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Birational endomorphisms of the affine plane

By

D. DAIGLE*

Let A% be the affine plane over an algebraically closed field k. The birational
endomorphisms of A? are those maps A?—A* given by endomorphisms ¢ of the poly-
nomial algebra k[ X, Y] such that k(¢(X), §(Y)=k(X, Y). The simplest non-automor-
phic example that comes to mind is the ¢, defined by ¢(X)=X and ¢(Y)=XY. The
birational endomorphisms of A4? given by ¢=u-¢,°v, where u and v are any automor-
phisms of k[X, Y], are called simple affine contractions in A®. The question whether
every birational endomorphism of A? is a composite of simple affine contractions arose
in the early seventies, in Abhyankar’s seminar at Purdue University. That question
was answered negatively by K.P. Russell who, in conversations with A. Lascu, con-
structed an irreducible birational endomorphism with three fundamental points. He
soon exhibited a whole zoo of irreducible endomorphisms, some of them having infinitely
near fundamental points. Its diversity shows that to give a reasonably complete class-
fication of all birational endomorphisms of A? is likely to be interesting and difficult.
The aim of this paper is to make some contributions to that problem.

The methods by which Russell constructed those endomorphisms and proved their
irreducibility consist in a detailed analysis of the configuration of missing curves (see
(1.2f) for definition). Our approach is essentially an elaboration of Russell’s methods,
and includes the use of some graph-theoretic techniques (weighted graphs, dual trees).
Note that the last section of this paper is in fact an appendix which gathers some de-
finitions and facts in the theory of weighted graphs.

The first three sections study birational morphisms f: X—Y of nonsingular sur-
faces, and the fourth section concentrates on the case X=Y =A% The most interest-
ing results are, we think, those numbered (2.1), (2.9), (2.17), (4.3), (4.4), (4.11), (4.12)
and (4.13). We point out that the last section of our paper [2] classifies the irreducible
f: A*-A® with two fundamental points.

Throughout this paper, our ground field is an arbitrary algebraically closed field k,
all curves and surfaces are irreducible and reduced, all surfaces are nonsigular and the
word “point” means “closed point”. The domain (dom (f)) and codomain (codom (f)) of
any birational morphism f under consideration will be tacitly assumed to be (nonsingular)
surfaces. If X is a surface, Div(X) is its group of divisors and CI(X) its divisor
class group; “X is factorial” means that X is the affine spectrum of a U.F.D.; “X has
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trivial units” means I'(X, Ox)*=k*, where Oy is the structure sheaf, I'(X, ©y) is the
ring of global sections and “*” means “group of units of ---”; if DeDiv (X) and X—X
is a monoidal transformation (resp. X, X’ is an open immersion) then the strict trans-
form of D in X (resp. the closure of D in X') is denoted by D whenever no confusion
seems likely to arise. N, Z and @ denote respectively the sets of positive integers,
integers and rational numbers.

This work grew out of our doctoral thesis. We would like to thank our professor,
K.P. Russell, for having introduced us to these problems and for the numerous discus-
sions we had about them.

1. Basic concepts

The following fact, in which the surfaces X and Y are not necessarily complete,
is easily deduced from the basic properties of birational transformations of complete
nonsingular surfaces.

Lemma 1.1. Let f: X—Y be a birational morphism. Then there exists a commuta-
tive diagram

X ., Y,
VT

f :
VS

Y —=Y%,

where n=0, XY, is an open immersion and n;: Y —Y ., is the blowing-up of Y., at
some point (1=i<n).

Two birational morphisms f,: X,—Y,, f.: X,—Y, are said to be equivalent (write
fi~f,) if there are isomorphisms x: X;—X,, y:Y,-Y, such that fi=y7'cf,ex.

Definitions and Remarks 1.2. Let f: X—Y be a birational morphism.
(@) The least n=0 such that there exists a diagram as in (l.1) is denoted by n(f).
Clearly, f~g=n(f)=n(g).
(b) A fundamental point of f is a point P of ¥ such that f~'(P) contains more than
one point. By (1.1), there are at most n(f) fundamental points.
Given a diagram as in (1.1) and >0, a fundamental point of XY ,— .- =Y; which
belongs to a curve that is contracted by z,° -+ °x; is sometimes called an infinitely near
fundamental point of f; such a point is not a fundamental point of f, according to
definition (b). If f has no infinitely near (¢.n.) fundamental points we say f has
ordinary fundamental points; that is the case iff f has n(f) distinct fundamental points
in its codomain.
(¢) Consider a diagram as in (1.1), where n=n(f). Let P; be the center of =;, let
E;=z7'(P;) and let f; be the composite X,V ,— -+ =Y ;. Then the following are
equivalent:

cn=n(f);
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. for i=1, -+, n, P; is a fundamental point of f;_,;
.« for i=1, -, n, EsNX=¢ in Y,=E}<—1 in any nonsingular completion of
Y, (where E? is the self-intersection number of E;).

(d) A contracting curve of f is a curve E in X such that f(E) is a (fundamental)
point. The number of contracting curves, which is an invariant of ~, is denoted
by c(f).

(e) f is said to be trivial if it is an open immersion (iff ¢(f)=0, iff n(f)=0).

(f) The one dimensional irreducible components of the closure (in Y) of Y\f(X) are
called the missing curves of f. The number of missing curves, which is an in-
variant of ~, is denoted by ¢(f). Given a curve C in Y, the following are equi-
valent:

« C is a missing curve;

+ CNf(X) is contained in the set of fundamental points;

« for some diagram as in (1.1) (equivalently for every such diagram) the strict
transform of C in Y, is disjoint from X.

(g) Let go(f) denote the number of missing curves disjoint from f(X). Clearly go(f)
is an invariant of ~.

(h) A minimal decomposition of f is a diagram as in (1.1), with n=n(f), together
with an ordering of the set of missing curves (i.e., the missing curves are labelled
C,, -+, C, where g=¢(f)=0). Minimal decompositions will be denoted by 9, 9’,
etc. Each time we choose a minimal decomposition @, the following notations
are used:

« For the diagram, the notation is as in (1.1).

« The center of x; is the point P; of Y;_, and the corresponding exceptional
curve is E; (1Zi<n).

« The missing curves are C,, -+, C, where ¢=¢(f).

+ 9 determines a subset J=/Jg of {1, ---, n}, defined by

J={IENX=@ in Y,}.

Thus the curves of Y, which are disjoint from X are precisely C,, -+, C, and
the E; with {/€J. On the other hand, the contracting curves of f are the
E;NX such that ie{1, -+, n}\J. We see that |J|+c(f)=n(f), so |J| is an
invariant of ~. That number will be denoted by j(f). Hence

c(H)+i(NHH=n(f).
+ 9 determines a subset 4=4g of {1, ---, n}, defined by
A={ZIP,§EC1U ch iI‘l Yi—l}-

The cardinality of 4 can be seen to be an invariant of ~. We denote it by
o(f).
(i) By (c), if /=] then E!<—1 in any nonsingular completion of ¥ ,.
(j) If g:Y—Z is a birational morphism, we denote by dc(f, g) the number of mis-
sing curves of f which are contracted by g.
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Lemma 1.3. Let f: X-Y and g:Y—Z be birational morphisms.
@) c(g-fI=c(f)+c(g)—4dc(f, &) and g(g-f)=q(f)+q(g)—dc(f, g).
() n(g-N)=n(f)+n(g) and j(g-)Zj(f)+j(g)+dc(f, &)
(©) If qu(f)=0 then n(g-f)=n(f)+n(g) and j(g-f)=5(f)+j(g)+dc(f, g).

Proof. The verification of (a) is left to the reader. Choose a minimal decomposi-
tion of f and one of g, and consider the corresponding commutative diagram :

XY= Z,

l 1]

f : :

i !
Y=Y, . Z,

g :

i

Z ponim e ———— ZO

where <. means open immersion and n=n(f)+n(g). By definition, n(gef)<n. The
second inequality of (b) follows from this and (a), so (b) is clear. To prove (c), de-
note the center of Z;—Z;_, by P; and let h; be the composite XY, ,&Z,— - =2,
By (1.2¢), it’s enough to check that P; is a fundamental point of hA;_; (1<i<n). If
n(g)<i<n then that condition holds, by (1.2c) applied to the minimal decomposition
of f. If 1<i<n(g) then by (1.2¢c) P; is a fundamental point of Y Z,zy— -+ —Z;, SO
there is a curve I' in Y whose image in Z; is P;. If ¢q,(f)=0 then f (") contains a
curve, so P; is a fundamental point of 4;_,. Hence n(g. f)=n(f)+n(g), and the second
equation follows from that and (a).

Remark 1.4. From the proof of (1.3), we see that if f: X—Y and g:Y—Z are
birational morphisms and ¢.(f)=0 then each pair (9,, 9,) of minimal decompositions
(of f, g respectively) determines a minimal decomposition @ of gef—the commutative
diagram is as in the proof and the missing curves are labelled as follows: Let I, -,
[y (resp. Cy, -+, Copy) be the missing curves of f (resp. g) and let Iy, ---, I';, be
those missing curves of f which are not contracted by g, where 1<z, < -+ <i, <q(f);
if for j=1, ---, k we let I'; be the closure in Z of g([”,-j) then the missing curves of
gof are Cy, =+, Cqgr '}, -+, I't, in that order.

Corollary 1.5. Let f: X-Y and g:Y —Z be birational morphisms. Then
c(gof)—q(gfH=(c(f)—q(f N+ (c(g)—q(8)),

i.e., the number c—q is “additive”.

2. Properties of the domain and codomain

In this section we study how the structure of a birational morphism is related to
some properties of its domain and codomain. We consider properties possessed by 47,



Birational endomorphisms 333

such as affineness, factoriality, the property of having trivial units, the property of
having no loops at infinity, etc.

Proposition 2.1. Let f: X—Y be a birational morphism, with missing curves
Cy, -+, Cq (q=0). Consider the following conditions:
@) Y is affine, X is connected at infinity and no contracting curve of [ is complete;
(b) X is affine;
(¢) all fundamental points of f are in C,\J - \UC, and the interior of f(X) (int (X))
is YN(C,\U -+ UC,) and is affine.
Then (2)=>(b)>(c).

Corollary 2.2, Let f: X—>Y be a birational morphism and suppose that Y is affine.
Then the following are equivalent :
(@) X is affine,
(b) X is connected at infinity and no contracting curve of f is complete.

The main ingredients of the proof of (2.1) are the Nakai-Moishezon Criterion and
the following, for which one can see [6], theorem 2, p. 168 or [7], theorem 4.2, p. 69:

Theorem 2.3 (Goodman). Let U be an open subset of a complete nonsingular surface
S. Then U is affine iff SNU is the support of an effective ample divisor of S.

Before we prove the proposition, we find it convenient to define some terminologies
and to state two facts. These considerations are elementary and may well exist, in
one form or another, in the literature.

Let S be a complete nonsingular surface. For De&Div (S), let the symbol D»0
mean that D is effective, D+0 and every irreducible component C of D satisfies C-D
>0. Then the set P(S) of divisors D such that D»0 is a nonempty additive semi-
group. Say that a subset Z of S is positive if Z=supp (D) for some D>»0. Then the
set of positive subsets of S is stable under finite unions.

Lemma 2.4. Let S be a complete nonsingular surface and Z a subset of S. Then
the following are equivalent :
(@) Z is positive,
(b) Z is closed, Z+# @ and every connected component of Z is positive;
(€) Zis closed @+Z+S and every connected component of Z contains a positive set.

Lemma 2.5. Let 7: 8-S be the blowing-up of a nonsingular complete surface S at
some point. Then:
(@) If Zis a positive subset of S then n(Z) is a positive subset of S;
(b) If ZES, then Z is positive in S iff x~NZ) is positive in S.

Proof of (2.1.). Assume that (a) or (b) holds. Choose a minimal decomposition of
f, with notation as in (1.2h), imbed Y, in a complete nonsingular surface ¥, and “com-
plete the diagram”:
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X, Y, .7,
l7a L @a

f :
l i@

Y=Y, .Y,

where #; is the blowing-up of Y;_, at P; (1=:<n). Then Y,\X is connected and con-
tains a curve, hence is a nonempty union of curves. So Y,\X is a (possibly empty)
union of curves, i.e.,

Y NX=C,U - UC,J \v; E,

jedJ

YNX=C,U - UCU\U EAJL,\U - UL,
jed

where C; is either the closure of C; in ¥, or its strict transform in Y; and where
L,, -+, L, are the one-dimensional irreducible components of Y,\Y; (for any j=0, ---, n).
Let

Ay=L\--UL, in¥, A,=L\J--UL, inY,,
FOZC‘U A Uéq in )70, l-'n:——-c-lu e Uéq in Vn s
Zy=I',u\J E;JA, in Y,,
jed

denote by F the set of fundamental points of f and let t=m,° --- o, and F=7c -+ o 7.

CLAIMS

(1) Y.\X=2Z, is connected and Y,\Y,=/,U points,

2) F<rl'y and 7 Y(F)=E,J - UE,,

() w N(Ag)=4x,

4) int f(X)=Y \[,.

We verify that FSI', and leave the rest to the reader. If a=F then 7 '(a) can’t
contain Z, (indeed, suppose Z,Sn '(a) then Z,=\UjesE; and p=¢=0; in particular
Y.\Y, contains no curve, so Y, is not affine; since (a) or (b) holds by assumption, X
must be affine, so Z, is positive by (2.3) and the Nakai-Moishezon Criterion, so is
n(Z,)={a} by (2.5) and this is absurd) and Z,Nz"'(a)+0 because no contracting curve
of f is complete. Thus there is an irreducible component C of Z, such that 0+
CNr~'(a)#C, by connectedness of Z,. Clearly, CSI',, so a=[", and FCY,.

Proof of (a)=>(b). If (a) holds then Y,\Y,=/4, and A, is positive, by (2.3) and
Nakai-Moishezon. Hence A, is positive, by (3) and (2.5b), and Z, is positive by con-
nectedness of Z, and (2.4). Let DeP(Y,) be such that Z,=supp (D); since a straight-
forward argument shows that Z, meets every curve in Y,, D is ample by Nakai-

Moishezon and X is affine by (1) and (2.3). Hence (b) holds.
Proof of (b)=>(c). Statements (2) and (4) show that f restricts to an isomorphism

f(int f(X)) —> int f(X),

and that f~(int f(X))=X\(E,U --- UE,), which is just the open set obtained by remov-
ing the contracting curves from X. But if (b) holds then X is affine, thus so is X
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minus the contracting curves, since removing a curve from an affine nonsingular sur-
face yields an affine surface. Hence we are done.

The next properties (for a surface) that will interest us are the property of hav-
ing a trivial divisor class group and the property of having trivial units. To begin
with, we recall a well-known fact:

Lemma 2.6. Let V be a complete nonsingular algebraic variety and U+0 an open
subset of V. Among the irreducible components of V\U, let 'y, ---, ', (r=0) be those
of codimension one in V, and let I3, -, I', be their images in C1(V).

(@) Cl(U)=0&1;, -, I', generate CL(V).
) I'U, opy*=k*a1, -, Iy are linearly independent.

2.7. Let Y, be any nonsingular surface and consider

T T
Vi—Y,y——Y, @zl

where n;:Y;—Y;_, is the blowing-up of Y;_, at some point P; and let E;==7;Y(P;)e
Div (Y;) (1£i<n). Given integers 7, v such that 1</<n and 0=<vy<n and given De
Div (Y,) we define u(P;, D) to be the multiplicity of P; on the appropriate strict trans-
form of D if /—1>=v, and we define it to be zero if /—1<y. Then we define

(P, D>]
: eZ
(P, D)

and we have the following nXn matrix:

#(D)=[

E=(ei)=(u(E,) - (E,))

where, of course, ¢;;=0 whenever /<j. If R; is the i*" row of the identity matrix
I, define an nXn matrix e=(e;;) by letting the first row be R, and

(k1" €xn)=Ri+(er, - ekk—l(eij)lsi<k (I<k=n).

1sjsn

So ¢ is completely determined by &, is a lower triangular matrix with e;;=1 (1<:<n)
and has det (¢)=1. For 1<i<n, define

g Z" — 7

X1 xl
[ : ]'—>(€i1"‘ ain)[ : }
Xn Xn

Let D*eDiv (Y,) be the total transform of D=Div (Y,). One shows that, if we define
ei(D)y=e(D))e Z, then

D*=D+§l} e(D)E;  (in Y,).

Next, one checks that
6:ClY)PZ» — CI(Y,)
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— |a — n —
(D, [ El D — D*+ 3 a;F,
an i=1
is an isomorphism (where D*<Div (Y ,) is the total transform of DeDiv (Y,)). By the
above calculation, one sees that if DeDiv (Y,) and if the strict transform of D in Y,
is also denoted by D, then

6-'(D)=(D, —ep(D))

(where the D’s on the right hand side are in Div (Y,)). Clearly, 8 (E,)=(0, K5),
1<i<n, where K; denotes the :*® column of the identity matrix I,.

Definition 2.8. Let f: X—Y be a birational morphism and write n=n(f), c=c(f)
and ¢g=¢(f). Let 9 be a minimal decomposition for f, with notation as in (1.2h).
Then we define the following matrices:

p=pa=(C,) - w(Cy)  (nXgq)
E=Eg=(u(E,) - p(En)) (nXn)
e=ecg=(e4y) (nXn) defined as in (2.7),

and we let ¢’=¢% be the ¢Xn sub-matrix of ¢ obtained by deleting the :*® row when-
ever i /.

Observe that the product &’y is a ¢Xg¢ matrix; its ¢ columns will be regarded as
elements of Z¢, even if ¢=0 or ¢=0. To make sense out of these extreme cases, let
us agree that (1) the columns of a 0Xg matrix generate Z° and are linearly inde-
pendent iff ¢=0; (2) the columns of a ¢ X0 matrix are linearly independent, and generate
Zc iff ¢=0; and (3) the 00 matrix has determinant equal to 1. With these conven-
tions, we have:

Proposition 2.9. Let f: X—Y be a birational morphism and 9D a minimal decom-
position; let the notation be as in (2.8), let j=j(f) and 6=0(f).
(@) If CL(X)=0, then the columns of e'p generate Z°¢, Cl(int f(X))=0, ¢=c and 0<j.
(b) If CI(Y)=0 and the columns of &'y generate Z°, then Cl(X)=0.
(c) Consider the statements:
(1) I'X, ox*=Fk*,
@) I'(Y, op)*=Fk*,
(3) the columns of €'y are linearly independent,
4) Cl1{)=0.
Then (HA@D)=C)AB)=(1)=(2), and (3) implies g<c¢ and 6=n—q.
(d) Suppose that Cl1(X)=0 and I'(X, Ox)*=k*. Then ['(Y, Oy)*=k* and q=c, with
equality iff Cl(Y)=0.

Proof. Consider the minimal decomposition @, with notation as usual. Imbed Y,
in a complete nonsingular surface Y, and “complete the diagram” (refer to the diagram
in the proof of (2.1)). Let the closures (in Y,) of the missing curves be denoted by
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Cy, ---,C let the one-dimensional irreducible components of Y,\Y, be denoted by
Ly, -, L, and recall that the same notation is used for a divisor of some Y; and its

strict transform in Y; (>7). We have
YonY,=L,U - UL, points
YoNint f(X)=C,U -+ JCQJ LU -+ ULp\U points
?n/ijgJEjuclu - UC,UJL,\U - \UL,\U points.
Given DeDiv (Y,), let D be its image in CI(Y:). Let 6:Cl(Y)®Z"—~Cl(Y,) be the
isomorphism given in (2.7). Then
0-(L)=(L; —ep(L;))=(L; 0)
6-(C)=(C;, —ep(C,))
6-YE)N=(0, K)).
In view of that, and by (2.6), we find

(@) Cl(Y)=0 (resp. Y has trivial units) iff L, -,

independent in) Cl(Y,);
() Cl(int f(X))=0 iff L,, ---, L,, C,, --, Cq generate C1(Yy);
(r) CI(X)=0 (resp. X has trivial units) iff the set

{0, K)ljeJHIH(C;, —e(CNIL=j=qh UL, OIS 7= p}

L, generate (resp. are linearly

generates (resp. is linearly independent in) the group Cl(Y,)PZ™.
On the other hand, it is clear that
@) {K;lje]J}U{—eu(C,)|1<j<gq} generates (resp. is linearly independent in) Z" iff
the columns of ¢’y generate (resp. are linearly independent in) Z°.
Now the reader can verify that, except for the inequalities 6<j and d<n—g¢, the as-
sertions (a)-(c) of the proposition are immediate consequences of (a)-(6). To prove the
two inequalities, observe that § is the number of zero rows in p. Let U be the n—dXg
sub-matrix of p obtained by deleting the zero rows; let V be the ¢Xn—d sub-matrix
of ¢’ obtained by deleting the 7 column whenever the 7" row of g is zero. Clearly,
VU=¢'pr. The matrices U, V and VU=¢'y determine a commutative diagram of Z-

linear maps:

Zn-d

LN

74 ————— 7°¢
w

If the columns of ¢’y generate Z°¢, i.e., w is onto, then v is onto and 6<n—c=j;. If
the columns of &’y are linearly independent, i.e., w injective, then u is injective and
0<n—q.

We now prove (d). By parts (a) and (c), ¥ has trivial units and g=¢, with equality
whengver Cl(Y)=0. Conversely, suppose that c=q. Let G=Cl(Y,)SCI(Y,)DZ" and
gi=(L;, 0)=G (1=i<p). Since n=c+j=qg+J, there are elements e, -, ¢, in Cl(Y,)
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@DZ" such that (g, -, g5, €1, -, e,) is a basis of Cl(V,)PZ™. By elementary alge-
bra, it follows that (g:, -+, g,) is a basisof G, i.e., (L,, -+, L,) is a basis of Cl(V,),
so C1(Y)=0.

Corollary 2.10. Let f: X—Y be a birational morphism and suppose that Cl(Y)=0
and I'(Y, Op)*=k*. Then
@) CI(X)=0 iff the columns of e’y generate Z°;
(b) I'(X. Ox)*=k* iff the columns of &'y are linearly independent;
(¢) Cl(X)=0 and I'(X, Ox)*=k* iff ¢'p is a square matrix with determinant =+ 1.

Remark. If we restrict ourselves to the case j(f)=0 then ¢'=¢ and consequently

(2.9) and (2.10) are still true when all “e’u” are replaced by “u”.
Corollary 2.11. Let f: XY be a birational morphism and supose that I'(X, Ox)*
=k* and C1(Y)=0. Then qf)=0.

Proof. qi(f) is the number of zero columns in p. Since the columns of e’y are
linearly independent by (2.9), g.(f)=0.

Corollary 2.12. Let f:X—=Y and g:Y—Z be birational morphisms and suppose
that X,Y and Z have trivial divisor class groups and trivial units. Then n(gf)=

n(f)+n(g).
Proof. Immediate from (2.11) and (1.3).

Remark 2.13. Let S be a nonsingular complete surface and U+0 an open subset
of S. If m is the number of curves in S\U and Kj is a canonical divisor of S then,
clearly, the number m+K}% is an invariant of U up to isomorphism. Let us temporarily
denote that number by a(U). Then an easy argument shows that, if f: X—Y is a
birational morphism of nonsingular surfaces, then ¢(f)—q(f)=a(Y)—a(X). That gives
us another proof of (1.5) and, on the other hand, shows that ¢(f)=¢(f) whenever X=Y.
Hence ¢’y is a square matrix whenever X=Y, but examples show that its determinant
needs not be +1. (By (2.9a), it is +1 whenever Cl(X)=0.)

See (5.7) for the definition of G¢[U], where U is a nonsingular surface.

Definition 2.14. Let U be a nonsingular surface. We say that U has no loops at
infinity (resp. is linear at infinity) if, in the equivalence class ¢[U], no graph has loops
(resp. some graph is a linear tree).

Let us also say that U is rational at infinity if for some (equivalently, for every)
open immersion Uc,U such that U is a complete nonsingular surface, all curves in
U\U are rational.

Definition 2.15. Let I" be a (not necessarely complete) curve. Let I’ be the com-
plete nonsingular model of I (i.e., the set of valuation rings of the function field of
I’ over the ground field) and let z: I'—I" be the canonical birational transformation.
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Then /"\dom (r) is a finite set of closed points, called the places of I" at infinity. We
denote the cardinality of I"\dom () by Pu(I").

Lemma 2.16. Let f: X—Y be a birational morphism.

(@) X is rational at infinity iff Y is rational ot infinity and all missing curves are ra-
tional.

(b) If X has no loops at infinity then Y has no loops at infinity.

(¢) Suppose X has no loops at infinity and D is a minimal decomposition of f with nota-
tion as usual, embed Y, in a complete nonsingular surface Y, and let C be the
closure (in Y,) of the strict transform of a missing curve. If C is the complete
nonsingular model of C then the canonical epimorphism t: C—C is bijective.

(@) If X has no loops at infinity and Y has k>0 connected components at infinity (i.e.,
an arbitrary member of G[Y] has k connected components), then

5 PACOSh+g—1,

where C,, -+, C, are the missing curves of f. In particular, if Y is affine then
each missing curve has exactly one place at infinity.

Proof. Most of these facts are trivial observations. Let’s prove (d). Choose a
smooth completion Y. Y of Y (see (5.7)) and consider the graph ¢=(G, R) given by
G={C,, -, Cy A, ---, Ay}, where C; is the closure of C; in Y and A4,, ---, A, are
the connected components of Y\Y, and R={{C,, A;}|C:N\A;#0}. Since X has no
loops at infinity we see that ¢ doesn’t have loops and that each C; belongs to exactly
P.(C;) links. Thus |R|=29.,P(C;). On the other hand, it is a general fact that a
graph ¢ with no loops has at most |¢|—1 links. Hence we get the desired inequality.

See (5.5) for the notion of strong normal crossings (s.n.c).

Lemma 2.17. Let f: X—Y be a birational morbvhism, where X is linear at infinity
and Y is affine. Consider a minimal decomposition of f, with notation as in (1.2h). Then
Y \X has g=q(f) connected components, each one forming a linear tree

Ci_Ejl—'Ejz— Ejk ’

where {j, -+, jx}EJ and Ci+E;+ - +E;, has s.n.c. inY,. In particular, the strict
transforms of the missing curves on Y, are nonsingular.

Proof. Since, in Y,, each C; has one place at infinity by (2.16d), we can choose
a smooth completion Y ,c, Y, of Y, such that, if L is the divisor of ¥, with s.7.c. and
which satisfies Y,\Y,=supp (L), and if C,, -, C, also denote the closures of the mis-
sing curves, then C,, -, C, meet L at distinct points and C,-L=1 (1<i<g). Form
the diagram which appears in the proof of (2.1). Then Y,\Y,=supp (L), and (in Y,)
Cy, =+, Cy meet L at distinct points and C;.L=1 (1<i/=q). Since X has no loops at
infinity and L is connected, C,, -+, C, belong to distinct connected components of
Y.N\X. On the other hand, if W is a connected component of ¥ ,\X and W is its
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closure in Y,, then W meets L, since X is connected at infinity; hence W contains a
Ci, and there are exactly g connected components of ¥ ,\X. We now show (by con-
tradiction) that each one of these connected components has the desired properties. Let

q —

D=3 C+ X E:+LeDiv(Y,).

i=1 ieJ
First, suppose that D does not have s.n.c.. By (5.19) we can consider a sequence of
monoidal transformations ¥ - --- =¥, (m>n) such that, if E; is the exceptional curve
created by V,—Y,_, and

{ D"=DeDiv (Y,),
Di=(strict transform of D )4 E;=Div (Y)), n<ism,

then D™eDiv (Y ) has s.n.c., all centers are 7.n. supp (D)"Y ,, ¥ »\supp (D™)= X and
if n<i<m then

*) E:=—1in Y, == E, is a branch point of ¢,=6(Y ., D™).

Let ¢, be the connected subtree of &, which has C,, ---, C, and the irreducible com-
ponents of L as vertices. Let X be the set of branch points v of ¢, such that v is
not in ¢,. By (*), E,€X so Y+0. If v, then let B, be the branch of G, at v
such that B, contains ¢,. Since &, is a finite tree, we can find v such that, if
B,, B,, -+, B, are the distinct branches of ¢, at v (=2£=2) then YN\(B,\U --- UB,)=0.
By (*) and (1.2i), B;<—1, 1<:<k (see (5.17)). Since X is linear at infinity, v can
“absorb” a branch (see (5.11)); since no B; can be absorbed, v absorbs B,, whence B,~
[—1]. See (5.8) for the definition of < ) and note that if ¢,S¢g, (weighted graphs)
then <@,><<{@g,>. Whence

CG(Y m, LYYSKByy=<([—1]>=0.

On the other hand, <G(Y, L)>>0 since Y, is affine—in the terminology defined just
after (2.3), supp (L) is a positive subset of ¥,. Moreover, ¢(Y,, L) is just the same as
@(Y ., L) since no blowing-up has center 7.n. L. Hence

A(Y m, L)y>0,

contradiction. So DeDiv (Y ,) has s.n.c..

Next, suppose that some connected component W of Y ,\ X does not have the desired
form; it means that either the dual tree ¢(V,, F) is not linear or C; is not a free
vertex of it, where

F=Ci+E;+ - +E;,€Div(V,)

is the divisor (with s.7n.c.) whose support is the closure W of W in Y,. In the first
case, let v be a branch point of ¢(Y,, F); in the second case, let v=C,;. Let B,, B,
-+, By be the distinct branches of ¢=6(Y,, D) at v (=2k=2), where B, is the one that
contains the components of L. By (1.2i) we see that B;<—1 (1=/<k). As above,
we see that v “absorbs” B, and a contradiction follows.

Kodaira dimensions. We denote by £(V) the logarithmic Kodaira dimension of a
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nonsingular surface V (see [7] or [13]). If C is a curve on a nonsingular surface V,
we denote by £(C) the Kodaira dimension of the embedding CCV, in the sense of [4].
The following fact can be found in [7] or [13], where it is stated for a dominant
separable morphism f.

2.18. If f:X->Y is a birational morphism then E(Y)<kE(X).
We also point out

2.19. If f: X->Y is a birational morphism and C is a wmissing curve of f then
(C)<KE(X).

Proof. Choose a minimal decomposition for f (notation as usual) and embed Y,
in a complete nonsingular surface Y, Consider the diagram in the proof of (2.1) and,
if necessary, blow-up Y, at points of C until C is nonsingular (where C also denotes
the closure of C). Since the complement of C contains X, we get £(C)<#(X) from
(2.18) and the definition of «(C).

3. Factorisations

Let f: X—Y be a birational morphism. A factorization of f is a pair (g, h) of
birational morphisms such that f=hg; two factorizations (g, 4) and (g’, h’) of f are
equivalent 1f there is an isomorphism u such that g’=ug and h=h'u. Let (g, h) be a
factorization of f, write W=dom (h)=codom (g) and consider h=WY ,,— -+ =Y,
=Y') determined by some minimal decomposition of h. We say that (g, h) is good if
qo(g)=0 and if the complement of W in Y,, is a union of curves (then n(f)=n(g)+
n(h) by (1.3)).

Note that if X and Y are factorial and have trivial units then by (2.11) any factori-
zation X—W—Y of f, such that IV has the same properties, is good. For that reason,
we will restrict ourselves to good factorizations.

By (1.4), all good factorizations of a given birational morphism f: X—Y can be
obtained as follows. For each minimal decomposition @ of f (with notation as usual)
and for each s<{0, ---, n}, let W be the open subset of Y, obtained by removing all
curves I'e{C,, -+, C}U{E;|je ] and j<s} such that V,s,p(P;, [')=0. Then X—W-Y
is a good factorization of f. Another way to look at that procedure is to fix 9 and,
for each AS{l, ---, n}, try to change the order of the blowings-up in @ in such a
way that the blowings-up at {P;|i€ A} are performed first. That point of view leads
to the following ideas.

3.1. Let f: X—Y be a birational morphism and 9 and 9’ minimal decompositions
of f (where the notation of (1.2h) is used for @, and P}, E;, C;, etc. for 9’). Then
there is a unique pair (g, 7)=(d2-?’, t2:?') of permutations of {1, ---, g} and {1, ---, n}
respectively, such that C;=C}; for 1</<q and

@) p(P;, I'=p(PL;, I') for 1<i<n and for all curves I" in Y,
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(b) p(P;, Ej=p(Pli, EL;) for all 7, je{l, -+, n}.

From (b), we see that t;>7; whenever :>; and P; is 7z.n. P;; any permutation of

{1, ---, n} which satisfies this condition is called a 9-allowable permutation. Clearly,
if 7 is 9-allowable and ¢ is any permutation of {1, ---, ¢} then (o, 7)=(c2 2, £2-92")
for some 9'.

A subset A of {1, ---, n} is said to be D-closed if, for all 7, j&{1, -+, n}, i€ A,
i>j and P; i.n. P; imply jeA. Note that a topology on {1, -, n} is obtained and
that, if 7=72'2', A is P-closed iff 7(A) is D'-closed. It is also clear that the existence
of a 9’ such that 72 2'(A)={1, ---, |A|} is equivalent to the 9D-closedness of A.

For instance, the set dg is @-open, so we can always find a minimal decomposi-
tion satisfying 4d={n—0+1, -, n}.

Definition 3.2. Let f: X—Y be a birational morphism and £ a minimal decom-
position of f, with notation as usual. Given a 9-closed subset A of {1, -+, n}, define

Q@, A={i|u(P;, C»)=0, all j& A},
J@, A)=lie ]| pP;, E)=0, all j&A}.

The next proposition says that to give an equivalence class of good factorizations
of f is just the same thing as to give a 9D-closed set. Its proof is straightforward
and is left to the reader.

Proposition 3.3. Let f: X—Y be a birational morphism and D a minimal decom-
position of f. Then there is a unique bijection from the set of D-closed subsets of
{1, -+, n(f)} to the set of equivalcnce classes of good factorizations of f, which satisfies
the following condition: if C is the equivalence class assigned to the D-closed set A,
(g, h)eC, 9, and D, are minimal decompositions of g and h respectively, D' is the
minimal decomposition of f determined by D, and D, as in (1.4) and v=12?", then
(A)={1, -+, n(h)}. Moreover, we then have Jo,=t(J(D, A)) and the missing curves of
h are the C’s with i=Q(D, A).

Proposition 3.4. Let g: X—>W and h: W—Y be birational morphisms and suppose
that X and Y are factorial and have trivial units. Then W has trivial units, g(g)=c(g),
g(h)=Zc(h) and the following are equivalent :

(@) W is factorial,
(b) q(g)=c(g) and W is connected at infinity,
) q(h)=c(h) and W is connected at infinity.

Proof. By (2.9) applied to g, W has trivial units and c¢(g)<q(g), with equality iff
Cl(W)=0. Since c(hg)=q(hg), g(h)<c(h) and (b)=(c) follow from (1.5). In order to
prove that (c) implies (a), assume that (c) holds and note that Cl(W)=0 by the above
remarks. There remains to check that no contracting curve of h is complete (affine-
ness of W will then follow from (2.2)).

Suppose h has a complete contracting curve E. Then E has nonzero self-inter-
section number in any nonsingular completion of W. Indeed, consider a minimal de-
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composition of 4 and in particular write h as the composition WSY ,y— -+ =Y =Y.
Then E is one of the E; (=strict transform in Y., of the exceptional curve of
Y ;—Y;_,) and consequently has negative self-intersection number. On the other hand,
imbed W in a complete nonsingular surface S and apply (2.6) to WES; since Cl(W)
=0, E is linearly equivalent to a divisor D supported at infinity of W, so that E*=
E. D=0, contradiction.

Let @ be the property, for surfaces, of being factorial and having trivial units.
Let f: X-»Y be a birational morphism such that X and Y have @ and such that, for
some &, the numerical data J, & and g are known. Can it be decided whether f
factors as X—»W-—Y in a nontrivial way, where W is required to have ®? Can one
list all such factorizations? The answer is yes and, as discussed in [1], the results
(3.3) and (3.4) suggest algorithms that solve that problem. (Moreover, it follows from
(4.4), below, that the problem obtained by letting & be the property of being isomor-
phic to A% has exactly the same solution.) ’

Let us now consider the case where j(f)=0. If the domain and codomain of such
an f are factorial and have trivial units then ¢(f)=n(f), det pg==+1 by (2.10) and for
every good factorization (g, h) of f the surface W=codom (g)=dom (k) is connected at
infinity. So (3.3) and (3.4) yield the following result, which Russell knew in the special
case where f has ordinary fundamental points.

Corollary 3.5. Let f: X—Y be a birational morphism with j(f)=0, and suppose that
X and Y are factorial and have trivial units. Let 9D be any minimal decomposition of
f, let py=po and let r, s be positive integers such that r+s=n=n(f). Then the follow-
ing are equivalent :
(@) f=hg for some birational morphisms g: X—W and h: W—Y such that W is factorial
and has trivial units, n(g)=r and n(h)=s.
(b) Modulo a permutation of the columns and a permutation of the rows, p has the form

[H B]

o &)

where H is an sXs matrix and O is the r X s zero matrix (hence G is an rXr matrix
and B an sXr matrix).

Proof. Write p=(u:;). By (1.4), (3.3) and (3.4), (a)=(b) is clear and (b)=(a) is
almost clear; what has to be checked is that (b) implies the following (apparently)
stronger statement:

(b’) Modulo a permutation of the columns and an allowable (see (3.1)) permutation of

the rows, ¢ has the form described in (b).

Observe that if 1=i<n and 1=<j<n are such that g;;=0 and p;4,;#0, then it is allow-
able to interchange rows 7 and 7+1. Whence (b)=(b").

To conclude this section, we give a result that says that if d(f) is the largest
possible, then f factors in a nice way.
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Proposition 3.6. Let f: X—Y be a birational morphism and suppose that X and Y
are factorial and have trivial units. Then 6(f)<;j(f), with equality iff f=hg for some
birational morphisms g: X—W and h:W—Y such that W is factorial and has trivial

units, n(h)=q(h)=q(f) and n(g)=j(f)=0(f) (and of course j(h)=0).

Proof. Let n=n(f), c=c(f), ¢=¢(f), 7=j(f) and 6=0(f). Then 6= by (2.9) and
we have to prove that d=j iff f factors as specified.

Suppose that 6=j. By (3.1), there exists a minimal decomposition @ of f such
that 4={n—38+1, ---, n}. Since d=j and by (2.10) c=¢, 4={¢+1, ---, n}. With nota-
tion as usual for @, let W=Y \(C,U --- UC,) and let h: W—Y be the birational mor-
phism so obtained; then n(h)=g(h)=c(h)=g. Since the blowings-up Y ,— --- =Y, have
centers away from C,\U --- \UC, (i.e., the centers are 7.n. W), f=hg for some g: X—>W.
By (3.4), we conclude that W has trivial units and is factorial. We leave the converse

to the reader.

4. Birational endomorphisms of A*

The set of birational endomorphisms of A? is a monoid, under composition of
morphisms. An element f of that monoid is trivial if it is an automorphism of A?
(this is equivalent to the definition given in (1.2e) since any open immersion A4%C,A? is
onto by, say, (2.11); it is srreducible if it is nontrivial and can’t be decomposed as
he.g where g and h are nontrivial elements of the monoid. Observe that the “addition
formula” n(g-f)=n(f)+n(g) holds for birational endomorphisms of A% by (2.12). In
particular, if n(f)=1 then f is irreducible. :

Two birational endomorphisms f, g of A% are equivalent if f=v 'ogeu for some

automorphisms u, v of A%*; we denote that by f~g.
The interesting problem, here, is to classify all srreducible birational endomorphisms

of A%. In view of the difficulty of the case n(f)=2, which we solve in the last sec-
tion of [2], we believe the general problem to be very difficult—even what one should
mean by “classify” is not clear at present time. In this section we solve the case
n(f)=1 (see (4.10)) and give some general results, including (4.12), which determines
the possible values of (n(f), j(f), d(f)) for irreducible f (we know that go(f)=0 and
9()=c(fH)=n(f)—j(f) by (2.10) and (2.11).)

We first state a (trivial) consequence of the theory of “relatively minimal” rational
surfaces [10].

Lemma 4.1. Let S be a rational nonsingular projective surface, D&Div (S) a re-

duced, effective divisor and U=S\supp (D). Then the following are equivalent :

(a) U=A?;

(b) every irreducible component of D is a rational curve, [1]1€@[U] and n(D)+ K% =10,
where n(D) is the number of irreducible components of D and Ks is a canonical
divisor of S.

The following “powerful” theorem was proved by Fujita [3] and Miyanishi and
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Sugie [8] in characteristic zero, and generalized by Russell [13] to arbitrary charac-
teristic :

Theorem. Let V be a nonsingular, factorial, rational surface with trivial units, and
with logarithmic Kodaira dimension £(V)<0. Then V=A%

From this and (2.18), it follows immediately

Corollary 4.2. Let f: A®*—V be a birational morphism, where V is factorial (and
nonsingular, as always). Then V=A%

Let us now consider the main results of sections 1-3 and point out what they say
about the special case “X=Y =A4%".

Corollary 4.3. Let f: A* —>A® be a birational morphism.

@) qo(f)=0, q(f)=c(f) and 6(f)<j(f) with equality iff f factors as f=hg, where g and
h are birational endomorphisms of A? such that n(h)=q(h)=q(f) and n(g)=j(f)=
o(f).

(b) Given any minimal decomposition of f, the corresponding (square) matrix e’y has
determinant +1.

(¢) Every missing curve of f is rational and has one place at infinity. Embed A* in P*
the standard way and let Q,, -+, Q. be the points where the closures of the missing
curves meet the line L at infinity; then at most one of these points @Q; does not
satisfy the condition: FExactly one missing curve meets L at Q; and that missing
curve has degree one.

(d) All fundamental points of f are on the missing curves.

(e) The result numbered (2.17) is valid here.

() If C is a missing curve of f then k(C)<0.

Proof. qo(f)=0 by (2.11), ¢(f)=c(f) by (2.10) and the rest of (a) by (3.6) and (4.2).

(b) comes from (2.10), (d) from (2.1), (e) from (2.17), (f) from (2.19) and the first two

assertions of (¢) from (2.16). We prove the last assertion of (c). Choose a minimal

decomposition of f, with notation as usual, let Y,=A4%c,P?*=Y, be the embedding,

consider the diagram in the proof of (2.1) and let D=L+C,+ - +Cq+_§_,‘J E;eDiv (Y ,).
U=

Then ¥V ,\A*=supp (D) and, by (5.19), D has at most one “bad” point Q4. For any
Q= LN{Q«}, Q belongs to at most two components of D, i.e., to at most one C;; if
Q&C; then (L.C;)o=1 (in ¥,, hence in ¥,), whence L‘C;=1 in P’

In view of (4.2), the next two results are trivial consequences of (3.4) and (3.5)
respectively.

Corollary 4.4. Let g: A>-W and h: W—A®? be birational morphisms. Then W has

trivial units, q(g)=c(g), q(h)<c(h) and the following are equivalent :
(a) W=A42
(b) g(g)=c(g) and W is connected at infinity,
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(¢) g(h)=c(h) and W is connected at infinity.

Corollary 4.5. Let f: A*—A* be a birational endomorphism with j(f)=0, let D be
any minimal decomposition of f, let p=pg and let r, s be positive integers such that
r+s=n=n(f). Then the following are equivalent:

(@) f=hg, for some birational endomorphisms g, h of A* such that n(g)=r and n(h)=s.
(b) Modulo a permutation of the columns and a permutation of the rows, ¢ has the

form
[H BJ
0 G
where H is an sXs matrix and O is the rXs zero matrix.

Recall that a curve C in A% is a line if C=A' A line is a coordinate line if its
defining polynomial Fek[X, Y] satisfies k[F, G]=k[X, Y] for some G: otherwise it
is a wild line. Theorem 2.4 of [4] says in particular that if C is a wild line then
£(C)=0. Hence by (4.3f) it follows that no missing curve of f:A*—A* is a wild line.

Corollary 4.6. Let f be a birational endomorphism of A?, let p be the matrix deter-
mined by some minimal decomposition of f and let C; be a missing curve. Then the
following are equivalent :

1. C; is a coordinate line,

2. C; is nonsingular,

3. the j** column of p consists of 0’s and 1’s.

Proof. (1)=(3) is trivial and (3)=(2) follows from (4.3e). By (4.3c) C; is rational
with one place at infinity so (2)=C;= A" and (1) follows from the above observations.

We now give some examples of irreducible birational endomorphisms of AZ

Example 4.7 (Russell). Let C, be an irreducible curve of degree two in A%, with
one place at infinity (a parabola). Let P,, P,, P; be distinct points of C, and let C,
(resp. C;) be the line through P, and P; (resp. P, and P,). Blow-up A4* at P, P, P;
and remove the strict transforms of C,, C,, C, from the blown-up surface. Then the
resulting open set is isomorphic to A% and we obtain an irreducible birational morphism
f: A*—>A® with n(f)=3.

Proof. First, we show that the surface obtained is A®. Embed A* in P? the
standard way and let L=P>\4%; let P be the place of C, at infinity. Blow-up P? at
P, P,, P,, denote the blown-up surface by P? and consider (i.e., make a picture of)
the strict transforms of L, C,, C,, C; in P?, with self-intersection numbers 1,1, —1,
—1 respectively. To show: U= A% where U=P>\(L\UC,UC,UC,). By (4.1), enough
to show that [1]€g[U]. Note that (L.C,)p=L.C,=2 and blow-up P? twice at P€C,;
the resulting divisor, i.e., the reduced effective divisor at infinity of U, has s.n.c. and
determines the dual graph



Birational endomorphisms 347

-1 -1 =1
-2 -1 -1,

which is equivalent to [1]. So U=A% To prove irreducibility, consider

1 1 1
p=l1 0 1
1 1 0

and apply (4.5).

Example 4.8 (Russell). Let a be a positive integer, let C, and C, be the curves
given by the polynomials

Fl:Xa+l(X_1)a_|_Ya.+l , F,=Y,

and let P,=(0, 0) and P,=(1, 0). Blow-up A% at P, and P, and remove the strict trans-
forms of C,, C,. The resulting surface is isomorphic to 4% and we get an irreducible
f: A>>A® with n(f)=2. Verification left to the reader.

Example 4.9 (Russell). Let n=3 and let C, be an irreducible curve of degree n—1
in A? such that
(a) C, has one place at infinity,
(b) C, has a point P, (in A?) of multiplicity n—2.
Clearly, such a curve exists. Choose distinct lines C,, -+, C, such that
() CiNC,={P,, P}, some P, A®\{P,} (2<i=<n).
Blow-up A% at P, ---, P, and remove the strict transforms of C,, ---, C,. The result-
ing surface is isomorphic to A® and we get an irreducible f: A*—>A* with n(f)=n.
Verification left to the reader.

Let’'s now return to the classification problem.

Theorem 4.10. Let f be a birational endomorphism of A%, with n(f)=1. Then f
is a simple affine contraction.

Proof. Recall, from the introduction of this paper, the definition of simple affine

contraction; we leave it to the reader to verify the following statement:

A birational morphism f: A*—>A® is a simple affine contraction
iff n(f)=1 and the missing curve of f is a coordinate line.

Now let f be any birational endomorphism of A* with n(f)=1. Then ¢(f)=q¢(f)=1
and the matrix p is the 1X1 matrix (1) by (4.3b). So the result follows from (4.6).

The above proof uses (4.6), which relies on somewhat fancy ideas (Kodaira dimen-
sion and [4]). A simpler (and longer) proof of (4.10) is given in [2]. The above
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theorem generalizes as follows :

Theorem 4.11. Let f be a birational endomorphism of A? such that q(f)=1. Then
f~s™ where n=n(f) and s is a simple affine contraction.

Proof. We proceed by induction on n=n(f). The case n=1 is just (4.10), above.
Let n>1 be such that the claim holds whenever n(f)<n. Let f be such that
n(f)=n, let C denote the missing curve of f and choose a minimal decomposition of
f, with notation as usual. Since j(f)=n(f)—c(f)=n(f)—q(f)=n—1 and ne&J by (1.2i),

o)) J={1, -, n—1}.
Again by (1.2i),

2 P..€E;, 1<i<n.
Thus an elementary calculation shows that

(3) 51j§ -~-§s,,,~, 1

A

IA

=n

(see (2.7) and (2.8) for definitions). Since ¢;;=1, we deduce
4) enszl, 1<jsn.
On the other hand,
epn=( ésnj,l(g, 0) (11 matrix)
so by (4.3b)
®) ]2 ens(P;, C)=1.
By (4) and (5)
12 31 u(P;, O)zp(P, O=1, 5o
1
©) p=|
0
and consequently e,;=1 by (5) and (6). If 1</<n then by (3) and (2)

i
1=€n126i+n=k§ er1pt( Py, E.)

2| 2 iPivs, B0+ Prvs, EOZp(Pevs, Ed=1
whence
() P €E;inY, & j=i, all 7, 7,
By (6) and (7), P,&(CUE\J - \UE,_,) in Y,_;. So the image of A’c.Y,—Y,_, is
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contained in W=Y,_\(CUE,U --- UE,_,), i.e., f factors as g: A*->W followed by
h:W—A% Clearly n(h)=n—1 and W&,Y,_,— --- =Y, gives a minimal decomposition
of h. So E,_.NW is the only contracting curve of A and C the only missing curve,
hence q(h)=1=c(h). One sees that W is connected at infinity, so W=A* by (4.4).
Thus by the inductive hypothesis we get h~s™"' and g~s. Since the missing curve
of g coincides with the contracting curve of h, f~s™.

Note that [12] contains variations of (4.10) and (4.11)—see in particular the remark
(3.4).

Until recently, no example of an irreducible f: A’ A% with j(f)>0 was known.
Moreover, the above theorem says that if j(f) has the maximum possible value then
f is reducible (unless n(f)=1). The hope that j(f)>0=/f reducible is killed by

Theorem 4.12. Let n,j and 0 be nonnegative integers. There exists an irreducible
birational morphism f : A*—A® satisfying n(f)=n, j(f)=j and 0(f)=0 if and only if
one of the following conditions holds:

(@) 0=0=j<n;
(b) 0=o<j<n—1

Proof. The “only if” part follows from (4.3a) and (4.11). Conversely, the case
(a) with n=1 (resp. n=2, n>2) is realized by the simple affine contractions (resp.
4.8), 4.9). If (n, j, 0) satisfies (b), let m=j3j—0+1=2 and ¢g=n—; =2 and choose
8,20, -+, 04,20 such that 9,4+ -+ +0,.,=0. Then example (4.13) realizes these num-
bers.

Example 4.13. Let m=2, ¢=2, 0,20, ---, 0,.,=0 be integers. We construct an
irreducible birational morphism f: A*—A4* with two fundamental points and satisfying

n(f)=m+q—1+d:+ -+ +09,.1,

q9(f)=q,
5(f)=51+ +5q-1 »

J(f)=m—140(f).

Choose Fi, -+, Fpek[ X, Y] such that if C; is the affine plane curve Fy(X, Y)=0 then

« C; is a nonsingular rational curve of degree m, with one place at infinity, with
multiplicity sequence at infinity: m—1,1, 1, ---;

« there are distinct points P, P,& A®? such that

Vi LlCiNC={ P, P}, (Ci.Cpp,=1, (Ci.Cy)p,=m—1].

(For instance, F;=a;Y™ (Y —1)+ X, where a,, ---, a, are distinct elements of k*; then
P,=(0, 1) and P,=(0, 0).)

We are going to embed A? in F, (one of the Nagata rational surfaces). First,
embed A% in P? the standard way and write P\A?=L. Let C; also denote the closure
in P? of the curve C; chosen above. The curves C;, ---, C, all meet L at the same
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point P. Note that
1) CiNL={P}, (P, C;)=m—1, C;.L=m, all i;
2) CiCj=m? allq, j;
3) (Ci.Cjp=m*—m, all distinct 7, j.
Blow-up P* at A,=P, let D, be the exceptional curve, let A, be the point at which
D, and L meet. Then
4) C:NL={A.}=C:ND,, C;=P', C=2m—1, Ci.L=1, C..D,=m—1, for all i;
5) CiNC;={P, P, A5}, (Ci.Cya,=m—1, all distinct 7, ;.
Blow-up m—1 times at the point of D, which is 7.n. A, Call the exceptional curves

so obtained D,, ---, D,. On the resulting surface, the divisor D+ --- +D,+ L has
s.m.c., its dual graph is the linear weighted tree

-m -1 =2 -2 -1
D] Dm Dm-l DZ L
and the complement of that divisor is A% Contract L, D,, ---, D,,_; and let S, denote

the complete surface obtained. We get A*=S\supp (D,+ Dn), where D+ Dn,&Div (Sy)
has s.n.c. and has dual graph &(S,, D,+D,) as follows:

—m 0
*——e
Dl Dm .

In fact, Sy=F, (but we don’t really need to know that).

Now C,, ---, C, meet D, at distinct points and

6) C:N\D,=0, C;i.Dr=1 and Ci=m, all z.
We now proceed to define an equivalence class of irreducible morphisms f: A*—A%.
Blow-up S, at P;; blow-up m—1 times at P , (more precisely, always blow-up at the
intersection point of (the strict transforms of) the C;’s). The last of these blowings-
up makes C,, ---, C, pairwise disjoint. If E,, E,, -, En are the exceptional curves
so created, then on the blown up surface the divisor E,+ - + En+Ci+ - +Co+D1+-Dp,
has s.n.c. and its dual graph is

—2 -2 —m
*— - - °
E2 Em-l Dn

For i=1, ---, g—1, let Q; be the intersection point of E, and C..
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Blow-up 0,+1 times at Q;,
then dJ,+1 times at @,

and §,,+1 times at Qq_;

more precisely, always blow-up the point of E, which is 7.n. Q.. Denote by Ej, -,
Ej s, EY, o, E§ 2,0 ETY, oo E§ ! 41 the exceptional curves so created. On the result-
ing surface, call it S,, consider the divisor

D=Eyt - +En+(Ei4 - +E3)+ - +(BF '+ - +E5,

+Cl+ +Cq+Dm+Dl 3
whose dual graph @(S,, D) is

K B Bqy
-2 -2 “q—al-""__aq-l 0 \)/ —m
— ————- . ° . " .
E, En_ E. C, D D,

where, for i=1, ---, ¢—1, B, is

-1 -2 —2
———o—----—e
C. Ei Ej,

C; being linked to D,. We claim that the complement of supp (D) is isomorphic to
A?. By (4.1), enough to show that 4(S., D)~[1]. Now &(S., D) contracts to

[=2, ) =2, —q=8i— =041, 0, 81t - +¥qitg—1, —m]
~[-2, -, —2,—-1,0,0, —m]~[m—1, 0, —m]~[—1, 0, 0]~[1],

where we use the notation for linear weighted trees defined in (5.13) and the fact
pointed out in (5.14).

So we get an equivalence class of birational morphisms f: A*— A% with n(f), q(f),
o(f) and j(f) as desired. We leave it to the reader to verify that if f=h.g with
0<n(h)<n(f), then h gives rise to a sub weighted tree ¢’ of ¢=g(S,, D) such that
@’ contains D;, D, and at least one more vertex, ¢’+¢ and @'~[1]. We claim that
¢ does not contain such a ¢’. To see that, suppose ¢’ exists. Then C, is in &’,
otherwise ¢’ would contract to [p, —m] for some p>0, and [p, —m]~»+[1] by (5.16).
Next, E, is in &', for otherwise &’ contracts to [0, p, —m] for some p=0, and this
is not equivalent to [1]. So &’ has the form

—q—0,———0¢_, 0 \)/ —m
Ql - o . 'Y

[



352 D. Daigle

where each @', 8] is either empty or a linear branch, and
Bi=[-1, -2, ---, —2] if not empty,
B'=[-2, -, —2] if not empty.

Note that, if $; is not empty then the vertex of weight —1 is there and is the neigh-
bour of D,. Hence we see that all (nonempty) ®B} can be absorbed by D.,, and that
the absorption of @] increase the weight of D, by the number |8}|. Let a=|®8]|+
«+ 4| Bg.1]. Then &’ contracts to the minimal weighted tree

—q—0;———0,.. 0 a —m
3B’ * ot - L]
Em CG Dm D] .
By (6.16), a—q—0,— =+ —0g.1=—1, s0 [B{|+ - +|Bi1|=|B:|+ - +|B,4], i.e.,
Bi=p,; for all 7.
Let b=|%’|. Then
@' ~[—2, o, =2, —q—0— —084.1, 0, @, —m]
~[—=2, -, =2, —-1,0,0, —m]~[b+1,0,—m].

By (5.16) again, b+1—m=—1, i.e., b=m—2 and ¢’=¢. Hence f is irreducible.

5. Appendix: weighted graphs

Although most of the material contained in this section appeared at several other
places, we include it to establish notation and to make reference easier. We used [11]
as our main reference. Note that (5.18) and the last three assertions of (5.19) didn’t
seem to be known before this.

For our purposes a graph consists of finitely many vertices, some of them being
connected by links, such that the links are not oriented and at most one can exist
between two given vertices. So let us say that a graph is a pair §=(G, R) where G
is a finite set and R is a set of subsets of G, such that every a=R contains exactly
two elements. The elements of G are called the wvertices of ¢ and those of R are the
links. Two vertices u, v of ¢ are said to be linked if {u, v}=R; we also say that u
is a neighbour of v, and vice-versa. The set of neighbours of v is denoted by Jig(v).
A vertex v of @ is free (resp. linear, a branch point) if it has at most one (resp. at
most two, at least three) neighbour(s). |¢| denotes the number of vertices of &.

Given vertices u, v a chain from u to v is a sequence (x,, ---, xq) of vertices such
that ¢>0, u=x, v=x4 and {x;, x;..} € R for 0=7<g. The chain is simple if the links
{x0, X1}, =+, {Xq-1, X} are distinct. It is a loop if it is simple and if x,=x, The
connected components of G are defined in the obvious way. A tree is a connected graph
without loops. A linear tree is a tree without branch points.

If 6=(G, R) is a graph and VESG then g\V is the graph (G’, R’) where G'=G\V
and R'={acs R | anV=0}. If ¢ is a tree and v is a vertex of ¢ then the connected
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components of ¢\{v} are called the branches of g at v; clearly, the tree ¢ has |Ji4(v)|

branches at v.

Definition 5.1. A weighted graph is a triple ¢=(G, R, £) where (G, R) is a graph
and Q2 is some set map G—Z. If veG, 2(v) is called the weight of v.

A weighted graph can be blown up at a link or at a vertex:

Definition 5.2. Let ¢=(G, R, ) be a weighted graph and let x be either a link
or a vertex of . A blowing-up of @ at x is a weighted graph ¢'=(G’, R’, 2’) together
with an injective map GGC.G’, such that if G is identified with its image in G’ then
G'=G\U{e} for some e&G and the following conditions are satisfied:

1. if x={u, v}€R then R'=(R\{{u, v}})U{{e, u}, {e, v}} and
2(w) if wet{e, u, v}
Q(w)={ Qw)—1 if welu, v}

-1 if w=e;

2. if x€G then R’=RU({{e, x}} and

2(w) if wé{e, x}
Q(w)={ Qw)—1 if w=x

—1 if w=e.

Because the blowing-up of ¢ at x always exists and is essentially unique, “blowing-
up” is usually thought of as the operation by which ¢’ is obtained from ¢ and x. We
sometimes refer to e as the vertex which is created in the blowing-up; that vertex is
clearly a superfluous vertex of g¢’:

Definition 5.3. Let ¢ be a weighted graph. A superfluous vertex of ¢ is a linear
vertex ¢ of weight —1 such that J4(e)#0 and if u, vE9J4(e) then u and v are not
linked to each other.

Definition 5.4. Let ¢=(G, R, £2) be a weighted graph and e a superfluous vertex
of &. A blowing-down of @ at e is a weighted graph ¢'=(G’, R’, Q') together with
an injective map G'C.G that makes ¢ a blowing-up of ¢’ at some vertex or link and
e the vertex which is created in that blowing-up. The blowing-down of ¢ at e always
exists and is essentially unique. We say that e disappears in the blowing-down.

We say that @ contracts to @’ if either ¢’ is isomorphic to ¢ or if ¢’ can be ob-
tained from ¢ by performing finitely many blowings-down (define isomorphism the ob-
vious way, i.e., a bijection of the sets of vertices that preserves links and weights).
A weighted graph is said to be minimal if it has no superfluous vertex. Two weighted
graphs ¢ and &' are equivalent (G~G') if one can be obtained from the other by a
finite sequence of blowings-up and blowings-down. Clearly, if ¢ and ¢’ are equivalent
then ¢ is connected (resp. has no loops, is a tree) iff ¢’ has the same property.
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For convenience, let’s give a name to the conditions (i) and (ii) that appear on
page 70 of [11]:

Definition 5.5. Let D be a divisor of a nonsingular surface S. We say that D
has strong normal crossings (s.n.c.) if D is effective, reduced, and if the following
conditions hold:

1. every irreducible component of D is a nonsingular curve:

2. if C and C’ are distinct irreducible components of D such that CN\C’#0, then
CNC’ consists of a single point where C and C’ meet transversally ;

3. if C, C’ and C” are distinct irreducible components of D then CNC’'N\C”=0.

Note that if D has s.n.c. and S is not complete then there is an open embedding Sc.S
such that S is a complete nonsingular surface and the closure of D in S has s.7.c..

Definition 5.6. Let S be a nonsingular complete surface and let D be a divisor of
S with s.n.c.. The dual graph G(S, D) associated to the pair (S, D) is the weighted
graph which has the irreducible components of D as vertices, two of them linked iff
they intersect in S, and such that each vertex C has weight C? (self-intersection num-
ber in S).

Clearly, if (S, D) is as above, x: 8-S is the blowing-up of S at some point P
supp (D), E==x"Y(P), D is the strict transform of D and D'=D+ EeDiv(5) then D’
has s.n.c. and 45, D’) is a blowing-up of 4(S, D) in a natural way.

Definition 5.7. Let X be a nonsingular surface. A smooth completion of X is an
open immersion XS such that S is a nonsingular complete surface and S\X=
supp (D) for some DeDiv (S) with s.n.c.. The weighted graph &(S, D) is therefore
determined by XS it is easily verified that the equivalence class of g(S, D) depends
only on X. That equivalence class is denoted by ¢[X]. Note that smooth completions

exist for any X.

Definition 5.8. An arbitrary weighted graph ¢=(G, R, Q) determines a bilinear
form B(g), on the real vector space R® which has G as a basis, defined by

V. v =R(;), all 7,

1 if {vi, v;}ER
Vi. Vj=
0 if 7% and {v;, v;} &R,

where G={v,, vs, *--}. The discriminant of B(gG) is denoted by d(g) (i.e., d(g) is the
determinant of the |G| X |2| matrix (v, v;)). One can check that if ¢’ is a blowing-up
of ¢ then d(¢’)=—d(g¢). Thus the number (—1)'°'"!'d(¢) depends only on the equi-
valence class of 2. We let <@) denote the nonnegative integer max dim W, where W
runs in the set of linear subspaces WZ RS such that x.x220, all x&W. One can
check that <(@)> depends only on the equivalence class of ¢. The following (elemen-
tary) fact can be found at p. 78 of [11]:
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5.9. If @ has no loops and {G)><1 then there can be at most two vertices with non-
negative weights, and if there are two of them then these two vertices are linked and
one of the weights is actually zero.

Of particular interest for us is the equivalence class G[A?], which consists of the
weighted trees equivalent to [1], where

Definition 5.10. Given n<Z, the symbol [n] will denote any weighted tree which
has one vertex, say v, and such that v has weight .

More generally, we are also interested in those weighted trees which are equivalent
to a linear tree. In this respect, we make the following observations.

Lemma 5.11. Let G be a weighted tree equivalent to a linear tree, and suppose that
b is a branch point of G. Then for some branch B of G at b, “b can absorb B”, i.e.,
there exists a unique weighted tree G’ such that:

1. & contracts to @',
2. G'=G\3B as graphs,
3. @N{b}=a\({b}\UB) as weighted graphs.

Corollary 5.12. Every minimal weighted tree equivalent to a linear tree is linear.

It doesn’t seem to be possible to give a reasonable description of all weighted trees
equivalent to [1]. However, those which are minimal must be linear (5.12) and it
turns out that they can be listed. Before we do that, we need to introduce some
notations.

Definition 5.13.

1. Given integers w,, -, w,, let [@,, -+, w,] be the linear weighted tree

If s; is either an integer or a finite sequence of integers (for each i=1, ---, k),
let [si, ==+, sx] be the linear weighted tree [w,, -+, ®,], Where (w,, -, w,) is
the sequence obtained by concatenating si, :--, Sg.

2. Given p,geZ with p=0, let R be the p+1-tuple (—g—2, —2, -+, —2), and
let LY be the p+41-tuple (=2, -+, —2, —¢g—2). To be precise, Ri=(—¢—2)=L{

Example 5.14. The tree [L}, 0, 2, R?] is just the same as [—2, —2, —3, 0, 2, —4]
which is, by the way, equivalent to [1]. To see this, observe that if A, B are (pos-
sibly empty) finite sequences of integers and a, b= Z then

[A4, a,0,b, BI~[A, a+i, 0, b—i, B]

for any /= Z. In our case,
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(-2, =2, =3,0,2, —4]~[-2, =2, —1,0, 0, —4]~[3, 0, —4]~[0, 0, —1]1~[0, 1]
which is equivalent to [1]; indeed, if n€Z then [0, n]~[—1, —1, n]~[0, n+1] and
consequently [0, n]~[0, —1]~[1].

Proposition 5.15. The following is a list of all minimal weighted trees equivalent
to [1].

1. [1]
2. [0, al], acZ~\{—1}
3. [, L™, Lgz¥', LY, 0, ao+1, REL, R, RY, ---] where aw, -+, @, is a finite

sequence of nonnegative integers, with k=1.

Remark. The above list appeared in theorem 9 of [9], with a different notation.
However, geometry is very much involved in the cited result (i.e., in both the asser-
tion and its proof) while this proposition is purely graph-theoretic. A graph-theoretic
proof is given in [1].

Corollary 5.16. Let G be a minimal weighted tree equivalent to [1]. Then G is
linear and:

1. If |g|=1 then ¢=[1].

2. If 1@|=2 then 2=[0, a], some acZ\{—1}.

3. If |G| >2 then G has exactly two vertices with nonnegative weights, these vertices
are linked and exactly one of them, say u, has weight zero. Moreover, u has
two neighbours, say x and y, and 2(x)+L2(y)=—1.

Definition 5.17.

1. For a weighted graph &, the symbol ¢<—1 is an abbreviation for the state-
ment “every vertex of ¢ has weight less than —1”.

2. Let ¢ be a weighted tree and v a vertex of ¢. We say that v is a special
vertex if the number of branches @ of ¢ at v such that 8#<—1 is at least
two.

Corollary 5.18. Let @~[1] and suppose that v is a special vertex of G. Then
Q)+ |7w)| =1

Proof. Let n=|J1g(v)| and let B,, B, be branches of ¢ at v such that #,<—1
and 8,<—1. By (5.11), we may consider the tree ¢’ obtained from ¢ by letting v
absorb all branches other than #, and %, Clearly, the weight 2'(v) of v in &’
satisfies 2'(v)=Q2w)+n—2, since n—2 branches of ¢ at v disappeared in the contrac-
tion. Since |g’|>2, ¢’ is not minimal by (5.16), i.e., £'(v)=—1 and we get the
desired inequality.

Desigularization of Divisors. Say that a nonsingular surface X has no loops at
infinity if no element of ¢[ X] has loops (see (5.7)). We now make a simple observa-
tion that turns out to be very useful.



Birational endomorphisms 357

Lemma 5.19. Let S be a complete nonsingular surface and suppose that DeDiv (S)
is reduced and effective. Then there exists a sequence Sn— -+ »S,=S of monoidal trans-
formations such that, if E; is the exceptional curve created in S;—S;_, and if we define
for GeDiv (S)

{ G'=GeDiv (S,)
Gi=(strict transform of G'"")+E,€Div(S:), 1=i<m,

then D™<Div (S,) has s.n.c.. Assume that m is minimal with respect to that property.
Then the centers of the monoidal transformations are infinitely near (i.n.) D, Sy \supp (D™)
= S\supp (D) and, if S\supp (D) has no loops at infinity, every E; such that Ei=—1 in
Sn is a branch point of @(Sn, D™). Moreover, if S\supp (D)= A? then:

1. if m=2 then P,eE;_, 2<i<m);

2. if m=1 then P, belongs to at least two irreducible components of D;

3. if m=1 and D=A+B, where A and B are effective divisors and B has s.n.c.
in S, then P; belongs to the strict transform of A in Si_; (1=<i<m).

Proof. Everything before the “Moreover” is very well known, except perhaps the
last assertion (the verification of which we leave to the reader). We prove (1), (2), (3).
Let’s use the same notation for a curve and for its strict transform in any blown up
surface. Since A% has no loops at infinity,

every E; such that Ei=—1 in S, is a branch point of G(S,, D™).

If (1) doesn’t hold then &4(S.,, D™) contains two branch points u, v of weight —1 such
that u, v are not neighbours of each other. Contract ¢(S,, D™) to a linear weighted
tree £ (5.12); then u and v are still in .£ and one of the following holds:

« L contains vertices u, v with positive weights;

« L contains vertices u, v with nonnegative weights and not neighbours of each

other.
Thus <L>>1 by (5.9), and this is absurd since every g=g[A?] has <(¢>=1. Hence (1)
holds.

Proof of (2). By the above, E, is a branch point of ¢(S,, D™), of weight —1,
and no other E; has weight =—1 (in S,). If P, belongs to only one component of
D, all components of D are in the same branch of ¢(S,, D™) at E,. Thus E. is a
“special vertex” (5.17) and we get a contradiction with (5.18).

Proof of (3). Since E, is a branch point of &¢(S,, D™), P, belongs to at least
three components of D™ '=A+4B™"!. Since B has s.n.c. in S, B? has s.n.c. in S;
(0=7<m) and P, belongs to at most two components of B™ !, Thus P, belongs to
(the strict transform of) A and, by (1), so do P, -+, Pn_1.
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