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The Bers projection and the A-lemma

By

Toshiyuki SUGAWA

§ O .  Introduction

In  order to discuss th e  connection betw een univalen t functions and Teichmtiller
spaces, it is im portant to consider the  class S  of Schw arzians of all schlicht functions
on  the  exterior J*  o f th e  u n it disk, i. e.,

S= tSf=(f"/PY — ..(f"/ P ) 2 f 0 }

w here  E o i s  th e  class o f  a ll univalent meromorphic functions f  o n  J *  having a n  ex-
pansion

f (z )= z +
n=1

It should be noted that th e  correspondence [—S i  i s  a bijection from  E 0 t o  S.
T h e  class S  inherits a  topology by the hyperbolic sup-norm of weight —2 (so-called

th e  N e h a r i n o rm )  o f  th e  space  of holomorphic quadratic  d ifferentia ls. T h e  space S
has been studied by m any authors (B ers [6], G ehring [15], [16], 2uravlev [28], Flinn
[13], Shiga [24], O verholt [20], Sugaw a [25], etc.). In particular, the first remarkable
result by G ehring [15] states that

In t S = T (= th e  universal Teichmtiller space).

A s the Bers projection plays a  very  im portant ro le  in the Teichm tiller theory, the
(generalized) B ers projection is  th o u g h t to  do so  in  the investigation of the space S,
too . §  1  is  devo ted  to  study  the  (generalized) Bers projection m ainly in  th e  c a se  that
th e  d o m a in  h as  n o  ex te rio r  (T h eo rem  1 ). A s  a  corollary o f  T heorem  1 , w e g ive  a
simple proof o f  a  theorem o f  Overholt [19].

In § 2 and succesive sections, we shall consider Int S(F), w here  r  is  an  arbitrary
Fuchsian g r o u p .  T h e  "2-lemma" a n d  th e  "im proved 2-lem m a" first introduced by
Marié-Sad-Sullivan [17] and  Sullivan-Thurston [26] a re  greatly powerful tools to study
the structure of holomorphic families and , indeed, have m a n y  app lica tions in  various
aspects (for exam ple , see  [7 ], [9 ], D U , [21 ], [2 4 ]).

A s  a  new  application of the "extended 2-lemma" (Bers-Royden [9]), in § 2, we give
another proof o f  a  theorem o f Zuravlev :  T (F) is the zero component of Int S (F). Our
proof is based only on  the  openness of the universal Teichmtiller space due to Ahlfors
and  the  2-lem m a w hile Zuravlev's o n e  is  e ssen tia lly  re lie s  u p o n  the  G runsky 's in -
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equality.
In §3 w e extend the A-lemma to the Banach space version and as an application

o f  th is  extension, in  §4, w e shall g ive a  proof of the submersivity of the Bers pro-
jection corresponding to the element of Int S (T ) under certain additional hypothesis.

In Appendix, we shall show the holomorphy o f  th e  (generalized) Bers projection
(Proposition 1) for the convenience of the reader.

§ 1 .  The Bers projection

L e t D  b e  a  hyperbolic open subset of the extended plane e, th a t  is, the comple-
m ent E = e\ D  contains at least three p o in ts . W e shall consider th e  complex Banach
space B 2 (D ) consisting of a ll holomorphic functions w on D with norm

11çDllu= sup pp(Z) 2 1 çD(z)1 < 00

z e D

w h e re  pD(z)Idz 1 is  the Poincaré m etric of each component of D  w hich is of constant
negative curvature — 4 . W e  note  th a t  th e  finiteness o f  th e  norm IÇDIID im plies that
w(z)=0(1z1 4) as z—*00 i f  00 D.

Now let M (E ) be the open unit ball w ith center 0  o f  th e  Banach space 1,- (E )=
{pEL - (C ):,a=0 on C\E}, w here E  is any m easurable se t o f e'. For each pEM(C),
we denote by up" the normalized iu-conformal m ap, precisely, the quasiconformal self-
map of e fixing 0, 1 and 09, which satisfies the Beltrami equation

(wF)i=ttqw"),

on C (for the details, see  [2 ] ) .  Set E =e\D  f o r  a  hyperbolic open set D .  For 11E
M(E), WPID is  a univalent meromorphic function on D , therefore the  Beardon-Gehring
theorem [4 ] im plies that 0 (p )= S , , ,D  belongs to B,(D), where S1  denotes the Schwar-
zian derivative of a  locally univalent meromorphic function f :

1
s 1 = (f"/ f/ ) '— (f"/ P ) 2 .

The m ap 0 = 0 D : il/f(E)-43 2 (D ) is called the (generalized) Bers projection.
The following proposition (essentially due to  Bers) is  of basic im portance in the

sequel.

Proposition 1. L et D  be any hyperbolic open subset o f  e and E  be its complement.
T hen the  B ers pro jec tion  0 : M(E)—>B 2 (D ) i s  holomorphic a n d  its dif ferential m ap
4 0 : L - (E )--B ,(D ) at M ( E )  admits an  estimate o f  operator norm:

12 
p 0 Il 1

_11p1I.
In particular, the derivative at 0 is explicitly described as follows:

d0 0 M (z ) , ( C = e + i n )

f o r every E L - (E ) .
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T h e  proof o f  th is  proposition is  w e ll-k n o w n  (a t le a s t, in  th e  c a s e  t h a t  D  i s  a
quasidisk). For convenience, we shall give a  proof o f  th is  p roposition  in  Appendix.

F o r  a  w h ile , le t  u s  im p o s e  th e  c a s e  th a t  E  is now here d e n s e . T h e  following
theorem , at a  glance, may seem slightly curious.

Theorem 1 .  Suppose that D  is a dense hyperbolic open set in e consisting of  finitely
many components D (j=1, ••• , n). Then the B ers projection 0 : M(E)—>B 2 (D ) is  injec-
tive, where E = e \ D . Further suppose that D  is connected, then the  differntial m ap of
0  is injective at each Point of  M (E ) .  In  Particular, 40: 1, - (E)—>B2 (D ) is a (bounded)
embedding.

R e m a rk . Observe th a t  th e  class o f nowhere dense com pact sets E  w ith  positive
area is sufficiently la rg e . In  p a rticu la r , when E  is connected , it is w orth  to  note that
B2(D ) is isomorphic to B2(4 ) w here  4= { z l<1 } is the  un it d isk . F u rth e r, w e  rem ark
th a t  f o r  a n y  pEM(E)\ {0} , wP is  holomorphic on an open dense set and self-homeo-
morphism o f C  w ith  a  finite modulus o f th e  Holder continuity o f  order 1—e, w here  s
is sm all i f  }Lull. is sufficiently small (c f . [2]), but not globally holomorphic.

W e shall prepare a  sim ple lemma.

L e m m a . Under the hypothesis o f  Theorem 1, consider a  homeomorPhism A : C—>C.
I f  each restriction Al D i  is  a restriction of  Möbius transformation A ;  (j=1, ••• , n), then
A  is a Möbius transform ation in  itself.

Pro o f . W e  c a n  d e d u c e  t h e  desired conclusion from  a simple observation th a t  if
D i n n k con ta ins a t least th ree  points then  Ai=Ak. •

Proof  o f  Theorem 1. T h e  injectivity o f  0  is  a lm o st t r iv ia l .  I n  f a c t ,  i f  0(p,)=-
0(122 )  f o r  pi, p2EM (E), th e n  A=-wP20(wP0 - '  satisfies t h e  hypotheses o f  th e  lemma
above, thus A MOb. F r o m  th e  normalization, we conclude that A=id, i .e . ,  wPi=wPi
o n  e, hence pi=p2.

Secondly, we prove th e  injectivity of the  differential map:

d  5 1 (z )=  6
7r 1 (c

v (
z
)
) , cled77 .

W ithout loss o f generality , w e m ay assume th a t c o  E D . T h e n  4 0 [ i ]  has th e  expan-
sion

1 E (n +1)(n +2)(n + 3) Cnv(C)dedv • z - n ,
71-  72=0

n e a r  c o . Suppose that yEKer d0 0, then C'v(C)dedv=0 for each non-negative integer

n, hence

(*)
E f

(C)v(C)d$dr2=0

fo r all (holomorphic) polynomials f(C) o f C. S i n c e  E  h a s  n o  in te r io r  points, famous



704 Toshiyuki Sugawa

M ergelyan's theorem  ( c f .  [14 ], [22 ]) says that any continuous function on E  is uni-
formly approximated by polynomials on  E , therefore (*) holds fo r  all continuous func-
tio n s  f  o n  E .  Because t h e  sp ace  o f  continuous functions C (E ) is  dense  in  L '(E ),
further (*) holds for all integrable functions f  on E, therefore v m ust vanish a. e . o n  E.

Finally, th e  injectivity o f  (1,0 fo r general ftE M (E )  easily  fo llo w s b y  th e  argu-
m e n t o f  th e  c h a n g e  o f  b a s e  p o in ts .  W e  sha ll illu stra te  th is  argum ent, h e r e .  Let
RP(v) denote the Beltrami coefficient (or the complex dila ta tion) of the quasiconformal
map wow" f o r  v E M (C ). D irect computation show s th a t RP : M (C ) - M (C ) i s  biholo-
morphic and R P  sends M (EP) onto M (E ), where E P=w P (E ). O n  th e  other hand, since
iv ' ID  is conform al, induced m ap (w )* : B2(DP) B2(D) is  a n  isometric (Banach space)
isomorphism where (wP)*go-- , y90(wP ID)•(dwP/dz)2 a n d  D P=w P(D ). T h e n  a  formal cal-
culation shows th a t the  following diagram commutes :

RP
M(EP) > M (E )

do 0 D p i dpOD1
(wP)*

132 (DP) > B,(D).

By the form er step , do 0Dp is  injective, therefore c/A D  i s  injective, too. •

W e should note that differential m ap (4 0  does not has necessarily  c losed range,
therefore above theorem does not s ta te  th a t (/) : M(E)—>13 2 (D ) is  immersive.

E x a m p le . In  Theorem  1 and  the  previous lemma, necessary is th e  hypothesis that
D consists o f finitely m any com ponents. H ere, w e exhibit a  sim ple  counterexample.

L et I  be  th e  interval [0 , 1 ] and U  be a dense open subset o f  I  such  that m(U)<1,
w here m denotes th e  1-dimensional Lebesgue m easure . W e can  d iv ide  the  complement
o f U  into m easurable two parts , sa y  C, and C2 , w ith  positive linear m easure. Choose
h i , k2 E(0, 1) such  tha t kim(C0=k2m(C2), and define a  function u  by

u(x)=V(1+k,X c i (t)—/z 2X40)dt ,0

weere Xc j  denotes the  characteristic function of C .  T h e n  u is an absolutely continuous
strictly increasing function from  I  onto / and  u '= 1 on  U.

N ow  w e set

F (x+ iy )= [x ]-1 -u (x— [x ])-F iy fo r  x+ iy E C

and F(c0)=00, w here  [x ] deno tes the largest integer not exceeding x .  Simple calcula-
tions show  t h a t  F : — ô  i s  (1+ k/1— k)-quasiconformal m ap, w here  k =max {k,/2-1-k„
k2 /2—k 2 }. F u r th e r m o r e , F  i s  a  t ra n s la t io n  o n  each com ponent o f  D, w h e re  D=
x + i y C :  x — [x] U } ,  but not globally a translation. L e t  b e  th e  B e ltram i co-

efficient o f  F and E = e \ D , th e n  pEM (E )\ {0} b u t  OD(p)=0, therefore  OD: M(E)—>
B2 (D ) is  no t injective w hereas D is  open dense in el.

A s a  corollary o f  th e  first pa rt o f above theorem , w e can give a sim ple proof of
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a  result o f  Overholt. Before stating this result, we shall explain a  needed terminology.
A  hyperbolic domain D  is called (conformally) rigid if  any  univalent function f :
whose Schwarzian derivative has norm smaller than a positive constant depending only
o n  D  m u st b e  a M öbius transform ation. In  particular, w hen D  is simply connected,
D  is  rig id  if  and  only if the Schw arzian derivative of a  R iem ann m apping o f  D  cor-
responds to a n  isolated point of S. Concerning with the existence of rigid domains, we
refer articles Thurston [27] and A stala [3].

Corollary (O v erho lt [1 9 ]) . The complement o f  any (conformally) rigid domain is
of zero area.

P ro o f. L et D  be a  rigid domain and E  be its complement. By definition, the Bers
projection 0 : M(E)—>B 2 (D )  m u s t  b e  th e  co n stan t m a p  0 .  I f  D  would have exterior
points, clearly 0  w ould  be  non-constant, therefore  E  m u s t  h a v e  n o  in te rio r points.
N ow  T heorem  1  y ie lds tha t M (E ) i s  a  singleton, hence E  has the Lebesgue measure
zero. •

Note th a t, in  th e  above proof, w e have u sed  o n ly  th e  f a c t  th a t  0 : M(E)--*B 2 (D)
i s  a  con stan t m ap , therefore this corollary also holds under a  weaker hypothesis, for
exam ple, that th e  connected component of S(D )= IS f E  B ,(D ): f is  univalent meromor-
phic function on  DI containing 0 has topological dimension a t m o st 1.

R em ark. T h e  above corollary m eans that any rigid dom ain has a  complement of
2-dimensional Hausdorff m easure  zero. O n  t h e  o ther hand, for any given v a lu e  te
(1, 2), A stala [3] constructed th e  rigid domain whose Hausdorff dimension equals to t.

§  2 .  The 2-lemma and another proof o f iuravlev's theorem

Throughout this section, w e  assume that D is  a  simply connected domain o f  hyper-
bolic ty p e . F o r  every T E N D )  there  exists a  locally univalent meromorphic function
f  on  D  whose Schwarzian derivative equals to yp. O nce a normalization assigned, say
fo r example,

f(z )= (z— a )+  E c,i (z— a)'

near a  fixed point aED\ iool , f satisfying th e  equation Sf=ça is uniquely determined,
denoted by fs°, and  it  tu rn s  o u t th a t ço,—fv'(z) is  a holomorphic m ap  from  B 2 (D ) to  e
fo r each fixed point zED.

Now le t  G  be a K leinian group discontinuously acting on D  and set

B,(D, G)= {yoEB,(D):(go.g)•(g') 2 =ço fo r a ll geG 1

S(D, G)= IgoEB,(D, G ): fs° is  univalent in D }.

A s is easily seen, S(D, G ) does not depend o n  th e  normalization.
F o r  gnEN D ,  G ), th e re  e x is ts  a unique hom om orphism  Xs° : G--IDSL 2 (C )=M iib  so

th a t fs 'o g = r (g ). fr  fo r a ll g E G , ca lled  the m onodrom y hom om orphism  of yo. Note
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th a t the holomorphy of the map (p,--)fv(z) forces the holomorphy of the map ço.-4r(g)
for each fixed g E G .  Observe th a t ?V  is  a monomorphism and th a t  r ( G )  is also
a Kleinian group for every ÇoES (D, G ) .  Let L - (E , G) be the complex Banach space of
the Beltrami differentials ye / , '(E )  which is (-1, 1)-form for G , precisely,

g)• -g-'7 I g' =2)

for every g E G  and denote by M (E, G) the unit ball o f  L - (E , G), th a t  is. M(E, G) ,

L (E, G)(1M (E), where E  is any G-invariant measurable se t in  C.
I t  is  k n o w n  th a t  f o r  every pE M (E , G ), OD (p) belongs to B 2(D, G), where E =

e\D. We now set
T(D, G)=0D(111(E, G)).

Note tha t T (D, G)cS (D, G) and tha t T(D, G) is connected.
In case that D  is the exterior of the unit disk 4, denoted by 4*, and th a t T  is  a

Fuchsian group a c tin g  o n  4 * , T (r)=-T (4*, r) is called the (Bers model o f )  Teich-
mailer space of Fuchsian group T .  For abbriviation, let S (F )  denote S(4*, T ) .  In
particular, when r  is the  triv ia l group 1, w e call T =T (1) th e  universal Teichmiiller
space and S =S (1) the quasi-Teichmtiller space. It should be mentioned that Nehari's
theorem implies that for any univalent function f :  J * _ * ,  its Schwarzian derivative S i
has norm not greater than 6, thus S f  ES.

The followmg theorem is a basic fact for our argument in the present section.

Theorem A  (Ahlfors [1 ] ) .  The universal Teichmiiller space is a bounded dom ain in
B2(4* ).

W e can characterize the Teichmtiller space o f  T  as the set of all holomorphic
quadratic differentials wE.13,0*, T) such that f v  can  be  ex tended  to  a T-compatible
quasiconformal self-map o f  el , w here a quasiconformal map w: e->e is T-compatible
if and only if for every rE r ,  Ivor= Ar ow on e for some iLLEMOb.

Now we state the Bers-Royden version of the 2-lemma in  th e  form which is con-
venient only for our present aim and which has not necessarily full generality.

Theorem B (extended 2-lemma ; [9] a n d  [8 ]) . Let E  be a  subse t o f  e containing
at least four points and G be a subgroup of Mob acting on E .  Suppose that m aps f : 4 ,
XE—>e and X : 4,--41-1om(G, n ib )  have the follow ing four Properties:

(i) f(0, . ) = i d ,
(ii) f Â =f (2 , •): E,e is  an injection for every  f ixed 2 4,

(iii) f ( ,  z ): is  a holomorPhic m ap fo r  every  f ixed z EE ,
(iv) f  g = X 2 (g). f a fo r  all 2 E 4 , and gEG,

w here 4 ,=- { z EC : Izi<r} .
T hen the restriction f  I J, /3x  E has a canonical extension f :  4 , 1 2 Xe—>t;  w ith  the fol-

low ing properties:
(a) f  has also abov e f our properties  ( i) - ( iv )  in  w hich 4 , ,  E  is just replaced by

zir „ ,  e respectively,
(b) f'2=-A2, •): is  a quasiconformal map,
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(c) the B eltram i coefficient p(2) of 12 is a holomorphic map from J r i s  to  L - (C, G),
(d) f o r  each 2eZ1,13, ti(2) is harmonic on D=-e\ -E, precisely , p(2)--=p1) - 2 •0(25 on

D  for a  0(2)eB 2(D, G).
The extension f: dr 13xe-0 w ith the properties (a) and (d) is uniquely determined.

The map f :  J r X E -4 '' with the above properties (i)-(iv) is called admissible.
As an application of the 2-lemma (in the above form), we shall give another proof

of 2uravlev's theorem.

Theorem C ([281). For any Fuchsian group r,  T (T ) is  the connected component of
Int S(r) w hich contains the origin.

Here, note that we shall not use the fact that T (r) is  open in B2(J., r) except
Ahlfors' theorem (Theorem A).

Theorem A  implies that T (F)c T n B 2(J*, T )OEInt S (F). Since T (T ) is connected,
Theorem C  is obtained by the special case L =B 2(d*, r)  of the following theorem
which is a slight generalization of Theorem 2 of 2uravlev [28].

Theorem 2 .  Suppose that L  is a (complex Banach) submanifold o f B 2(d*, r)  and V
is a connected component o f Int L (LnInt S (F)), where Int L X  i s  the interior o f  X  in L.
Then the condition V  nT (F)*  0  im plies that V  cT (T ).

In order to prove this theorem, we shall prepare the following proposition which,
in some sense, is a weak version of Theorem 1 of 2uravlev [28].

Proposition 2. Suppose th at a  holomorPhic function F: 4—>B2(J*, T) satisfies that
F ( J) c S ( F ) .  I f  F (J)n T (F )#  0 , then F(J)cT (T ).

Pro o f . Set f 2=F - '(T ( T ) ) c d .  We know that Q  is open and closed, hence Q=Z1

o r  0  thus the proof completes, if we show the following claim : fo r  each 20 e Q ,  the
Poincaré disk with center 2 0 an d  radius log 2  is contained in Q.

N ow we shall show the above claim. Set ço0 =F(2 0 )E T (T ) and G.---ro(r). We
may assume that 2o = 0  because the unit disk LI is analytically homogeneous and the
Poincaré distance is invariant under the Aut J .  Now we define the mapping g: t lx

by g (2 , z )=f F (z )  and h: LIX g0(40)— e by h(2, z)=.g(2, g o
- J(z))=g 2 .g 0

- 1 (z) where
g2— g(2, •). Since F(J) S(r), h has properties (i)-(iv) listed in Theorem B, therefore
for each 2E J 113 , h(2, •) can be canonically extended to the G-compatible quasiconformal
self-map E2 of e .  On the other hand, g o = Po can be extended to a T-compatible
quasiconformal self-map g o o f  e because çpeT (r). Hence, for every 2 E J 1 1 3 , g 2  is
extended to a F-compatible quasiconformal self-map ri 2 °g o o f e, therefore F(2)ET (T ).

Proof  of  Theorem  2. Suppose that L  is a complex Banach submanifold of 13,(J*, r)
modeled on a Banach space A  with norm 11•11. Let 0 : U--4A b e  a holomorphic chart
of the componnent V such that U  is a subdomain of V  and thus W =O(U) is a sub-
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domain o f  A .  Now for every  aEO (UnT(T)), se t 5(a)=infbE6wda—b11. W e take bcA
w ith  libl1=6(a) and define a holomorphic mapping F: r) b y  the form ula F(2)
=0 - i(a4-26). Since  F (J )c S (r )  a n d  F (4 )nT (F )*9 :5 , Proposition 1 yields that F(4)
c T(r). Consequently th e  following assertion holds : i f  aE O (U nT (T )) th e n  th e  ball
in  A  w ith  center a an d  rad iu s 3(a) is also contained in  o(unT(r)). By this asser-
tion , it is  know n  tha t 0 (U n T (r )) is open and closed in  W th u s  e(unT(r))=w o r 0.
This conclusion m eans that i f  a  coodinate neiborhood U  o f  V  has non-em pty inter-
section w ith r(r), then  u T (r) . H ence, it is easy to  see that i f  V n T (F )*  0 , then
V cT(T). •

§ 3. An extension of the 2-lemma

In  preceding section, w e applied the A-lemma by making th e  functions one complex
variable, but sometimes it is essential to treat functions with several complex variables.
From  this reason, w e shall m ake a generalization o f th e  A-lemma in  th is direction and
apply this generalized A-lemma to the investigation of Int S(r).

Theorem 3. L e t  A  b e  a  complex Banach space with norm II•11 and A , be the ball
{xGA: Ocii<r}. Let E  be a subset of e containing at least four points and  G  be a
subgroup of Mob acting on E. Suppose that maps f :  A ,.xE , c, and X: (G, Mob)
have the following four properties:

(i) f(0, •)=id E ,
(ii) T r = f(x , • ): E --0  is an injection for every fixed xEA,,
(iii) f(., z): A r —, c, is  a holornorphic m ap for every  f ixed zEE,
(iv) f x og=X x (g ).f., fo r  all x E A , and geG.
T hen the restriction flA ri3 X E  has a canonical extension f :  Ar,3xe3e, w ith the

following properties:
(a) f  has also above four properties (i)-(iv) in which A ,, E  is just replaced by Ar13,

respectively,
(b) i x = f(x , • ): is a quasiconformal map,
(c) the Beltrami coefficient p(x) of f x  is  a holomorphic map from A,/3 to  L ' I C ,  G).
(d) fo r  each xEA„1 3, [1(x) is harmonic on D = \ -E , precisely , p(x)-=t9D - 2 •0(x) on

D fo r a  0(x)EB 3(D, G).
The extension f: A x i ,xC'—>c with the properties (a) and (d) is uniquely determined.

Sketch of Pro o f . First, norm alizing by Möbius transform ations, w e  m a y  assume
th a t 0, 1, 00EE and th a t f (x, •) fixes 0, 1 and  oc  for each x E A r  ( c f .  [9, § 1]). For
e v e ry  x E A  w i t h  141=1, w e  c a n  d e f in e  an  adm issib le  m a p  g x.: LI„XE—>e b y  the
formula g (2 , z) ,

 f (A x ,  z ) .  By Theorem  B, gxl Z1,-/3 xE can be canonically extended to
Jr13x -e , e,  w ith  p roperties (a)-(d) in Theorem B .  S e t  f(2.2c, z)= (2, z) fo r  every

xEaA,. 2 4 r /3 ,  Z E tl . B y  th e  uniqueness p a r t  o f  Theorem  B, f :  Aro< -e ,e ,  i s  a
well-defined m ap, and this should be the  canonical extension of fIA „,,xE .

T h e  nontriv ial p a r t  o f  Theorem 3 a r e  only (a) and (c ) .  (T he part (b) is  a con-
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sequence o f Theorem  B . )  W e now  outline th e  p roo f o f  t h e  property (a). It suffices
to prove the assertion th a t f (., z ): A, 1 3 —+C i s  holomorphic f o r  fixed 2 E C\{0, 1, co}.
Since t h e  m ap f ( ., z )  excludes three points 0, 1 an d  co, Schottky theorem yields the
local boundedness o f 1 ( ., z ) . T h e  holomorphy o f  locally bounded functions o n  Banach
spaces follows from the existence of the G ateaux  deriva tive  a t every  po in t ( s e e , for
example [10]), therefore th e  proof o f  th e  holomorphy of ft., z ) is reduced in the case
A=C 2 . In  th is  case, w e  can  p rove  the  above assertion b y  th e  quite sam e m ethod as
in  [9], thus w e shall leave th e  proof fo r the  reader as an exercise.

Once the admissibility o f  f  established, th e  proof o f  th e  property (c ) can  be  pro-
ceeded in  the  sam e w ay a s  in  [9, § 4], w hich w e shall omit.

§  4 .  Investigation of Int S(F)

G ehring show ed that Int S = T  in  [15] and recently Shiga [24] proved that Int S(/')
= T (F )  f o r  any  fin ite ly  genera ted  Fuchsian group o f th e  first k ind . G enera lly , it is
conjectured that Int S (T )= T (T ) fo r any  Fuchsian group F .  B y  virture of 2uravlev's
theorem  (Theorem  C), th is  conjecture is equivalent to the  c la im  tha t Int S (F ) is con-
nected.

Through this section, let denote a n  arbitrary  Fuchsian group acting on J .
W e begin w ith a  proof o f  th e  following proposition w hich  is a  consequence of the

extended A-lemma (Theorem B).

Proposition 2. L et V  be a  connected component o f  Int S (F ) .  For any  ya„ so2 EV ,
there ex ists a quasiconformal m ap F f rom onto itself  w ith the follow ing properties:

(1) P'2=F. P i  o n  4* ,
(2) 2V2(7)=--F.V2(r).F' on e  fo r  all re r .

R em ark . I t  sh o u ld  b e  m e n tio n e d  th a t the B eltram i coefficient ti-=FilF, of the
above F automatically belongs to mce\fpi(L1), ri(n ).

Proof. F o r  so„ so,E V , w e define a n  equivalence relation b y  th e  ru le  so,--so, if
and only if  th e  claim  in  th e  above proposition is va lid  fo r so, an d  so,. S in c e  V  is con-
n e c te d , it  su ff ic e s  to  show  that each equivalence class is open  in  V .  L et V , be any
equivalence c la s s .  T hen  th e  following is t r u e .  F o r  arbitrary  çoi e V ,  if  so2 EB 2 (Z1*, F)
satisfies 11ÇO2— ç°1114.< a/3, then  so,E V i , where

a =dist (q) , as(r)).= inf 11W — goi II > 0) .
ÇoEascr)

Indeed, f o r  a n y  çb B2(J*, r) w it h  lisbb*=a, w e  have so1 -1--2sbES(F) fo r each AE
therefore we can define an admissible map f :  zixpi(J*)-->e,  b y  th e  formula :

f(2 , z )= f °(.0") - 1 (z).

N ow  T heorem  B  i s  applicable. L e t  f :  zi,„xe,t- ,- b e  t h e  canonical extension of
f :  J,,,X f 9'1(J*)--->e. T h en , fo r  so2=991 -1-20 (2E4 10, F = •) works. •
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F or gEMM=PSL 2(C) such that g*id , g  is called elliptic, parabolic, loxodromIc if
te g 4), tr2 g=4, trzgO [0, 4] respectively, where tr 2 g , (a+d) 2 i f  g  is represented

by a  matrix ( a  b )E SL ,(C ). W e n o te  that a n  element g * id  o f  Kleinian group isc  d
elliptic if  and  only if  g  has finite order.

C orollary. F o r  each ÇoEInt S (r), the monodromy homomorphism X :  f'—Mob i s
type-preserving, precisely, ?V sends elliptic, parabolic and loxodromic elements to elliptic,
parabolic and loxodromic elements, respectively, and te r= tr 2 V (r ) for any elliptic element
TEE.

Pro o f . A t first, observe that th e  map r i : yo—>tr2 P (r ) is holomorphic for fixed TEE.
Since th e  isomorphism induced by a  quasiconformal self-map o f  e is type-preserving,
Proposition 2 implies that if  ro (r) is parabolic o r  elliptic fo r  a  yoo eInt S(r), then I-, is
constant on the component o f Int S (P ) containing wo , thus r i  is  constant on the whole
132(4*, I"). From the  above facts, the  desired conclusion immediately follows.

L et wo EInt s(r) and set D = f"(4 * ), G = r0 (F ) and E = el \ D . The Bers projection
: M(E, G)—>B 2 (D, G ) is expected to reflect the properties o f domain D , therefore the

author thinks that it is im portant to study the Bers projection 0=0D.
A s an application of Theorem 3, we shall sh o w  submersivity o f th e  B e rs  projec-

tion 0 D .

Theorem 4 .  Let wo EInt s(r)  and set D , fp0(4*), G,x9).(r) and E = e \ D .  Let V
be the zero-component o f Int S(D, G ) .  Concerning with the Bers projection 0 : M (E , G)
—q32(D, G), the follow ing is tru e . V cT(D, G ) and  0 :0 - 1 (V)—>V is  a (split) submer-
sion.

Pro o f . Define a  biholomorphic isometry A : Th(D, G)—+B,(J*, r)  by the formula

_A(0).---Sfsoc,f0,-(00f9,0) (

d f "

d z

) 2 ±çoo

Noting that A(S(D, G))=S(1"), we se t V o =_A (V ). L e t any Çb1EV b e  f ix ed . F irs t let
us show  that çbi ET(D, G ) .  Set ç01 =J1(01 ) V 0 . Then Proposition 2 produces a  quasi-
conformal map F: with th e  properties :

(1) P I= F o rn  o n  J*,
(2) r1(r)=F.ro(7)0E - i o n  e fo r all TEE.

W e denote by y  the Beltrami coefficient of F .  By Remark below Proposition 2, vE
M (E, G), and by (1), we can conclude that

-)1 (01)=--- yoi=SF.f 9'0=-A(SF),

hence çbi =S F =0(1 )E0(M (E , G ))=T(D , G).
N ext, w e shall s h o w  th e  submersivity o f  0  a t  0. (T h e  submersivity o f  0  at

general points follows also from the one at 0 and  the  typical argum ent of the change
o f b ase  p o in ts .)  To this end , it is sufficient to prove the existence of the local  bob-
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morphic se c tio n  o f  0  which sends 0 to 0. Set a =dist (0, as(D, G))=dist (çoo , as(n)
( > 0 ).  Now we define admissible map f :  B2(D, G)axD--4 -e  b y  th e  fo rm u la  AO, z) ,

f `P(z), then , by virture o f  Theorem 3, f  G).13XD can be canonically extended
to : B2(D, G).13x -e-+-e, w ith  th e  properties (a)-(d) listed in  Theorem 3. Denote by
a(0) the Beltrami coefficient of f (0 , •) fo r every OEB 2 (D, G),03,  then by (b) in  Theo-
rem 3, a :  B2(D, G).13 — >M (E , G) is a  desired holomorphic section of 0. •

Remark 1. I n  th e  c a s e  wo = 0 , th e  above theorem provides a  proof o f th e  sub-
mersivity of the (original) Bers projection 0 : M(4, r ) —T(r) c f. B ers  [5], Earle-Nag
[12 ]). T h e  uniqueness p a rt o f  Theorem B shows that the local holomorphic section a
constructed above is , in  this case, nothing b u t th e  Ahlfors-Weil section (cf. [1], [71).
More generally, in  the  case  wo ET(r) (i.e. D  is a quasidisk an d  G  is a  quasi-Fuchsian
group), V=T(D , G) and  the  submersivity o f  OD: M(E, G)—>T(D, G ) is well-known, in
fact, which follows from the  case  ço0 =- 0 by the argument of the change of base points.

Remark 2 .  T h e  author thinks the  above theorem to be meaningful in  th e  sense
that it may provide inform ations as to the question whether Int S (V )= T ( [ ' ) .  By this
theorem, fo r example, it seems to the author that E would have interior points. In  fact,
if E has no interior points, then both Theorem 1 and Theorem 4 implies that 0 : M (E, G)
—>B2 (D, G) is a local embedding at 0, in particular, the differential map (10 0  is a  Banach
space isomorphism 1,- (E, G)—>B 2 (D, F ) ,  which seems to him impossible.

Appendix : The holomorphy of the Bers projection

T h e  proof of P roposition  1  can be performed in  the  quite same way a s  in  Nag
[18 ]. Theorem o f Beardon-Gehring [4] yields that

110(p)11D 12 fo r any pE M (E ).

Since, a s  is seen above, 0  is (globally) bounded, it suffices to prove the existence of
the  Gateaux derivative 4 0  at each point pE M (E ) (see, fo r example, [10 ]). Without
loss o f generality, we may assume that 00 ED.

L et any r, aE(0, c o )  be fixed. We choose a  KE(0, co) satisfying

(*) 11/111.+(1+a)eK<1

a n d  pick z E(0, oo) so that (1+a )s<t an d  IIPII-+ af<1. L et vEL00(E) with 111, 11.<K.
Since 11[0-t1, 11.<1 for tEtli = {Itl<g} , the  map

(t, wP+"(z)EC fo r (t, z)EJi ><D

is holomorphic (cf. [2]) and  (d/dz)up (z )# 0  fo r  z E D .  Therefore (t,
= 0 (p + tv )(z ) is a  holomorphic function o f  (t, z)E,11;><D. N o w  w e  s e t  0(z)=
(d/ dt)0(p+tv)(z)I t - 0 . In  particular, when p=0, we can obtain th e  concrete form of O :

0(z) —  —6 çç dedn
7 C  j  E  ( C  -

by the  formal calculation an d  th e  formula :
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ddt w t ,( z ) 1,  0 z ( z ; 1)1E  c(Vc (C) id) e(cd 72 z )

( c f .  [1], [2 1). F ix  a n y  z 0 E D  a n d  ç5,(0=p D (z0) - 2 4i(p+tv)(z ,), then  w e  ob ta in  tha t
Iço(1)I 12. O n the o ther hand, for tEd e

1(  1 1t f r \ A r
ÇD(t) —  SO ) — tW/ (0) =  r z 1,

z ici t 

11 2  
go(C)dC=  

27ri11;1=ci+a )., C2
(C—t)

hence we have an estimate

121t 2  

Iço(t)--go(0)—tso'(0)1 (1±a)as 2 •

Since z o E D  is arbitrary, w e conclude that

121112 

II0 (p + 1 ) -0 (p )— tellp  
( 1 + a ) a s 2

-0(1t1) a s  t—>0.

In  th is  w ay , w e can  show  the existence of the Gateaux derivative d 4 = O E B 2(D).
F ina lly , l e t  u s  estim ate  t h e  operator norm  II4011. By using sam e notations as

above, we obtain

1 
Sp(OdC,(P (t)— ço(0)---- 

27rk.:1=0 C(C—t)

thus I yD(t)--ço(0)1 5121/ I / a s .  T h is  estimate implies that

0 (p + tv )-0 (p ) 12
D CIE

and by  tak ing  th e  lim it fo r  t—*(),

for all E L - (E)K,

12 
IldpO[villp_ 

a s

hence Ild,,011_12/asK. Since s  and K  is  a rb itra ry  as long  as (*)
holds, now  w e have

1+a 12 
a 1-11rd.'

finally, by taking th e  lim it fo r  a--co , the  desired estimate follows. •
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