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Ergodic properties of discrete groups;
inheritance to normal subgroups and invariance under
quasiconformal deformations

By

Katsuhiko MATSUZAKI

§0. Introduction

There are many studies on the ergodic properties of discrete isometry groups
I' acting on the n-dimensional hyperbolic space B" = {xeR™:|x| < 1} and on
the sphere at infinity $”"~' = {xeR"; |x| = 1} (cf. [N]). Among them, Lyons and
Sullivan’s work [LS] is remarkable. They obtained the conditions concerning
covering transformation groups, under which normal (regular) covers of a compact
hyperbolic manifold are recurrent or Liouville. In other words, we may say that
they showed what normal subgroups inherit the ergodicity of the action on S"~!
with respect to the Lebesgue measure from a cocompact discrete group. In
connection with this problem, in the present paper, we consider in what degree
any normal subgroup I of I' inherits ergodicity on S§"7! x §"™! (= B"/I" is
recurrent) and ergodicity on S"”!' (= B"/I" is Liouville). Particularly, in the case
where n = 2, we can characterize S"~! x $"~ !-ergodicity of I" by conservativity
of the action on S"~! of I'":

Theorem. A Riemann surface B%/I" is recurrent if and only if any non-trivial
normal subgroup of I' is conservative.

We develop those arguments in the first part “inheritance to normal sub-
groups” (§4 and §5) after the sections of several preliminaries and prepara-
tions. The first part also contains some investigations on the following two
conjectures which seem interesting in the course of our arguments:

(C1) If B"/I is recurrent and I'' is a normal subgroup of I such that any
subgroup of I'/T" is a finitely generated solvable group, then B"/I' is Liouville
(cf. [LS]).

(C2) I acts on S"! ergodically if and only if any normal subgroup I'' of
I' acts on S"! either conservatively or totally dissipatively.

In the second part “invariance under quasiconformal deformations” (§6 and
§7), we study whether the ergodic properties on S"™' are preserved or not, by
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deformations of I" under quasi-isometric automorphisms of B". For n > 3, most
of these problems turn out to be trivial by Mostow-Sullivan rigidity. Hence we
restrict ourselves to the case n=2. The above conjecture (C2) suggests that
if conservativity and totally dissipativity of Fuchsian groups were preserved under
quasiconformal mappings, ergodicity would be also preserved. But in §7, we
exhibit an example of a quasiconformal automorphism compatible with I which
maps the conservative part of positive measure to a null set. Actually, Lyons
[L] has already constructed by stochastic methods a pair of quasiconformally
equivalent Riemann surfaces, one has the Liouville property, but the other has
not. In §6, as an extension of this example, we prove by using geometric normal
covers that all the ergodic components of a Fuchsian group may disappear by
quasiconformal deformation.

Acknowledgement. The author learned the Lyons’ work [L] from Hiroaki
Masaoka. Communications with John A. Velling were very helpful to construct
examples. Above all, he wishes to express his deepest gratitude to Professor
Masahiko Taniguchi for patient guidance of this paper and all other mathematical
studies.

§1. Preliminaries, harmonic functions and ergodic components

Let B" be the n-dimensional unit ball with the hyperbolic metric dp =
2|dx|/1 — |x|>. We denote by Isom* (B") the group of orientation preserving iso-
metric automorphisms. It acts not only on B" but also on the sphere at infinity
§"' ={|x| =1}. The group Isom* (B") has the canonical matrix representation
and under this topology we consider discrete subgroups of Isom* (B"). It is well
known that a subgroup I’ = Isom* (B") is discrete if and only if it acts on B"
properly discontinuously. A complete n-dimensional hyperbolic manifold R is
a quotient of B" by a torsion-free discrete group I. Throughout this paper
we use the same notation for a class of complete hyperbolic manifolds as that
of the corresponding class of hyperbolic discrete groups. We classify discrete
groups by ergodic properties of the action on $"~! which carries the normalized
Lebesgue measure dm with m(S""!) = 1. Such properties may be translated into
the existance of Green’s or harmonic functions on the hyperbolic manifolds by
the Poisson integral, where the above terms are in the hyperbolic sense, namely,
with respect to the Laplace-Beltrami operator

(1 —r?? 2(n—2r 0
A, = _
" 4 4+ 1—r? or|’

where r = |x| (cf. [N, Chap. 5]). When n = 2, we say a hyperbolic discrete group
acting on D = B? or the upper half plane model H to be Fuchsian. In this
case, the hyperbolic harmonicity is the same as the usual one.
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The limit set A(I") of the orbit of some reference point by a discrete group
I" is important for our study. We say I" to be of the first kind if A(I') = S"!
and otherwise of the second kind. More precisely, we define several types of the
limit points of I

Definition 1.1. Let Q be a set of countable points of B" not accumulating
to any point of B". Then we define

L(Q) = {x € §"7!| there are points of Q which accumulate to x}

H(Q) = {x € §"!| there are points of Q which accumulate to x in some
horosphere tangential to S$"! at x}

H(Q) = {x € §""!| in every horosphere tangential to S"™! at x, there are
points of Q}

C(Q) = {x € S"7!| there are points of Q which accumulate to x in some
cone region with vertex x}

C(Q) = {x e S"7'| in every cone region with vertex x, there are points

of 0}

Let I be a discrete group acting on B For Q= {y(), yeI'}, we define
A(I) = L(Q), 4,(I') = H(Q), 43(I") = H(Q) and A.(I") = C(Q).

Remark. (1) A(I'), A,(I'), A;I') and A,(I") do not depend on the choice
of orbits, hence we may take the orbit of the origin in the above definition.

(2) Note that H(Q) = H(Q) a.e. and C(Q) = C(Q) ae. A proof of these facts
is, for example in [N, Th.2.1.2], assuming that Q is an orbit by a discrete
group. But this assumption is not essential. H — H contains so-called Garnett
points. Sullivan first remarked that their measure is zero [Su, §IV].

Class Og. A hyperbolic manifold R = B"/I" belongs to the class Og if it
admits no Green’s function. In other words, the harmonic measure of the ideal
boundary of R is identically zero. We can characterize this class by the following
properties of the discrete group I. See for example [N, p. 109, Th. 6.3.6]. The
equivalence (3)<>(4) can be found in [Su, §3].

Proposition 1.1. The followings are equivalent:

() Ir'eOq.

(2) I is of divergence type, ie., Y (1—|y(0))y " = co.
el

(3) AN =S"" (ae.). '

4 m4.))>0.

(5) I acts ergodically on §"°! x S"°1.

Classes Ofjg (1 <m < ), Uyg. We denote by OF; (1 <m < o) a class of
hyperbolic manifolds such that the vector space

HB(R) = {(real) bounded (hyperbolically) harmonic functions on R}
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has at most m dimension. Let u e HB(R) be positive. Suppose that for every
ve HB(R), u > v > 0 implies the existence of a constant ¢ with cu =v. Then
the function u is called HB-minimal on R. The dimension of HB(R) is the same
as the number of linearly independent HB-minimal functions on R. In the case
where n = 2, we can characterize the class Ojjy by the harmonic boundary A4,(R)
of Wiener’s compactification R} of R (cf. [SN, Chap. IV]). That is, Re Ofy
(1 <m < o) if and only if 4,(R) consists of at most m points. As a limiting
class of Ofg, we define Ofp as a class of hyperbolic manifolds R such that
HB(R) has at most a countable number of HB-minimal functions as basis. Fur-
ther, by Uy we denote a class of R on which there exists at least one HB-minimal
function. Remark that we assume if R € Og, R has a HB-minimal, i.e., Ogc Uy,
which is different from the usual notation as in e.g. [SN]. We see R e Uyg — Og
if and only if 4,(R) contains an isolated point.

We characterize those classes Ofjy (I <m < o) and Uyg by indivisible in-
variant measurable sets on S"~! under discrete groups. Originally they were due
to Constantinescu-Cornea [CC] for Fuchsian groups.

Definition 1.2. Let I" be a discrete group acting on B". We call a Lebesgue
measurable set E on S"' with m(E) > 0 ergodic component for I" if
(1) [invariant] E = y(E) (a.e.) for every ye I, and
(2) [indivisible] if a subset E' of E with m(E') > 0 has the property (1),
then E = E' (a.e.).

Proposition 1.2. If Ec S"! is an ergodic component for a discrete
group I, then the projection to R = B"/I" of the harmonic measure

wi(2) =J (1—_'2'2)"“dm<x>
E |x — z|

is HB-minimal on R. Conversely, if u is HB-minimal on R, then the lift i(z)
to B" has non-tangential limits which take a positive constant on some ergodic
component E for I' and zero on §"™' — E a.e.

Proof. We denote the canonical projection B"— R by n. Let u be the
projection of wg(z), v a harmonic function on R satisfying u > v > 0. Since ¥ =
vom is a bounded harmonic function on B", it has a non-tangential limit at
almost every x on S"7! (cf. [N, pp. 91-92]), which we denote by the same letter
#(x). By the inequality wy > >0 on B", we have 1g(x) > 5(x) >0 a.e. on S"%,
hence #(x)=0 ae. on S"! — E. If #(x) is not constant a.e. on E, using the
T-automorphic value #(x), we can take a measurable subset E' of E with 0 <
m(E’) < m(E) which is I'-invariant in a.e. sense. But this violates that E is an
ergodic component for I. Therefore there is a constant ¢ (0 < c¢ < 1) such that
#(x) = clg(x) ae. Since the bounded harmonic function #(z) is reproduced by
the Poisson integral of #(x), we get #(z) = cwg(z), hence v = cu on R. This means
that u is HB-minimal.
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Conversely, for a HB-minimal function u on R, let ii(z) = uon(z) and E =
{x € S"!| the non-tangential limit #(x) is positive}. Note that E is I-invariant
and m(E) >0. We will show that E is indivisible. If there is a I-invariant
measurable subset E’ of E satisfying 0 < m(E') <m(E), we can define a
TI-automorphic boundary value #(x) so that #(x) = ii(x) on E' and #(x) =0 on
§""' _ E'. It is clear that 0 < d(x) <ii(x) a.e. and ¥(x) 3 const. x #(x). Then
the Poisson integrals #(z) and #i(z) satisfy the same condition, hence so are the
projections v and u on R. But this contradicts that u is HB-minimal. We have
seen that E is an ergodic component for I. It is obvious that #(x) = const. on
E, for otherwise, E would be divisible.

This shows one-to-one correspondence between ergodic components for I’
and HB-minimal functions on B"/I" up to constant multiples. Hence we have;

Proposition 1.3. (1) I'eOf; (1 <m < ) if and only if S is a disjoint
union of at most m ergodic components for I' up to null sets.

(2 I'eOFy if and only if S"™' is a disjoint union of at most a countable
number of ergodic components for I' up to null sets.

(3) I'eUyg if and only if S"' has an ergodic component for I.

§2. Conservative part and dissipative part

Classes C, U, and W,. The action of a discrete group I'" divide S"! into
two measurable sets, conservative part #(I") and dissipative part 2P(I"). These
are determined up to null sets by the following requirement: (/") has a mea-
surable fundamental set, and for each subset A = #(I") with positive measure,
#{y e I'm(y(4)N A) > 0} = oo (cf. [Ag, appendix]). We define

C={I;, AT)=S""" ae, that is, I" is a conservative group}
U, = {I; m(&(I')) > 0, that is, I" is not a totally dissipative group}.

When n =2, Pommerenke [P,] introduced “Fuchsian groups of accessible

type”. For Fuchsian groups I" of convergence type, i€, Y, (1 —|y(0)]) < o0, we
vyerl

call a Blaschke product g(z) = [] y(z) exp (—iarg y(0)) the Green's function of

vyerl

I' with respect to 0.

(1) I is of accessible type if g’(z) has a finite non-tangential limit on a set
of positive measure of aD.

(2) I is of fully accessible type if g'(z) has a finite non-tangential limit a.e.
on dD.

(3) I is of Parreau-Widom type if g'(z) belongs to the Nevanlinna class,

2n
ie., J log*|g’(re®)|d6 is bounded for 0 <r < 1.
0

W = {I: T is not of Pareau-Widom type}.
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What is the set where g’(z) has a finite non-tangential limit?

Proposition 2.1 (Pommerenke [P,, Th. 1]). Let I be a Fuchsian group of
convergence type acting on D. Then the following measurable sets on 0D are
coincident up to null sets:

(@) A set where g'(z) has a finite non-tangential limit
(b) 0D — ART)
(c) The dissipative part D(I").

Therefore for Fuchsian groups, we know C = {not accessible type} U {diver-
gence type} and U, = {not fully accessible type} U {divergence type}.

Later, Sullivan [Su] generalized Proposition 2.1 in higher dimensional cases
by a similar argument to the original proof of Proposition 2.1. Further, as has
been mentioned in Remark (2) after Definition 1.1, he showed that Az(I") = 4,(I")
a.e. In sum;

Proposition 2.1 For any dimensional hyperbolic discrete group I, R(I') =
A(I) ae.

Note that a discrete group of the second kind does not belong to C, and
whose limit set is a null set does not belong to U..

A characterization of conservativity for Riemann surfaces. Even in the case
where n =2, it is not easy to distinguish what Riemann surfaces belong to C,
U, or W_ in general. So we restrict ourselves to planar Riemann surfaces such
as D — Q, where Q = {q,} is a countable number of points of D not accumulating
to any point of D. A necessary and sufficient condition for D — Q to belong
to each one of C, U, and W_ is as follows. These results are essentially due
to Pommerenke [P;, Ex. 1] & [P,, Th. 8].

Lemma 2.1. (1) The Riemann surface R = D — Q belongs to the class C if
and only if m(C(Q)) = 1.

(20 ReU_ if and only if m(C(Q)) > 0.

(3) ReW. if and only if {q,} does not satisfy the Blaschke condition, i.e.,
Y (1 —14,)) = .

Proof. (1) and (2): We may assume that the origin 0 is not in Q. Let =«
be a holomorphic universal covering map D = {|z|] < 1} - R = {|]w| < 1} — Q such
that n(0) = 0, I the corresponding Fuchsian group, and g(z) the Green’s function
of I' with respect to 0. It is easy to see that the projection of —log|g(z)| to
R is the usual Green’s function of R with a pole at 0. Since Q has zero capacity,
it coincides with —log|w|. Therefore —log |g(z)] = —log |n(z)|, which implies
that g(z) = e”®n(z). We consider the image under g of the Green’s fundamental
domain G of I' with respect to 0. It is a starlike domain which consists of
radial segments, the images of Green’s lines. Since g(z) = en(z) is unbranched,
no Green’s line ends at a branched point. Hence ¢(G) = e”n(G) is a rotation
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of D — O [q,,, lq—"|> Let T be a set of xedD where g(G) contains a small
n=1 qn

Stolz angular region of vertex x with any large opening. Then it is clear that

T = 0D — C(Q) (a.e). Pommerenke proved that m(T) = m(2(I")), from which fol-

low the equivalences I'¢ U ,<>m(T)=1 and I'e Ce<m(T) =0 [P,, Cor.]. They

yield our assertions.

(3: R ¢ W, if and only if R satisfies the Widom condition for some (hence
every) p € R, that is, letting g(w, p) be the Green’s function on R with a pole
at p and B(t,p) the first Betti number of {we R; g(w, p) >t}, it holds that

0

B(t,p)dt < 0. For R=D—-Q (0¢Q), g(w,0)= —log|w| and B(0)=
0
#{qe Q; —log|q| >t}. Then by e™'=r,

Jw3<t,0)dr=f #aeQila <n
0 0 r

1
This integral converges if and only if f #{q € Q;|q| < r}dr converges, which is

0
equal to Y (1 — |q,|).

§3. Strict inclusion relations between the classes

Theorem 3.1. The following system of strict inclusion relations holds.

5> m 0
OG i HB 7 OHB UHB

|

C — U,

Proof. The inclusion relations are evident if we remark that ergodic compo-
nents are in the conservative part. The strictness Og — Ofjz — O can be found
in [T,], and the others are seen if we construct the following two examples of
arbitrary dimensional hyperbolic manifolds R:

(I) ReC but R¢ Uy,

(2) ReUyg but R¢C
(1) has appeared in [VM]. To construct (2), we prepare M € Oy — Og which
contains a compact totally geodesic submanifold N with codimension 1 such that
M — N is connected (cf. [T,]). Then by Lemma 3.1 (II) in the following subsec-
tion, we obtain a discrete group G whose limit set 4(G) is the ergodic component
for G. We know G ¢C, for G is of the second kind, but G € Uyg.

Geometric covers obtained by cutting along totally geodesic submanifolds. Let
M be an n-dimensional complete hyperbolic manifold which contains a compact
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totally geodesic submanifold N with codimension 1 such that M — N is
connected. Let R be the hyperbolic manifold with boundary obtained from
M — N be attaching two borders {N*, N7} corresponding to N. Then R is
represented as K/G, where K is a closed region in B" with totally geodesic
boundary and G is a discrete subgroup of Isom®™ (B") under which K is
invariant. Since KnS"~! is closed, G-invariant and contained in A(G), K is
actually the Nielsen convex hull K(A(G)) of the limit set A(G).

Conversely, if we start from a given hyperbolic manifold R = K(4(G))/G
with borders N* and N~ which are totally geodesic and mutually isometric,
then by glueing N* to N, we obtain the complete hyperbolic manifold M. From
a viewpoint of covering transformation groups, the corresponding discrete group
to M is constructed as follows: Let S*(S”) be an orthogonal hemisphere in
0K (A(G)) such that S*/stabg (S*) = N* (resp. S™/stabg(S") = N~). Let 7 be an
element of Isom* (B") which maps the interior of S* to the exterior of S~ and
induces the isomorphism between the stabilizers stabg (S*)— stabg (S7). Then
the combination theorem concerning discrete groups asserts that the group F
generated by G and t is discrete, represented by an HNN-extension G, and
M = B"/F (cf. [Mg, p. 78]).

Lemma 3.1. Using the same notations under the same circumstances as above,
(I) M =B"/FeOg<m(A(G)) =0 and (II) M € Oyg — Og <> A(G) is the ergodic
component for G (with positive measure).

Proof. We have the following diagram of covering maps

B" — 5 R* 5 R

M o5 M-N
where R* = B"/G, and assume ng(0)eR=R — (N*UN 7). Let I, be the geodesic
ray in B" from O towards §eS"~'. Then e A(G) if and only if ng(ly) hits neither
N* nor N~, which is equivalent to the condition that 7z(ly) does not hit N(< M).
(I) Assume that M € Og. Let T be a ball in B" with center 0 and ng(T) =

R. By the recurrence of the geodesic rays, the set {0:mp(l,) recurs infinitely
often to ng(T)} is of full measure. Therefore,

m(A(G)) = m({6: ng(ly) does not hit N})
= m({0: ng(ly) recurs infinitely often to ng(T)})
= m(4.(G)).

Since G is of the second kind and m(A4.(G)) is either zero or one (Proposition
1.1), we have m(A(G)) = 0.
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Conversely, if M ¢ Og, the measure of the geodesic rays {ng(l;)} which hit
N (compact) infinitely often is zero. This implies that for almost every 6, I, does
not pass {f(K(A(G)))},;.r infinitely many times. Then we easily see that
fUr f(A(G)) = §"7! ae., especially we know m(A(G)) > 0.

(IT) Note that for any feF — G, m(f(4(G))NA(G)) =0. By (I), we may
assume that m(A4(G)) > 0. If A(G) is not an ergodic component for G, then there
are G-invariant sets E; and E, with positive measure such that E, LI E, = A(G).
So the action of F on S"7! is not ergodic because F(E,) and F(E,) are both
F-invariant and m(F(E;)N F(E;)) =0. This shows that part “=".

Conversely, suppose that M ¢ Oyz. Then there are F-invariant sets A; and
A, with positive measure such that A, LI 4, =S8""'. Set E;= A;NA(G) (i =1,
2). E, and E, are G-invariant and E;NE, = ¢. We now show that m(E;) > 0,
which implies that A4(G) is not an ergodic component for G. If, say m(E,) =0,
then A(G) is contained in A4, ae., hence F(A(G)) is contained in F(A4,)= A4,
ae. In (I) we have seen that F(A(G)) = S""! a.. under the assumption M ¢ Og.
Thus S""! = 4,, which contradicts m(4,) > 0.

Remark. For Fuchsian groups, we have the following system of strict inclu-
sion relations. Most of them were shown in [KT].

5 m 0 I
OG ¢ HB ¢ HB ¢ UHB ” OAB

|

Here, O, is a class of Riemann surfaces which admit no bounded analytic
functions except for constants. The famous Myrberg’'s example is an example
of a Riemann surface R such that Re O,z but R¢ U, Indeed, the 2-sheeted
covering surface of C with an infinite number of branched points above
N ={1,2,3,...} is belongs to Og (see Theorem 4.2 in the next section).

§4. Finite covers

Before we consider normal covers in general, we will see in this section that
the ergodicity is almost preserved when it is passed to a subgroup of finite index
(cf. [T,] and [Mo]). We begin by showing two fundamental lemmas which
will be used later.

Remark. The symbols =, <, J, etc. are used in “almost every” sense
unless we mention specifically, in §4. If there is no danger of confusion, we
sometimes omit “almost every” or “up to null sets” in the remainder of this paper.

Lemma 4.1. Let G be a discrete group, H a subgroup of G, and A an

ergodic component for H. Then E = U g(A) is an ergodic component for G. In
geG

particular, H € Uy =G € Uy and H € Ofjg = G € Of.
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Proof. 1t is clear that E is invariant under G. If there is a G-invariant
subset E, of E satisfying m(E) > m(E,) > 0. Then E, = E — E, is G-invariant
and m(E)>m(E;)>0. Set A;=ANE; (i=1,2). They are H-invariant and
A I14,=A. Hence, we may assume, say A, = A. This implies A < E,, from
which follows E = G(4) = G(E,) = E,. It contradicts to m(E) > m(E,).

Lemma 4.2. For each h e Isom (B"), there are positive constants t = t(h) and
T = T(h) such that

tm(A) < m(h(A)) < Tm(A) for every measurable set A on S"7'.

1 -1

Proof. 1t is known that m(h(A4)) = L (I_X—?FW

>”_1 dm(x). Estimating
the kernel from below and above, we have
L i =R O)P !
<(1 n |h-1(0)|)2> mid) < mh(4) < <(1 = |h'*(0)|)2> -

The next result is the first step to consider the problem touched upon in
the introduction.

Lemma 4.3. If H is a subgroup of I’ of finite index and I € Uyg, then
H e Uyy.

Proof. Fix a left coset decomposition /"=y HI . Ly,H Let A be an
ergodic component of I. It is H-invariant. Suppose that there is no ergodic
component for H in A. Then for any & > 0, there exists E = A such that 0 <

m(E) < ¢ and E is H-invariant. Set &¢ = m(A) / Y. T(y), where T(y,) is the con-
k=1 n

stant as in Lemma 4.2. For this ¢ we take E as above. Let B = U (E). It
k=1

is I'-invariant and contained in 4. But, this contradicts to the fact that A4 is
an ergodic component for I, because

0<mB) < k; m(n(E)) < 3. T(r)m(E) < m(A) .
Therefore there is an ergodic component for H in A.

Further, we conjecture that "€ Uyg = H € Uy, when H is normal in I" and
I'/JH is cyclic. This conjecture combined with the next Proposition 4.1 would
be related to the problem (C1) mentioned in the introduction, which was raised
in [LS, p. 304].

Proposition 4.1. Let I" be a discrete isometry group acting on B" which is
in Og, I'" a normal subgroup of I. If I belongs to Uyg, then I'' actually
belongs to Oyg.
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A proof is given in [VM]. It is based on the following lemma:

Lemma 44. Let H be a normal subgroup of I' and A = S* ! an ergodic
component for H. Then each y(A) (ye I') is an ergodic component for H.

Proof. We show y(A4) is H-invariant and indivisible. y(A4) is H-invariant:
For every he H, there is some h; € H such that hoy=yoh,, because H is a
normal subgroup of I Hence hoy(A)=7yoh;(A) =7y(A). 7y(A) is indivisible:
Let y(A’) be a H-invariant measurable subset of y(4). For any he H, yo h(A') =
hyoy(A’) = y(A’), hence h(4') = A". Since A' = A4, and A4 is an ergodic compo-
nent, we have y(4') = & or p(A’) = y(A).

Corollary 4.1. Let I be a discrete isometry group acting on B" which is in
Oyup, I'" be a normal subgroup of I If I belongs to Uyg, then I'' actually
belongs to Of.

This follows from Lemmas 4.1 and 4.4. It is a parallel result to Proposition
4.1.

We return to the position after Lemma 4.3. We can see that each ergodic
component is divided at most n pieces by an n-cover. That is;

Theorem 4.1. Let I'' be a subgroup of I' with [I': "] =n < 0. If I € Oy,
then I'" € Ofy. More generally, if I'e Oz (1 < N < ©), then I'' € Ofy.

Proof. We show only the former statement. The latter is carried out by

the same proof. Let H = () yI"y~'. It is easy to see that H is normal in I’
vel

and is of finite index. We define m = [I"": H] < o0. Fix left coset decomposi-
tions

r=fr u..ufr  (f=1 and
I'=eH U.. Ue,H (e=1).

We may take {g;;} = { f,.ej}j,zll: omoas a system of representatives for a left coset
decomposition of I" by H.

By Lemma 4.3, H has an ergodic component A. By Lemma 44, we see
each g;;(A4) is an ergodic component for H. Thus {g,;(4)} are mutually coincident
or disjoint. Their union is $"7!, for () g;;(A) is Iinvariant and I'e Oyp. Let

LJ

dim HB(H) be the number of ergodic components for H and k the number of
elements of {g;;} which fix 4. Then, with each ergodic component for H, k
sets of {g;j(4)} coincident. Hence dim HB(H) = mn/k.

Let {4,} (p =1, ..., mn/k) be the ergodic components for H. By Lemma 4.1,

Cs

e(d,) = Ur, e(A,) is an ergodic component for I''.  We classify {4,} by the

j=1
following relation:
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A, ~A, < A, and A4, are contained in the same ergodic component for I’

We denote the equivalent class by [4,]. Then d = dim HB(I'') = #{[4,]}. Let
r, be the number of elements of {¢;} which fix A,. Since precisely k elements
of {g;;} fix A, and {e;} = {g,;}, r, is not larger than k for every p. The equivalent
class [4,] contains m/r, sets. Therefore,

md

mn_
k Kk

M=
| 3

~

>
q q

M=~
=| 3

q=1 1

that is, n > dim HB(I'').
Finally we remark that the classes Og and C are preserved by finite covers.

Theorem 4.2. Let H be a subgroup of I’ of finite index. Then A,(H) and
A, (H) coincide precisely with A(I') and A,(I') respectively. Especially, H € Og <+
I'eOg and HeC<«T'eC.

Proof. 1t is clear that A (H) < A(I") and A,(H) < A,(I"). We will show the
inverse inclusions. Let /"= He,LI...II He, be a right coset decomposition of
I' by H. Let {y,(0)}, .r be a sequence of conical (horospherical) approach to
x € A,(I') (4,(I')). Then at least one coset He; contains infinite number of ele-
ments {y,, } of {y,}. Since y,, e;! € H, the orbit of ¢,(0) by H contains a sequence
of conical (horospherical) approach to x.

§5. Inheritance to normal covers

Roughly speaking, by normal covers ideal boundary of a hyperbolic manifold
is divided evenly. So we expect that normal subgroups of a discrete group G
should inherit some ergodic property from G. The following theorem explains
such an aspect well.

Theorem 5.1 Let I" be a discrete subgroup of Isom™ (B") which belong to
Og. Then its non-trivial normal subgroup H belongs to C.

Proof. Assume that H is not conservative. Then H has a fundamental
set A of positive measure in the dissipative part 2(H). On the other hand,
the assumption I"e Og implies that A.(I") has full measure (Proposition 1.1).
Let w,(z) be the harmonic measure of A with respect to z, that is, w,(z) =

2\n—1
j (le;—léll—z> dm(x). Since w,(z) has the non-tangential limit 1,(x) at almost
4 _
every x € S"!, we can choose a point xe ANA(I) such that wy(z)>1 as z
approaches to x non-tangentially. Take a subsequence {y,} of I' such that
7, 1(0) > x in a cone. Then w,(y,(0))>1 as n — oo, where w,(y, '(0))=w, 4,(0)=
m(y,(A)). We define A, = y,(A4).
For any he H — {1}, there is some h'e H — {1} such that

h(A4,)N A, = y,{y,  hy,(A)N A} =y, {h'(A) N 4}
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by normality of H. Since A is a fundamental set of 2(H), we have
m(h(4,)NA,) =0. For an arbitrary he H which is not identity, we take a con-
stant t > 0 as in Lemma 4.2. Then m(h(4,)) + m(A4,) = (1 + t)m(A,). This value
exceeds 1 when n is sufficiently large, because m(4,) — 1. Therefore h(A4,) and
A, must intersects with positive measure, which contradicts the result
m(h(4,)N A4,) = 0.

An application of Theorem 5.1 is given in [VM]. In the case where n = 2,
the converse is also true. Namely, we can characterize Riemann surfaces of Og
by their normal covers (cf. Velling [V]).

Theorem 5.2. A hyperbolic Riemann surface R belongs to the class Og if
and only if its any non-universal normal cover belongs to the class C.

Proof. We have only to show “if part”. Assume that R ¢ Og. Further we
may assume that R does not have border. We take a simple closed curve a in
R which is homotopically non-trivial and divide R into two subregions. Since
the Wiener’s harmonic boundary 4,,(R) is not empty and 4,(R)Na = ¢J, at least
one of the subregions does not belong to

SOyp = {bordered Riemann surfaces whose ideal boundary has
null harmonic measure}

by its characterization theorem (cf. [T,, §1].) Let Y be the other subregion. We
cut off Y from R and instead of Y paste a conformal disk U to make a new
Riemann surface R. Since R has the subregion not belonging to SOy, We see
R¢Og.

Let # be a holomorphic universal covering map D — R satisfying #(0) € U,
and H the corresponding Fuchsian group. Set #7!(U) = {U,}. They are neigh-
borhoods of the orbit points of the origin by H, which have the same finite
hyperbolic diameter. Since R ¢ Og, we know m(A,(H)) =0 by Proposition 1.1.
Hence, almostevery x on 0D satisfies the condition (P): there is some Stolz angular
region in D — {U,} with vertex x on dD. We prepare the copies {Y,} of Y, cut
off {U,} from R, and instead of each of {U,} paste each of {¥,}. The resulting
Riemann surface we denote by R'. It is a holomorphic normal cover of R,
because there is the covering map n as follows:

mly,: Y,— Y is the identity map for each n,
r-(r) = b,y -

This normal covering surface R’ does not belong to C, because R’ has the
subregion D — {U,} which satisfies the condition (P) [Py, Th. 3].

By analogy to Og, one may feel that the conjecture (C2) concerning Oyp
mentioned in the introduction is natural. To prove a relating result to this
conjecture for n =2 (Theorem 5.3), we need a lemma:
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Lemma 5.1. Let S={s,} be a set of a countable number of points in D
which has no accumulated points in D. Suppose that there exists a positive constant
0 such that for each point z of D, the hyperbolic distance from z to S is less
than 8. For any measurable set A on 0D, we denote the harmonic measure of A
by w,(2), and define Q = {ze S|w,(z) > 1/2}. Then C(Q) = A (a.e.).

Proof. w4(z) has the non-tangential limit at almost every x € dD, denoted also
by wy(x). Below all the statements of this proof is in “a.e.” sense. Since w,(x) =
14(x), we have the inclusion C(Q)  {x € dD|w,(x) > 1/2} = {x € dD|w,(x) = 1} =
A. Similarly, C(S — Q) = {x e 0D|w,(x) < 1/2} = 0D — A. But by the distribu-
tion of S, we know C(Q)UC(S — Q) = dD. Therefore C(Q) = A.

Theorem 5.3. A Riemann surface R belongs to the class Oyg if and only if
for any closed set E of countable points in R, any holomorphic normal cover of
the Riemann surface R — E is either conservative or totally dissipative.

Proof. Assume that R ¢ Oyp. Then there exists a non-constant harmonic
measure w on R. We choose a set of a countable number of points S in R so
that it has no accumulated points in R and the hyperbolic distance from any
point of R to S is less than some positive constant. Let m: D —» R be a holo-
morphic universal covering map, w = wo n and S=n"'(S). Let 4 be a set of
points on dD where W(z) has a non-tangential limit 1. Since W(z) is non-constant,
0 <m(d) < 1. We define E = {zeS:W(z) > 1/2}. Then by Lemma 5.1, C(E) = A
(a.e). Set E = n(E). 1t is closed and countable. The restriction © to D — E is
a holomorphic normal covering map of R — E. The Riemann surface D —E
belongs to U,, but not belongs to C, by Lemma 2.1.

Coversely assume that R e Oy. For any closed set E of countable points
in R, the Riemann surface R — E also belongs to Oyg. Then the assertion
follows directly from the general theorem:

Theorem 54. Let I’ be a discrete subgroup of Isom™ (B") which belongs to
Oup. Then its normal subgroup I'' either belongs to C or not belongs to U..

Proof. We will show that A,(I"’) is invariant under I. Then the ergodicity
of the action of I" forces m(A,(I"")) to be one or zero. The former means that
I’ € C and the latter I'' ¢ U, by Proposition 2.1. If x € 4,(I"’), then there is a
sequence {y,} of I"" such that {y,(0)} approaches to x horospherically. Let y be
any element of I. A sequence {yo7y,oy '} belongs to I by normality, and
the images of a reference point y(0) under {yoy,oy~'} approach to y(x) horo-
cyclically. Hence y(x) e A,(I""). This shows that 4,(/”) is invariant under I.

§6. QC non-invariance of Of; and Uy,

In the remainder of this paper, we treat only Fuchsian groups because our
problems turn out to be trivial by Mostow-Sullivan rigidity in the higher dimen-
sional cases. See Remark in the end of §7.
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In the classification theory of Riemann surfaces, we often pose a question
whether a given class @ of Riemann surfaces has a property of quasiconformal
invariance, or not. Here, we say O is quasiconformally (QC) invariant if it
satisfies the following property:

“For any Riemann surface R € 0, if there is a QC homeomorphism of
R onto another Riemann surface R’, then R’ belongs to 0.”

Riemann surfaces of finite conformal type are of course QC invariant. Fur-
ther it is known that the class Og is QC invariant (Pfluger). Moreover, the
classes defined by degeneration for harmonic functions with finite Dirichret inte-
grals, Ofjp (1 <n < o) and Uy are QC invariant (cf. [SN, Chap. III]). These
follow from a general result that a QC homeomorphism between two Riemann
surfaces has a homeomorphic extension to their Royden’s compactifications which
preserves harmonic boundary points. (Lyons’ example below implies that a QC
homeomorphism between Riemann surfaces need not have homeomorphic exten-
sion to their Wiener’s compactifications because if it has, the harmonic boundary
is preserved [SN, p. 282]. Recently, Segawa [Se] constructed a concrete example
of a pair of Denjoy domains whose QC homeomorphism cannot be extended to
their Martin’s compactifications). We can see both O, and O, are not QC
invariant by an application of Myrberg’s well-known example [SN, Chap. II].
For Denjoy domains, C — E belongs to O,; where E is a compact set on R if
and only if the linear measure of E is zero. Thus we can also construct a
counterexample for QC invariance of O, by using the Beurling-Ahlfors extension
[BA].

A class O of Fuchsian groups is QC invariant if it satisfies;

“For any Fuchsian group I'e 0, if there is a QC automorphism f of
D such that I" = fI'f~' is Fuchsian, then I"" belongs to 0.”

For example, the class of Fuchsian groups whose exponent of convergence is
equal to 1, which includes Og, is QC invariant [FR]; the class of Fuchsian
groups whose limit set has null linear measure is not QC invariant [T,].

Note that QC homeomorphisms which appear in the above examples are
defined essentially on the whole extended complex plane C. It had been difficult
to construct QC homeomorphisms between non-planar surfaces which show non-
invariance of Ofz (1 <n < ) and Uyg. In this section, we prove that the
classes Ofjy and Uy are not QC invariant. For Oyp = O}p, Lyons [L] con-
structed an example such that R and R’ are QC equivalent, while Re Oy, and
R €0} — Oyy.  Our examples in this section are based on his example.

In the beginning, we remark for a finite integer n, it easily follows from
Lyons’ that Ojj is not QC invariant. Let R be as above, o a simple closed
curve which runs transversely around a handle of R. We cut open R along «,
and the resulting two border curves we denote by a, and «_. Then paste
cyclically n pieces with «_ on «, to form an n-covering surface S of R. Since
R and R’ are QC equivalent, there is a QC map of S onto the n-cover §' of
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R’. By the number of Wiener’s harmonic boundary points (or, by Theorem 4.1
and the two- region test (cf. [SN, p. 242])), we see SeOf, but S'¢Oin!
(€O2%). Hence for 1< n < oo, Ofy is not QC invariant.

For Of and Uy, we need more complicated construction. In the remain-
der of this section, we show that a Riemann surface in Ofy may be mapped
by a QC homeomorphism onto a Riemann surface not in Ugg. Especially, we
obtain QC non-invariance of Offy and Uyg.

Lemma 6.1. There are Riemann surfaces M and M', both belonging to the
class Oyg, and a QC homeomorphism f: M — M', having the following properties:

(1) A countable number of disjoint simple closed curves {c,} not accumulating
to any point of M, divide M into two subregions A and B.

(2) A ¢SOy, BeSOyg, A = f(A) € SOy and B' = f(B) ¢ SOyp.

Proof. By Lemma 8.1 and Proposition 8.3 of Lyons [L], we obtain Oyg-
Riemann surfaces M and M’ homeomorphic by a QC map f: M — M’, satisfying
that; there are open sets & and # in M such that (I) M — (& U%) consists of
a countable number of disjoint simple closed curves not accumulating to any
point of M, and (II) a Brownian motion {X,(w)},»o on M eventually stays in
&/, whereas a Brownian motion on M’ eventually stays in &' = f(#). Here, we
assume Brownian motions are defined on a probability space (2, #, P) with a
filtration {%},5o0.

Let S(w) be a Borel measurable function on @ defined by S(w)=
sup {X,(w) ¢ &}. Then the condition that the Brownian motion {X,(w)} starting

t

at ze M eventually stays in ./, is formulated by P,(S(w) < o) =1. Note that
this doesn’t depend on z. Let {A,},-0.,.. . be connected components of ..
Since the events {w: X,(w) € 4,, for t > S(w)} cannot occur simultaneously,

Y P(X,(w)€ A,, for 't > S(w))=1.

Hence we may assume that there is a component 4, of & such that
P,(X,(w)e Ay for t > S(w))=6>0.

For a positive time r, set &(r) = P,(X,(w) € 4, for "t > r). Since P,(S(w) < o) =1,
&(r) converges increasingly to § as r goes to infinity. So we have a sufficiently
large number T such that

P(X,(w)e Ay for t>T}=¢>0 ... (1).

We now prove that A, ¢ SOyg. Assume that 4, e SOyg. Since P, (X (w)
cannot stay in A, for all s > 0) = P,(X,(w) ¢ A, for some s > 0) is the harmonic
measure of the relative boundary 64, with the variable z € 4,, the assumption
Ao € SOy is equivalent to the condition

P(X(w)¢ Ay for 33>0)=1  for any z in M ... (2).
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We show
P(X(w)¢ A, for ¥ >T)=1 ... (3)
in order to deduce a contradiction to (1). Using conditional probability,
P,(X,(w) ¢ A, for * > T) = P,P,(X,(w) ¢ A, for * > T|F;).
By the Markov property of {X,},
P(X, ¢ Ay for % > T|Fy) = Py, )(X,(w) ¢ A, for s >0),

and it is equal to 1 a.s. w by the condition (2). We have got (3), hence proved
Ao ¢ SOyp.

By the same way, we can choose a component By of 4’ such that By ¢ SOys.
Put B, = f'(B;). Then we denote by A the component of M — B, which con-
tains A,. Take B=M — A. It is obvious that A and B are connected, and
they have the common relative boundary of simple closed curves {c,} =« M —
(FU%). Since A contains Ay ¢ SOy, A does not belong to SOyz. Then it
follows from M € Oy and the two region test that Be SOyg. By the same
reason, A’ = f(A) € SOy and B' = f(B) ¢ SOyp.

Theorem 6.1. There are Riemann surfaces R € Ofy and R’ ¢ Uyy which are
QC equivalent.

Proof. Let M and M’ be Riemann surfaces in Oy, f a QC homeomorphism
of M onto M’, and A and B subregions of M obtained in Lemma 6.1. Since
the relative boundary of B consists of a countable number of simple closed
curves {c,}, we can construct a hyperbolic Riemann surface B without border
by pasting a conformal disk U, to each curve ¢, of B as in the proof of Theorem
52. Let #:D—> B be a holomorphic universal cover and H be the Fuchsian
group of 7. We may take a fundamental region w of H in D such that one
component of #7!(U,) completely contained in w for every n. For each he H,
we prepare a copy A, of A. From h(w), we remove the preimages of {U,},
then attach A4, so that each boundary of A, is on the corresponding preimage
of {c,}. After such surgeries for all h e H, we obtain the Riemann surface which
we denote by R. We define a covering map n: R—» M as follows:

| 4,: Ay — A is the identity map for every he H
n=#on R— | 4,
heH
Then, n is a holomorphic normal covering map of R onto M.
We will show that R belongs to the class Ofjg. Since M € Oy, by Corollary

4.1, we have only to show that Re Uyg. The Riemann surface M has the
subregion A4 ¢ SOy;. Hence the characterization theorem asserts that A4, (M)N
(A* — 0A") # &, where —. means the closure in the Wiener’s compactification
M* of M, and 4,(M) the harmonic boundary. Since M € Oy — Og, 4,,(M)
consists of a single point p, therefore 4,(M)N(4* — 0A4*)= {p}. We choose a
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copy A, of A in R. Then the holomorphic mapping n: R - M is univalent on
A, and satisfies the condition that n(0A4,) = 0A. By [T,, Prop. A], we have the
continuous extension of 7 which gives a homeomorphism from 4,,(R)N (A} — 6A})
onto A4,(M)N(A* — 0A*) = {p}. Therefore, 4,(R)N(A} — dAY) also consists of
a single point. Since A} — A} is open in R¥, this implies that 4,(R) contains
an isolated point, hence R € U,,. We have seen that R e Ofy.

By the same way as for R, we construct the normal cover R’ of M’ and
the covering map n': R" > M’. Then, there is a QC homeomorphism F of R
onto R’ such that for=n"o F. We now prove that the Riemann surface R’
does not belong to Upg: Assume that R’ e Uyz. Again by Corollary 4.1, R’
must be in OfFy, for it covers M’ € Oyp. Let G' be the preimage n'~!(B’) of B’
in R". It is connected. Since B’ ¢ SOy, there is a non-constant bounded har-
monic function u on B’ such that u =0 on 0B. Then uon' is a non-constant
bounded harmonic function on G’ such that uon’ =0 on dG'. This means that
G ¢SOyp. If G' is not in Uy as a Riemann surface, then by the same reason
as the first part of the proof, 4,(R')N(G™ — 8G™) does not have isolated points,
which violates R’ € Ofjy. Hence G’ is forced to belong to Uyy = O,5. But by
the construction of R’, G’ is a planar domain which admits non-constant bounded
analytic functions. It is a contradiction. Therefore R’ ¢ Uys.

Remark. (1) By Theorem 5.4, we know R'eC or R' ¢ U,. But, we do
not know whether R’ belongs to U_ or not.

(2) There exists a continuous mapping p of Wiener’s compactification M*
of M onto Royden’s compactification M such that p is the identity on M and
p(4,(M)) = Ax(M) [SN, p. 230]. Since 4,,(M) consists of a single point p, 4z(M)
also consists of a single point ¢ = p(p). We now show that g is in {Jc,® If
not, for the subregion B e SOy, < SO,p [SN, p. 241], we have BRN A (M) = &.
Then by Kusunoki-Mori's theorem [SN, p. 159], the double B of B about
0B = | J ¢, belongs to Og. The QC homeomorphism f: B — B’ is extended to a
QC homeomorphism f of B onto B, the double of B. But B ¢ Og, because
B’ ¢ SOy. It contradicts to the fact that the class Oy is invariant under QC
homeomorphisms. Hence we know qemk. But since p is in A¥ — 04", we
also know pémw. This argument shows that even if a subregion B of a
Riemann surface M satisfies B*N T, (M) = &, the double B need not belong to
Og, namely, Kusunoki-Mori’s type theorem fails in Wiener’s compactification.

§7. QC non-invariance of conservativity

In this section, we show that each of C, U, and W, is not QC invariant when
n=2. Shiga [Sh] showed the fact for W, however once again, we explain it
by using Lemma 2.1. We have only to construct a QC automorphism f of D
and Q = {q,} so that {g,} does not satisfy the Blaschke condition, while {f(q,)}
satisfies it. In the upper half plane H = {Imz > 0}, set g, =i/n, and f(z) =
|z[*"1z (x> 1). Then Y |q,| = o0, but Y |f(g,)| < c. It is easy to see that the
conjugation by a Mgbius transformation H — D yields our example.
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Concerning C and U, it is rather easy to show merely that they are not
QC invariant. Indeed, a characterization of C for Denjoy domains [P;, Ex.
4] combined with the Beurling-Ahlfors’ well-known example, exhibits QC non-
invariance of C. So we will construct a stronger example: There are Riemann
surfaces R and R’ such that ReC and R' ¢ U,, but they are QC equivalent. We
prepare the following two lemmas.

Lemma 7.1. Let ¢ be a quasisymmetric (strictly increasing) function from R
onto R which is singular w.r.t. the Lebesgue measure | | on R.  Put y(x) = ¢(x) + x,
f=v"'and g=q@of Then we have;

(1) f and g are quasisymmetric.

(2) f and g are absolutely continuous w.r.t. | |.

(3) R is a disjoint union of two sets A and B both of positive measure such
that |f(A)| =0 and |g(B)| = 0.

Proof. (1) Since ¢ is quasisymmetric, there is a constant k > 1 such that
for every xeR and t >0,

< o(x +t) — o(x)

1
kS ot —ox -0~
Hence
Y+ 1) —yYx)=0(x +1t) — @(x) +t
< k(e(x) — @(x — ) + )=k(Y(x) — Y(x — 1)
and

Yx) —y(x—)=0x) —o(x — 1)+t
<k(o(x + 1) — @(x) + )=k(¥(x + 1) — Y(x)) .

This means that i is quasisymmetric. Then the inverse f = ¥ ! and the composi-
tion g = @ o f are also quasisymmetric.

(2) f is absolutely continuous because the inverse i maps any set of positive
measure on R to a set of positive measure. To see g is absolutely continuous,
we consider the inverse g~! and take any set E' = @(E) of positive measure on
R. Since g !(¢(E)) = Y(E) and |Y(E)| > |@(E)|, |E'| > 0 implies |g *(E")| > 0.

(3) Since ¢ is singular, there is a set A4’ of null measure on R whose image
by ¢ is full on R. Take A = (4') and B=R — A. Then 4 is clearly of positive
measure and so is B because B = (R — A’). But, |f(4)| =0 and |g(B)| =0.

Lemma 7.2 Let f be a QC automorphism of D, and Q a set of countable
points of D. Then f(C(Q)) coincides precisely with C(f(Q)).

Proof. We have only to prove that f(C(Q)) = C(f(Q)), because the inverse
inclusion follows from f~}(C(f(Q)) = C(f'(f(Q))). Let x be an arbitrary point
of C(Q). Then there is a Stolz angular region 4 with a vertex x in which a
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subsequence {q,} of Q converges to x. Note that f has the QC extension to
the whole complex plane. By the three point property of quasicircles, we can
see f(4) is contained in some Stolz angular region in D with the vertex f(x) (cf.
[BR, Lemma I]). Hence f(g,) converges to f(x) conically.

Theorem 7.1. There are a conservative Fuchsian group acting on D and a
QC (even quasi-isometric) automorphism f such that I'' = fI'f ! is a totally dissipa-
tive Fuchsian group. In other words, the horocyclic limit set of I is of full
measure but that of I'' is of null measure.

Proof. We translate Lemma 7.1 into the unit disk D by the conjugation
of the Mobius transformation H - D. Then we get two disjoint sets A, B of
positive measure whose union is 0D, and absolutely continuous quasisymmetric
functions f, g on 0D such that m(f(A4)) = 0, m(g(B)) = 0. We denote the Beurling-
Ahlfors extension [BA] of f and g by the same notations f and g respectively.

Let S be a set of points in D which satisfies the assumption of Lemma
5.1. By this lemma, we choose a subset Q of S so that C(Q)= A4 (ae.). Set
R =f(D—-Q) and R=g(D— Q). By Lemma 7.2, C(f(Q)) = f(C(Q)). Since
C(Q)= A (ae) and f is absolutely continuous, C(f(Q)) = f(4) (ae.), that is,
m(C(f(Q)) = 0. This implies the Riemann surface R’ is not in U, by Lemma 2.1.
Similarly, we have C(g(Q))=g(C(Q)), 0D—B=C(Q) (a.e.). Hence m(C(g(Q))=1,
which shows that Re C. But, fog™ is a QC mapping of R onto R'.

Let I" and I’ be the Fuchsian groups corresponding to the Riemann surfaces
R and R’ respectively. Then by Proposition 2.1, m(4,(I")) = 1 and m(A4,(I"")) = 0.
In other words, the action of I" on dD is conservative, while that of I"' is totally
dissipative. However, there is a QC automorphism & of D, even quasi-isometry
w.r.t. the hyperbolic metric on D by Douady-Earle’s theorem [DE], such that
Sro~' =1,

Remark. (1) Let I be a discrete isometry group acting on the hyperbolic
space B" of dimension n, where n > 3. Sullivan proved that if the action of I’
on the sphere at infinity is conservative with respect to the canonical measure,
then I" is Mostow-rigid. Here we say I' is Mostow-rigid if any discrete isometry
group I'" acting on B" which is conjugate to I" by a quasi-isometric automorphism
f of B is actually conjugate to I" by an isometric automorphism. Particularly
we know conservative groups for n > 3 are quasi-isometrically invariant. While
in the case of Fuchsian groups, ie., n =2, conservative groups need not be
Mostow-rigid. In addition, it has been shown by our theorem that even the
class C is not preserved under quasi-isometric automorphisms. (Recently, Astala-
Zinsmeister [AZ] proved that for a Fuchsian group [, it is of divergence type
(€ Og) if and only if I has a “weakened” rigidity property.)

(2) Sullivan [Su, Th. IV] also showed the following equivalent condition
(%) to conservativity of the action on the sphere at infinity of a group I" of
hyperbolic motions: For some/any point p on R = B"/I', we denote by V(r) the
hyperbolic volume of the points of R within a distance r from p, and by H(r)



Ergodic properties 225
the hyperbolic volume of the ball of radius r in B". Then,
(%) V(r)yH(r)-0 as r— oo .

This condition is represented by the hyperbolic metric on R. But, our exam-
ple shows that the condition (x) is not quasi-isometric invariant in the case of
dimension 2.
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