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Ergodic properties of discrete groups;
inheritance to normal subgroups and invariance under

quasiconformal deformations

By

Katsuhiko MATSUZAKI

§ 0 .  Introduction

There are many studies on the ergodic properties of discrete isometry groups
F  acting on the n-dim ensional hyperbolic space B" = Ix  e  R m  xi <  I}  and on
the sphere at infinity S " '  = {x e Rn; xi =  } (c f . [N ]) . Among them, Lyons and
Sullivan's w ork [LS] is rem arkable. They obtained the conditions concerning
covering transformation groups, under which normal (regular) covers of a compact
hyperbolic manifold are recurrent or L iouville . In  other words, we may say that
they showed what normal subgroups inherit the ergodicity of the action on S"'
w ith  respect t o  the Lebesgue measure from a cocom pact discrete g roup . In
connection with this problem, in  the  present paper, we consider in  what degree
any  norm al subgroup F ' o f  F  inherits ergodicity o n  S " ' x  S " - 1  ( =  B "IF is
recurrent) and ergodicity on S" - 1  ( =  B "IF is L iouville). Particularly, in the case
where n = 2 , w e can  charac terize  5 ' x  S n -  -ergodicity of F  by conservativity
of the action on Sn - 1  o f  F':

Theorem. A  Riemann surface B 2 IF is recurrent if  and only if  any non-trivial
normal subgroup of F is conservative.

W e develop those argum ents in the first p a r t "inheritance to norm al sub-
groups" (§4 a n d  § 5 )  a fte r the  sections of several preliminaries a n d  prepara-
t io n s . T he  first p a r t  also contains som e investigations on the following two
conjectures which seem interesting in the course of ou r arguments:

( C l)  I f  B "IF is recurrent and  F ' is a norm al subgroup of F  such that any
subgroup of F IT ' is  a  finitely generated solvable group, then B "IF' is  Liouville
(cf. [LS]).

(C 2 )  F  acts on  S" - '  ergodically if and only if any normal subgroup F ' of
F  acts o n  St either conservatively o r  totally dissipatively.

In the second part "invariance under quasiconformal deformations" (§6 and
§7), we study whether the ergodic properties o n  S " ' a r e  preserved o r no t, by

Communicated by Prof. K . U eno, August 15, 1991



206 Katsuhiko Matsuzaki

deformations of T under quasi-isometric automorphisms of B . F o r  n  >  3 ,  most
of these problems turn ou t to  be  trivial by Mostow-Sullivan rigidity. Hence we
restrict ourselves to the  case  n = 2. T h e  above conjecture (C2) suggests that
if conservativity and totally dissipativity of Fuchsian groups were preserved under
quasiconformal mappings, ergodicity would be also preserved. B u t in  § 7 , we
exhibit an  example of .a quasiconformal automorphism compatible with F  which
m aps the  conservative part of positive m easure to a  null set. Actually, Lyons
[L] has already constructed by stochastic methods a pair of quasiconformally
equivalent Riemann surfaces, one has the Liouville property, bu t the  other has
not. In §6, as an extension of this example, we prove by using geometric normal
covers that all the ergodic components of a Fuchsian group may disappear by
quasiconformal deformation.

Acknowledgement. T he author learned the  Lyons' work [L] from Hiroaki
M asaoka . Communications with John A. Yelling were very helpful to construct
exam ples. Above a ll, he  w ishes to  express his deepest gratitude to Professor
Masahiko Taniguchi for patient guidance of this paper and all other mathematical
studies.

§1 . Preliminaries, harmonic functions and ergodic components

L e t B n  b e  the n-dim ensional unit ba ll w ith  th e  hyperbolic metric dp =
21c1x1/1 —  lx12 . We denote by Isom + (W ) the group of orientation preserving iso-
metric automorphisms. It acts not only on Bn but also on the sphere at infinity
sn -1  =  x l =  1 1 . The group Isom + (B11 ) h a s  the canonical matrix representation
and under this topology we consider discrete subgroups of Isom + (1311 ). I t  is  w e ll
know n that a  subgroup I  Isom+ (8") is discrete if  and  only if it  a c ts  o n  Bn
properly discontinuously. A  complete n-dimensional hyperbolic manifold R  is
a  q u o tien t o f  Bn b y  a torsion-free discrete group F. Throughout this paper
w e use the same notation for a  class of complete hyperbolic manifolds as that
o f  th e  corresponding class o f  hyperbolic discrete groups. We classify discrete
groups by ergodic properties of the action on S" - 1  which carries the normalized
Lebesgue measure dm  with m(S 1 ) = 1. Such properties may be translated into
the existance of Green's o r  harmonic functions o n  th e  hyperbolic manifolds by
the Poisson integral, where the above terms are in  the hyperbolic sense, namely,
with respect to  the  Laplace-Beltrami operator

2(n — 2)r
Ah

(1 — r 2 ) 2 [
 +   

0
-

4 1  —  r 2 O r ]

where r = Ix  (cf. [N , C hap. 5]). When n = 2, we say a  hyperbolic discrete group
acting on D =  B 2 o r  t h e  upper half plane m odel H  to  b e  Fuchsian. I n  this
case, the hyperbolic harmonicity is the same as the  usual one.
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The lim it set A (F) of the orbit of some reference point by  a  discrete group
F  is  im portant for our study . W e say  F  to  b e  of the first kind if A (F) = Sn- 1

and otherwise of the second kind. More precisely, we define several types of the
lim it points of F.

Definition 1.1. L et Q  be  a  se t o f countable points of B " not accumulating
to  any  point of B " .  Then we define

L(Q) = {x e S"- '1 there are points of Q  which accumulate to x}

FAQ) = Ix e Sn- 1 1 there are points of Q  which accumulate to x in  some
horosphere tangential to Sn- i  a t  xl

H(Q) = {x e Sn- 1 1 in  every horosphere tangential to Sn- 1  a t  x, there are
points of Q

}

C(Q) = {x c S"- '1 there are points of Q  which accumulate to x in  some
cone region with vertex x}

C(Q) = {x e Sn - 1 1 in  every cone region with vertex x, there are points
of Q

}

L et F  b e  a  discrete group acting on
 B .

F o r  Q = {y(0); y e F1, we define
A (F) = L(Q), A h (F) H ( Q ) , A h (F) = H(Q) and A c (F) = C(Q).

Remark. (1) A (F) , A h (F), A h (F) and A c (F) d o  not depend on  the  choice
of orbits, hence we may take the  orbit o f the  origin in  the  above definition.

(2) Note that H  (Q ) = (Q ) a.e. and C (Q) = C (Q) a.e. A proof of these facts
is , fo r  example in  [N , Th.2.1.2], assum ing that Q  i s  a n  o rb it  b y  a  discrete
g roup . B u t this assumption is not essential. H — H  contains so-called Garnett
points. Sullivan first remarked that their measure is zero [Su, §1V].

Class O G . A hyperbolic manifold R  = B "IF belongs to th e  class COG if  it
admits no  G reen's function. In  other words, the harmonic measure of the ideal
boundary of R  is identically z e r o .  We can characterize this class by the following
properties of the discrete group F .  See for example [N, p . 109, Th. 6.3.6]. The
equivalence (3)<=>(4) can be found in  [Su, §3].

Proposition 1.1. The followings are equivalent:
Fe  IDG •

F  is o f divergence type, i.e., E -  ly(0 )1r  1 =  C ° .
yE F

J (T) = S" - 1  (a.e.).
m(A ,(F)) > 0.
F  acts ergodically o n  Sn- 1  x S" - '.

Classes OM, (1 m  co), U „ .  W e denote by 0;,1, (1 m  <  co) a  class of
hyperbolic manifolds such that the  vector space

HB(R) = {(real) bounded (hyperbolically) harmonic functions o n  RI
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has a t m ost m  dimension. Let u e HB(R) be  positive. Suppose tha t for every
e H B (R ), u>  y>  0 im plies the existence of a constant c  w ith  cu = v. Then

the function u is called HB -minimal on R .  The dimension of HB(R) is the same
as the number of linearly independent HB-minimal functions on  R .  In the case
where n = 2, we can characterize the class O il, by the harmonic boundary z1„(R)
o f  Wiener's compactif ication R* o f  R  (cf. [S N , C h a p . IV ]) . T h a t is , R e OM,
(1 < m < co) if and only if  .4 (R ) consists of a t m ost m  p o in ts . A s  a  limiting
class of O'A'B ,  we define a s  a  class o f  hyperbolic manifolds R  such that
HB(R) has at most a  countable number of HB-minimal functions as basis. Fur-
ther, by U H B  we denote a class of R  on which there exists at least one HB-minimal
function. Remark that we assume if R e  0 , ,  R  has a HB-minimal, i.e., O G  U „ ,

which is different from the usual notation as in e.g. [ S N ] .  We see R e U H B  - O G

if and  only if z w (R ) contains a n  isolated point.
We characterize those classes 0 1

1113 (1 m  <  cc) a n d  U H B  b y  indivisible in-
variant measurable se ts  o n  S n ' under discrete groups. Originally they were due
to Constantinescu-Cornea [CC] for Fuchsian groups.

Definition 1.2. Let F be a  discrete group acting on B .  W e  c a ll  a Lebesgue
measurable set E  o n  sn - i- with m(E) > 0  ergodic component for F  if

(1) [invariant] E = y (E) (a.e.) for every y e r ,  and
(2) [indivisible] if a subset E ' o f  E  w ith m(E') > 0  h a s  th e  property (1),

then E  = E ' (a.e.).

Proposition 1.2. I f  E  S " - 1  i s  a n  ergodic component f o r  a  discrete
group F ,  then the projection t o  R  1 3 " /F  o f  th e  harmonic measure

1  —  I 
2  \  n - 1  

dm(x)WE(Z) =
(lx z I 2 )

is  HB-minimal on R . Conversely , i f  u  is  HB-minimal o n  R , then the lif t û(z )
to B " has non-tangential limits which take a positive constant on som e ergodic
component E  f or F  and zero on S" - 1  —  E a.e.

Pro o f . W e denote  th e  canonical projection B" R  b y  it. L e t  u  b e  the
projection of w E (z), y a harmonic function on  R  satisfying u > y> 0. Since e =
y o ir is  a  bounded harmonic function o n  B ", i t  h a s  a  non-tangential limit at
almost every x o n  S " ' (cf. [N, pp. 91-92]), which we denote by the same letter
ii(x). B y  the inequality WE  0  on  Bn, we have 1 E (x) > e(x) a . e .  o n  S . - 1,

hence e(x) = 0 a.e. on S" - 1  — E .  If 5(x) is  n o t  constant a .e . on  E , using the
F-automorphic value 5(x), w e can take a  measurable subset E ' o f  E  with 0 <
m(E') < m(E) which is F-invariant in  a .e . sense . B ut this violates that E  is  an
ergodic component for F .  Therefore there is a constant c  (0 < c  < 1) such that
e(x) =  c 1E (x ) a .e . S ince  th e  bounded harmonic function fi(z) is reproduced by
the Poisson integral of 5(x), we get 5(z) = cw E (z), hence y = cu on R .  This means
that u is HB-minimal.
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Conversely, fo r  a  HB-minimal function u  o n  R , let û(z) = u o n(z) and E =
Ix e S" - 1 1 the  non-tangential limit ü(x ) is positive}. N o t e  th a t E  is  F-invariant
a n d  m(E) > 0. W e w ill show  th a t  E  i s  indivisib le . If th e re  is  a  F-invariant
m easurable  subset E ' o f  E  satisfying 0 < m(E') < m(E), w e  c a n  d e f in e  a
F-automorphic boundary value 5(x) so  th a t 5(x) = û(x) o n  E ' a n d  5(x) = 0 on
S" 1 E ' .  I t  is  c le a r  th a t  0  ii(x ) <  ü(x) a.e. a n d  5(x) const. x  C i(x ). Then
the Poisson integrals 5(z) and  Ci(z) satisfy the  same condition, hence so are the
projections y and u on  R .  But this contradicts that u is HB-minimal. We have
seen that E  is  an  ergodic component for F .  It is obvious that û(x) = const. on
E, for otherwise, E  w ould be divisible.

This shows one-to-one correspondence between ergodic components for
and HB-minimal functions o n  Br' /I-  u p  to  constant m ultiples. Hence we have;

Proposition 1.3. (1) T e  Or& (1 m  < c o )  i f  and only  i f  S '  is a disjoint
union of at most m ergodic components for T  up to  null sets.

(2) T e  O il, if and only  i f  Sit'  i s  a disjoint union of at m ost a countable
number of ergodic components fo r T  up to null sets.

(3) F e UHB if  and only if  Sn- 1  h as  an ergodic component fo r F.

§ 2 .  Conservative part and dissipative part

Classes C, U e and W .  The action of a  discrete group I ' divide S " '  into
two measurable sets, conservative p a rt M T ) a n d  dissipative p a r t  g ( T ) .  These
are determ ined up to null sets b y  the following requirement: g (T )  has a  mea-
surable fundamental se t, and  for each subset A c ge(T ) w ith  positive measure,
yfify e rn(y (A )n A) > 0} = oo (cf. [Ag, appendix]). We define

C { T ;  g f ( r )  = sm-1 a.e., tha t is, T  i s  a  conservative group}

= {T; m(M(F)) > 0, th a t is, T  is  n o t  a  totally dissipative group} .

W hen n = 2, Pommerenke [13
1 ]  introduced "Fuchsian groups of accessible

ty p e " . F o r  Fuchsian groups I ' of convergence type, i.e., E (1 - ly(0)I) < cc, we
y e r

call a  Blaschke product g (z )  =f l y(z) exp ( — i arg y(0)) th e  Green's function of
ye F

I ' with respect to  0.
(1) 1-' is  of accessible type if g'(z) has a  finite non-tangential limit on a set

of positive measure of D .
(2) F  is of fully  accessible type if g'(z) has a  finite non-tangential limit a.e.

o n  OD.
(3) I ' is  o f  Parreau-W idom type if  g'(z ) belongs to  th e  Nevanlinna class,

j. 
2 n

i.e., log + Ig'(re w )lc/0 is  bounded  fo r  0 < r  < 1.
Jo

= IF ; r  is  no t of Pareau-Widom type}.
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W hat is the set where g'(z) has a  finite non - tangential limit?

Proposition 2.1 (Pommerenke [P ,, T h. 1]). L et F  be a  Fuchsian group of
convergence type acting on D . T h en  the following measurable se ts  on  OD are
coincident up to null sets:

(a) A  set where g'(z) has a  finite non-tangential limit
(b) ap —  A (F)
(c) T he dissipative part g(F).

Therefore for Fuchsian groups, we know C = {not accessible type} U {diver-
gence type} and U , = {not fully accessible type} U {divergence type}.

Later, Sullivan [Su] generalized Proposition 2.1 in higher dimensional cases
by a  similar argument to  the original proof of P roposition 2.1. Further, a s  has
been mentioned in Remark (2) after Definition 1.1, he showed that A h (F) =  A h (F)
a.e. In sum;

Proposition 2.1'. Fo r any dimensional hyperbolic discrete group F, l'(F)=
Ah (F) a.e.

N ote tha t a  discrete group of the second kind does not belong to  C , and
whose limit set is a  null set does not belong to  U .

A  characterization o f  conservativity for R iem ann surfaces. Even in the case
w here n = 2, it is not easy to distinguish w hat Riemann surfaces belong to C,

or W c in  general. So we restrict ourselves to planar Riemann surfaces such
as D — Q, where Q = W O is a  countable number of points of D not accumulating
to  a n y  poin t of D .  A  necessary a n d  sufficient condition for D — Q  to belong
to  each  one  o f C , U , and  W c i s  a s  follows. These results a re  essentially due
to Pommerenke [P ,, E x. 1] &  [P 1 ,  Th. 8].

Lemma 2.1. (1) The Riemann surface R  = D — Q belongs to the class C  if
and only i f  m(C(Q))= 1.

(2) R E U c i f  and only i f  m(C(Q))> 0.
(3) R n W  f  and only  i f  {qh }  does not satisfy  the  Blaschke condition, i.e.,

E (1 — q ) = co.

Pro o f . (1) and (2): W e m ay assume tha t the  o rig in  0  is  no t in  Q .  Let i t
be a holomorphic universal covering map D = {izi < 1}  R  = { lw i <1 }  — Q such
that n(0) = 0, F the corresponding Fuchsian group, and g(z) the Green's function
of F  w ith respect to  0 . I t  is  e a sy  to  se e  th a t  the projection of  —log lg(z ) to
R  is the usual Green's function of R  with a pole at 0. S in c e  Q has zero capacity,
it coincides with —log 114 , 1. Therefore —log Ig(z)1 = —log ir(z)j, which implies
that g(z ) = en(z ). We consider the image under g  of the  Green's fundamental
dom ain G  o f  F  w ith  respect t o  0 .  I t  i s  a  starlike domain which consists of
radial segments, the images of Green's lines. Since g(z )= en(z ) is unbranched,
n o  Green's line ends a t  a  branched p o in t .  Hence g(G) = en(G) is  a rotation
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qn o f D — H
n=i k" lq .1 ) •

Stolz angular region
T = OD — C(Q) (a.e.).
low the equivalences
yield our assertions.

L e t  T  b e  a  se t o f  x  e  aD where g (G ) contains a  small

of vertex x with any large opening. Then it is clear that
Pommerenke proved that m (T ) =  m (g (r ) ) , from which fol-

F  U e m ( T )  =  1 and F e C <=> m (T ) =  0 [P2 , C o r.] . They

(3): R  W  e if  an d  only if R  satisfies the Widom condition for some (hence
every) p  e  R , th a t is, letting g (w , p )  b e  th e  Green's function o n  R  w ith a pole
a t  p  a n d  B (t, p )  th e  first Betti num ber o f  {w e R ; g(w , p ) >  it ho lds tha t

Jo
B(t, p)dt <  cc. F o r  R = D —  Q  ( 0  Q ), g (w , 0) = —log I w  a n d  B(t, 0) --

#1q G Q; —log 1(11 > tl. T hen  by  e =  r ,

B(t, 0)dt = #1q e Q;
dr

<
J o

I  
i

This integral converges if and only if #{q e Q; I gl <  r} dr converges, which is
O

equal to  E (1 —

§ 3. Strict inclusion relations between the classes

Theorem 3.1. The following system  of  strict inclusion relations holds.

OG °cF7B UHB

C Ue

Pro o f . The inclusion relations are evident if we remark that ergodic compo-
nents are in the conservative p a r t .  The strictness 0 , O 'A ' B  W i g  can be found
in  [T 2 ] ,  and the others are  seen if we construct the following two examples of
arbitrary dimensional hyperbolic manifolds R:

(1) R  e C  b u t R  UHB

(2) R E  U H B  but R C
(1) has appeared in  [V M ]. To construct (2), we prepare M e 0 , 13 —  0 , which
contains a compact totally geodesic submanifold N  with codimension 1 such that
M — N is connected (cf. [T 2 ]). Then by Lemma 3.1 (II) in the following subsec-
tion, we obtain a  discrete group G whose limit set A(G) is the ergodic component
fo r G .  W e know G 0 C, fo r G  is  of the second kind, b u t G E UH R.

Geom etric covers obtained by  cutting along totally  geodesic subm arnfolds. Let
M  be an n-dimensional complete hyperbolic manifold which contains a compact
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totally geodesic subm anifold N  w ith  c o d im e n s io n  1  su c h  th a t M  —  N  is
connected. L e t R  b e  th e  hyperbolic manifold with boundary obtained from
M — N  be attaching two borders {IN/ , N } corresponding to N .  T hen R  is
represented a s  K/G, where K  is  a  closed region in B  w ith  to ta lly  geodesic
boundary a n d  G  i s  a  discrete subgroup of Isom + (B n) under w hich  K  is
invarian t. Since k n Sn - 1 is  c lo se d , G-invariant and contained in  A (G ), K  is
actually the Nielsen convex hull K(A (G )) of the lim it set A(G).

Conversely, if  w e  s ta rt from  a  given hyperbolic manifold R = K(A(G))/G
w ith borders N + a n d  N -  w h ic h  a re  totally geodesic a n d  mutually isometric,
then by glueing N + to  N - , we obtain the complete hyperbolic m anifold M . From
a  viewpoint of covering transformation groups, the corresponding discrete group
to  M  is  construc ted  a s  follow s: L e t  S ( S )  b e  an  orthogonal hemisphere in
OK(A(G)) such that S t /stab G  (S t ) =  N  (resp . S - /stab G  (S - ) = N - ). Let T  be an
element of Isom + (13") which maps the  interior of S 4- t o  the  exterior of S -  a n d
induces th e  isomorphism between th e  stabilizers stab G  (S t ) —> stabG  (S - ). T h e n
the  combination theorem concerning discrete groups asserts that th e  group F
generated by G  a n d  T  is discrete, represented by an HNN-extension G*, and
M  = B"/F (cf. [Mg, p. 78]).

Lemma 3.1. Using the same notations under the same circumstances as above,
(I) M = B"/F E OG  m (A (G ) )=  0  and (II) M e OHB - OG<=>A (G) is  the  ergodic
component f o r G  (with positive measure).

Pro o f . W e have the following diagram of covering maps

M  D  M — N

where R* = B"/G, and assum e 1r,(0)e =  R — (N+ U N - ). Let / 8 be  the geodesic
ray in B'' from 0 towards OE S" - 1 . T h e n  0 A (G ) if and only if n ( l 0 ) hits neither
N + no r N - , which is equivalent to the condition that n,(18) does not hit N (c M ).

(I) Assume that M e O .  L e t  T be a  ball in B" with center 0 and n0 (T ) c
R. B y  th e  recurrence o f  th e  geodesic rays, th e  s e t  {O: nF (I0 )  recurs infinitely
often to n F (T )}  is  of full measure. Therefore,

m(A(G))= m({O: 71F(10) does not hit N})

=  m({0: nG (le )  recurs infinitely often to ir G (T)1)

= m(A,(G)).

Since G  is  of the second kind and  m(A c (G )) is either zero or one (Proposition
1.1), we have m(A(G))= O.
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Conversely, if M  OG , th e  measure of the  geodesic rays {17,(1 9 )} which hit
N  (compact) infinitely often is zero. This implies that for almost every 0, 10  does
n o t  p a s s  If(K(A (G)))1 f E ,  in fin ite ly  m any  tim es. T hen  w e  easily  see  tha t
U  f (A (G))-- - SR - 1 a.e., especially we know m(A (G))> O.

f E  F
(II) N ote  tha t fo r  any f  e F — G, m(f(A (G))r) A (G))= O. B y  (I), we may

assume that m(A (G))> O. If A (G) is not an ergodic component for G, then there
are G-invariant sets E , and E2 with positive measure such that E, U  E2 = A(G).
So the action of F  on S" - 1  is not ergodic because  F (E 1 )  a n d  F(E 2 )  are  both
F-invariant and  m(F(E 1 ) n F(E 2 )) =  O. This shows tha t part

Conversely, suppose that M  0 „ •  T h e n  th e re  are F-invariant sets A , and
A2 with positive m easure such that A , U A2 = S a - 1 . Set E . = A i n A (G) (i = 1,
2). E ,  and E2 are G-invariant and E, C1E 2 =  0 .  W e now show tha t m(E i ) > 0,
which implies that /1(G) is  no t an ergodic component for G .  If, say m (E,)= 0,
then  A (G) is contained in  A2 a.e., hence F(A (G)) is contained in  F(A 2 ) =  A2
a.e. I n  ( I )  we have seen that F(A (G))= S" - 1  a.e. under the assum ption M  OG.
Thus S" - 1  =  A2, which contradicts m(A 1 ) > O.

Remark. For Fuchsian groups, we have the following system of strict inclu-
sion re la tions. M ost of them were shown in [K T].

OG OTH3 - 4  0  i7 B UHB °AB

C We

Here, OAB is  a  class of Riemann surfaces which a d m it n o  bounded analytic
functions except fo r constan ts . T he  famous Myrberg's example is a n  example
of a Riemann surface R  such  tha t R e OAB b u t R U .  I n d e e d ,  the  2-sheeted
covering su rface  o f C  w ith  a n  infin ite  num ber o f  branched p o in ts  above
N = {1, 2, 3, ...} is belongs to OG (see Theorem 4.2 in  th e  next section).

§ 4. Finite covers

Before we consider normal covers in general, we will see in  this section that
the ergodicity is almost preserved when it is passed to a  subgroup of finite index
(cf. [T 2 ]  a n d  [ M o ] ) .  W e begin by showing two fundamental lemmas which
will be used later.

Remark. T h e  sym bols = 0 ,  e t c .  a re  used in  "almost every" sense
unless we mention specifically, in  § 4 .  I f  there  is  no danger of confusion, we
sometimes omit "almost every" or "up to null sets" in the remainder of this paper.

Lemma 4.1. L e t  G  be  a  discrete group, H  a  subgroup o f  G , an d  A  an
ergodic component f o r H .  Then E = U g(A ) is an ergodic component f o r G .  In

g E G
particular, H e U H B  G e UHB and H e  O r iB  G E
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P roo f. I t  is  c le a r  th a t E  is  invariant under G .  I f  there  is  a G-invariant
subset E , o f E  satisfying m(E)> m (E,)> 0. Then E 2  =  E — E , i s  G-invariant
a n d  m(E)> m(E 2 ) >  0. Set A .  = A rl E , (i =  1, 2). T h ey  are H -invariant and
A, II A 2  =  A. Hence, we may assume, say A, = A .  This implies A c  E i , from
which follows E  G (A ) c  G (E , )=  E , .  It contradicts to m(E) > m(E ).

Lemma 4 .2 .  For each h e Isom (B"), there are positive constants t = t(h) and
T = T(h) such that

tm(A) m (h (A ))  T m (A ) f o r every measurable set A  on S" - 1  .

1 _  i h -1(0 )1 2),.-1
P roo f. It is  know n  tha t m(h(A))=

f A(1 x  h  - 1  (0)12
dm(x). Estimating

the kernel from below and  above, we have

(  1  -  h - 1 (0)12   ) n - 1  
m ( A )  m ( h ( A ) )

(  1 —111-1(0)12
m ( A ) .

(1 + 1h - 1 (0)1)2 ( 1  —  l h - 1 (0)1)2

T he next result is the  first step to consider the  problem touched upon in
the introduction.

Lemma 4 .3 .  I f  H  is a  subgroup o f  F  o f  finite index and E n  U HB , then
H e U H B .

Pro o f  F ix  a  left coset decomposition F = y ,H H ... U 7 H .  L et A  b e  an
ergodic component o f F .  I t  i s  H-invariant. Suppose that there  is n o  ergodic
component for H  in  A .  Then for any e > 0, there exists E c  A  such that 0 <

m(E) < e and E is  H -invariant. Set e = m(A) E  T(y,), where T(yk)  is  the con-
k=1

stant as in  Lemma 4.2. F or this e, we take E as a b o v e . Let B = U yk(E). It
k=1

is  f-invariant and  contained in  A . B u t , this contradicts to the  fact that A  is
a n  ergodic component for F, because

0 < m(B) m(Yk(E)) E T(y )m(E) < m(A) .
k=1

Therefore there is a n  ergodic component for H  in  A.

Further, we conjecture tha t F e U H B  H E  U H B  when H is normal in F  and
F/H is  cyc lic . This conjecture combined with the  next Proposition 4.1 would
be related to the problem (Cl) mentioned in the introduction, which was raised
in  [LS, p . 304].

Proposition 4.1. L et F  be a  discrete isometry group acting on Br' which is
in  O G ,  F ' a norm al subgroup of F. I f  F '  belongs to U H B ,  then F' actually
belongs to O H B .
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A  proof is given in  [V M ] .  It is based  on  the  following lemma:

Lemma 4 .4 .  L e t  H  b e  a norm al subgroup of  F and A  c  S 'I - 1  an ergodic
component f o r H . T h en  each  y(A) (y e F)  is  an ergodic component f o r H.

Pro o f . W e show y(A) is  H-invariant and indivisible. y(A) is  H-invariant:
F or every h e H ,  there is som e h 1 e H  such  that h o y = y o  h 1 ,  because H  is  a
norm al subgroup o f  F .  H ence h 0 y(A) = y 0 h 1 (A ) = y (A ). y (A ) i s  indivisible:
Let y(A') be a H-invariant measurable subset of y (A ) . For any h e H, y 0 h(A ') =
h, o y(A ') = y(A'), hence h(A ') = A'. Since A' c  A , and  A  is  a n  ergodic compo-
nent, we have y(A') = 0  o r  y(A') = y(A).

Corollary 4 .1 .  L e t F  be a  discrete isometry group acting on B " w hich is in
°FIB > r be  a norm al subgroup o f  F .  I f  F ' belongs to U m , th en  F' ac tually
b e lo n g s to  O .

This follows from Lemmas 4.1 and 4.4. It is a  parallel result to Proposition
4.1.

W e return  to  the position after Lemma 4.3. W e can see that each ergodic
component is divided at most n  pieces by an  n-cover. That is;

Theorem 4 . 1 .  L et F' be a subgroup of  F w ith  [F: F'] = n  < co . If  F e 0- - HB ,

then F' e
 ° H 1 1

generally , i f  FE ° j i g  (1 N  c c ) ,  th e n  F ' e O .

Pro o f . W e show only the former sta tem ent. The latter is carried o u t by
the sam e proof. Let H  = n I t  is easy  to  see  that H  is  norm al in F

ye F

and is  of finite in d e x . We define m = [F' : H ] < co. Fix left coset decomposi-
tions

F = f i r 1 1 ,11 f n r" ( f 1 = 1 )  and

F' = e, I I  I I  .1 1  e m H( e ,  =  1 )  .

W e may take {g i i } = a s  a  system of representatives fo r a  left coset
decomposition of F  by H.

By Lemma 4.3, H  h as a n  ergodic component A .  By Lem m a 4.4, we see
each gi i (A) is an ergodic component for H .  Thus {g &(A)} are mutually coincident
o r d is jo in t. Their union is  S" - 1 ,  fo r U gi i (A ) is  F-invariant and F e  0 „ .  Let

dim HB(H) b e  the  number of ergodic components fo r H  a n d  k  the  number of
elements o f  {gu } w h ic h  f ix  A .  Then, w ith each ergodic component fo r H , k
sets of { gi i (A)} coincident. Hence dim HB(H) = mn/k.

Let {Ap } (p = 1, mn/k) be the ergodic components for H .  By Lemma 4.1,

U  e (A ) = U  e (A  p )  is  an  ergodic component for F ' .  We classify {Ap } by the
J=1
following relation:



216 Katsuhiko Matsuzaki

A A2 A , and A2 are contained in the same ergodic component for F'

We denote the equivalent class by [A l ]. T h e n  d = dim HB(F') = #1[A g ]}. Let
rp  b e  the  number of elements o f {ei } which fix A p . Since precisely k  elements
of {gu } fix A l, and {ei } r,, is not larger than k  for every p. The equivalent
class [A,1 ]  contains m ir, sets. Therefore,

mn d d  m  m d
=  E E ,„ =

q=1 r,, q=1 k

tha t is, n > dim HB(F').

Finally we remark that the classes OG and C are preserved by finite covers.

Theorem 4.2. L e t H  be a  subgroup o f  F  o f  finite in d e x . Then A c (H ) and
A h (H) coincide precisely with / (T ) and Ah (r) respectively. Especially, H e OG •%•

F e O G  and H e C <=> F e C.

P roo f. It is clear that A c (H ) c / (T ) and A h (H) c A h (F ) .  We will show the
inverse inclusions. Let F = He, LI ... LI He„ b e  a  right coset decomposition of
F  by  H .  Let {y„,(0)} y ,n E  r  b e  a  sequence of conical (horospherical) approach to
x e / (T ) (A h ( F ) ) .  Then at least one coset He, contains infinite number of ele-
ments {y„,,} of {y„,}. Since y„,,ei- 1 E  H, the orbit of e,(0) by H  contains a  sequence
of conical (horospherical) approach to x.

§ 5 .  Inheritance to normal covers

Roughly speaking, by normal covers ideal boundary of a hyperbolic manifold
is divided evenly. So w e expect that normal subgroups o f  a  discrete group G
should inherit some ergodic property from G .  The following theorem explains
such an aspect well.

Theorem 5.1 L e t  F  be a  discrete subgroup of  Isom + (B") which belong to
OG . Then its non-trivial normal subgroup H  belongs to C.

P roo f. Assume th a t  H  is no t conservative . T hen  H  h a s  a  fundamental
se t A  of positive  measure in  th e  dissipative p a r t  g ( H ) . O n  th e  o ther hand,
th e  assumption F e  O G  im plies that / (T )  h a s  fu ll measure (Proposition 1.1).
L et w ,(z) b e  th e  harmonic measure o f  A  w ith  respect t o  z ,  th a t is, w,(z) =
r

dm (x ). Since w,(z) has the non-tangential limit 1 A (x) at almostI — zI 2

every  x  e  Sn ', w e can  choose  a  po in t x  e  A (1 / (r )  such that w,(z) —> 1 a s  z
approaches to  x  non-tangentia lly . Take a  subsequence {y„} o f  F  such that
y„- 1 (0) x  in a cone. Then w A (yn

- 1 (0))—> 1 as n -+ cc, where wA (y,,- 1 (0))=
m(y„(A)). We define A„ = y„(A).

F or any heH —  {1}, there is some h'eH —  { 1}  such that

h(A„)n A„ = y n {y„- t hy„(A)n A }  y„{h'(A)n AI
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b y  n o rm a lity  o f  H .  S in c e  A  is a  fundam ental s e t  o f  g  (H ), w e  have
m(h(A„)(1 A„) = O. F or an  arbitrary h e H which is not identity, we take a  con-
stant t > 0 as in Lem m a 4.2. Then m (h(A „)) + m (A ) (1 + t)m (A „). This value
exceeds 1 when n  is sufficiently large, because m (A „)-- 1. Therefore h (A )  and
A „  m u s t in te rse c ts  w ith  p o sitiv e  m e a su re , w h ic h  c o n tra d ic ts  t h e  result
m(h(A„)n A„) = O.

An application of Theorem 5.1 is given in  [V M ]. In  the  case  where n = 2,
the converse is also t r u e .  Namely, we can characterize Riemann surfaces of OG
by their normal covers (cf. yelling [V]).

Theorem 5.2. A  hyperbolic Riemann surface R  belongs to the  class OG if
and only if  its any non-universal normal cover belongs to the class C.

Pro o f . We have only to show "if part". Assume that R  O G . Further we
may assume tha t R  does not have  border. W e take a simple closed curve a in
R  which is homotopically non-trivial and divide R  into two subregions. Since
the Wiener's harmonic boundary A„,(R) is not empty and 4 ( R ) n  =  0 , a t least
one of the subregions does not belong to

SOH , = {bordered Riemann surfaces whose ideal boundary has
null harmonic measure}

by its characterization theorem (cf. [T 1 , §1].) Let Y be the other subregion. W e
cu t off Y  from  R  and  instead o f Y  paste a  conformal disk U  to  m ake a  new
Riemann surface fi. Since 1-i  has the subregion not belonging to SO H ,, we see
fi o G .

L et it  be  a holomorphic universal covering map D —) 1".i  satisfying 1(0) e U,
and H  the corresponding Fuchsian g ro u p . S e t it - 1 (U) = {U„}. They are neigh-
borhoods o f  th e  o rb it po in ts  o f the  origin by H , which have  the  same finite
hyperbolic diameter. Since fi OG, we know m(A,(H)) = 0  b y  Proposition 1.1.
Hence, almost every x on OD satisfies the condition (P): there is some Stolz angular
region in  D — {U„} with vertex x on OD . W e prepare the copies {)Ç} of Y , cut
off {U„} from 1 , and instead of each of {U„} paste each o f {K }. The resulting
Riemann surface w e  deno te  by  R'. I t  i s  a holom orphic norm al cover o f  R,
because there is the  covering map it as follows:

Y„ Y is  the identity map for each n,

= AID- {u„} •

This norm al covering surface R ' does no t be long  to  C , because  R ' h a s  the
subregion D — {U„} which satisfies the condition (P) [P 1 ,  Th. 3].

B y  a n a lo g y  to  0 ,, one  m ay feel that the conjecture (C2) concerning 0„
mentioned in  the  in troduction  i s  n a tu ra l. T o  p ro v e  a  relating result to this
conjecture for n = 2 (Theorem 5.3), we need a  lemma:
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Lemma 5.1. L e t S  = { s}  be  a  s e t  o f  a  countable number of  points in D
which has no accumulated points in D .  Suppose that there exists a positive constant
.5 such that f o r each po in t z  o f  D , the  hyperbolic distance f rom  z  to  S  is less
than (5. For any measurable set A  on aD, we denote the harmonic measure of  A
by w A (z), and define Q = 1z e Sw A (z) 1 / 2 1 .  Then C(Q) = A (a.e.).

P r o o f  w A (z) has the non-tangential limit at almost every x Gap, denoted also
by wA (x). B e low  a ll the statements of this proof is in "a.e." sense. Since wA (x) =
1A (x), we have the inclusion C(Q) c {x e aplw,,(x) 1/2} = {x e aDlwA (x) = =
A .  Similarly, C(S — Q ) c {x e aDlwA (x) 1/2} = OD — A .  B ut b y  th e  distribu-
tion of S , we know C(Q) U C(S — Q) = al). Therefore C(Q) = A.

Theorem 5.3. A  R iem ann surface R  belongs to the class O H B  tif and only  if
f o r any  closed se t E  o f  countable points in R , any holomorphic normal cover of
the Riemann surface R —  E is either conservative o r totally dissipative.

P ro o f . Assume th a t R  0 „ •  T h e n  th e re  e x is ts  a non-constant harmonic
measure w on  R .  We choose a  se t o f a  countable number of points S  in  R  so
th a t it  h a s  n o  accumulated points in  R  and  the  hyperbolic distance from any
point of R  to  S  is less than  som e positive constant. Let n: D —■ R be  a holo-
morphic universal covering map, =  w  o n and  g = n - l (S). L et A  be  a  set of
points on ap w h e re (z )  h a s  a  non-tangential limit 1. Since v-V(z) is non-constant,
0 < m (A ) < 1. W e define Ê = {z e W(z) 1/2}. Then by Lem m a 5.1, C(Ê) =  A
(a.e.). S e t  E  = n (É ). It is closed and countable . The restriction It to  D —  É is
a holom orphic norm al covering map o f  R — E .  The Riemann surface D —
belongs to U c ,  bu t not belongs to C, by Lemma 2.1.

Coversely assume tha t R e O H B .  F or any closed se t E  o f countable points
in  R , the R iem ann surface R —  E a ls o  b e lo n g s  to  0 „ .  T h e n  the assertion
follows directly from the  general theorem:

Theorem 5.4. L et F' be a  discrete subgroup of  Isom + (B") which belongs to
OFfs• T h e n  i t s  normal subgroup F' either belongs to C  o r not belongs to U.

Pro o f . We will show that A h (F') is invariant under F .  Then the ergodicity
of the action of F  forces m(A h (F')) to  b e  one or zero . The form er means that
F' e C  and the latter F '  U c b y  Proposition 2.1 '. If x e A h (F'), then there is a
sequence {y} of F ' such that {y(0)} approaches to x horospherically. Let y be
any element o f F .  A  sequence {y o y,,'o y - 1 }  belongs to  F ' by normality, and
the im ages of a reference point y(0) under {y o

 y  o  y '}  approach  to  y(x) horo-
cyclically. H ence y(x) e  A h (F'). This shows tha t A h (F ')  is  invariant under F.

§6. Q C non- invariance of 0 ,  and UH ,

In  the  remainder of this paper, we treat only Fuchsian groups because our
problems turn out to  be  trivial by Mostow-Sullivan rigidity in the higher dimen-
sional c a se s . See Remark in the end of §7.
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In the classification theory of Riemann surfaces, we often pose a question
whether a  given class (9 of Riemann surfaces has a  property of quasiconformal
invariance , o r no t. H ere , w e  sa y  (9 i s  quasiconformally (QC) invariant if it
satisfies the following property:

"F or any Riemann surface R c  (9, if there is a  QC homeomorphism of
R  onto another Riemann surface R', then R ' belongs to (9."

Riemann surfaces of finite conformal type are of course QC invarian t. Fur-
th e r  it  is  k n o w n  th a t th e  class O G  is  Q C  invariant (Pfluger). Moreover, the
classes defined by degeneration for harmonic functions with finite Dirichret inte-
grals, 0 6  ( 1  n co) and  U H B  are QC invariant (cf. [SN, Chap. III ]) . These
follow from a  general result that a  QC homeomorphism between two Riemann
surfaces has a  homeomorphic extension to their Royden's compactifications which
preserves harmonic boundary p o in ts . (Lyons' example below implies that a  QC
homeomorphism between Riemann surfaces need not have homeomorphic exten-
sion to their Wiener's compactifications because if it  has, the harmonic boundary
is preserved [SN, p. 2 8 2 ]. Recently, Segawa [Se] constructed a  concrete example
of a pair of Denjoy domains whose QC homeomorphism cannot be extended to
their M artin's compactifications). W e can see both O A B  a n d  0 „  are  n o t QC
invariant b y  an application of Myrberg's well-known example [SN , C hap. II].
For Denjoy domains, e _ E  belongs to 0 „  where E is  a com pact set on R  if
a n d  only if  th e  linear m easure o f  E  is  z e r o . Thus w e can also  construct a
counterexample for QC invariance of O A B  by using the Beurling-Ahlfors extension
[BA].

A  class (9 of Fuchsian groups is QC invariant if it satisfies;

"F or any Fuchsian group F  (9, if there is a  Q C automorphism f  of
D  such that F ' =  fF f - 1  i s  Fuchsian, then F ' belongs to (9."

F o r example, th e  class o f  Fuchsian groups whose exponent of convergence is
e q u a l to  1, which includes OG ,  i s  Q C  invarian t [FR ]; the  class o f  Fuchsian
groups whose limit set has null linear m easure is not QC invariant [T1 ].

N ote th a t  Q C  homeomorphisms which appear in  th e  above examples are
defined essentially on the whole extended complex plane e .  It had been difficult
to construct QC homeomorphisms between non-planar surfaces which show non-
invariance o f  06  (1  <  n co) a n d  U H B .  I n  th is  section, w e  p rove  tha t the
classes 0 '„  a n d  U „  a re  n o t  Q C  inva rian t. F o r O H B  = OhB ,  Lyons [L ] con-
structed a n  example such that R  and  R ' are  QC equivalent, while R e 0 „ „  and
R' e 04 B — OHB• O ur examples in  th is section are based o n  his example.

In  th e  beginning, we remark fo r  a  finite integer n, it easily follows from
Lyons' that 0 B i s  n o t  Q C  invarian t. L e t R  b e  a s  above, a  a  s im p le  closed
curve which runs transversely around a  handle o f R .  W e cut open R  along a,
a n d  th e  resulting tw o border curves w e denote by  a  +  a n d  a _  T h e n  p a s te
cyclically n pieces w ith a _  o n  a +  to  fo rm  a n  n-covering surface S of R .  Since
R  a n d  R ' a re  Q C equivalent, there is a  Q C  m ap o f S  o n to  th e  n-cover S' of
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R'. By the number of Wiener's harmonic boundary points (or, by Theorem 4.1
a n d  th e  two- region te s t (c f . [S N , p . 242])), w e  se e  S e  0 ,  b u t  S ' O M ,'
(e 0,i73). Hence fo r 1 < n < co, 0i)B 1S no t QC invariant.

For and UH ,, we need more complicated construction. In the remain-
d e r o f th is section, w e show th a t a R iem ann surface in 0,1, may be mapped
by  a  QC homeomorphism onto  a Riemann surface n o t in  UHB. Especially, we
obtain QC non-invariance of 0i7, and UHB.

Lemma 6.1. There are R iemann surfaces M  and M ', both belonging to the
class OH „, and a QC homeomorphism  f: M  M ', having the following properties:

(1) A  countable number of disjoint simple closed curves { c}  not accumulating
to any  point of  M , divide M  into two subregions A  and B .

(2) A 0 SOH , ,  B G SOHB, A' — f(A ) e SOH ,  and B ' = f (B ) S O H B .

P ro o f . By Lemma 8.1 and Proposition 8.3 of Lyons [L ], we obtain OHB-
Riemann surfaces M  and M' homeomorphic by a  QC map f : M  M ',  satisfying
that; there are open sets s i  and A  in  M  such that (I) M  —  (.2/ U .4) consists of
a  countable number of disjoint simple closed curves not accumulating •to any
poin t of M , and  (II) a  Brownian m otion {X,(co)},, 0 o n  M  eventually stays in
.4, whereas a  Brownian m otion on M ' eventually stays in  A ' = f ( .4 ) . Here, we
assume Brownian m otions are defined o n  a  probability space (Q, P) w ith a
filtration {.9;tIt>0.

L e t  S(co) b e  a  B o r e l  m easurable function o n  Q  d e f in e d  b y  S(co) =
sup {X (w ) d }. Then the condition that the Brownian motion {X,(co)} starting

a t  z e M  eventually stays in  s i , is form ulated by Pz (S(w) < co) = 1 .  N ote that
this doesn 't depend o n  z. L e t {A„,},„= 0 0 ,... be connected components o f  .91.
Since the events {co: X(w) e A m  f o r  vt > S(co)} cannot occur simultaneously,

E Pz (X,(w) E Am  f o r  vt > S(co)) = 1 .

Hence we may assume that there is a  component A o o f  ,saf such that

Pz (X ,(w)e A , for Vt > S(co)) = 6 > 0 .

For a positive time r, set e(r) = Pz (X ,(w)e A , for vt r). Since Pz (S(co) < co) = 1,
e(r) converges increasingly to 6 as r goes to  infinity . So w e have a  sufficiently
large number T  such that

Pz (X,(co)e A , for vt T ) = 8 > 0 ... (1) .

W e now  prove  tha t A o 0 SOH ,. Assume th a t Ao  e SOH ,. S in c e  Pz (X s (co)
cannot stay in  A o f o r  all s 0) = Pz (X s (w) et A , for some s > 0 )  is  the harmonic
measure of the relative boundary OA, with the variable z e A o , the assumption
Ao e SOH , is equivalent to  the condition

Pz (X s ( w )  A , fo r 's 0) = 1 for any z  in  M ... (2) .
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W e show

Pz (X t (w) 0 A 0  f o r  't T ) = 1 ... (3)

in  order to deduce a contradiction to (1). Using conditional probability,

Pz (X t (w) 0 A 0  f o r  't T )  =  P z Pz (X (o)) 0 A 0  f o r  2t. T T ).

By the M arkov property o f {X,},

Pz (X, 0 A 0  f o r  't > T F )  =  Px r ( w ) (Xs ( w )  Ao f o r  3 S O),

and it is equal to 1 a.s. co by the condition (2). W e have got (3), hence proved
Ao 0 SO H ,.

By the same way, we can choose a component Bo'  of a ' such that B o'  0 SOH ,.
Put Bo  =  f  - 1 (B0' ). Then we denote by A  the component of M — Bo which con-
tains A o . T a k e  B = A . I t  is  o b v io u s  th a t  A  a n d  B  a re  connected, and
they have the  common relative boundary of sim ple closed curves {c„} c M —
(d  U M ). Since A  contains A o  S O H , ,  A  does not belong to  SO H ,. T h e n  i t
follows from M e O H B  a n d  th e  tw o region te s t th a t  B e SO H ,. B y  th e  same
reason, A ' = f(A ) e SOH ,  and  B ' = f (B ) SOH ,.

Theorem 6.1. There are R iemann surfaces R e 0i7B an d  R '  U H B  which are
QC equivalent.

Pro o f . Let M  and M ' be Riemann surfaces in OHB, f  a  QC homeomorphism
of M  onto  M ', and  A  a n d  B  subregions o f  M  obtained in  Lemma 6.1. Since
the relative boundary o f  B  consists o f  a  countable num ber of sim ple closed
curves {c n }, we can construct a  hyperbolic Riemann surface 13 without border
by pasting a  conformal disk Un to each curve cn o f  B as in the proof of Theorem
5.2. L e t it: D  1 3  b e  a holom orphic universal cover a n d  H  b e  the Fuchsian
group of it. W e  m a y  ta k e  a  fundamental region co of H  in  D  such  that one
component o f  i t  '(U )  completely contained in  co for e v e ry  n . F o r  each h e H,
we prepare a  copy A, o f  A .  F rom  h(w), we remove the preimages of {U, },
then attach Ah so that each boundary o f Ah is  o n  th e  corresponding preimage
of {c n }. After such surgeries for all h e H , we obtain the Riemann surface which
we denote by R .  We define a  covering map 7E: R --+ M  as follows:

nlA h : Ah --0 A  is  the  identity map for every h e H

TC =  A  o n  R —  H AU - h
he H

Then, it is  a holomorphic normal covering map of R  onto M.
We will show that R  belongs to the class Oil,. Since M E O H B , by Corollary

4.1, w e have o n ly  to  show  th a t  R e U H B .  The R iem ann surface M  h a s  the
subregion A 0 SOH ,. H e n c e  the  characterization theorem asserts that .41„(M)
(:44  — OA ') 0  0 , w h e re  —  m e a n s  the closure in  the  Wiener's compactification
M :  o f  M , a n d  A (M ) th e  harm onic boundary. Since M e O H B  —  O G ,  ,v (M)
consists of a single point p, therefore A,,,(m)n(A - - OA ') = {p}. W e choose a
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copy Ah o f  A in  R .  Then the  holomorphic mapping 7r: R M  is  univalent on
Ah a n d  satisfies the condition that n(a A h ) = a A. By [T 2 , Prop. A], we have the
continuous extension of it which gives a  homeomorphism from A w (R) (1 (AZ — aA„)
on to  A w (M) n (A"' — aAW) = {p}. Therefore, Aw (R )n(A 'h" — a Az) also consists of
a  sing le  po in t. Since AZ — a Az is open in Rw*, this implies that A (R )  contains
a n  isolated point, hence R e  U „ .  W e have seen that R e

By the  same way a s  fo r  R, we construct the norm al cover R ' of M ' and
th e  covering map R' -÷  M '. Then, the re  is  a  QC homeomorphism F  o f  R
onto  R ' such that f  o i =  7E'  0  F .  W e now  prove that the Riemann surface R'
does no t be long  to  U „ :  Assume th a t  R' e UH B. A gain by Corollary 4.1, R'
must be in  0 i6 , for it covers M' 0e- H B •  Let G ' be the preimage 7r— '(B ') of B'
in  R'. It is connected. Since B '  S O „ , there is a non-constant bounded har-
monic function u o n  B ' such that u = 0 o n  a '. Then u 0 n ' is a non-constant
bounded harmonic function on  G' such that u 0 7C' =  0 on O G '. This means that
G' 0 S O „ .  If G' is  no t in  U „  as a Riemann surface, then by the same reason
as the first part of the proof, A w (R')n(G'w — au-) does not have isolated points,
which violates R' e 0 ,% .  Hence G ' is forced to belong to UHB OAB. B ut by
the construction of R', G' is a  planar domain which admits non-constant bounded
analytic  functions. It is a  contradiction. Therefore R '  Uno.

Remark. (1) By Theorem  5.4, w e know  R' e C  o r  R '  Uc . But, w e  do
not know whether R ' belongs to Uc o r no t.

(2) There exists a  continuous mapping p  of Wiener's compactification M,,„*
of M  onto Royden's compactification A/P such that p is  the identity on  M  and
p(4 (M)) = A R (M ) [SN, p. 2 3 0 ]. Since A w (M ) consists of a single point p ,  4 ,(M )
also consists of a  single point q =  p (p ). W e now  show tha t q is  in  Uc„R . If
not, for the subregion B e S O „  c  S O „  [SN, p. 241], we have J4' n AR (M) =  Ø .
T h e n  b y  Kusunoki-Mori's theorem  [S N , p . 159], the  doub le  13 o f  B  about

= U c, belongs to OG . The QC homeomorphism f: B —> B' is extended to a
QC homeomorphism f  o f /3 on to  /3', the  double  of B'. B ut /3' O G , because
B '  S O „ .  It contradicts to  the fact that the  class OG is  invariant under QC
homeomorphisms. Hence we know
also know  P  U  c , w. T h is  a rgum en t show s tha t even  i f  a  subregion B  of a
Riemann surface M  satisfies Er n Fw (M) = 0, the double 13 need not belong to
Oc, nam ely, Kusunoki-Mori's type theorem fails in  Wiener's compactification.

§ 7 .  Q C non-invariance of conservativity

In this section, we show that each of C, Li e and  W e is not QC invariant when
n = 2. S h ig a  [S h ] sh o w ed  the fact for We , however once again, we explain it
by using L em m a 2.1. W e have only to construct a  QC automorphism f  of D
and Q = {cm so  tha t {q„} does not satisfy the Blaschke condition, while If (q„)}
satisfies it. I n  t h e  upper half plane H = Ilm z > 01 , se t qh = i/n, a n d  f (z) =

(cx > 1). Then El q „1= co, but ELT (q„)1 < cc. I t  is  e a sy  to  se e  th a t the
conjugation by a Möbius transformation H —> D  yields our example.

E  U c ' .  B ut since p is  in  7 w  - , we
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Concerning C  and U t,, it  is  ra th e r  e a sy  to  show m erely that they a re  not
Q C  invarian t. Indeed, a  characterization o f  C  for D enjoy dom ains [P3 ,  Ex.
4 ] combined with th e  Beurling-Ahlfors' well-known example, exhibits Q C non-
invariance o f  C .  So we will construct a  stronger example: There are Riemann
surfaces R  and R ' such that R  C  and R ' Uc , but they are QC equivalent. W e
prepare the following two lemmas.

Lemma 7.1. L et 9  be a quasis ymmetric (strictly increasing) function from R
onto R which is singular w.r.t. the Lebesgue measure on R . Put t,Ii(x) = 9(x) + x,
f = tP - 1  an d  g  = 9  0  f .  T hen w e have;

(1) f  and g  are  quasisymmetric.
(2) f  and g  are  absolutely continuous w.r.t.
(3) R is a disjoint union of  two sets A  and B  both of  positive measure such

that If(A )1= 0  and Ig(B) 1= O.

Pro o f . (1) Since 9  is  quasisymmetric, there is a constant k  > 1  such that
for every x E R  and  t > 0,

1 
<

9(x + t) — 9(x)
 < k .k  9(x)— 9(x — t) —

Hence

/(x+ t) —  tP(x)=9(x + t) —  9(x) + t

k(9(x)— 9(x — t)+ t)=k(tP(x)— tP(x — t))

and

0(x) —  0(x —  t)= 9 (x) —  9(x — t) + t
k(9(x + t) — (p(x) + t) -= k(tkx + t) —  (x))

This means that 0 is quasisymmetric. Then the inverse f  =  - 1  and the composi-
tion g = 9  o f  are  also quasisymmetric.

(2) f  is absolutely continuous because the inverse 0  maps any set of positive
measure on  R  to  a set of positive m easure. To see g  is absolutely continuous,
we consider the inverse g -

1 a n d  take any set E' = 9(E) of positive measure on
R . Since g -

1 (9(E))= t/i(E) a n d  10(E)1 19(E)1, IE'l > 0  implies lg - 1 (E')I > O.
(3) Since cp is singular, there is a set A ' of null measure on  R whose image

by cp is full on R . Take A  = tP(A') and B = R —  A .  Then A is clearly of positive
measure and  so  is  B  because B = tP(R — A '). But, If(A)1 = 0 a n d  Ig(B)1 = O.

Lemma 7 .2  L et f  be a  Q C  automorphism o f  D, and Q  a se t  o f  countable
points of  D .  Then f(C(Q)) coincides precisely with C(f(Q)).

Pro o f . W e have only to prove that f(C(Q)) C ( f (Q ) ) ,  because the inverse
inclusion follows from f  ( C ( f ( Q ) )  C ( f  -

1 (f (Q ))). Let x  be a n  arbitrary point
o f  C(Q). Then there  is a  Stolz angular region z l w ith a vertex x  in  which a
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subsequence {q n }  o f  Q converges t o  x .  N ote  tha t f  has th e  Q C extension to
the  whole complex p la n e . By the  three point property of quasicircles, we can
see f(A ) is contained in  some Stolz angular region in  D  with the vertex f (x ) (cf.
[BR, Lemma I]). Hence f ( q )  converges to f(x) conically.

Theorem 7.1. T here are  a conservative Fuchsian group acting on D  and a
QC (even quasi-isometric) automorphism f such that F ' =  fr f  - 1  is  a totally dissipa-
tiv e Fuchsian g ro u p . In  other w ords, th e  horocyclic lim it s e t  o f  F  i s  of  f ull
measure but that o f  F ' is  o f  null measure.

Pro o f . W e translate Lem m a 7.1 into the  un it d isk  D  b y  the  conjugation
of the M öbius transformation H -* D .  Then w e get tw o disjoint sets A , B  of
positive measure whose union is  OD, and absolutely continuous quasisymmetric
functions f, g on OD such that m(f(A)) = 0, m(g(B))= O. W e deno te  the Beurling-
Ahlfors extension [BA] of f  and g by the same notations f  and g respectively.

L e t S  b e  a  se t o f  p o in ts  in  D  which satisfies th e  assumption o f  Lemma
5.1. B y  th is lem m a, w e choose  a  subset Q  o f S  so  th a t  C(Q) = A  (a.e.). Set
R' f (D  —  Q ) a n d  R = g(D — Q). B y  L em m a 7 .2 , C( f(Q)) = f(C (Q)). Since
C(Q) = A  (a.e.) and f  is absolutely continuous, C (f(Q )) =  f(A ) (a.e.), that is,
m (C(f(Q ))= O. This implies the Riemann surface R' is not in U e by Lemma 2.1.
Similarly, we have C(g(Q))=g(C(Q)), (3D -  B=C(Q ) (a.e.). H e n c e  m(C(g(Q))= 1,
which shows tha t R E C .  But, f o g '  is  a  QC mapping of R  onto R'.

Let F and F ' be the Fuchsian groups corresponding to the Riemann surfaces
R and R' respectively. Then by Proposition 2.1, m(Ah (F )) 1 and m(Ah (F ')) =  O.
In  other words, the action of F  on OD is conservative, while that of F ' is totally
dissipative. However, there is a  QC automorphism 0  of D, even quasi-isometry
w.r.t. th e  hyperbolic metric o n  D  by Douady-Earle's theorem [D E ], such that
OF0 -

1 =  F '.

Remark. (1) Let F  be a  discrete isometry group acting on the hyperbolic
space B" of dimension n, w here  n  >  3 . Sullivan proved that if the action of F
on  the  sphere at infinity is conservative with respect to  the  canonical measure,
then F  is Mostow-rigid. Here we say F  is Mostow-rigid if any discrete isometry
group F ' acting on B" which is conjugate to F by a quasi-isometric automorphism
f  of B", is actually conjugate to F  by an  isometric automorphism. Particularly
we know conservative groups for n > 3 are  quasi-isometrically invarian t. While
in  the  case  o f F uchsian  groups, i.e., n = 2, conservative groups need not be
M ostow-rigid. In  addition, it has been  show n by  our theorem  that even  the
class C is not preserved under quasi-isometric automorphisms. (Recently, Astala-
Zinsmeister [AZ] proved that for a Fuchsian group F, i t  is  of divergence type
(e O G ) if  and  only if F  has a  "weakened" rigidity property.)

(2) Sullivan [Su, Th. IV ] also show ed the  following equivalent condition
(*) to conservativity o f  th e  ac tio n  o n  th e  sphere at infinity o f  a  group F  of
hyperbolic motions: For some/any point p on R = B"/T', we denote by V(r) the
hyperbolic volum e of the points of R  within a distance r  from p, and  b y  H(r)
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the hyperbolic volume of the ball of radius r  in  B ". Then,

(*) V(r)/H(r) - 0a s  r .

This condition is represented by the hyperbolic metric o n  R .  But, ou r exam-
ple shows th a t the condition (*) is not quasi-isometric invariant in the case of
dimension 2.
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