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Nonsolvability for differential operators with
multiple complex characteristics

By

T GRAMCHEV*

Introduction

This paper examines the local solvability in the Gevrey classes Gc, 1 < o  <  co,
(G  := CD) of linear analytic partial differential operators P(x, D) of the following
type

P = A' + lower order terms,r  e  N, r > 2

w ith A  being a  classical analytic pseudodifferential operator o f complex-valued
principal type modelled microlocally near a point by the Mizohata operator D„ +

h e N.
T he m ain  result o f  our paper sta tes tha t if  h  is  o d d  th e n  P(x, D) is not

locally a-solvable fo r every 1 < a  <  co , w ithout any restrictions on the lower
order term s o r  r. I n  particular we recover th e  results in  th e  C ' category of
F . Cardoso, F . Treves [2], P . Popivanov [20] for r = 2  a n d  R. Goldman [10]
(r > 3, nonzero subprincipal symbol) and F. C ardoso  [3 ] (fo r eve ry  1  <  <  co,
r = 2). We recall that in the case simple characteristics P(x, D) is locally u-(non)
solvable w hen h  is (odd) even, 1 < a < oo =  co stands fo r the  C O  case) cf.
[9], [16], [20].

Microlocal u-(non) hypoellipticity for p.d.o.-s of the type above was shown
by L. Cattabriga, L. Rodino and  L. Zanghirati [6] and one uses their estimates
on the infinite order p.d.o.-s which are parametrices in G ', 1  < a < r/(r — 1). We
mention also th e  papers of A . C orli [7], [8] on u-nonsolvability for operators
with multiple real characteristics.

Further w e study th e  possibility h  even . W e exhib it a  class o f operators
in  R2 w hich  are  a-solvable when 1 < a < a o b u t  not a-solvable if a  >  a1 , a 1 >
ao > r/(r — 1) are expressed explicitly by r, h  and a positive even integer, related
to  the lower order term.

The m ain results a re  stated in  sec tion  1 . T he  proof of u-nonsolvability in
the case h  being odd is contained in sections 2 and 3, while the  last one deals
with the case h  being even.

*  The research was carried out while the author was visiting the Universities of Torino and Ferrara,
Italy in  June and  September 1990.
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1. Statement of the main results

W e recall that if  Q  IV is  an  open  se t and  1 < a-  < co then  the class of
Gevrey functions o f  o rder a ,  G'(Q), consists o f  a ll f (x ) e C°(Q) s.t.VK Q,
3C = C K , f  > 0 s.t.

(1) sup If(x)1 (a!)c , ae Zn+

x e K

and one defines inductive topology of G(Q) (see [1 4 ]) . The set G 1(Q) coincides
w ith  th e  space o f  all real analytic functions in  Q .  If o >  1  w e p u t  G (S-2) =
G'(0)(1C,T(Q) a n d  w rite G( ' ) '(Q ) (G r(Q )) fo r  th e  space o f  u-ultradistributions
(with compact support), namely the dual o f Gus2) (G'(Q)) in  th e  corresponding
topology.

A n  analytic partial differential operator P(x , D), x  e Q, is called locally o- -
solvable at x° e Q , 1 <  <  co iff there exists a  neighbourhood V  of x„, having
the  next property: Vf e G r(V ), 3u e G ( Q )  s.t. P(x , D)u = f  in  V. Here G (Q )
(G '(Q ) )  stands for C(i2) (g'(Q)).

W e consider a n  analytic differential operator P(x , D) o f order m > 2 with
principal symbol p„,(x, satisfying the next requirement: there exist p o = (x o, ())  e

T*(0)\0, a  neighbourhood co of x° ,  an  open  cone T e  W \0 containing and
a positive integer r < m  s.t. denoting r o, = w  x  r  we can write

(2) P.(x, = qm-r(x, ) (a (x, (x, e

where q„,- r i s  a n  analytic elliptic symbol in  Fo„ ord = m — r, a l (x, is  a
first order complex valued principal symbol i.e. d 4 a 1 (x ,  ) 0 0 on E = {(x, E

p„,(x, = 01.
Without loss of generality (multiplying a, by i and shrinking r necessary)

we assume c/4(Re a,(x , ) )  0  0 in J . W e  d em an d  fu rth e r  th a t p
°
 and Tm a l (x,

satisfy

Tm a i (x, has a  zero  o f odd order along the  bicharacteristic
of Re a i (x, through p

°
 a n d  it  changes its sign from  — t o  + .

Under the  hypotheses above we claim.

Theorem 1.1. The operator P(x, D ) is not locally a-solvable at x
°
 fo r  every

1 < a  < co.

Next we study operators in  R2 f o r  which the  order h o f the  vanishing of
Tm a ,  on  the  characteristic set of Re a l  i s  e v e n .  In  order to simplify the state-
ments we consider a n  operator P  defined by its adjoint P*  as follows

m-1

(3) P*(x, D) = (D2  + id4D i )m + E B i (x2, D1)(D2 + ,
j=0

where d e R\O, h is even and  Bi (x2 , D1 ) is  a  differential operator in  D , of order
j  with coefficients real analytic functions o f x2 , 0 < j < m  — 1, D, = s  =
1, 2.
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We suppose that the subprincipal symbol of P is nonzero on the characteristic
set i.e. there exists e > 0 s.t.

(4) 113,10 , 01 c V -1 , It] «  1 , 1 1 »  1

In  view of (4) the  algebraic equation with respect to  A

m-1
Am + E B;(t, A j

=  0

has for Iti « 1, 11>> 1,
functions and  they are  analytic symbols of order (m — 1)/m (see [12])

(5) /,(t, E v4s(t)1 1(.--1--wm, » 1, 1 < k <
s=0

W e assume tha t for som e 1 < j  < m there exists b > 0  and positive integer
p s.t. f o r  ti «  1  and  v = v7, 0  o r  v = vi70

(6) co(t) = Im v(r)dt' > bt 2 P, 1 1 ( t ) 1 =  (016 4-1 ) s 1 ,. m  —  2  i f  in > 3

W e demand also m > 2 and

(7) h + 1 > 2pm/(m — 1)

H ere is the second principal result of the paper.

Theorem 1.2. L et h  be even and let the hypotheses (6) and (7) hold. Then
the operator P(x, D) given via its adjoint by (3) is not a-solvable at 0 for y < a  < co ,

m(h + 1 — 2p)
w h er e  y = 

(h + 1)(m — 1) —  2pm

Remark 1.1. According to [12] P(x, D) and  P*(x, D) are solvable for 1 <
mh

a <  and  P*(x, D) is  n o t a-hypoelliptic if y < a <  co. W e point out
mh — h — 1

that the previous assertion remains true also for other classes of operators, whose
adjoints are n o t C hypoelliptic bu t a re  analytically hypoelliptic (see [6], [12],
[21] for such operators).

2. Asymptotic solution to  the reduced system

W e take and  fix arbitrary 1 < a  <  r/(r — 1). Evidently o--nonsolvability im-
plies a'-nonsolvability for every a < a' < co.

T h e  se t  o f  p o in ts  fo r  w hich P(x, D ) i s  a-nonsolvable is  c lo se d  so  it  is
enough to  show that there exists a  sequence s.t. lim X =  x °  a n d  P  is

not a-solvable at xi, j  >  1 .  It is  w ell know n tha t the  assumption o n  a l (x,
imply the existence of a sequence { p i } , T*52\0, p i  = (x i, V ) p °  and conic
neighbourhoods r o,j  D j -= 1, 2, ... s.t. Tm a,(x, vanishes of fixed odd order

in different roots /,(t, 1 < k <m  w hich are real analytic
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ti; o n  E  along each null-bicharacteristic of Re a 1 (x,( x ,  e Fm ,  and the change
of sign is always from — t o  + .  So we assume without loss of generality that
this property (h  fixed fo r p° a n d  F .)  ho ld s a n d  moreover a s  in  [6 ] after the
eventual renumerating of the variables and shrinking o f Pm  w e  c a n  suppose

(8) ô4” Re a i (x, )O , ( x , ) e I .

One observes th a t P *  has the  same property h  o d d  and  fixed o n  TM but
with the change of the sign from  +  t o  —.

We recall the necessary condition for local a-solvability namely if the operator
P(x, D) is  o--solvable a t  x°  th e n  for every small enough neighbourhood co of x°

and every T >  0 , e e (0, T) there exists a positive constant C =  C(co, T, g) s.t.

(9) VU e Gg(co T) ,

where II c m  i s  the  suprem um  n o rm  i n  C(co); Gg(co : T) = G(w) fl Ga(o) : T),
G"(c. o : T) is  the  Banach space of all functions u(x) e G(w) s.t.

1114117.,(7 = E C .

W e have to  use cut-off functions from G°, 0 = 1 + g, 0 < g « 1  in the con-
CO

structions of p.d.o.-s and  F .I.0 .-s . Indeed i f  E is  a  classical analytic

symbol defined in  a  conic neighbourhood co x T  (x0 , e ) we realize it a s  p.d.o.
with an amplitude A(x, given by

A(x, = 9(x) Am _i (x , );c ()x (0 M (j +  1 )))
i=o

with 9(x) e Gg(Rn), 9 = 1 near x° , K (0 e O R ") being homogeneous of zero order
fo r 11 >  1  and supported in  I ', ic( ) = 1 for e To c c  1", To is  a  smaller conic
neighbourhood o f  (:1;  x( )  E  OR"), x( ) = 1(= 0) for 1(11 1/2) and the
constant M  > 0 is  large enough. Then w e call A(x, 0 a  0-amplitude which is
suggested by the next estimates:

10V12A(x ,  )1 < C iœ1+1"(a !f i!) °< 0 m -ia l=  N / 1 +

where C > 0 is independent from a, /3 e Z ,  (x, e R2". The formal calculus of
p.d.o. and F.I.O. with such amplitudes is valid as in the Ce° case via the stationary
phase m ethod b u t w ith  a  loss o f Gevrey regularity o f  th e  realization, namely
after the composition of two operators with 0-amplitudes the amplitude of the
resulting operator is 20—  1(= 1 + 2e)-amplitude cf. [1 1 ] .  A s we will perform
finite number of compositions, if g is fixed small enough then the Gevrey index
of the am plitudes of the resulting p.d.o.-s and  F.I.0.-s will be always less than
th e  fixed in  th e  beginning o f  th e  p ro o f  c >  1. I n  view  o f  th is  observation
we shall use the same letter 0 for the Gevrey index of the realizations.

The conditions on the principal symbol pm  y ie ld  the existence of an analy-
tic hom ogeneous canonical m ap ch: T*R"\O w ith  0(p ° ) = (0; i) = f3

°
, 1  =
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(1, 0, , 0) and an analytic elliptic F.I.O. Eo , defined mcl near /5°,  associated to
0, and a 0-p.d.o. Q(y, D), analytic and elliptic mcl near fi° s.t. the adjoint operator
P * is written as

(10) P*(x, D) = E o Q(y, D) o P(y, D) o E +  R (x , D) ,

where if one sets M, = D„ — iy D i  th e n  P  is represented in the following form
r - 1

(11) j5(Y, D) = (Mid r +  E Pf(Y, D')° (M a
i=o

with Pi  having 0-amplitude of order r — 1 — j, supported in a conic neighborhood
of fi

°
, analytic mcl near j r ,  0 < j < r — 1, E; stands for the adjoint of Eo while

R(x, D) is with a 0-amplitude of order m and is 0-regular mcl in i.e. RC > 0 s.t.

(12) lqa 13R(x, < w o o  m - 1131 exp ( — c 1 1' ),

(x, )e , a, ,6 e Z", , := (1 + 11 2 ) 112 •

The F.I.O. Eo is defined in the following way

(13) Eo w(x) = exp (i0(x, —  iy'lf)e(x, y', if)w(y', x n )dy'clr( ,

where e(x, y', is a 0-amplitude, supported in w x 2 j x r and is analytic symbol
in a smaller conic neighbourhood co o x ctio x

We recall from [6] the reduction of 13 (y, D) mcl near p°  t o  a system Mh/  +
A(y, D'), acting on vector functions U = (u 1 , ur )t, where I  is  the r x r  unit
m atrix  and A(y, D ') i s  a  r x r  matrix-valued 0-p.d.o. o f o rd e r  p := (r —
namely A(y, D') = {A u (y, D')}::J = 1 , where Ar i (y, D') = Pi_1(Y, D')1D11P f r - h , 1 j  r ,
Au , i (y, D') = — 1D11P, 1 j  r  —  1  and Au (y, D') = 0  in a ll o th e r  cases. Then
u solves P(y, D)u = f  i f  u u1 is the first component of a solution
U = (u 1 , ur )

1 of the system (Mh/  + A(y, D'))U = (f, 0, ..., Of Here ID , Is de-
notes a 0-p.d.o. with symbol equal to re, mcl near fi° and supported in Cb x  r.
According to Lemma 2.3. in [6] there exists a series of r x  r infinite order p.d.o.-s

E Ev (y, D'), defined in (Tr x r, satisfying formally
v=0

(14) (Mh/ + A(y, D')) oE v (y, D') = Ev (y, D') 0 Mh l .
v=o v=0

More precisely we have for v > 0

(15) + A(Y, t/'))E,(Y , = Fv(Y, if) (Y, E  a j  X  r,
(16) Edy', 0, if) = I , E„(y', 0, = 0 ,y  > 1

(17) Fv(y, = — E E odyINAty, qw Ev _k (y , q')
k=1 1011=k

and by definition Fo =  0 .  Moreover according to [6] we can find three positive
numbers D, c and C  s.t.
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(18) Ile,œrafE(Y, ri')II < clai+1,61+ivi+i co ! v !< >-v-ial e x p  (o w ) ,

(y, I f )  G 1-46 , l q ' t D, fi e Z1., a e Z 1 , v  = 0, 1, ...

N ow  w e are  ready  to  s ta rt the construction of an asymptotic solution to
P*(x, D)u = 0 in G .  The first step is to define such solution forr  tP(y;  1 ,D). ti‘ 1

Let x(rOG G9 (R n - 1 ), SUPP X C rn {17.1'1 2C1 }, x(0 1') = X(r1') for
3C1 an d  AO = 1, ?I' G r o n {lri'l 3C1 }, where C1 = max IC, DI, C, D as in  (18),
Fo c c F c  R ' \ 0 are conic neighbourhoods of if  = (1, 0, ..., 0). We choose and
fix functions 0(y) e Gg(w), 11/(y) = 1 on wo c c  co, wo is  a  small neighbourhood of
(0, ..., 0) and  K(s) e Gg(R), supp K e [1, 4], K(s) = 1 if 2 < s  <  3 . Setting 1c ,( ') =
,1,--..4-1 K(Iq' V /1)

(19) E(Y, ?1') = 1/1 ( .0  i  Ev(Y , tl')X ('/(v + 1 )) ,
v=o

(20) (02(Y) = f e x P  (io(y, n'))E(y, n')KA(rOdIf
R'r

with E(y, if ) being the r-vector f (y , O f t  ... , 1)` , 0 = iy n
h + l n ,/(h  + 1 )  -  y 'q '. Note

tha t (16) implies for some c > 0

E(y', 0, ri') = (1, ... , 1)` + 0(exp (- clifi l l° )) , ri' e le - 1  .

In  view o f (18) a n d  (19) E(y, ?I') verifies fo r  C > 0 large enough th e  next
estimates (recall that p  = r/(r -  1))

(21) 0 ,,,,,afE(y, 17)11clŒ i+101+1(00000,0_,alexp (C Ili' I')

(y, q') E R 2 n - 1 , 13 E Z ,  e Z 1 ,

N
(22) 110;tr af,(E(y, r/') - 0(y) Ev(Y, 11')X( 11r1'))() 

< cial-Fifii+N+1 (cow  De

x 0 0 - ' 1' 1 exp (C WI/ , (y, q ')G  
R2n-1, /3E Z ,  ot e Z 1 , N  e Z + .

Put f  À (y) = (mh + A (y , IY)) 14' A .

Proposition 2.1. There exist To > 0, (5 > 0, c > 0, C(T ) > 0 for T E (0, To ] s.t.

(23) T) exp (c l"), TE (0, T0 ] , 1 1IlwA IIT,, C(

(24) II wA 11004 /1 , 0 9

(25) II f  A ll To . -_ C (T )  exp (- 6,111° ) , T e (0, To ], 2 > 1 .

Proo f . T he estimate (24) follows from th e  fac t th a t (16) implies w(0) =
f KA(rOchf(1, ..., 1) + 0(exp ( - c 0 1211/9 )), co > 0 ,  2 > 1 , while the inequality (23) is
obtained by straight forward calculations taking into account (21) with a = 0.

Now we deal w ith the  proof of (25). W e have

for 1  > 1  we define consecutively
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(26) f  'CO =  Çe x P  ( i 0 (Y, 11'))F(Y, rl')KA(1')drl'

where F(y, n') = M h E(y, + B(y, n'), B i s  the am plitude of the com position
A(y, D') 0 E(y, D'). In view of (22) and the formal calculus in  [1], [11] we deduce
tha t the  remainders

i f3 (Y, 11') = 13 (Y, t1') —
(I I )  1D " ( Y ' 1 1 ') a c;' E ( Y ' T 1')

1.1tvi 

and

RY (Y, 11') = E(Y, if) — tli(Y) Ev(Y, 11')X( ')v=o

satisfy the next estimates for some C > 0 (Rm  =  K it  o r  R,Y):

(27) 10'4' afRm 1Y, < C121+1131+m+1 00!M0 60 0 - m - lœ l exp ( C  IP) ,

(y, 'Ï ) E R 2 n - 1 ,  fl e V + ,  a e Z r ',  M  =  1, 2, ...

We recall that if 0  is a  real analytic first order homogeneous phase function
then ]C  > 0  s.t. for Vy Zn+  ,  0  <  <  y  we have

Ivi
agexp (i0(y, ri')) = exp (i0(y, r()) E (0)(y, nr)

i=o

(28) ordn, SI(0) = j , Is1(0)(y, n')I C1'11,7'1.'(I71 — j)!
and so we can write

Œ!

(29) àỳ f = f il
(

c f i) !  jEo FaN (y) ,

where

F ( y ) exp (i0)Sf(y, O a r  F(y, q')K,(rOdri' .
R" -

We will show tha t one can find C, >  0 s.t. if a  > fi e Z71_, 0 j and
2 > 1

(30) sup IFN(y)1 C IŒ1+1(06De e x p  ( _621/0)

yew

which yields the same estimate for a``f )-(y), with C  eventually larger, and hence
we get (25) (taking T « 1/C).

O ne may write for every positive integer N

(31) For21(Y) = I.21N(Y) +  JŒVN(Y) +

where
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1,,A1 N  = f exp (io)sfavfl(m„Rri + Rri)(y, )1')K A(Odif

N+j
JOEV N  = exp (io)sfavfi E 1 ty!D;;', A(y, 0 R r i -171 (y, ))K A(tf)dr(

R—i iy1=0

N+j
ce, N = f exp (i0)SiPOr3 (M h ()11(y) E  Ev (y, r())

v=0

N+j N +  - 171
+ E 10),7,-4(y, /1') 40(y) E E,(y ,10)))cookA ctodif  •

171=0 u=0

The estimates (27) and (28) imply for some C > 0

(32) max{ I /OEA,i N ( y ) 1 ,  IJaN(Y)11 Clal+N +1 ( cc ! N .
!

,

)

6 — N  exp (CAP),c 

,q_ aeZn+ , 1,61, N E z, .

The transport equations (15), (17) yield that L:-h, N (y) is written as

(33)

with

L'al:k ry = exp (i0)Sf (y, ri')Orfl(Kte, + 10,i2 + 10,6)x0f Pc ,(n' )dri'f 
IV -,

N+j
Kjel(Y 1 ?1 ' )  = D O ( y )  E  Ev(y, ,

v=0

N+j
=  E E E -  -r)!)D, 1 , A (Y  j ' )  ;  (Y ))a  E  p (Y  ,  ?I '

7 002 = O  0 <ITI5171

N+j
K ,- ( y , to =  - iy",'Doky) Ev=0

Recall that t (y) = 1 near y = 0 which leads to supp(Dn ifr) g {y; Y .1 c  >  01.
T h u s  w e  have I exp 00 )1 = ex

p _1in/1 + 1

11110 + 1)) C exp ( — dA) fo r  ( Y , q') e
I 

supp D ' (y ) x supp K(?/'), C, d > 0 independent of (y, ri') and A >  1. Using the
well known inequality Ak exp ( —cA) < k ! ,  k  e Z+  w e  g e t th a t the first integral
in (33) satisfies the estimate (32). As t o  the second and the th ird  te rm s in
the right hand side of (33) w e observe tha t the ir  amplitudes are supported in

{ y; C > 0} (because there are only derivatives of nonzero order of with
respect t o  y ')  and w e integrate  by parts w ith  the differential operator L* =

awmila,,o1 2 ) using the identity L*(exp (i0)) = exp (i0 )  and the fact that
Re 0,74  = y' 0 0 on the support of the corresponding amplitudes. If L  is  the
adjoint operator of L* we can write the sum of the second and the third integral
in (33) as follows:



where S (y ) =  S P y )  +  S ( y )  and

(38) S,13(Y) = f exp (i(y'r( + 0(z', y„, C')))
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N+i
exp (i0)S r(y , ti')(E 1/(r!(), — ry)arfi(a)7,0(y )

R"--1 y=1 p=0 0 <Iti

X L N ± i - 1 7 1 - 4 (D 4 ( y ,  )ar E ( y ,  tf))

N+j
— i.Y71:D 1(Y ) E  LN±i — (E v(y , r i') ) )x (r ()K A (O d if

v=0

Using (20), (28), th e  property I(L)s(KA00)1 c s-Fi (soaA-n-s, s e Z7, and the
rule for differentiation of the product of several functions we estimate the ampli-
tude in  the integral above by C1"1" '( a ! N ! ) e1 - '  exp (cAP), w ith C > 0 indepen-
dent from a, N  and A  > 1 . So we can write

(34) Latip,N(Y)1 < Cial + N ± 1 (0M !) OA- "- N  exp (cAP ) ,

y co,,6 a e  rE- 1 , 0 j Ifil, N  = 1, 2, ...

The estimates (32), (33) and  (34) imply after summation over N  = 0, 1, ...
and using (31) the  desired estimate (30) since p = (r — 1)/r < 1/u < 1/0.

3. Passing from the system to the equation

W e set v (y )  = 4 (y ) — the  first component of Wi (y). W e  have

(35) P(y , D)v  = f  + 13; (y, D')f, 2 + S(y , D')v 't ,
j=2

where Bi (y , D'), 2 < j  r  a n d  S(y, D') a re  p.d.o.-s with 0-amplitudes a n d  S is
0-smoothing in  67) x f  i.e. S(y, ry) verifies (12) when (y, I f )  e d  x  f .

Lemma 3.1. T here ex ist T , > 0, 5  > 0, C(T) > 0 f o r T e (0, T0 ] s.t.

(36) S(Y, C(T) exp ( — .5■1110) , A > 1 .

P ro o f . Using G°  cu t - off functions we decompose S in  th e  following form:
S(y, if ) = S 1 (Y ,11') + S2(Y , if) w ith Si (y, )1') 0 fo r (Y, r1') e ai x  f ,  while S2(y,
satisfies (12) when (y, If) e R 2"-

1. So we can write for a e Z",

(37) M S (y , D )v ') = E 
13<a fil(CX 16 )! SaA' f i ( Y )

a!

fl.
x ir" E S P-()(z ',

i=0
x aay 'r fi-(D 3̀!;- fi'Si (y, r()E 1 (z', y,„ C))K,t (C)dCdz'dn' .

Since 0(z', 0, = iz 'C  and  fo r some c > 0 w e have — 01,1'1 +
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if  ri' 0 I ',  C' e suppr  (E i (z', yn, C') x KA (C')), th e  next estimate holds for C' a n d  q'
a s  above, c > 0 eventually smaller, I y n l << I

(39) In' — az, 0 (z% yn, C'H c(Irl'l + IC1) c2.

So we integrate N  tim es by parts w ith th e  operator L* = Of — az ,>/
(O f  — az , 012 ) in  the  integral representing S ' (y ) and get in  view of (39)

(40) 1 SŒÂ .11 ( y ) < Oa' +N+1 (cdN DOA —N e x p  (e ) . . p)

y e co, fl a e Z - 1 , 1>1,1, N = 1, 2, ...

Concerning S ( y )  w e po in t ou t th a t f o r  fl'I < 212 we can integrate with
the operator L above since 10 2 on supp(KA(C')) leads to Ili' — Y., C')1
cil fo r  1 y „1 « 1. In  th e  c a s e  10 2/2 w e u se  th e  fa c t th a t  S2 (y, ?I') satisfies
(12). Thus the estimate (40) is true for Stg(y) which yields (36).

Next we state a  technical assertion namely if B is  O-p.d.o. and E is  O-F.I.O.
a s  above, with compactly supported kernels, then fo r  every a > 0 there exist
To > 0, 5 e (0, 1), C(T) > 0 f o r  T e (0, To ]  s.t. for every u e Gg(co : T), T e (0, To ]

(41) max {11BullsT, IlEullr.} C(T)Iluil T,cr •

We omit the proof since it is only a  technical complication of the arguments
in  dealing with the norm s 11' il T  cf. [1], [3], [7], [8].

Taking into account (35), (36) (w ith S replaced by R), (41) a n d  (25) we
deduce 3T0 >0 , C (T ) >0 , 0 <  T _<_ To s.t.

(42) I1P(Y, D)vA 11-,,, C (T ) exp ( —  6A1/9 ), 2 > 1,

(43) IlvA II T,, C(T) exp (c2"), 2 > 1

(44) lim inflIv A lloo > 0 .

The final s tep  is  to  put

(45) u(x) = (Jv A)(x)

= f
R t  TR"»

q ,

exp (i(xV — O(Y% xn , ()))0x, y', ?)')v ).(y', xn )dy'dq'

where J  is  O-F.I.O., right inverse of E ; mcl near p° i .e .  E* 0 J = Id + R(y, D'),
R(y, D') is  O-p.d.o., G9-smoothing mcl near p° . Thus we obtain

P*(x, D)te' = E0 0 Q(y, D) 0 P(y, D)v A + E 0 Q(y, D) 0 R(y, D')v A

a n d  (42), (41) a n d  (36) im p ly  11P(x, D)uÀ II 7.,  C(T) exp ( - 52"
°
) f o r  C(T) > 0,

0 < T < To , To , c5> 0 independent of 2 1, while (43) and (44) hold for u '. We
contradict the  necessary estimate for a-solvability by letting 1 -+ co.
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4. Proof of Theorem 1.2

In  this case the Gevrey index o- > r/(r — 1) and so we are no t able to apply
infinite order p.d.o. b u t rather use the asymptotic solution constructed in  [12].
W e can choose a n  asymptotic solution to  P*u = 0  in  the  following form

(46) Z(x, = exp(iW(x, ))A(x, , x e R2 , lx1 « 1, e  R

w ith V(x, =  —  idx 1
2' 1 V(h + 1) + x, + 4/(x 2 , Ik solving

(47) Ox,t// = ).; (x2 , ), 4/(0, ) = 0 ,

where j  is a  fixed index satisfying (6). Without loss of generality we take d = 1,
0 i.e. (6) is valid for v = v; o . In view of (5) and (6) we can write = +

and 3C > 0 s.t. for » 1, 1x21« 1

(48) Im th(x 2 ) = cox2)cm-ion 101(x2, 4 c l x 2 1 24 vm-2m .

The amplitude A(x 2 , is  a  0 = 1 + c  ( 0  <  «  1) realization of

E as (x 2 )c - sP , P = (m n i m
s = 0

where a„ s = 0 ,  1  . . .  a re  real analytic functions, uniquely determined as the
solutions of the transport equations in the construction of a formal asymptotic
solution to  P*u = 0, w ith initial da ta  a0 (0) = 1, as (0) =  0  if  s > 1 (see [12] for
more general operators o r  in  this case one can use the asymptotic methods for
linear o.d.e. after the Fourier transformation x,

In  view of (6) ( — Im w(t) < — bt 2 g) we get from (48)

(49) lexP (iVqx, 0)1 < exP ( x 1 / ( h  + 1) — b x N P  +  x 2 12 ' ( n- 2 " )

and consequently

lexP (iW(x, 0)1 exp (C1x2 12 ' 2 " )

providing x2 <  co , > 1, co = (b(h + 1 ) ) 1 / 0 1 + 1 - 2 g ) ,  

= (m(h + 1 — 2a)) - 1 .
Let x(t) e OR), supp x  g (—co, c1 ], x (t)= 1 on (—cc, c2 ]  with the constants

chosen to satisfy 0 < c 2 <  c l  <  co (see  a lso  [6], [12], [21]). N ote tha t (6) and
(7) lead to

(50) lexP (iV1(x, 0)1 exp  — 6V/Y ) , c2 <  X2 C1 ,c > 1

with 6 > 0  depending o n  c l , c 2  a n d  C  only.
If  K a )  is  the function in  th e  previous section for ?I' =  E R  we denote

(51) w (x )  = f  e x p  (iT (x , ))x (x 2 n1c,t (O g  , ) > 1 .

Then
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(52) P*(x, D)w 2 = f exp (iT (x , f l-x2(( 2nR (x  2 , ')Ic ckA (O
R+ feXP (i r X , M S ( X 2 , OKA(OCk

R

and for certain positive constants C, 6 we have cf. [12]

(53) 10 R(x2, 01 C 1 (N!)  exp (—(52(' )/m), N  = 0, 1, ...

while the estimates

101,(X(x2n ) 1  0 + 1 (n)° V , 11

a n d  th e  fac t tha t in  S  participate derivatives with respect to  x2 o f  x(x2 n  of
order not less than 1 yield via direct calculations (or see [12]) that

(54) supp (S) g {(x 2 , ) : c2 .._ x2_ _  c1 , 1}

(55) 1 2S(x2, )1 C1+1000 V a t o -FrN) , N  = 0, 1, ...

with mo  = min Inrr, m — 11.
Applying the  a rgum en ts  in  the  previous tw o sec tions o r relying on the

estimates in  [12] w e find  that 3T0 > 0, (5 > 0 a n d  C(T) > 0 fo r  T e (0, To ]  s.t.
the  next estimate holds

(56) IIP*(x, D)w 2 II T ,a C ( T )  exp (—W/7), A > 1

where the L 2-norm in (1) is taken over a small fixed open set co containing (0, 0).
The only problem is that w'(x) is not compactly supported and so we choose

g(x) e Gg(w), g(x) equals 1 near x = 0 and  pu t u 2 (x) = g(x)0 x ) .  Then

(57) P*(x, D)ti A = g(x)P*(x, D)w A + f (x )  + f (x )

where f i
Â, ( f i )  is represented as an  oscillatory integral of the type (51), (52) with

0-amplitude supported in  {lx 1 1 2. (Y}({1x21 (5 '1) for certain .5' > 0 small enough.
Integration by pa rts  a s  in  the  proof of Proposition 2.1 w ith the  operator L =
(ix i )- 1 0 , L(exp (j W)) = exp (j W) in the integral defining f i'' shows that with certain
To > 0, (5 > 00 and  C(T) > 0, 0 < T  < T , we obtain

(58) Ilfillr C(T) exp ( — W ) , A 1

w hile Ilfi'll T , a  satisfies (58) taking into account th e  following two inequalities
valid for certain positive constants C  and c depending o n  6', h, m , n, b and the
constant C  in  (49):

lexp (iW(x, 01 exp ( — c) ,l x 2 1 6' , > 1

(n!)6 2" exp (-2) Cn(n!)"' exp (-2/2) C"(n!) exp (-2/2) .

Note that we use the equivalence of 11 and A on supp !CA() and the observation
tha t (7) implies 0 + r < y  providing e > 0 is small enough.
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The last inequality appears when we estimate the derivatives (in the definition
o f th e  n o r m  f i  T,a) o f th e  function x(x 2 0  and w e  use the fact that
a > y > 0 + T.

P(x, D) a t  0  since clearly 
S o  w e  g e t th a t  P * WI IIT,a

11 u 11L a

satisfies (56) which yields the a-nonsolvability of
C(T) exp(c0(1)) while

4A 4
11M  0 0 ,  = K110d = K1Od > 1
A--•co A 1

implies

lim > 0 .

Acknowledgements. The author expresses h is gratitude t o  prof. L . Rodino
(Univ. of Torino) and prof. L. Zanghirati (Univ. of Ferrara) for the useful discus-
sions during the research and the preparation of the paper.

MATH. INST., BULG. ACAD. SCI.
DEPT. DIFF. EQUATIONS, G. BONCHEV BL. 8
1113 SOFIA, BULGARIA

References

[ I ]  L .  B o u te t  De Monvel and P. Kree, Opérateurs pseudodifférentiels et opérateurs d' ordre infini,
Ann. Inst. Fourier, 17 (1967), 295-323.

[ 2 ]
 

F . Cardoso a n d  F . T re v e s , A  necessary condition of local solvability for pseudodifferential
equations with double characteristics, Ann. Inst. Fourier, 24-1 (1974), 225-292.

[ 3 ]
 

F . C a rd o so , A  necessary condition of Gevrey solvability for differential operators with double
characteristics, Com m . in Part. D iff. Eq., 14 (1989), 981-1009.

]
 

L . Cattabriga a n d  D . M ari, P aram etrix  o f infinite order on G evrey spaces to  the Cauchy
problem for hyperbolic operators with one constant multiple characteristic, Ricerche d i Mate-
matica, suppl. v. 36 (1987), 127-147.

[ 5 ]
 

L. Cattabriga and L . Z anghira ti, Fourier integral operator of infinite order and Gevrey spaces,
Proc. NATO ASI "Advances in microlocal analysis" 1985, ed. H. Garnir; D. Reidel Publ. (1986).

[ 6 ]
 

L. Cattabriga, L. Rodino a n d  L. Zanghirati, Analytic— Gevrey hypoellipticity fo r  a  class of
pseudodifferential operators with multiple characteristics, Comm. in Part. Diff. Eq., 15 (1989),
81-96.

[ 7 ]
 

A . C o rli, O n  lo ca l solvability in Gevrey classes of linear partial differential operators with
multiple characteristics, Comm in Part. D iff. Eq., 14 (1988), 1-25.

[ 8 ]
 

A . C orli, O n local solvability of linear partial differential operators with multiple characteris-
tics, J. D iff. Eq., 81 (1989), 275-293.

[ 9 ]
 

Y. E gorov , O n  necessary conditions for solvability of pseudodifferential equations of principal
ty p e , Trudy Moskov. Mat. Obshch., 24 (1971), 24-42 (Russian) also in  Trans. Moscow Math.
Soc., 24 (1971), 632-635.

[ 1 0 ]  R. G oldm an , A  necessary condition for local solvability of a pseudodifferential equation having
multiple characteristics, J. Diff. Eq., 19 (1975), 176-200.



1002 T . Gramchev

[11] T. G ram chev, The stationary phase method in Gevrey classes and  Fourier integral operators
on ultradistributions, Banach Center Publ., vol. 19, Warsaw, (1987), 101-112.

[12] T. G ram chev, Powers of Mizohata type operators in Gevrey classes, Bollettino U. M. I., (7)
5-B (1991), 135-156.

[13] L . H iirm ander, The analysis of linear partial differential operators, vol. I-IV, Springer Verlag,
Berlin, 1983-85.

[14] H . K om atsu, U ltradistributions, I, Structure theorems a n d  a  characterization, J. Fac. Sci.
Univ. Tokyo, Sect. I-A, 20 (1973), 25-105.

[15] A. M enikoff, On local solvability of pseudodifferential operators, P roc. A. M. S., 43-1 (1974),
149-154.

[16] L . N irenberg and F. Treves, O n local solvability of linear partial differential equations, I—
Necessary conditions, Comm. Pure Appl. Math., 23 (1970), 1-38.

[17] T. Okaji, Gevrey hypoelliptic operators which are not C ' hypoellip tic , J. Math. Kyoto Univ.,
28-2 (1988), 311-322.

[18] C. Parenti and L. Rodino, Examples of hypoelliptic operators which are not microhypoelliptic,
Bollettino U. M. I., 17-B (1980), 390-409.

[19] P . P op ivanov , A  class o f differential operators with multiple characteristics which have not
solutions, Pliska Stud. Math. Bu lg. 3 (1981), 47-60 (Russian); see also On the local solvability
of a class of PDE with double characteristics Trudy Sem. Petrovsk. 1 (1975), 237-278 (Russian);
Amer. Math. Soc. Trans]. 118-2 (1982), 51-89.

[20] L. Rodino and A . C orli, G evrey solvability for hyperbolic operators with costant multiplic-
ity, R ecent developm ents in  hyperbolic equations, Proc. o f  Conference "Hyperbolic equa-
tions"—Pisa, 1987; 290-304, Longman Harlow, 1988.

[21] L . R o d in o , O n  linear partial differential operators with multiple characteristics, Symp. on
Part. Diff. Eq., Holzhau, 238-249, Teubner, Leipzig 1988.

[22] M . Sato, T . K aw ai and M . K ashiw ara, M icrofunctions and pseudodifferential equations,
Lecture Notes in Math., 287, Springer Verlag (1973), 265-529.


