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The Bers projection and the i-lemma

By

Toshiyuki Sucawa

§0. Introduction

In order to discuss the connection between univalent functions and Teichmiiller
spaces, it is important to consider the class S of Schwarzians of all schlicht functions
on the exterior 4* of the unit disk, i.e.,

S={S, =1 f Y =5 FIfF fE5),

where X, is the class of all univalent meromorphic functions f on 4* having an ex-
pansion

f(2)=z+ glbnz‘" .

It should be noted that the correspondence f—S, is a bijection from %, to S.

The class S inherits a topology by the hyperbolic sup-norm of weight —2 (so-called
the Nehari norm) of the space of holomorphic quadratic differentials. The space S
has been studied by many authors (Bers [6], Gehring [15], [16], Zuravlev [28], Flinn
[13], Shiga [24], Overholt [20], Sugawa [25], etc.). In particular, the first remarkable
result by Gehring [15] states that

Int S=T(=the universal Teichmiiller space).

As the Bers projection plays a very important role in the Teichmiiller theory, the
(generalized) Bers projection is thought to do so in the investigation of the space S,
too. §1 is devoted to study the (generalized) Bers projection mainly in the case that
the domain has no exterior (Theorem 1). As a corollary of Theorem 1, we give a
simple proof of a theorem of Overholt [19].

In §2 and succesive sections, we shall consider Int S(I"), where I is an arbitrary
Fuchsian group. The “A-lemma” and the “improved A-lemma” first introduced by
Mafié-Sad-Sullivan [17] and Sullivan-Thurston [26] are greatly powerful tools to study
the structure of holomorphic families and, indeed, have many applications in various
aspects (for example, see [7], [9], [11], [21], [24]).

As a new application of the “extended A-lemma” (Bers-Royden [9]), in §2, we give
another proof of a theorem of Zuravlev: T(I") is the zero component of Int S(I"). Our
proof is based only on the openness of the universal Teichmiiller space due to Ahlfors
and the i-lemma while Zuravlev’s one is essentially relies upon the Grunsky’s in-
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equality.

In §3 we extend the A-lemma to the Banach space version and as an application
of this extension, in §4, we shall give a proof of the submersivity of the Bers pro-
jection corresponding to the element of Int S(I”) under certain additional hypothesis.

In Appendix, we shall show the holomorphy of the (generalized) Bers projection
(Proposition 1) for the convenience of the reader.

§1. The Bers projection

Let D be a hyperbolic open subset of the extended plane C, that is, the comple-
ment E=C\D contains at least three points. We shall consider the complex Banach
space By(D) consisting of all holomorphic functions ¢ on D with norm

llollp=sup pp(2)7?|p(2)| < oo,
zeD

where pp(z)|dz| is the Poincaré metric of each component of D which is of constant
negative curvature —4. We note that the finiteness of the norm |[l¢[, implies that
o(2)=0(]z]|*) as z—oo if ccED.

Now let M(E) be the open unit ball with center 0 of the Banach space L*(E)=
{pe L>(C): p=0 on C\E}, where E is any measurable set of C. For each reM@),
we denote by w” the normalized p-conformal map, precisely, the quasiconformal self-
map of € fixing 0, 1 and oo, which satisfies the Beltrami equation

(W)s=p-(w"),

on C (for the details, see [2]). Set E=C\D for a hyperbolic open set D. For pc
M(E), w"|p is a univalent meromorphic function on D, therefore the Beardon-Gehring
theorem [4] implies that @(u)=S.,p belongs to B,(D), where S; denotes the Schwar-
zian derivative of a locally univalent meromorphic function f:

Sy=(" 7Y — 5 FIFF.

The map @ =00, : M(E)— By(D) is called the (generalized) Bers projection.
The following proposition (essentially due to Bers) is of basic importance in the
sequel.

Proposition 1. Let D be any hyperbolic open subset of C and E be its complement.
Then the Bers projection @ : M(E)— ByD) is holomorphic and its differential map
du®: L2(E)—ByD) at pM(E) admits an estimate of operator norm:

12
-l *

In particular, the derivative at 0 is explicitly described as follows:

ld Pl <

a00)=— =] Kodetn =i

for every ve L=(E).
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The proof of this proposition is well-known (at least, in the case that D is a
quasidisk). For convenience, we shall give a proof of this proposition in Appendix.

For a while, let us impose the case that E is nowhere dense. The following
theorem, at a glance, may seem slightly curious.

Theorem 1. Suppose that D is a dense hyperbolic open set in C consisting of finitely
many components D; (=1, ---, n). Then the Bers projection @ : M(E)—ByD) is injec-
tive, where E=C~D. Further suppose that D is connected, then the differntial map of
D is injective at each point of M(E). In particular, d,@: L(E)—ByD) is a (bounded)
embedding.

Remark. Observe that the class of nowhere dense compact sets £ with positive
area is sufficiently large. In particular, when E is connected, it is worth to note that
By(D) is isomorphic to B,(4) where 4={|z|<1} is the unit disk. Further, we remark
that for any peM(E)N{0}, w* is holomorphic on an open dense set and self-homeo-
morphism of C with a finite modulus of the Hélder continuity of order 1—e, where ¢
is small if [|p]l. is sufficiently small (cf. [2]), but not globally holomorphic.

We shall prepare a simple lemma.

Lemma. Under the hypothesis of Theorem 1, consider a homeomorphism A: C—C.
If each restriction Alp, is a restriction of Mabius transformation A; (j=1, ---, n), then
A is a Mébius transformation in itself.

Proof. We can deduce the desired conclusion from a simple observation that if
D;ND, contains at least three points then A;=A,. u

Proof of Theorem 1. The injectivity of @ is almost trivial. In fact, if @(p,)=
@(y,) for py, p,eM(E), then A=wr2.(w*1)"* satisfies the hypotheses of the lemma
above, thus AeMéb. From the normalization, we conclude that A=id, i.e., ws1=w#
on C, hence p,=p,.

Secondly, we prove the injectivity of the differential map:

d001@)=— 2| Hdean.

Without loss of generality, we may assume that co€D. Then d,@[v] has the expan-
sion

4OTI=— 1 S (nt1Xn+2Xn 43| Lu0dedn 2,

near . Suppose that vEKer d,®, then SSEC"u(C)déd 7=0 for each non-negative integer

n, hence
) ] fomodedn=0

for all (holomorphic) polynomials f({) of {. Since E has no interior points, famous
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Mergelyan’s theorem (cf. [14], [22]) says that any continuous function on E is uni-
formly approximated by polynomials on E, therefore () holds for all continuous func-
tions f on E. Because the space of continuous functions C(E) is dense in LY(E),
further () holds for all integrable functions f on E, therefore v must vanish a.e. on E.

Finally, the injectivity of d,9 for general usM(E) easily follows by the argu-
ment of the change of base points. We shall illustrate this argument, here. Let
R#(v) denote the Beltrami coefficient (or the complex dilatation) of the quasiconformal
map w*.w* for yeM(C). Direct computation shows that R*: M(C)—M(C) is biholo-
morphic and R* sends M (E#) onto M(E), where E#=w#(E). On the other hand, since
w#|p is conformal, induced map (w*)*: By(D#)—B,(D) is an isometric (Banach space)
isomorphism where (w*)y*¢=¢<(w*|p)-(dw*/dz)* and D*=w#(D). Then a formal cal-
culation shows that the following diagram commutes :

R*

M(E") M(E)
do®on | dus |

(wy*

By(D*)

By(D).

By the former step, d,@px is injective, therefore d,®Pp is injective, too. ]

We should note that differential map d,® does not has necessarily closed range,
therefore above theorem does not state that @ : M (E)—B,(D) is immersive.

Example. In Theorem 1 and the previous lemma, necessary is the hypothesis that
D consists of finitely many components. Here, we exhibit a simple counterexample.

Let I be the interval [0, 1] and U be a dense open subset of [ such that m(U)<1,
where m denotes the l-dimensional Lebesgue measure. We can divide the complement
of U into measurable two parts, say C, and C,, with positive linear measure. Choose
k., k,=(0, 1) such that k,m(C,)=k,m(C,), and define a function u by

u()={ (L kike (0= ke 01,

weere Xc, denotes the characteristic function of C;. Then u is an absolutely continuous
strictly increasing function from [ onto [/ and u'=1 on U.
Now we set

F(x4iy)=[x]+u(x—[x])+iy for x+iyeC

and F(oo)=o0, where [x] denotes the largest integer not exceeding x. Simple calcula-
tions show that F:C—C is (14k/1—k)-quasiconformal map, where k=max{k,/2+k,,
ky/2—Fk,}. Furthermore, F is a translation on each component of D, where D=
{x+iyeC: x—[x]€U}, but not globally a translation. Let , be the Beltrami co-
efficient of F and E=€~\D, then peMEN{0} but @p(u)=0, therefore @p: M(E)—
By(D) is not injective whereas D is open dense in C.

As a corollary of the first part of above theorem, we can give a simple proof of
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a result of Overholt. Before stating this result, we shall explain a needed terminology.
A hyperbolic domain D is called (conformally) rigid if any univalent function f: D—C
whose Schwarzian derivative has norm smaller than a positive constant depending only
on D must be a Mébius transformation. In particular, when D is simply connected,
D is rigid if and only if the Schwarzian derivative of a Riemann mapping of D cor-
responds to an isolated point of S. Concerning with the existence of rigid domains, we
refer articles Thurston [27] and Astala [3].

Corollary (Overholt [19]). The complement of any (conformally) rigid domain is
of zero area.

Proof. Let D be a rigid domain and E be its complement. By definition, the Bers
projection @ : M(E)—By(D) must be the constant map 0. If D would have exterior
points, clearly @ would be non-constant, therefore E must have no interior points.
Now Theorem 1 yields that M(E) is a singleton, hence E has the Lebesgue measure
zero. [ ]

Note that, in the above proof, we have used only the fact that @ : M(E)—ByD)
is a constant map, therefore this corollary also holds under a weaker hypothesis, for
example, that the connected component of S(D)={S,By(D): f is univalent meromor-
phic function on D} containing 0 has topological dimension at most 1.

Remark. The above corollary means that any rigid domain has a complement of
2-dimensional Hausdorff measure zero. On the other hand, for any given value t€
(1, 2), Astala [3] constructed the rigid domain whose Hausdorff dimension equals to ?.

§2. The A-lemma and another proof of Zuravlev’s theorem

Throughout this section, we assume that D is a simply connected domain of hyper-
bolic type. For every g By(D) there exists a locally univalent meromorphic function
f on D whose Schwarzian derivative equals to ¢. Once a normalization assigned, say
for example,

f(@)=(z—a)+ 3 ez —a)"

near a fixed point aeD\{oo}, f satisfying the equation S;=¢ is uniquely determined,
denoted by f¥¢, and it turns out that ¢~—f¥(z) is a holomorphic map from ByD) to C
for each fixed point zeD.

Now let G be a Kleinian group discontinuously acting on D and set

By(D, G)={p& B«D): (¢-£)-(g')*=¢ for all geG}
S(D, G)={peBy(D, G): f¢ is univalent in D}.

As is easily seen, S(D, G) does not depend on the normalization.
For ¢=By(D, G), there exists a unique homomorphism X¥ : G—PSL,(C)=Méb so
that fv.g=X?(g)-f¢ for all g&G, called the monodromy homomorphism of ¢. Note
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that the holomorphy of the map ¢—f%(z) forces the holomorphy of the map ¢—X?(g)
for each fixed g&G. Observe that 2¢ is a monomorphism and that X#(G) is also
a Kleinian group for every ¢=S(D, G). Let L=(E, G) be the complex Banach space of
the Beltrami differentials v L=(E) which is (—1, 1)-form for G, precisely,

(veg)-g'/8'=v

for every g€G and denote by M(E, G) the unit ball of L(E, G), that is, M(E, G)=
L*(E, GYNWM(E), where E is any G-invariant measurable set in C.
It is known that for every pesM(E, G), ®p(y) belongs to By(D, G), where E=
C~\D. We now set
T(D, G)=Dp(M(E, G)).

Note that T(D, G)cS(D, G) and that T(D, G) is connected.

In case that D is the exterior of the unit disk 4, denoted by 4%, and that I" is a
Fuchsian group acting on 4%, T(I")=T(d4* I') is called the (Bers model of) Teich-
miiller space of Fuchsian group I'. For abbriviation, let S(I") denote S(4* I'). In
particular, when [" is the trivial group 1, we call T=T(1) the universal Teichmiiller
space and S=S5(1) the quasi-Teichmiiller space. It should be mentioned that Nehari's
theorem implies that for any univalent function f: 4*—C, its Schwarzian derivative S,
has norm not greater than 6, thus S,&S.

The followmg theorem is a basic fact for our argument in the present section.

Theorem A (Ahlfors [1]). The universal Teichmiiller space is a bounded domain in
Bi(4%).

We can characterize the Teichmiiller space of I’ as the set of all holomorphic
quadratic differentials o= By(4*, I') such that f¥ can be extended to a [I'-compatible
quasiconformal self-map of C, where a quasiconformal map w: C—€ is I'-compatible
if and only if for every yel’, wer=A,ew on C for some A,&Mdob.

Now we state the Bers-Royden version of the A-lemma in the form which is con-
venient only for our present aim and which has not necessarily full generality.

Theorem B (extended A-lemma; [9] and [8]). Let E be a subset of C containing
at least four pointsand G be a subgroup of Mob acting on E. Suppose that maps f: 4,
X E—C and X : 4,—Hom (G, M&b) have the following four properties:
(i) £, )=idg, ~
(i) fi1=f@Q, -): E—>C is an injection for every fixed 1€ 4,
(iii) f(-, 2): 4,—C is a holomorphic map for every fixed z€E,
(iv) faog=Xi(g)f1 for all 2€4, and g=G,
where 4,={ze€C : |z|<r}.
Then the restriction f|4,,sXE has a canonical extension f: 4,,,X C—C with the fol-
lowing properties:
(a) f has also above four properties (i)-(iv) in which 4,, E is just replaced by
Ars5, € respectively,
(b) f2=f, -): C—C is a quasiconformal map,
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(c) the Beltrami coefficient p(2) of fi is a holomorphic map from 4.5 to L=(C, G),
(d) for each A€d,,5, u(A) is harmonic on D=C\E, precisely, p(A)=pp~* ¢(R) on
D for a () B«D, G).
The extension f: A,,,XC—C with the properties (a) and (d) is uniquely determined.

The map f: 4,XE—C with the above properties (i)-(iv) is called admissible.
As an application of the A-lemma (in the above form), we shall give another proof
of Zuravlev’s theorem.

Theorem C ([28]). For any Fuchsian group I', T(I") is the connected component of
Int S(I") which contains the origin.

Here, note that we shall not use the fact that T(I") is open in B,(4* I') except
Ahlfors’ theorem (Theorem A).

Theorem A implies that T([")cTNBy(4*, [')cInt S(I"). Since T(I") is connected,
Theorem C is obtained by the special case L=B,(4* I') of the following theorem
which is a slight generalization of Theorem 2 of Zuravlev [28].

Theorem 2. Suppose that L is a (complex Banach) submanifold of By(4* I') and V
is a connected component of Int,(LNInt S(I")), where Int X is the interior of X in L.
Then the condition VNT(I")+ @ implies that VT(I).

In order to prove this theorem, we shall prepare the following proposition which,
in some sense, is a weak version of Theorem 1 of Zuravlev [28].

Propesition 2. Suppose that a holomorphic function F: A4— By(4*, I') satisfies that
Fh)cS(T). If FDONT(ID)#= @, then F(NHcTU).

Proof. Set Q=FYT(I")cd. We know that 2 is open and closed, hence 2=4
or @ thus the proof completes, if we show the following claim: for each A, 8, the
Poincaré disk with center A, and radius log 2 is contained in .

Now we shall show the above claim. Set ¢,=F(4,)€T(") and G=X*(I"). We
may assume that 1,=0 because the unit disk 4 is analytically homogeneous and the
Poincaré distance is invariant under the Aut 4. Now we define the mapping g: 4x 4*
—C by g(A, 2)=/F*®(2) and h: Ax g(4,)>C by h(2, 2)=g(, g,"(2))=g1°8, X(z) Where
g:=g(4, +). Since F(4)cS(I"), h has properties (i)-(iv) listed in Theorem B, therefore
for each 1€ 4,5, h(4, +) can be canonically extended to the G-compatible quasiconformal
self-map h; of €. On the other hand, go=S% can be extended to a ['-compatible
quasiconformal self-map g, of € because ¢=T(I"). Hence, for every A€4,s, g; is
extended to a [’-compatible quasiconformal self-map A 108, of C, therefore FQQeT(I).
[ ]

Proof of Theorem 2. Suppose that L is a complex Banach submanifold of B,(4*, 1)
modeled on a Banach space A with norm |-||. Let #:U—A be a holomorphic chart
of the componnent V such that U is a subdomain of V and thus W=6(U) is a sub-
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domain of A. Now for every acUNT)), set 8(a)=inf,cowla—b|. We take b A
with ||b|=6(a) and define a holomorphic mapping F: 4—B,(4*, I') by the formula F(1)
=6@-(a+ab). Since F(MHcSWI") and F(UINT")# @, Proposition 1 yields that F(4)
cT(I"). Consequently the following assertion holds: if a€(UNT(I")) then the ball
in A with center a and radius d(a) is also contained in (UNT(I")). By this asser-
tion, it is known that (UNT(I")) is open and closed in W thus (UNT("))=W or @.
This conclusion means that if a coodinate neiborhood U of V has non-empty inter-
section with T(I"), then UcT(I"). Hence, it is easy to see that if VNT(I")# @, then
Ver). ]

§3. An extension of the i-lemma

In preceding section, we applied the A-lemma by making the functions one complex
variable, but sometimes it is essential to treat functions with several complex variables.
From this reason, we shall make a generalization of the A-lemma in this direction and
apply this generalized A-lemma to the investigation of Int S(I7).

Theorem 3. Let A be a complex Banach space with norm ||| and A, be the ball
{(xeA: |xll<r}. Let E be a subset of C containing at least four points and G be a
subgroup of Mob acting on E.  Suppose that maps f: A, X E—C and 1: A,—Hom (G,Mob)
have the following four properties:

i) £, )=idg,

(ii) f.=f(x, ): E-C is an injection for every fixed x=A,,

(iii) f(-, 2): A,—C is a holomorphic map for every fixed z€E,

(iv) frog=Xog)°fs for all xEA, and gEG.

Then the restriction f|A,;sXE has a canonical extension f: Ay 13X C—C with the
following properties:

(@) f has also above four properties (i)-(iv) in which A., E is just replaced by A, /s,

C respectively,

(b) f.=f(x, -): C—C is a quasiconformal map,

(c) the Beltrami coefficient u(x) of f= is a holomorphic map from A, to L=(C, G).

(d) for each x= A, p(x) is harmonic on D=C\E, precisely, ,u(x):pp*qu(*x) on

D for a ¢(x) By(D, G).
The extension f: A, ;x C—C with the properties (a) and (d) s uniquely determined.

Sketch of Proof. First, normalizing by Moébius transformations, we may assume
that 0, 1, co=E and that f(x, -) fixes 0, 1 and o« for each x€ A, (cf. [9, §1]). For
every x€A with |x[|=1, we can define an admissible map g,: 4,XxE—C by the
formula g,(4, z)=f(Ax, z). By Theorem B, g.|4.,5XFE can be canonically extended to
- 4,,,xC—C with properties (a)-(d) in Theorem B. Set f(ix, 2)=g.(4, z) for every
x€0A,. 2€4,,5, zeC. By the uniqueness part of Theorem B, f: A,;,;xC—C is a
well-defined map, and this should be the canonical extension of f|A,,;sXE.

The nontrivial part of Theorem 3 are only (a) and (¢). (The part (b) is a con-
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sequence of Theorem B.) We now outline the proof of the property (a). It suffices
to prove the assertion that f(-, z): A,,;—C is holomorphic for fixed ze€\{0, 1, co}.
Since the map f(-, z) excludes three points 0, 1 and o, Schottky theorem yields the
local boundedness of f(-, z). The holomorphy of locally bounded functions on Banach
spaces follows from the existence of the Gateaux derivative at every point (see, for
example [10]), therefore the proof of the holomorphy of f(-, z) is reduced in the case
A=C"* In this case, we can prove the above assertion by the quite same method as
in [9], thus we shall leave the proof for the reader as an exercise.

Once the admissibility of f established, the proof of the property (c) can be pro-
ceeded in the same way as in [9, §4], which we shall omit.

§4. Investigation of Int S(/")

Gehring showed that Int S=T in [15] and recently Shiga [24] proved that Int S(I™)
=T(I") for any finitely generated Fuchsian group of the first kind. Generally, it is
conjectured that Int S(I")=T(I") for any Fuchsian group /I'. By virture of Zuravlev’s
theorem (Theorem C), this conjecture is equivalent to the claim that Int S(I") is con-
nected.

Through this section, let I denote an arbitrary Fuchsian group acting on 4*.

We begin with a proof of the following proposition which is a consequence of the
extended A-lemma (Theorem B).

Proposition 2. Let V be a connected component of Int S(I'). For any ¢, .V,
there exists a quasiconformal map F from C onto itself with the following properties:

(1) fer=Fof?1 on 4y,

2) AeAy)=FoXex(r)eF~* on C for all Yl

Remark. It should be mentioned that the Beltrami coefficient py=F;/F, of the
above F automatically belongs to M(CN\f#i(d), xe:(I")).

Proof. For ¢,, .V, we define an equivalence relation ~ by the rule ¢,~¢, if
and only if the claim in the above proposition is valid for ¢, and ¢,. Since V is con-
nected, it suffices to show that each equivalence class is open in V. Let V, be any
equivalence class. Then the following is true. For arbitrary ¢, €V,, if @, By(4* I)
satisfies [lp,—¢.ll4+<a/3, then ¢,V ,, where

a=dist (¢, 05([’))——-‘#61613?{[')”90—901||.1*(>0) .

Indeed, for any ¢eBy(4* I') with |¢lls=a, we have ¢,+ip=S(") for each 1€ 4,
therefore we can define an admissible map f: 4% f¢:(4*)—C by the formula:

fQA, 2)=for29e(for)1(2).

Now Theorem B is applicable. Let f: 4,,,XC—C be the canonical extension of
fidisx for(4*)—>C. Then, for @,=¢,+2p (A€d,;s), F=f@, ) works. m
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For geMob=PSL,(C) such that g+id, g is called elliptic, parabolic, loxodromic if
tr® ge[0, 4), trig=4, tr*g& [0, 4] respectively, where tr’g=(a+d)* if g is represented

by a matrix (:'1 S)ESLZ(C). We note that an element g#id of Kleinian group is
elliptic if and only if g has finite order.

Corollary. For each ¢<IntS(I'), the monodromy homomorphism X¢:I'—-Mob is
type-preserving, precisely, X¢ sends elliptic, parabolic and loxodromic elements to elliptic,
parabolic and loxodromic elements, respectively, and tr*y=tr®x?(y) for any elliptic element
rel’.

Proof. At first, observe that the map z;: ¢—tr®X¢(y) is holomorphic for fixed ye/".
Since the isomorphism induced by a quasiconformal self-map of € is type-preserving,
Proposition 2 implies that if X#o(y) is parabolic or elliptic for a ¢,&Int S(I"), then z; is
constant on the component of Int S(I") containing ¢,, thus z, is constant on the whole
By(4*, I'). From the above facts, the desired conclusion immediately follows. ]

Let p,Int S(I") and set D=f*o(4*), G=x#o(I") and E=C\D. The Bers projection
@ : M(E, G)»ByD, G) is expected to reflect the properties of domain D, therefore the
author thinks that it is important to study the Bers projection @=@,.

As an application of Theorem 3, we shall show submersivity of the Bers projec-
tion @p.

Theorem 4. Let ¢,cInt S(I") and set D= f¢o(4*), G=X?o(I") and E=C\D. LetV
be the zero-component of Int S(D, G). Concerning with the Bers projection @ : M(E, G)
—By(D, G), the following is true. VcT(D, G) and @ : P V)->V is a (split) submer-
sion.

Proof. Define a biholomorphic isometry A: By(D, G)—By(4*, I') by the formula

A =S o, gov=(pe fou)- (D7

)2+(Po .

Noting that A(S(D, G))=S(I"), we set V,=A(V). Let any ¢,V be fixed. First let
us show that ¢,eT(D, G). Set ¢,=A(¢,)eV,. Then Proposition 2 produces a quasi-
conformal map F: C—C with the properties :

(1 f¢1=Fof¢o on 4%,

(2) 22:(y)=FeXeo(y)eF~* on € for all yer.
We denote by v the Beltrami coefficient of F. By Remark below Proposition 2, ve
M(E, G), and by (1), we can conclude that

J(sbx):SszsFof‘f’O:J(SF) ,

hence ),=Srp=00)=edM(E, G)=T(D, G).

Next, we shall show the submersivity of @ at 0. (The submersivity of @ at
general points follows also from the one at 0 and the typical argument of the change
of base points.) To this end, it is sufficient to prove the existence of the local holo-
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morphic section of @ which sends 0 to 0. Set a=dist(Q, S(D, G))=dist (¢,, S(I"))
(>0). Now we define admissible map f: By(D, G)oXD—C by the formula f(¢g, 2)=
f¥z), then, by virture of Theorem 3, f|BuxD, G)a/sXD can be canonically extended
to f: ByD, G)asx C—C with the properties (a)-(d) listed in Theorem 3. Denote by
a(¢p) the Beltrami coefficient of f(¢, -) for every ¢ By(D, G)ass, then by (b) in Theo-
rem 3, a: By(D, G);s—>M(E, G) is a desired holomorphic section of @. [ ]

Remark 1. In the case ¢,=0, the above theorem provides a proof of the sub-
mersivity of the (original) Bers projection @ : M (4, I"')-»T(I") cf. Bers [5], Earle-Nag
[12]). The uniqueness part of Theorem B shows that the local holomorphic section «
constructed above is, in this case, nothing but the Ahlfors-Weil section (cf. [1], [7]).
More generally, in the case ¢,&T(I") (i.e. D is a quasidisk and G is a quasi-Fuchsian
group), V=T(D, G) and the submersivity of @,: M(E, G)-T(D, G) is well-known, in
fact, which follows from the case ¢,=0 by the argument of the change of base points.

Remark 2. The author thinks the above theorem to be meaningful in the sense
that it may provide informations as to the question whether Int S(I")=T(I"). By this
theorem, for example, it seems to the author that £ would have interior points. In fact,
if E has no interior points, then both Theorem 1 and Theorem 4 implies that @ : M(E, G)
—By(D, G) is a local embedding at 0, in particular, the differential map d,® is a Banach
space isomorphism L*(E, G)—B,(D, G)=B,(4*, '), which seems to him impossible.

Appendix: The holomorphy of the Bers projection

The proof of Proposition 1 can be performed in the quite same way as in Nag
[18]. Theorem of Beardon-Gehring [4] yields that

1P9(wlp<12  for any peM(E).

Since, as is seen above, @ is (globally) bounded, it suffices to prove the existence of
the Gateaux derivative d,® at each point yeM(E) (see, for example, [10]). Without
loss of generality, we may assume that co¢D.

Let any ¢, a=(0, ) be fixed. We choose a K&(0, o) satisfying

(*) lplet(1+a)eK<1,

and pick é€(0, o) so that (14+a)e<é and ||pll.+EK<1. Let veL>(E) with ||y].<K.
Since [|p+itvl|l-<l for ted;={|t| <&}, the map

(t, z) —> wH+(2)elC for (t, 2)€4: XD

is holomorphic (cf. [2]) and (d/dz)w”***(2)#0 for z&D. Therefore (f, 2)>S, y+wv1,(2)

=@(p+tv)(z) is a holomorphic function of (¢, 2)€4:XD. Now we set 6(z)=

(d/dt)y@(pu+1tv)(2)|i=. In particular, when p=0, we can obtain the concrete form of 6 :
6

_ 600 @
b=~ zSSE(C—z)“d&h}

by the formal calculation and the formula:
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e Odedy

LC—-1(C—2)

(cf. [1], [2]). Fix any z,=D and ¢()=pp(z,) % P(p+1tv)(z,), then we obtain that
(@) <12. On the other hand, for te4.

d wly(z)

1 1
eO—¢0)—1p’ (0)—%S|C| =(1+a)e (C—7 Q C‘) ©)dg
1 2
_Q_;Z'_ISI:I=(1+“)$ &?C:_tSSD(C)dC ,
hence we have an estimate
9O— Ot O S o .

Since z,&D is arbitrary, we conclude that

12]1]2
a)ae
In this way, we can show the existence of the Gateaux derivative d,®=60& By(D).
Finally, let us estimate the operator norm [d,®|. By using same notations as
above, we obtain

[D(p+1v)—D () — tﬁlio_( s=o(|t])  as t—0.

e(O—¢0)= ZRZSM =(1+ade C(C l‘)go(c)dC

thus |o(H)—¢(0)|<12|t|/ae. This estimate implies that
MGZ(ML—_@&@
t

= ’

D ae

and by taking the limit for t—0,
12
ldg @[v]||o<—

for all ve L=(E)g, hence |d,P|<12/acK. Since ¢ and K is arbitrary as long as (%)
holds, now we have

1+a 12
ldu@I =y
1—{lptlle
finally, by taking the limit for a—oo, the desired estimate follows. [ |
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