as in (2.8), let j = j ( f )  and 3=6(f).
(a) I f  Cl (X)=-0, then the columns o f s'p generate Z c , CI (int f (X ) )= 0 ,  q c  and 3<j.
(b) I f  Cl (Y)=0 and the columns of ep  generate Zc, then Cl(X)=0.
( c )  Consider the statements:

(1) f'(X, Ox)*=k*,
(2) F(Y, 0y )*= k*,
(3) the columns o f s'p are linearly independent,
(4) CI (Y)=0.
Then (1 )A (4 ) (2 )A (3 ) (1 ) (2 ) ,  and (3) implies and 5 n—q.

( d )  Suppose that C l(X )= 0  and P (X , O x )*=k*. T hen ['(Y , 0 y )*=- k *  and q72c, with
equality  if  Cl (Y)=0.

P ro o f . Consider the minimal decomposition 2 , with notation as usual. Imbed Yo
in a complete nonsingular surface Y, and "complete the diagram" (refer to the diagram
in  th e  proof o f (2.1)). Let the closures (in  Vo) of the missing curves be denoted by
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C 1 ,  ••• , C O 3 le t  th e  one-dimensional irreducible components o f  r o\Y o be denoted by

L I , ••• , L p  an d  recall that the  same notation is used fo r  a  divisor o f  some Yit, and its

strict transform in  V , ( j > i ) .  We have

ro \Y"0 -=  L I U •-• U L p l.)  points

Yo\int f (X )= C iU  ••• '3C q UL1U ••• U L,U  points

U  E ,U C iU  •••U C ,U L iU  ••• U L „U  points.
Je J

Given DEDiy (F ), le t  D be its image in Cl ( -4 ) .  Let O :  Cl ( YOE BZ --->C1 ( F7n )  be the

isomorphism given in  (2 .7 ) .  Then

0 '( L ,) , (L 2 , — sp(L ) )) , (1,,, 0)

0 - '(C 1 )=(C,, — sp(C,))

K ,).

In view of that, and by (2 .6 ) , we find
( a )  C l (Y )= 0 (resp . Y  h as tr iv ia l units) iff L1,  • •  ,  L p  generate (resp. are linearly

independent in) Cl ( Y0 );
(A) Cl (int f (X ))=-0 i f  L i,  • • •  ,  L p ,  C i ,  • • •  C ,  generate Cl ( 7 0);
(7) C l  ( X ) = 0  (resp. X  has trivial units) if the set

{(0, —Ep(C.7))11 --9}U{(LJ,

generates (resp. is linearly independent in) the group Cl (Y 0) Z".
On the other hand, it is clear that
(a) {K ,I iE J IU { - 6 P(C))11 / 5 q }  generates (resp . is linearly independent in) Z n i f

the columns of s 'p  generate (resp. are linearly independent in) Zc.
Now the reader can verify that, except for the inequalities SS j  a n d  6 n —q, th e  as-
sertions (a)-(c) of the proposition are immediate consequences of (a) - (6 ) . To prove the
two inequalities, observe that 3  is the number of zero rows in p .  Let U be the  n - 3  Xq
sub-matrix of p  obtained by deleting the zero rows; le t V  be th e  c X n — 6 sub-matrix
o f s ' obtained by deleting the ith column whenever th e  i t h  row  of p  is z e ro . Clearly,
V U = s 'p .  The m atrices II, V  a n d  V U =s' p  determine a commutative diagram of Z-
linear maps :

If the columns of s ' p  generate Z c, i .e ., w  is onto, then y  is onto and a_.<n— c=1. If
the columns of E 'p  are linearly independent, i.e., w  injective, then u  is  injective and

We now prove (d). By parts (a) and (c), Y has trivial units and q . c ,  with equality
whenever C l (Y )= 0 . Conversely, suppose that c = q .  Let G = C 1(F 0)C 1(F- 0)EDZn and
g_— (L, 0 )E G  (1 . i5 p ) .  Since n = c + j = q + j ,  there are elements el , ••• , en  i n  Cl (Vo)
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EF)Zn such that (g 1 , , g r , e 1 , ••• , en )  is a  basis of Cl ( Fo)e Z n .  By elementary alge-
bra, it follows that (g 1 , • • • , g r )  is a  basis of G, e ., (1. 1 , • ••  , L o  is a  basis of Cl ( F0),
so CI (Y)=0.

Corollary 2 .1 0 . Let f :  X—rY be a birational morplzisrn and suppose that Cl (Y)=0
and T(Y, 0 y ) * = k * .  Then
(a) Cl (X)=0 i f  the columns o f  s'p generate Zc;
(b) 1"(X, Ox)*=k* iff the columns o f  s'p are linearly independent;
( c )  Cl (X )= 0  and 1"(X, ex )*=k * iff s 'p  is a square m atrix  w ith determ inant +1.

R em ark. If  we restrict ourselves to the case j ( f )= 0  then E '= E  and consequently
(2.9) and (2.10) are still true when all "E'p" are replaced by "p".

Corollary 2 .1 1 . Let f :  21(--+Y be a  birational morphiszn and supose that P(X, Ox)*
= k *  and C l (Y )= 0 . Then q0(f)=0 .

P ro o f . q0( f )  is the  number of zero columns in  p .  Since th e  columns of s 'p  are
linearly independent by (2. 9), 90(f )= O.

Corollary 2 .1 2 . Let f :  X— .Y and b e  birational morphisms and suppose
th at  X , Y  and  Z  hav e triv ial div isor class groups and  triv ial units. T h e n  n (g f )=
n(f)d- n(g).

P ro o f . Immediate from (2.11) and (1.3).

Remark 2 .1 3 . Let S  be a  nonsingular complete surface and U # Ø an  open  subset
of S. If in is the number of curves in  ,S\U and K s  is  a  canonical divisor of S then,
clearly, the number i s  an invariant of U up to isomorphism. Let us temporarily
denote that number by a (U ) .  Then a n  easy argument shows that, if f :  X—rY is a
birational morphism of nonsingular surfaces, then c (f)— q (f)= a (Y )— a (X ). That gives
us another proof of (1.5) and, on the other hand, shows that c(f)—_q(f) whenever X=Y.
Hence s' p is a square matrix whenever X=Y, but examples show that its determinant
needs not be +1. (By (2.9a), it  is  +1 whenever Cl (X)=0.)

See (5.7) for the definition of Q [U ], where U  is a  nonsingular surface.

Definition 2 .1 4 . Let U  be a  nonsingular su rface . We say that U  has no loops at
infinity  (resp. is linear at inf inity ) if, in the equivalence class .g [U ], no graph has loops
(resp. some graph is a  linear tree).

Let us also say that U  is rational at inf inity  i f  f o r  some (equivalently, for every)
open immersion U c1 7  such that U  is  a  complete nonsingular surface, all curves in
FJ\U are rational.

Definition 2 .1 5 . Let r be a  (not necessarely complete) curve. Let t  be the com-
plete nonsingular model of I "  (i. e., the  set of valuation rings of the function field of
T' over the ground field) and let z : P -4 ' be th e  canonical birational transformation.
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Then P \dom (z) is a  finite se t o f  closed points, called the places o f T ' at in f in ity . We
denote the  card ina lity  o f f' \dom (r ) by P co(F).

Lemma 2 .1 6 . Let f :  X—>Y be a birational morphism.
(a) X  is rational at inf inity  if f  Y  is rational ot infinity  and all m issing curves are ra-

tional.
(b) I f  X  has no loops at infinity  then Y  has no loops at infinity.
(c) Suppose X has no loops at infinity  and 0 is a minimal decomposition o f  f  with nota-

tion as usual, embed Y ,,  i n  a  complete nonsingular surface Y r, and let C  be the
closure (in 37 . )  of the strict transform  of a missing curve. I f  e i s  the complete
nonsingular model o f C  then the canonical epimorphism r: 0--C is bijective.

(d) I f  X  has no loops at infinity  and Y has k>0 connected components at infinity  (i. e.,
an arbitrary member o f  g [Y ]  has k connected components), then

Po o (C k q —1 ,

w here C i , ••• , C„ are the missing curves of f. In  pa rticu la r, if Y  is affine then
each missing curve has exactly one place at infinity.

Pro o f . M ost of these facts are  triv ia l observa tions. Let's prove (d). Choose a
smooth completion Y c j i  o f  Y  (see (5.7)) and  consider the  graph g = (G , R ) given by
G ={C i , ••• , C O 3 A i, • • •  ,  A } ,  where C i  is  the  closure o f  C i  i n  Y  a n d  A 1 , ,  A k  are
t h e  connected components o f  Y\Y, a n d  R = {{C r , A 1 }IC inA ,#01 . Since X  has no
loops at infinity we see that g  doesn't have loops and  that each C i  belongs to exactly
P c.,(C )  l in k s .  Thus I R1=- -- E = 1 ) ...(C , ) .  O n the  other hand, it is a  general fact that a
graph g  with no  loops has at most 1g —1 links. Hence we get th e  desired inequality.

See (5 .5) for the notion of strong normal crossings (s.n.c).

Lemma 2 .1 7 . Let f :  X—>Y be a birational morbhism, where X  is linear at inf inity
and Y is affine. Consider a minimal decomposition of f, with notation as in (1.2h). Then
Y n \X  has q = q (f ) connected components, each one form ing a linear tree

C E E12-- • • • E jk

where Iji, ••• , j} J and Cid-Ei i + ••• +R i k h as  s.n.c. in Y ,,. In particular, the strict
transforms of the missing curves on Y ,, are nonsingular.

P ro o f . Since, in  Yo, each C , has one place at infinity by (2 .16d ), w e can choose
a  smooth completion Y 0c,. Y0 o f  Y o such that, if L  is  the  divisor o f  Yo w ith  s. n. c. and
which satisfies Yo\Yo=supp ( L ), a n d  if  C i , ••• , Co also denote th e  closures o f th e  mis-
sing curves, then C i , ••• , C , meet L  a t  distinct points and  C .  L = 1  (1s- i q). Form
the  diagram which appears in  th e  proof of ( 2 .1 ) .  Then 17 ,, Y 7,==supp (L ),  an d  ( in  r i i )
C 1 , ••• , Co meet L  at distinct po in ts and  C „ L = 1  (1 S iq ) .  Since X  has no loops at
infinity a n d  L  is connected, C i , ••• , Co belong to  distinct connected components of
17 ,2 \ X .  O n  th e  other h a n d ,  i f  W  i s  a  connected component o f  Y 7,\ X  and  W  is its
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closure in  Y., then W  meets L , since X  is connected at infinity ;  hence W contains a
and  there a re  exactly q connected components o f Y. \ X .  We now show  (by con-

tradiction) that each one of these connected components has th e  desired properties. Let

D = ±  C1 4- E E i +LEDiv (F.) •
iE J

First, suppose that D  does not have s. n. c.. B y  (5.19) we can consider a  sequence of
monoidal transformations  Ym (m >n) such that, if  E i  is  the  exceptional curve
created by and

Dn=DEDiv ( -17 n),

Di =(strict transform o f Di - 1 )+ E 1 EDiv (Y i ), n <i<m ,

then Din E Div (Y in ) has s. n. c., all centers a re  i. n. supp (D )n Y ., supp (D17') X  and
if  n < in ‘ i  then

(*) —1 in  17 ,.  Ei is a  branch point of g y t =g(Y1  D m ) .

L et 2 , be th e  connected subtree o f 2m  which has C,, • • • , C , a n d  th e  irreducible com-
ponents o f  L  a s  vertices. L e t E  be th e  se t o f branch poin ts y  of g m  such that y is
not in  g + . By (*), Erne I so X # 0 .  If  v E E , then le t  B y  be t h e  branch o f  g m , a t y
such that B y  contains g + . Since g„, is a  finite tree, we can find v E  such that, if
B y , B 1 , ••• , B 1,  are the distinct branches of g .  at y ( k then E n(B iv  • • • B O.
By (*) and (1.2i), B 1 < - 1 ,  1 < i< k  (see (5.17)). Since X  is  linear at in fin ity , y  can
"absorb" a branch (see (5.11)); since no B 1 can be absorbed, y  absorbs B y , whence
[— I.]. See (5.8) f o r  t h e  definition o f  < > and note  that if 2 i _g 2 (weighted graphs)
then <g I> <22>. Whence

<2(37 ,„ L)> <Bv>=<[-11>=0 .

O n  th e  other h a n d , <g(17 0, L)>>0 since Y o is  affine—in th e  terminology defined just
after (2.3), supp(L) is a positive subset of -Fa.  Moreover, g(T 0 , L ) is just th e  same as
g(17 „, L ) since no blowing-up has center i. n. L .  Hence

<2(Y„„ L )>)-0,

contradiction. So DEDiv (Y.) has s. n. c..
Next, suppose that some connected component W of Y„ \ X  does not have the desired

form ; it m eans that either t h e  dual tree fl(17 ,,, F) is not linear o r  C, is not a free
vertex o f  it ,  where

F=C i+E.,,±  ••• ± E, k EDiv (17  „)

is the  divisor (with s. n. c.) whose support is th e  closure W o f W  i n  Y .. I n  th e  first
case, let y be a  branch point of 2 (Y ,, F); in  the  secon d  case , le t y=  C ,. L e t B„, B 1 ,
•••, B k  b e  the distinct branches of  2 =2 ( 7 „, D) at y ( k _ 2 ) , where B y  is  the  one  that
contains t h e  components o f  L .  B y (1.2i) we see that B 1 < - 1  ( l i < k ) .  A s above,
we see that y "absorbs" B y  and a contradiction follows.

Kodaira dimensions. We denote by k(V ) th e  logarithmic Kodaira dimension of a
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nonsingular surface V  (see [7 ]  o r  [1 3 ] ) .  I f  C  is a  curve o n  a  nonsingular surface V,
we denote by K(C) th e  Kodaira dimension of the embedding C c V ,  in  th e  sense o f  [4].
T h e  following fact can be found in  [7 ] o r  [1 3 ] , w here it is  stated  fo r a  dom inan t
separable morphism f .

2 .1 8 . I f  f :  X -A T  is a  birational morphism then i(Y ) E(X).

We also point out

2 .1 9 . I f  f :  X -> Y  is a  birational morphism an d  C  i s  a  m issing curv e o f  f  then
K(C) (X).

P ro o f . Choose a  m in im al decomposition f o r  f  (notation as usual) and  embed Y o

in  a  complete nonsingular surface V 0 .  Consider th e  diagram in  the proof o f (2.1) and,
if  necessary, blow-up 37  a t  p o in ts  o f  C  until C  is nonsingular (where C  also denotes
th e  closure o f  C ) .  Since th e  complement o f  C  contains X , we get ,c(C) - (X ) from
(2.18) and  the  definition o f K(C).

3 .  Factorisations

Let f :  X->Y be a  birational morphism. A  factorization o f f  is a  p a ir  (g , h ) of
birational morphisms such that f = h g ;  two factorizations (g , h ) a n d  (g ', h ')  of f  are
equivalent if there is a n  isomorphism u  such that g '= u g  an d  h = h 'u .  L et (g, h ) be a
factorization o f f ,  w rite IV--, --dom (h)=--codom ( g )  a n d  consider h=(Wc-Y- n ( h ) — *  • ' •  — 4 1 7  o

= Y )  determined by some m inim al decomposition o f  h. W e say that (g , h )  is good if
qo(g )=0  an d  if  th e  complement o f W  in  Y.  n ( h )  is a  union  of curves (then n (f )= n (g )±
n(h) by (1.3)).

Note that i f  X  an d  Y  a re  factorial and have trivial units then by (2.11) any factori-
zation X-417 ->Y  of f ,  such that W has the same properties, is good. F o r that reason,
we will restrict ourselves to good factorizations.

By (1.4), all good factorizations o f  a  given birational morphism  f :  X . -Y  can be
obtained a s  follows. For each minimal decomposition 0  o f f  (with notation as usual)
and for each sE {0, •• • , n l, le t  W be the open subset o f  Y , obtained by removing all
curves PE  {C ,, •  , C ,}U {E 1 1 jEJ and j_ s} such that V,> ,p(P„ F )= 0 .  Then X-417 -±Y
is a  good factorization o f f .  Another way to look at that procedure is to fix 0  and,
f o r  each {1, ,  2 2 },  t ry  to  ch an g e  th e  order o f th e  blowings-up in  0  in  such a
way that the  blowings-up at {P i  iE  A l are  performed first. That poin t o f view leads
to th e  following ideas.

3 .1 .  Let f :  X->Y be a  birational morphism and g  and g ' minimal decompositions
o f f  (where the  notation of (1.2h) is used fo r g ,  and  1), E ,  C ;, etc . f o r  0 ' ) .  Then
there is a unique pair (a, r)----(a°• , 7°. 2 ') of perm utations of {1, •-• , q} a n d  {1, ,  n }
respectively, such that C - C ,  f o r  1 5 is- q and

( a )  p(Pi , P)=p(P t , P) fo r  1 5  n  and  for all curves P  in Y,
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(b) E )  fo r a ll i ,  jE l l ,  ••• , n1.

From  ( b ) ,  w e  se e  th a t  r i > r ., whenever i > j  a n d  Pi  i s  i. n. P ;  an y  permutation of
{1, ••• , n1 which satisfies this condition is called  a  0-allowable perm uta tion . Clearly,
i f  r  is 2-allowable an d  o- is  a n y  perm utation  of {1, ,  q l  then (a, 7.-)=(C a '
fo r some 0 '.

A  subset A  o f  {1, ••• , n}  is said  to  be 0-closed if , fo r  a ll i, jE fl, ••• , n l, icA ,
i>  j and P  1 . n. P, imply je- A .  Note that a  topology o n  {1, n } is  o b ta in ed  and
that, i f  r = r • " » ,  A  is 2-closed if  r ( A )  is 2 '- c lo s e d .  It is also clear that the existence
o f  a  0 ' such that 1-2 .2 '(A )=11 , ••, {A l}  is equivalent to th e  2-closedness o f  A.

For instance, the  set 4 ,0  is 0-open, so we can always find a  m in im a l decomposi-
tion satisfying LI=  n —3+1, • • • , n1.

Definition 3 . 2 .  Let f :  X—>I7  b e  a  birational m orphism  and a  minimal decom-
position o f f ,  with notation as usual. G iven a  2-closed subset A  o f {1, , n },  define

Q (0, .4 )={ilp (P ) , C ) = 0 ,  all /OA},

J(0, A )= {iE  J p(P,, E i )= 0 ,  all

T he  next proposition says that to give a n  equivalence class o f good factorizations
o f  f  is  ju s t  t h e  sam e thing a s  to give a  0-closed set. Its proof is straightforward
and  is left to  the  reader.

Proposition 3 . 3 .  L et f : be a birational morphism and 0  a m inim al decom-
position o f  f. T h e n  th e re  is  a unique bijection f ro m  th e  se t o f  0-closed subsets of
{1, ••• , n (f )}  to the set of  equivalcnce classes of  good factorizations o f  f ,  which satisfies
the  follow ing condition: if  C  i s  th e  equivalence class assigned to the g-closed set A ,
(g, h )E C , 0 , and Z n  are m inim al decompositions o f  g  a n d  h  respectively, 0 '  i s  the
minimal decomposition o f  f  determ ined by  2 g  and 0 h  as  in  (1.4) and r = 7 " ' ,  then
r(A )=- {1, ••• , n (h )} .  Moreover, we then have J2,, =z-(J(0, A )) and the missing curves of
h  are th e  C i 's w ith icEQ(2, A).

Proposition 3 . 4 .  Let g :  X--)147 and  h: W —>Y
that X  and Y  are factorial and have triv ial units.
q (h )_c(h ) and the following are equivalent:
(a) W  is factorial,
(b) q (g )= c (g ) and W  is connected at infinity,
(c ) q (h )= c (h ) and W  is connected at infinity.

he birational morphisms and suppose
Then W has triv ial units, q(g)T-L-c(g),

P ro o f . By (2.9) applied to g , W  has triv ia l units and  c(g) -5---q(g), with equality if
C l (W )= 0 . Since c (h g )= q (h g ), q (h )c (h ) an d  (b)<=>(c) follow from (1.5). In  order to
prove that (c) implies (a), assume that (c) holds and note that Cl (W )= 0  b y  th e  above
remarks. There remains to check that no contracting curve o f  h  is complete (affine-
ness o f W  will then follow from (2.2)).

Suppose h  h as a  complete contracting curve E .  Then E  has nonzero self-inter-
section number in  any nonsingular completion o f  W .  Indeed, consider a m inim al de-
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composition of h and in particular write h as the composition Wc÷Y.(h) - - * ••• — 4 - 0=37 .
Then E  i s  one o f the E ,  (= strict transform in  Y n ( h )  of the exceptional curve of
17 ,--+Y 1)  and consequently has negative self-intersection number. On the other hand,
imbed W  in  a complete nonsingular surface S and apply (2.6) to  W g S ;  since CI (W)
= 0 , E is linearly equivalent to a  divisor D  supported at infinity of W , so that E 2 =
E. D = 0, contradiction.

Let 2  be the property, for surfaces, of being factorial and having triv ial units.
Let f :  X--->Y be a  birational morphism such that X  and Y have 2  and such that, for
some 2 ,  th e numerical d ata  J, 8  and p  are known. Can it be decided whether f
factors as X.-4147 —>Y in  a nontrivial way, where W  is required to have _T ? Can one
list all such factorizations? T he answer is yes and, as discussed in  D J, the results
(3.3) and (3.4) suggest algorithms that solve that problem. (Moreover, it follows from
(4.4), below, that the problem obtained by letting b e  the property o f being isomor-
phic to A 2 has exactly the same solution.)

Let us now consider the case where j ( f )= 0 .  If the domain and codomain of such
an f  are factorial and have trivial units then q (f )= n (f ), det p= ± 1  by (2.10) and for
every good factorization (g , h ) of f  the surface W=codom (g) , dom (h ) is connected at
infinity. So (3.3) and (3.4) yield the following result, which Russell knew in the special
case where f  has ordinary fundamental points.

Corollary 3 .5 .  Let f :  X—>Y be a birational morphism with j ( f )= 0 , and suppose that
X  and Y are factorial and have trivial units. L e t 2  be any minimal decomposition of
f ,  let p =p o  and let r, s be Positive integers such that rd  -s = n = n (f). Then the follow-
ing are equivalent :
(a) f =hg for some birational morphisms g: X—*W and h : W—>Y such that W is factorial

and has trivial units, n (g )= r and n(h)=s.
(b) Modulo a permutation of the columns and a permutation of the rows, p  has the form

[ H  BO G ] ,

where H is an sXs matrix and Ois the r X s zero matrix (hence G  is an r  x r  matrix
and B an s x r  matrix).

Pro o f . Write t t = ( p E , ) .  B y  (1 .4 ), (3 .3 ) and (3 .4), (a) (b) is clear and (b) (a) is
almost clear ;  what has to be checked is that (b )  implies the following (apparently)
stronger statement :
( b ' )  Modulo a permutation of the columns and an allowable (see (3 .1)) permutation of

the rows, p  has the form described in (b).
Observe that if 1_‹-i<n and 1 j n  are such that /4.7 =0 and pz+ i, * 0 ,  then it is allow-
able to interchange rows i  and i + 1 .  Whence (b) (b/).

To conclude this section, w e  g iv e  a  result that says that if 3 (f) is the largest
possible, then f  factors in a nice way.
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Proposition 3 .6 .  Let f :  X -1 7  b e  a birational morphism and suppose that X  and Y

are factorial and have trivial units. T h e n  3 ( f ) _ j ( f ) ,  w ith equality  if  f= h g  fo r  some
birational morphisms g : X -a  a n d  h : TV-4Y such  that W  is f actorial and has triv ial
units, n (h )=q (h )= -q (f) and n(g) , j (f )= -6 (f ) (and of course j(h)=0).

P ro o f . L et n = n (f ) ,  c = c (f ) ,  q = q (f ) ,  j= j ( f )  and 3, 3 ( f ) .  Then Ô J b y  (2.9) and
we have to prove that 3 = j  i f  f  factors as specified.

Suppose that 5 = j .  B y  (3.1), there exists a m inim al decomposition 2  o f f  such
that 4 = In -3 + 1 , .•• , n 1. Since 5 = j and by (2.10) c=q, 4 = fq+1, ••• , n  1. With nota-
tion a s  usual fo r 2 ,  le t W=37

2 \(C I U  ••• UC,) and let h: W.-+Y be the birational mor-
phism so obtained ;  then n (h )= q (h )= c (h )= q . Since the blowings-up • • •  - + Y ,  h a v e
centers away from C i l.J ••• JC 2 (i. e., the centers are i. n. W), f -=hg fo r some g: X-+W.
By (3.4), we conclude that W  has triv ia l units and is factorial. We leave the converse
to th e  reader.

4. Birational endomorphisms o f A 2

T h e  se t o f  b ira tio n a l en d o m o rp h ism s o f  A ' i s  a  m ono id , under composition of
m orphism s. A n element f  o f that monoid is triv ial i f  i t  i s  an  au tom orphism  of A 2

(this is equivalent to th e  definition given in (1.2e) since any open immersion A 2 c.A 2 is
onto b y , sa y , (2 .1 1 ) ;  i t  i s  irreducible i f  it is nontrivial and can't be decomposed as
hog w here g  and  h  a re  nontrivial elements of the m onoid. O bserve that the "addition
formula" n(go f) , n(f)-1-n(g) holds for birational endomorphisms of A ', b y  (2.12). In
particular, if n (f)= 1  then f  is irreducible.

Two birational endomorphisms f ,  g  o f A ' a r e  equivalent i f  f = v - 'ogou fo r some
automorphisms u, y of A 2 ;  we denote that by f --g .

T h e  interesting problem, here, is to classify all irreducible birational endomorphisms
o f A ' .  In  view o f th e  difficulty of the  case  n (f)= 2 , which we solve i n  t h e  last sec-
tion o f  [2 ] , we believe th e  general problem to be very difficult—even what one should
mean by "classify" is not clear at present t im e . In  this section w e solve the case
n (f)= 1  (see (4.10)) and  give some general results, including (4.12), which determines
th e  p o ssib le  v a lu es  o f  (n (f ) ,  j ( f ) ,  5 (f ) )  fo r irreducible f  (we know that q2 ( f )= 0  and
o ( f )= c ( f ) = n ( f ) - j ( f )  by (2.10) and (2.11).)

We first state a (triv ial) consequence of the theory o f  "relatively minimal" rational
surfaces [101

Lemma 4 . 1 .  L e t  S  b e  a  rational nonsingular projective surface, D D iv  (S) a re-
duced, effective divisor and U=S \supp (D ) .  Then the following are equivalent:
(a)
(b) every irreducible component o f D  is a rational curve, W EL [Y ] and n(D)±1f1=10,

w here n (D ) i s  the num ber o f  irreducible components of D and K s is  a canonical
divisor of S.

T h e  following "powerful" theorem w as proved  by  Fujita  [3] and Miyanishi and



Birational endomorphisms 345

Sugie [8 ] in characteristic zero, and generalized by Russell [1 3 ] to arbitrary charac-
teristic

T heorem . Let V  be a nonsingular, factorial, rational surface w ith triv ial units, and
with logarithmic Kodaira dimension k (V )<0 . Then V

From this and (2.18), it follows immediately

Corollary 4 .2 .  Let f :  A 2 —>.V be a birational morPhism, w here V  is factorial (and
nonsingular, as alw ays). Then

Let us now consider the main results of sections 1-3 and point out what they say
about the special case "X=17 =A 2 ".

Corollary 4 .3 .  L e t f : be a birational morPhism.
(a) g0(f )=0, 9(I)-=c(f ) and 3 ( f )<j( f )  w ith equality  1f f  f  factors as f=hg, where g and

h  a re  birational endomorphisms o f A 2 such that n(h)=q(h)=q(f ) and n(g)= j(f )=
a(i).

(b) Given any minimal decomposition of f ,  the corresponding (square) m atrix  s' It has
determinant +1.

(c) Every missing curve of f  is rational and has one place at inf inity . Em bed A ' in  P 2

the standard way and let Q1 , ••• , Q, be the Points where the closures of the missing
curves meet the line L  at inf inity ; then at m ost on e  o f these points Qi  does not
satisf y  the condition: Exactly  one m issing curve m eets L  at Q i  and that missing
curve has degree one.

(d) A ll fundamental points of f  are on the missing curves.
(e) The result numbered (2.17) is valid here.
(f) I f  C  is a missing curve of f  then Ic(C)<0.

Proof . q 0( f )=0  by (2.11), q(f )=c(f ) by (2.10) and the rest of (a) by (3.6) and (4.2).
(b) comes from (2.10), (d) from (2.1), (e) from (2.17), (f) from (2.19) a n d  th e  first two
assertions of (c) from (2.16). W e prove th e  la s t assertion of (c). Choose a minimal
decomposition o f  f ,  w ith  no ta tion  as usual, le t Y 0 =.2=1.2 c_,P 2 = 7 0 be the  embedding,
consider the diagram in  the proof of (2.1) and let D= L ± C 1 -1- • • • -I- C2 + Y.] E,EDiv (70.

s e J

Then 7 72\A 2 =supp (D) and, by (5.19), D  has at most one "bad" point  Q .  F o r  any
QEL \{ Q * }, Q  belongs to at most two components of D , i. e., to at most one C 1 ; if
Q E C , then (L. C,)Q =1  (in 7„, hence in  7 0 ) , whence I/C 1 =1  in  P 2 .

I n  view  o f  (4 .2 ), th e  next two results are trivial consequences of (3.4) and (3.5)
respectively.

Corollary 4 .4 .  Let g: A 1 -+W  and h:W—>A 2 be birational m orphism s. Then W  has
trivial units, q(g) c(g), q(h)‹c(h) and the following are equivalent :
(a)
(b) q(g)=c(g) and W  is connected at infinity,
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( c )  q (h )= c(h ) and W is connected at infinity.

Corollary 4 .5 .  L et f  :  A2 -4A. 2 b e  a birational endom orphism  w ith j( f)= -0 , let .0  be
any  m inim al decomposition o f  f ,  let p = p 0  and let r ,  s  be positive integers such that
r + s = n = n ( f ) .  Then the following are equivalent:
(a) f = h g , f o r some birational endom orphism s g, h of A 2 such that n (g )= r  and n(h)= s.
(b) M odulo a perm utation o f  th e  colum ns and a perm utation of  the rows, p  has the

form

where H is an sX s  m atrix  and 0  is the r x s  zero matrix.

Recall that a  curve C  in A ' is a  line if  C A ' .  A  line is a  coordinate line i f  its
defining polynomial F E K X , Y ] satisfies k[F , G ]=k [X , Y ] for some G ; otherwise it
i s  a  w ild line. Theorem 2 .4  o f  [4 ]  says in particular that if  C  is a  wild line then
K (C )._0. Hence by (4.3f) it follows that no missing curve o f  f  :  A 2 —*41.2 i s  a w ild line.

Corollary 4 .6 .  L et f  be a birational endomorphism of A ', le t p  be the matrix deter-
m ined by  som e m inim al decomposition o f  f  and let C ;  b e  a m issing curv e. T hen the
following are equivalent:

1. C.; is  a coordinate line,
2. C , is nonsingular,
3. the j '  column o f  p  consists o f  O's and l's.

P ro o f . (1) (3) is trivial and (3) (2) follows from (4.3e). By (4.3c) C , is rational
with one place at infinity so (2) C,--A 1 and (1) follows from the above observations.

We now give some examples of irreducible birational endomorphisms of A'.

Example 4.7 (Russell). Let C , be an irreducible curve of degree two in A', with
one place at in fin ity ( a  parabola). Let P2 , Ps , Ps be distinct points of C , and let C,
(resp. CO be the line through Pi  and P3 (resp . Pi  and Ps ). Blow -up A ' at Pi , Ps , Ps

and remove the strict transforms of C1, C2, C3 from the blown-up surface. Then the
resulting open set is isomorphic to A2 and we obtain an irreducible birational morphism
f  :  A2 —A.2 w ith  n(f)=3.

P ro o f . F irst, w e show that the surface obtained is A2 . Embed A' in  P 2 the
standard way and let L = P 2 \A 2 ; let P  be the place of C , at infinity. Blow-up .13 2  a t
PI, P2 P3, denote the blown-up surface by P 2  and consider (i. e., make a  picture of)
the strict transforms of L, C1, C2, C3 in f 3 2 ,  w ith  self-intersection numbers 1, 1, —1,
—1 respectively. To show : U A2 , where U=P 2 \(LUC I UC2UC 3 ). By (4.1), enough
to show that [1 ]E g [U ] . Note that (L.C 2 ), ,  L. C 2 =2 and blow-up P 2 tw ice at PEC 2 ;
the resulting divisor, i. e., the reduced effective divisor at infinity of U, has s. n. c. and
determines the dual graph
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— 1  — 1  — 1
• •
• •

— 2  — 1  — 1

which is equivalent to [ 1 ] .  So U A 2 . To prove irreducibility, consider

1 1 1-

1 0 1

1
and apply (4.5).

Example 4.8 (R u s s e ll) .  L e t  a  be a positive integer, le t  C , a n d  C 2 be the  curves
given by th e  polynomials

F1 =X a+ 1 (X -1)a±Y a + 1  , F2=17  ,

and  le t P1=(0, 0) and  P2 = (1 , 0 ) . Blow-up A' at P, and P, and  remove th e  s tr ic t trans-
forms o f  C1 , C 2 .  T h e  resulting surface is isomorphic to A' and we get a n  irreducible
f  : A 2 —>A2 w ith  n ( f ) =2 .  Verification left to th e  reader.

Example 4.9 (R usse ll) . L e t n 3  and let C, be an irreducible curve o f degree n - 1
in  A' such that
(a) C , has one place at infinity,
(b) C , has a  po in t P, (in A 2 )  o f multiplicity n -2 .
Clearly, such a  curve exists. Choose distinct lines C1 , ••• , C„ such that

(c) C d1C 1= {P1, Pt}, some P,EA 2 \ {PO

Blow-up A' at P1, ••• , P„ and  remove the strict transforms o f  C 1 , ••• , C . .  T h e  result-
in g  su rface  is isom orphic to A ' an d  we get a n  irreducible f :  A 2 —>A2 w ith  n(f )=n.
Verification left to th e  reader.

Let's now return to the classification problem.

Theorem 4 .1 0 . L et f  be a birational endom orphism  o f  A 2 ,  w ith  n (f )=1 . T hen  f
is a simple affine contraction.

P ro o f . Recall, from the  in troduction  o f this paper, the definition of simple affine
contraction ;  we leave it to th e  reader to verify th e  following statement :

A  birational m orphism  f: A 2—A2 i s  a  simple affine contraction
if  n ( f )=1  and the missing curve o f  f  is a coordinate line.

Now le t  f  be any birational endomorphism of A ' w ith n ( f ) = 1 .  Then c(f )=q(f )=1
and  the  matrix p  is the 1x1 m atrix (1) by (4 .3 b ). So th e  result follows from (4.6).

p =

T he above proof uses (4.6), which relies on somewhat fancy ideas (Kodaira dimen-
sion a n d  [41!). A  simpler (an d  lo n ge r)  proof o f  (4.10) is given in  [2]. T he above
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theorem generalizes a s  follows :

Theorem 4 . 1 1 .  Let f  be a birational endomorphism o f  A ' such that q(f )=1. T hen
w here n=n(f ) and s  is a simple affine contraction.

P ro o f . W e proceed by induction on n = n ( f ) .  T he  case  n = 1  is just (4.10), above.
L e t  n > 1  b e  s u c h  th a t  t h e  claim  holds w henever n ( f ) < n .  Let f  be such that

n ( f )=n , le t  C  denote th e  missing curve o f  f  and  choose a  m in im al decomposition of
f ,  with notation as usua l. S ince  j(f )=n(f )— c(f )=n(f )— q(f )=n —1 and  n0 .1  by (1.2i),

(1) J={ 1 ,••• , n -11 .

A gain  by (1.2i),

(2) Pi + i c E i 1 < i < n .

T hus an  elementary calculation shows that

(3) 6 1 j <  • • ' 1.< j<n

(see (2.7) and  (2.8) fo r  definitions). Since s „ = 1 , we deduce

(4) e2 l , 1.< j<n

O n the o ther hand,

J-1 C)) (1 x 1  matrix)

so  by  (4.3b)

(5) J =1 
en i p(Pi ,  C )= 1 .

By (4) and (5)

1>_ p(P,, C)>=7 p(Pi , C )=1 ,s o
.7=1

- 1 -

(6)
o

  

0_ _

and consequently s ,,,= 1  b y  (5) and ( 6 ) .  I f  1 <i<n  then  by  (3) and (2)

Ekitt(Pi+i, Ek)k-1

E k d + p ( P i+ i ,  E i ) a p ( P i+ i ,  E i )=1k=1.

whence

(7) P i+ IE E , in  Y i  (, )  j = i , a ll i ,  j ,

B y  (6 )  a n d  ( 7 ) ,  Pk 0(CUE1U ••• UE, i _2 )  i n  Y ,i_ 1 . So the im age of A 2 c.Y.— Y„_ 1 i s
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contained in  W = Y _ 1 \ (C U E 1 U  '/ E _ 2 ), e . ,  f  fa c to r s  a s  g : A 2 —•W followed by
h: W --•A '. Clearly n (h )= n -1  and Wc->Y7 1—> • •• —>Y0 g iv e s  a  m in im al decomposition
o f  h. So E„_ i n W  is  th e  only contracting curve o f  h an d  C  the  only m issing curve,
hence q (h )= l_— c(h ). O n e  s e e s  th a t  W  is  connected  a t in fin ity , so  W A 2 b y  (4.4).
T hus by  the inductive hypothesis w e get ly, -, sn- t and g ' s .  S i n c e  th e  missing curve
o f g  coincides with th e  contracting curve o f  h, f - '- s '2 .

Note th a t  [12 ] contains variations of (4.10) and (4.11)—see in  particular th e  remark
(3.4).

Until recently, n o  example o f  a n  irreducible f :  A 2 —>A2 w i t h  j ( f )> 0  was known.
Moreover, the  above theorem  says that if  j ( f )  has the  m axim um  possib le  value  then
f  is reducible (unless n ( f )= 1 ) .  T h e  hope that j ( f ) > O f  reducible is killed by

Theorem 4 .1 2 . Let n, j and 3 be nonnegative in tegers. T here ex ists an irreducible
birational morphism f :A. 2 —A 2 satisf y ing  n (f )= n ,  j ( f )=  j  an d  3 (f )= 3  if and  only  i f
one of the follow ing conditions holds:

(a) 0=5= j<n ;

(b) 0  a <  j< n -1 .

P ro o f .  T h e  "o n ly  i f "  p a r t  follow s from  (4.3a) and  (4.11). Conversely, the case
(a) w ith  n= 1 (resp . n= 2, n > 2 ) is  r e a liz e d  b y  th e  s im p le  affine contractions (resp.
(4 .8 ), (4 .9 )) . I f  (n, j,  3 ) sa tisfies (b ) , l e t  m =  j-3 -F 1 _2  a n d  q=n— and choose

•••, 3 q __1 0 such  that 51-1- + 3 ,_1= 3 . T hen exam ple  (4.13) realizes these num-
bers.

Example 4 .1 3 . L e t  m 2 ,  q 2 ,  31::•=0, ••• , b e  in teg e rs . W e  con struc t an
irreducible birational morphism  f :  A 2 —>A2 w ith  tw o fundam ental points and satisfying

n (f)= m + q -1 + 3 1 +  •• • ,

q(f )=q ,

a(f)=3,+ ••• +3 q 1,

i(f)— m — l+ a (f).

Choose F1 , ••• , F,Ek[X, Y ] su ch  th a t i f  C , is  the  affine plane curve F,(X, Y )= 0 then
• C ,  i s  a  nonsingu la r ra tiona l cu rve  o f  d eg ree  m , w ith  one place at infinity, w ith

multiplicity sequence at infinity : m-1, 1, 1, ••• ;
• there are distinct points 13

1 , A G A ' such  tha t

PO,

(For instance, F1 =a,,Y 7 4 - 1 (Y -1 )± .X , where a i , •-• , a ,  are distinct elements o f k* ; then
P1=(0, 1) and  P2=(0, 0).)

W e  a r e  g o in g  to  e m b e d  A ' in  F m  (on e  o f th e  N agata rational su rfa c e s) . First,
embed A 2 i n  P 2 the standard way and write P 2 \ A2 = L .  Let C, also denote the  closure
in  P 2 o f  th e  curve C i  c h o se n  a b o v e . T h e  curves C,, • C 2  a l l  m e e t  L  a t  th e  same



350 D. Daigle

point P. Note that

1) C i n L = {P }, p (P , C i )= m -1 , C i .L = m , a ll i;

2) C i .Ci =m 2 , a ll i ,  j;

3) (C 1.C5 )F =-1122 —m, a ll distinct i, j.
Blow-up P 2 a t  21.1 = P ,  let D , be  the exceptional curve, let A 2  b e  the point a t w h ich
D , and L  meet. Then

4) C 1 n L , {A 2 }=C 1 n D 1 , q = 2 m -1 , C i .L=1 , C 1 .D 2 = m -1 , for a ll i;

5) C inC j =
AP1, P2, A d , (Ci.C .1)A2

= M- 1, a ll distinct i, j.

B low -up in-1  tim es a t the point of D , w hich is i.n . A 2 .  C all the exceptional curves
so  o b ta ined  D 2 , ••• , D m . On the resu lting  surface, the divisor D i d- •-• 4-D m -I- L  has
s. n. c., its  dua l g raph  is  the linear weighted tree

— m  — 1  — 2 — 2 — 1
• • •

D, Dm  D D2 L

and the complement of tha t d iv isor is A 2 . Contract L, D2, ••• , D m _, and let S, denote
the complete surface obtained. W e get A 2 =S 0 supp (Di+Dm), w here D i +D m  ( S 0 )
has s.n.c. and has dual graph fl(S 2 , D 1 -1-D m )  as follows :

m
0- 4 1

.

In fact, So = F m  (but w e don 't really  need to  know  that).
N ow  C 1 ,  •••, Cm  m e e t  D m  a t  distinct points and

6) cinD ,,o, C i .D m = 1  and C =m , a ll 1.

W e n o w  p ro ceed  to  d e fin e  an equivalence class of irreducible morphisms f :  A.2 —)112 .
Blow-up S o a t  P 1 ; blow-up m -1  tim es a t P  2 (more precise ly , a lw ays b low -up a t the
intersection point of (the strict transforms of) the C i 's). The la s t  of these blowings-
up m akes C I,  ••, C  p a irw ise  disjoint. If El, E2, Em are the exceptional curves
so created, then on the blown up surface the divisor E 2 +  • • •  ± E .+ C i+  ••• 4-C,±D 1 H-D m

has s.n.c. and its dual graph is

For i=1, •-• , —1, let Q  be  the intersection point of E m  and C .
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•
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Blow -up 32 + 1  times at Qi

th e n  6 2 +1  times at Q2

a n d  6,_ 1 + 1  times at Q _ ;

more precisely, always blow-up the point of E .  which is j . n . Q . D enote by E l, ••• ,
4 + 1 , E L  • • • EL- 2

2 + 1, E 1 , ,  E L 4 ,+1 the exceptional curves so created. O n the result-
ing surface, call it S n ,  consider the  divisor

D =E 2 + • • •  + E m ± (E 1 +  •  + E 3 i )d -  • •• +(Er I + • +Et,Id
+C I+ +Cq+Dm+D1,

whose dual graph g(S„, D) is

-2

 

—2 0
• • •

EmiE . Cq

  

•
D,E2

   

where, for i=1, • •• , q - 1 ,  g ,  is

— 1 — 2 —2

Ci E f Ei

Ci  being linked to D . .  W e claim  that th e  complement of supp (D) is isomorphic to
A 2 . By (4.1), enough to show that g(S i i , D )--[1 ]. Now g(S ., D) contracts to

[-2, •-• , —2, —g—ai— ••• — 5q -1, 0 , 3 1 +  • • •  +6 q _l +q - 1 ,  —in]

••• —2, —1, 0, 0, —m] ,--[m-1, 0, —m]-4-1, 0, 0]'-.-[1],

where we u se  th e  n o ta tio n  fo r  linear weighted trees defined in  (5.13) and the fact
pointed out in (5.14).

So we get an equivalence class of birational morphisms f :  A. 2 —>A2 w ith  n(f), q(f),
a ( f )  a n d  j ( f )  a s  desired. W e  le a v e  it  to  the reader to verify that if  f =11 .g  with
0 <n (h )<n (f ) , then h gives rise to  a  sub weighted tree g ' o f g-=fl(S„, D) such that
Q' contains D„ D m  an d  at least one more vertex, L "# g  a n d  L"--, [1 ] .  We claim that
Q does not contain such a  g'. To see that, suppose g ' exists. T hen C , is  in  g',
otherwise g ' would contract to [ p, —m] for some p>0, a n d  [ p, —m], ,-, [1 ]  b y (5.16).
Next, E n ,  is  in  g ',  for otherwise g ' contracts to [0, p, — in] fo r  some p _ o , and this
is not equivalent to [1 ] .  So g ' has the  form
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where each g ' ,  g ;  is either empty o r a  linear branch, and

g ;= [-1 , — 2, ••• , — 2] if  not empty,

g'-=C-2, ••• , —2] if  not empty.

Note that, i f  g ;  is not empty then the vertex of weight —1 is there and is  the neigh-
bour of D m . Hence we see that all (nonempty) g ;  can be absorbed by Dm ,  and that
the absorption of g ;  increase the weight of D . by the n u m b er g ;  1 .  Let a= I g ;1 +
••• +I .  Then g ' contracts to the minimal weighted tree

— q-8 10 a —m
g '  •

E m C g D m D1 .

B y  (5 .1 6 ), a so  I . ; +I ••• +12 0 _ i l ,  i. e.,
g "i = g i  fo r  all i.

Let b =  g ' I. Then

••• , —2, — q-6 1 —  •• • -6 ,, ,  0 , a , — m]

••• , —2, —1, 0, 0, — m l--[b +1 , 0, .

By (5.16) again, 6+ 1 — m =  — 1, e., b=m—  2  and g '= g .  Hence f  is irreducible.

5 .  Appendix : weighted graphs

Although most of the material contained in  this section appeared at several other
places, we include it to establish notation and to make reference easier. W e used [11]
as our main reference. Note that (5.18) and the last three assertions of (5 .19 ) didn't
seem to be known before this.

F o r  our purposes a  graph consists of finitely many vertices, some of them being
connected by links, such that the links are not oriented a n d  a t  m o s t  one  can exist
between two given vertices. So let us say that a  graph is  a  pa ir g =( G , R )  where G
is a  finite set and R  is a  se t o f subsets o f G , such  that every  a E R  contains exactly
tw o elem ents. The elements o f G are called th e  vertices of g  and those o f  R  are the
l in k s .  Two vertices u , y of g  are said to be linked if u ,  v l E R ; w e also say that u
is a  neighbour of y , and v ice-versa . T he se t o f neighbours of y  is denoted by 34(y ).
A  v e r te x  y  o f  g  is f r e e  (resp . linear, a branch poin t) if  it has at m ost one (resp . at
most two, at least three) neighbour(s). Q  I denotes the number o f vertices of Q.

Given vertices u, y a  chain from u  to  y  is  a  sequence (x o , ••• , x 0 )  of vertices such
that q > 0 , u = x 0 , v = x 0  a n d  fx ,, x t + i l R  for 0 i < q .  The chain is sim p le if the links
ix o , x11, ••• x o }  a re  d is tin c t. I t  i s  a  loop i f  it  is  simple and if x o = x , .  The
connected components of g  are defined in the obvious w a y . A  tree is  a  connected graph
without loops. A  linear tree is  a  tree without branch points.

If  g =(G , R )  is a  graph and V G  th e n  g \V is the graph (G ', R ') where G '=G \V
and R ' , I a E R I a n V = 0 1 .  If  g  is a  tree and y  is a  vertex of L' then  th e  connected
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components of g  v1 are called the  branches of g  at y; clearly, the tree g  has 7 g (v )I
branches at v.

D efinition 5.1. A  w eighted graph is a triple g =(G , R , Q) where (G, R ) is a  graph
and Q is some se t map G— >.Z. If vE G, Q(v ) is called the w eight of v.

A  weighted graph can be blown up at a  link or at a  vertex :

D efinition 5.2. L e t g =(G , R , Q) be a  weighted graph and let x  be either a  link
or a vertex of  Q. A  blowing-up of g at x  is a weighted graph .6'' , (G ', R ', Q ') together
w ith  an injective map G c .G ', such that if  G  is identified with its image in G ' then
G '=G U { e}  for some e $ G  and the following conditions are satisfied :

1. if  x =lu ,v 1 R  then R '=(/?\{ { u , v}DUI{e, u }, le, v II and

Q(w) i f  w 0{ e, u, v }

SP(w) , Q (w )-1{ i f  wE {u, v}

—1 i f  w =e;

2. if  x G  then R' , R U { f e, x } }  and

I

Q(w) i f  w O le, x l

Q'(w) ,  Q ( w ) - 1 i f  w =x

—1 i f  w =e .

Because the blowing-up of g  a t x  always exists and is essentially unique, "blowing-
up" is usually thought of as the operation by which g ' is obtained from g  and x. We
sometimes refer to e  a s  the vertex w hich is created in the blow ing-up; that vertex is
clearly a  superfluous vertex of g ':

Definition 5 .3 . Let g  be a  weighted g ra p h . A  superfluous vertex of g  is a  linear
vertex  e  o f  w eight —1 such that g4(e)#0  and if u, vE32 g (e) then u  and r are  not
linked to each other.

D efinition 5.4. Let g =(G , R , Q) be a  weighted graph and e  a  superfluous vertex
of Q. A  blowing-down o f g  a t  e  is a  weighted graph g ' , (G ', R ', Q ') together with
an injective map G 'c ,G  that makes g  a  blowing-up of g ' at some v e rtex  o r  link and
e  the vertex which is created in  that blowing-up. The blowing-down of g at e always
exists and is essentially un ique . We say that e disappears in  the  blowing-down.

We say that g contracts to g ' if  either g ' is isomorphic to g  o r if  g '  can be ob-
tained from g  by performing finitely many blowings-down (define isomorphism the ob-
vious way, i. e., a bijection of the sets of vertices that preserves links and weights).
A  weighted graph is said to be minimal if it has no superfluous v e r te x . Two weighted
graphs .6' a n d  g '  a r e  equivalent (g , , , g ')  if one can be obtained from the other by a
finite sequence of blowings-up and blowings-down. Clearly, if  g  and g ' are equivalent
then g  is connected (resp. has no loops, is a  tree) if g ' has the same property.



354 D. Daigle

For convenience, let's give a  name to the conditions ( i )  a n d  (ii) that appear on
page 70 o f [11] :

Definition 5.5. L e t D  be a  divisor of a  nonsingular surface S .  We say that D
has strong normal crossings (s. n. c.) if  D  i s  effective, reduced, a n d  if  th e  following
conditions hold :

1. every irreducible component of D  is a  nonsingular curve ;
2. if  C and C' are distinct irreducible components of D  such that cnc'#o, then

cn c ' consists of a single point where C and C ' meet transversally ;
3. if  C, C' and C " are distinct irreducible components of D  then Cr)C 'nC"=0.

Note that if  D  has s. n. c. and S is not complete then there is an open embedding Sc..
such that .3 is a  complete nonsingular surface and the closure of D  in  S  has s. n. c..

Definition 5 .6 .  Let S be a  nonsingular complete surface and let D  be a  divisor of
S with s.n .c.. The dual graph g(S, D) associated to the pair (S, D ) i s  th e  weighted
graph which has the  irreducible components of D  as vertices, two of them linked if
they intersect in  S, and such that each vertex C has weight C2 (self-intersection num-
ber in  S).

Clearly, if  (S, D) is as above, 7c : 3'—>S is th e  blowing-up of S  at some point PE
supp (D ), E=7 - '(P ), D is th e  s tr ic t  transform of D  and D'-=D+ EeDiv (g) then D'
has s. n. c. and g(3, D ') is a  blowing-up of g(S, D) in  a  natural way.

Definition 5 .7 .  Let X  be a  nonsingular su rfa c e . A  smooth completion of X  is an
open immersion Xc_,S such that S  i s  a  nonsingular complete surface  and  S\X=
supp (D ) for some DE Div (S) with s.n .c.. T h e  weighted graph g(S, D ) is therefore
determined by XcS ; it is easily verified that the equivalence class of g(S, D) depends
only on X .  That equivalence class is denoted by g [X ] .  Note that smooth completions
exist fo r any X.

Definition 5.8. A n  arbitrary weighted graph g=(G, R, Q) determines a  bilinear
form B(g), on the real vector space 10 which has G  a s  a  basis, defined by

v .  vi = Q(v i ) , all i ,

1 i f  {v i , 1). }ER{

where G={v i , v2 , •••}. The discriminant of B (g ) is denoted by d(g) (i. e., d(g) is the
determinant o f the  1.6'1 X IC  m atrix  (vi , v,)). One can check that if  g ' is a  blowing-up
of g  then d (g ')=— d(g ). Thus the number (-1 ) 1G I 'd (g )  depends only o n  th e  equi-
valence class of Q. W e  le t <g> denote the nonnegative integer max dim W, where W
runs in  th e  s e t  o f  linear subspaces Wg /V such that x. x 0, a l l  x E W . One can
check that <g> depends only on the equivalence class of Q . T h e  following (elemen-
tary) fact can be found at p . 78 o f [11] :

v1 =
0 if i j  a n d  {v i , v ./ }0 R ,
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5.9. I f  g  has no loops and <g>._1 then there can be at most two vertices with non-
negative weights, and if there are two o f them  then these tw o vertices are linked and
one of the weights is actually  zero.

O f particular interest fo r  u s  is th e  equivalence class g[A 2 ] ,  which consists of the
weighted trees equivalent to [ 1 ] ,  where

Definition 5 .1 0 .  Given n E Z , th e  symbol En] will denote any weighted tree which
has one vertex, say y, and  such that y  has weight n.

More generally, we are also interested in those weighted trees which a re  equivalent
to a  linear tree. In  this respect, we make th e  following observations.

Lemma 5 .1 1 .  Let g  be a weighted tree equivalent to a linear tree, and suppose that
b  is a branch point of Q . T h en  f o r  some branch 2  o f g  at  b , " b  can absorb 2 " , j. e.,
there exists a unique weighted tree g '  such that:

1. g  contracts to g ' ,
2. g '= g \ g 3  as graphs,
3. g '\ { b} = g\ ({ b} U 2 ) as weighted graphs.

Corollary 5 .1 2 .  Every  minimal weighted tree equivalent to a linear tree is linear.

It doesn't seem to be possible to give a reasonable description of all weighted trees
equivalent to [ 1 ] .  However, those which a r e  minimal m u st be linear (5.12) and  it
turns out that they can be listed. B e fo re  w e  d o  that, we need to introduce some
notations.

Definition 5.13.

1. Given integers w i ,  ••• , con, let C(01, con] be th e  linear weighted tree

u 1 (02 (On

I f  s i  is either a n  integer o r  a  finite sequence of integers (for each i=1, ••• , k),
le t  [ s 1 , ••• , s k ]  be th e  linear weighted tree [oh, ••• , obi ], w h ere  (oh, ••• , (0n) is
the  sequence obtained by concatenating s i ,•••, s k .

2. Given p, qE -Z  w ith  P O , le t  RI, be th e  p+1-tuple (— q-2, — 2, ••• , — 2), and
le t  Ly, be the p+1-tuple (-2, • •• , — 2, — q -2 ) .  To be precise, Rg=(- q -2)= Doz.

Example 5 .1 4 .  T h e  tree [L,L 0, 2, R I ]  is  ju st the same a s  [ - 2 ,  —2, —3, 0, 2, —4]
which is , by the  w ay , equivalent to [ 1 ] .  To see this, observe that i f  A , B  a re  (pos-
sibly empty) finite sequences o f  integers and  a, b E Z  then

[A , a, 0, b, a d - i , 0, b—i, B]

fo r any iE- Z .  In  our case,
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[-2, —2, —3, 0, 2, —41- [ -2, —2, —1, 0, 0, —4] , [3, 0, —4] , {0, 0, —1] , [0, 1]

which is equivalent to [1] ; indeed, i f  n E Z  then [0, n] ,-- [-1 , — 1 , n ]- [0 , n +1 ] and
consequently [0, n] , -, -, [0,

Proposition 5.15. The following is a list o f all m inimal weighted trees equivalent
to  [1].

1. [1]
2. [0, a ],  aE Z \{  —1}
3. E . • •  ,  L g r,  L g ri ,  Lg?, 0, a0 +1, R%, Rgi+1, R 4g r" , • • • 1  whe r e a o , •-• , a,, is a finite

sequence of nonnegative integers, with

Remark. T he above list appeared in  theorem 9 o f  [9], with a  different notation.
However, geometry is very much involved in  th e  cited result (i. e., in  both th e  asser-
tion and its proof) while this proposition is purely graph-theoretic. A  graph-theoretic
proof is given in  [1].

Corollary 5.16. L e t g  b e  a minimal weighted tree equivalent to D J . Then g  is
linear and:

1. I f  1g1=1 then g , [1].
2. I f  1g1=2 then .g= [ 0, a ], some aE Z \{  —1}.
3. I f  Ig I >2 then g  has exactly two vertices with nonnegative weights, these vertices

are link ed and ex actly  one of them , say u , has weight zero . Moreover, u  has
two neighbours, say x  and y, and Q(x)+Q(y)= - 1.

Definition 5.17.

1. F o r  a  weighted graph g ,  the  symbol g < - 1  is a n  abbreviation fo r  th e  state-
ment "every vertex  o f g  has weight less than —1".

2. L et L' be a  weighted tree and y  a  v e r te x  o f  Q .  W e say  th a t y  i s  a  special
vertex i f  t h e  number o f  b ra n c h e s  2  o f g  at y such that 2 < - 1  is at least
two.

Corollary 5.18. Let g•N-, [1 ] and suppose that v  is a special vertex of Q. T h e n

S2(0+ I gl g (v)i .

Pro o f . L e t  n=1:12g(Y)1 a n d  le t  2 1 ,  2 2 be branches of g  at y such that
an d  g32< —1. By (5.11), we may consider th e  tree o b ta in e d  f r o m  g  by letting y
absorb all branches other than g ,  a n d  sB2 . Clearly, t h e  weight 12. (y ) o f y  in  g '
satisfies 12/(v) S2(v)-kn —2, since n -2  branches of g  a t y  disappeared in  the  contrac-
tion. Since Ig '1 > 2 , L "  is  n o t m inim al b y  (5.16), i. e., SP(y) ,  —1 a n d  w e  g e t the
desired inequality.

Desigularization o f D ivisors. S a y  that a  nonsingular surface X  has no loops at
infinity  if  n o  element o f g [X ] has loops (see (5.7)). We now make a  sim ple  observa-
tion that turns out to be very useful.
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Lemma 5.19. L et S  be a complete nonsingular surface and suppose that De Div (S)
is reduced and effective. Then there exists a sequence S.—> ••• —>S0 = S  of  monoidal trans-
formations such that, i f  Ei  i s  the exceptional curve created in a n d  i f  we define
f o r G EDiv (S)

I G°=GEDiv (S o )

Gi , ( s tr ic t  transform  o f  G ')+ E i EDiv (S 1),,

then DmEDiv (S n i )  has s . n . c . .  A ssume that m  is m inim al w ith respect to that property.
Then the centers of the monoidal transformations are infinitely near (i. n.) D, S. \supp (D ')
'-' S\supp (D) and, if  S \supp (D) has no loops at infinity , every E , such that .E = - 1  in
S .  is  a branch point of  fl(S m , D m ). Moreover, i f  S\supp (D)--' A2 then:

1. i f  n't 2 then P i eE i _i  (2< i< m );
2. i f  m 1  then P , belongs to at least two irreducible components o f  D;
3. if and D = A ± B , where A  and B  are effective divisors and B  has s .n .c .

in  S , then Pi  belongs to the strict transform  o f  A  in  S 1 _1 (1< i< m ).

Pro o f . Everything before the "Moreover" is very well known, except perhaps the
last assertion (the verification o f  which we leave to th e  reader). We prove (1), (2), (3).
Let's use the same notation for a  curve and  fo r its stric t transform in  any blown up
su r fa c e . Since A 2 has no  loops at infinity,

every .E, such that E 7 = -1  in  S . is a branch Point of  g(S„„ .

If  (1) doesn't hold then g(S„„ Dm) contains two branch points u, y  o f  weight —1 such
that u, y a re  not neighbours o f each other. Contract fl(S m , Du') to a  linear weighted
tree (5.12); then u and y a re  still in a n d  o n e  o f  t h e  following holds :

• 2  contains vertices u, y with positive weights ;
• contains vertices u, y with nonnegative weights and  not neighbours o f  each

other.
Thus <..C>>1 by (5.9), and  this is absurd since every L'Eg[A 2 ] has <g>=1. Hence (1)
holds.

Proof o f (2 ). B y  t h e  above, En „  is  a  branch point of .6'(S„„ Dm), o f weight —1,
and no other Ei  has weight —1 (in  S m ). I f  P , belongs to only o n e  component of
D , all components o f D  a r e  in  t h e  same branch o f .6'(S2 „ Dm) a t E . .  Thus E„, is a
"special vertex" (5.17) and  we get a contradiction with (5.18).

Proof o f (3 ). Since .Em  i s  a  branch p o in t  o f  g(S ., D m ), P ,„ belongs to at least
three components o f Dm - 1 - - A + Bm - 1 . Since B  has s. n. c. i n  S ,  B z  h as s. n. c .  i n  S,
(0< i< m ) and P belongs to at most two components o f  Bm - 1 . Thus P .  belongs to
(the stric t transform of) A  and , by (1), so do P1, ,
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