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Nondiscrete local ramified class field theory
By

Adrian IoviTA and Alexandru ZAHARESCU

1. Introduction

Let p be a prime, Q, the field of p-adic numbers, 2 an algebraic closure of Q,
and Q the (topologic) completion of Q. Suppose k is an infinite algebraic
extension of Q, with finite residue field and such that the exponent of p in the
Steinitz number [k: Q,] is finite, and k its (topological) completion. We study
the finite abelian totally ramified extensions of k and k, in terms of subgroups
of norms of U(k) and U(k) respectively. More precisely, if # is a finite abelian
extension of k and /7 its completion, then one has the following commutative
diagram

U(k)/H 25 Gal (£/k),,p,

¢ [res-s

U(k)/H 225 Gal (¢ k),

where all the arrows are functorial isomorphisms, and H and H are the subgroups
of norms of units from ¢ and / respectively. Moreover, one has a continuous
group homomorphism

T 5
U(k) _k_> Gal (kab/k)ram

T~
(where U(k) is the completion of U(k) with respect to the subgroups of finite

index), which is surjective and whose kernel is the subgroup of roots of unity in
U(k) of order q; =(q — 1, [k: Q,],).

Throughout the paper use ideas and results of Hazewinkel’s ([3]) and
Iwasawa’s ([5]).

As a remark, here we describe the finite abelian extensions (totally ramified)
of an infinite totally ramified extension of a local field with only finite wild
ramification, while J.M. Fontaine and J.P. Wintenberger do it for totally ramified
extensions of a local field with only finite tame ramification ([2]). Our next
goal is to put these two together.
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2. Notations

In what follows p will be a prime number, Q, the field of p-adic numbers, 2
an algebraic closure of Q, and Q the completion of Q with respect to the unique
extension of the p-adic valuation. The valuation on Q (normalised such that
v(p) = 1) will be denoted by v. We shall use also the notations: M for the
(topologic) completion of any subset M = Q and k, for the residual field of any
subfield k of Q. #(Q/Q,) will denote the set of fields k, Q,ckc, and
Z.(2/Q,) will denote the set of fields K, @, = K = € such that K is complete. If
ke #(2/Q,), and ¢/k is a finite Galois extension then Gal (£/k),,, = Gal (¢/k,)
where k, is the maximal unramified subextension of £/k.

Let Q, <k < Q such that k, is finite or is algebraicly closed. Choose a
sequence of fields k; < k, < --- € k such that {J;5, k; = k and all the k; are finite
extensions of Q, if k, is finite, and respectively of (Q,),, (the maximal unramified
extension of Q, in Q) if k, is algebraicly closed. If £/k is finite and Galois, and
¢ = k(a), let £; = k;(a). Then there exists an nye N such that 7,/k, is Galois and
Gal (/,/k,) ~ Gal (¢/k) for any n > n,. Moreover ¢ = {J;5, ?;.

Any field Q, € k < Q defines a Steinitz number [k: Q,] which contains prime
factors with finite or infinite exponents. The product of the factors with exponent
oo will be denoted by [k: Q,].

We define similarly [k: (Q))y o if (Q,), Sk = Q.

3. Subfields in 2

There is a canonical one-to-one correspondence between #(2/Q,) and f(Q/Qp),
which is a consequence of the formula giving the distance between conjugates,
as given in [1]. We summarize in the following theorem some results regarding
it which are used later. For a detailed proof, see [4]

Theorem 3.1. (a) The maps defined by F(2/Q,)3k—keZ(2/Q,) and
F.(2/0,)3K—KnQeF(2/Q,) are one-to-one and inverse one to the other.

(b) Let k, (e F(R2/Q,) such that ¢/k is finite and Galois. Then ¢ [k is finite
and Galois and one has Gal (£ /k) ~ Gal (//k), the isomorphism being the canonical
one.

(¢c) Let K, Le.%(Q_/Q,,) such that L/K is finite and Galois. Denote: k =
KnQ and ¢ =LnQ2. Then £/k is finite and Galois and one has Gal(£/k) ~
Gal (L/K), the isomorphism being the canonical one.

The following two theorems can be deduced from general valuation theory,
but we give here elementary proofs, for the sake of completness.

Theorem 3.2. Let Q, < k = Q such that k, is finite and pt[k: Q,],.
Then any cyclic extension ¢/k of prime degree q/[k: Q,], is inertial (i.e.

[£,: k] =q.
Proof. Let |k,| = p".
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(a) Suppose that gtp" —1. Let Q,<k, Sk, <--<k be a scquence of
finite extensions of Q, such that (J;,; k; = k. Let ¢ = k() and /; = k;(2). Choose
an n, such that: [£, : k., 1=gq, (k,), =k, and m = [k, ,,: k, ] be divisible by ¢
but not by p.

We may suppose that £, [k, is totally ramified (if not, then [(¢,).: (K, ).] = ¢,
hence [£,: k,] =¢). Since k, ,,/k,, is also totally ramified, one may choose «
and f§ such that k, ,, =k, (B), £n,+1/ka(®) and a, B are roots of two polynomials
of the form f = x?— 7 and respectively g = x™ —#, and #n’ being uniformizing
elements of k, .

Let u= l}e U(k, ) and denote by u the image of u in k,. Sincc g¥p" — 1,
n

no

X?—u has a root in k., hence X?—u has a root in k,,.
It follows: ¢, = k, (™% < k,,+, which is impossible.
(b) Suppose that g/p" — 1. Let, as above, k,,,; = k,,(B), L,,(2) = k, (2. and

u= l/eU(k,,O). We may suppose that u¢[U(k,)]%
n
o /4

o . , .
Let v=——€¢. One has v*= - = — =u, hence the image ¢ of ¢ in /,
ﬂm/l m 7 !

does not lie in k,. It follows [(k,,+;-Zp)o: k,] =g thus [£,: k,] = q.

Theorem 3.3. Let (Q,),, € k © Q such that pt[k:(Q,)nle- Then the degree
of any finite extension of k is relatively prime with [k:(Q,)u]e-

The proof in the case of cyclic extensions of prime degree is analogous to
that of Theorem 3.2(a). The general case reduces immediately to the Galois
case, which reduces to the prime cyclic case by the resolubility of the Galois group.

4. The fundamental exact sequence
Let K, L= Q with algebraic closed residual fields.
Theorem 4.1. Let L/K be finite and Galois. Then
Ngz(U(L) = U(K)
Proof. For the proof let us first note the following:

Lemma 4.1 ([5], Cap. 2, Lemma 2 and Theorem 1). Let £/k be a finite
Galois extension, where k = ¢ < Q are complete, discrete, with algebraicly closed
residual fields. Let n', m uniformizing elements of ¢ and k respectively. Then
there exists se N such that for any k > s and any uek with u =1 (mod n*) there
exists an {ef, { =1 (mod n'%) such that N,({) =u. From the proof given there
it follows that for ¢/k cyclic of prime degree we may take

v(n' — a(n))

v()
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where o is a generator of Gal(¢/k); and if
kck,ck,c---ck,=¢

where k; . /k; is cyclic of prime degree for any i, and if s; is defined as above,
then we may take s = max, c;, {s;}.

Now let K, L satisfying the above hypothesis, let

Q) ki ck,c--cK

Q) S/ Sly <L } as in §2,

and let =,, m, be uniformizing elements of k, and ¢, respectively.
Let s, be as in Lemma 4.1. We shall prove that there exists nye N and
M eR such that:

s,u(n,) <M for n>n,

Clearly we may reduce to the case when [L: K] =g is a prime. Let n, be such
that [Z,: k,] =q for n>ng, and let i > n,. Then sy(n)) = v(n; — o(nj)) where
(o) = Gal(¢£;/k) = Gal (L/K). Let f(x)=x"+a,x*"!'+--a, be the minimal
polynomial of n; over k; and let n{, = n/, n/, --- m;, be the roots of f. One has:

’

fm) = (= 7)o (@i = and ™+t

It follows:

ol — o)) < Y ol — i) = ol £ ()
ji=2

min {v(gn;?"'),...,v(a,-,)} < v(qm{*™")

hence: sp(m;) < q-[v(g) + (g — D].
Now let ueU(K). There exist a,,, a,,+,..., such that

no?

©
n=ng

{ a,ek, foranyn

a, = u.
Since lim,_, , v(a, — 1) = oo there exists myeN such that
v(a, — 1) = s,v(m,) for n>m,
From the lemma, there exists b,el, such that N (b, = a, and

(an - l)

v(b,— 1) = U[L‘ K] for n>m,.

From the discrete case of Theorem 4.1 which is proved in ([5], Cap. 2, §2.1,
Theorem 1) it follows the existence of an b, el,, such that

IVI_,,,O/I?,,|o (bmo) =Apy Apo+1 " Qg -

The product ]_[nzmo b, converges in L and its limit b satisfies
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Nig(b)=u
K and L being as above, we denote by V(L/K) the subgroup of U(L)
generated by {C"" = %C)/Ce U(L), 0eGal (I:/I?)}.

One has: Npg(V(L/K))=1 Let us suppose that [K:(Q,).], is not
divisible by p. Theorem 3.4 implies then that [L: K] and [K:(Q,),]., are
relatively prime, hence we may fix an ng such that [k;,,: k;] and [L: K} are
relatively prime and [¢;: k;] = [L: K] for any i > n,.

For n > n, and oeGal(L/K) we define:

i(0) = (o)~ (mod V/(L/K))

where 7, denotes an uniformizing element of 7,.

It is easy to see that i(s) does not depend on the choice of n and =,, and
that “i” is a homomorphism of groups. Then one has the following sequence
of groups:

4.1) 1 — Gal (L/K) - U(L)/V(L/K) 25 U(K) — 1

We shall prove in this section that this is an exact sequence.
Clearly the homomorphism Ny o i is null and N ¢ is onto (Theorem 4.1).

Proposition 4.1. If K, L are as above, L/K is abelian and [K: (Q)).]s is

€6 299

not divisible by p then “i” is a monomorphism.

Proof. (a) Suppose firstly that L/K is cyclic and let p be a generator of
the Galois group. If aeZ is such that i(p?) = 1 then there exists {e U(L) such that
CP
I3
and we get p(n,, - ("' =m2-("'. This implies that

no

(M )" ! =

a=me-{ 'ekK.

v(@ _ (L: K] v(@)
(7s) v(7,)
a monomorphism.

(b) If G = Gal(L/K) is not cyclic, and if 6€G, o # 1, then there exists a
subgroup H of G such that c¢ H and G/H is cyclic. Let M = L = {xeL/t(x)
=x, VteH}. Then M = L" and [M: K] is relatively prime with [k;,,: k] for
any i> n,, where n, is defined as above. We have Gal(M/K)= G/H. Let
o =0o/M #1. Since i: Gal(M /K)—- U(M)/V(M/K) is a monomorphism i(c’)
# 1. Then:

Thus a = is divisible by [L: K], hence p* =1 and “i” is

NE/M(i(O')) = NL/M(ﬂ;‘.f_’) = NL/M(”;.O)G'_I =i(0) # 1y.

Hence i(o) # /; and “i” is a monomorphism.
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Proposition 4.2. Ker (N z) < Im (i).

Proof. (a) Suppose that L/K is cyclic and let ¢ be a generator of the
Galois group. If xeU(L) satisfies Ni,g(x) = 1, then there exists ae L such that
x=a’"'. Leta,,a,,...,a,..€L such that a,e/, for any n and lim,., a, = a.
Let nyeN be such that [L: K] is relative prime with [k;, ,: k;] for any i > n,.

There exists mg >n, such that ou(a,) =v(a,,) for any n>m, Hence
v(a) = v(a,,). Let m, be an uniformizing element of , and let keZ be such
that an,t e U(L).

Then, since ([L: K], [y, : kyo]) = 1, there exists k'e N such that

= ((rty, Wkmoknolyrk' =1 (mod V(L/K)), hence x = i(c*).

(b) Let L/K be abelian, of degree n=[L: K]. We shall proceed by
induction on n. Let as above nye N such that (n, [k;,: k]]) =¢ for i > n,.

Let K = M < Lsuch that M/K be cyclic. Let {e U(L) such that Nipg(Q) =1
and denote: {' = N (). Then Ny g((") =1, hence {' = ()" ~' mod V(M/K),
where 7, is an uniformizing element of m, , (Q,),, S m; S m, S---< M being a
sequence of discrete valued field as in §2 (one may choose 7, such that n, =
Npm(m,), 7., being an uniformizing element of 7).

Denoting t = {°[(n,,)” ~']7*, there exists ne V(L/K) such that t = N, 5(n).

One has:

Nig() = ' = [Ngm()1” ™' Na(n) = Na((m)” ™" )
where ol =0. Let A=m? '-n-{"'. Since N (1) =1, from the inductive

hypothesis there exists teGal (L/M) such that

A=n""(mod V(L/M))

no

Then

(=m2 ' mi -1 (mod V(L/K)) = 72"~ ' (mod V(L/K)),

and { = i(ot~ Y elm(i).
We have obtained the following:
Theorem 4.2. [f pt[K: (Q,)n ] then the sequence (1) is exact.

Proposition 4.3. Let (Q,),, S K< L= Q such that L/K is abelian and
PIIK: Qs _Then:

(@) If pt[L: K] then “i” may be defined as above and the sequence (1) is
exact.

(b) If [L: K]1=p', teN, then Npg: UL)/V(L/K)— U(K) is an isomorphism.

Proof. The proof of (a) is analogous to that of Theorem 4.2. In order to
prove (b), one may reduce to the case Gal(L/K) cyclic. Let o be a generator
of it. If xeU(L) satisfies Npg(x)=¢ then there exists aeL such that
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x=a’"'. Let a,ef, for n > ¢, such that lim,_  a, = a and let noe N such that
v(a,) = v(a,) = v(a,,) for any n>n,. Then there exists keN such that x =
m2~ ' (mod V(L/K)). Since p/[K:(Q,)nl. there exists m >n, such that p‘/
[ky: k,,]. Then

x = (allmkoljr =1 (mod V(L/ K)) = mg* ™'~ (mod V(L/K)) = ¢(mod V(L/K))

Remark. If (Q,),, € K € Q, then K may have a finite immediate extension
L, KgX<Q only if p/[K: (Q)nls and [E: K] =p', teN*,
For a proof one may apply Theorem 3.3.

5. The maximal unramified extension

In this section we consider a field Q, = k =  with finite residual field k, such
that pt[k: Q,], and we shall study the maximal unramified extension k,, of k.

Proposition 5.1. Let k be as above and let k, [k, be finite, of degree n. 1hen
there exists a unique extension k = £ < Q such that:

(1) the residual field of ¢ is k,,

2 [:k]=n

It follows that ¢/k is Galois and cyclic.

The proof follows as is the case: k/Q, finite.
Let k™ be the unique extension of k given by Proposition 5.1, and let

knr = UnEN‘ k(n)‘
The extension k, /k is abelian and one has k., = k(},), where V, denotes
the set of all roots of unity of order ¢" — 1, neN* and g = |k,|

Proposition 5.2. Let K =k,,. Then, the residual field K, of K is the
algebraic closure of k, and one has a canonic topologic isomorphism:

Gal (K /k) ~ Gal (K, /k,).

Again, the proof is like in the case: k/Q, finite.
Now we consider the following automorphism of K, over k,:

w— ol for wek,.

This corresponds, by the isomorphism of Proposition 5.2, to an automorphism
Y of K/k, called the Frobenius automorphism of K/k.

The prolongation by continuity of ¢ to K will be denoted also by ¢.

One has the sequence:

(5.1) 1 — U(k) —> UKK) 5 UK) — 1

where j is the inclusion and (¢ — 1)({) = ?E—Q for any (e U(K).
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Theorem 5.1. The sequence (5.1) is exact.

Proof. We note firstly that Imj < ker (¢ — 1).

Let Q, < k; €k, =--- <k be a sequence of finite extensions of Q, such that
k= U;k;. Let K;=(k),, for any i. Then:

@)K cK,c--K and K =), K

(a) Let us prove that ¢ — 1 is onto.
If ae U(K) then there exists a;e U(K;) for any i > ¢ such that a =[], a;.
Since the sequence:

1—>U(k)—>U(K)—>U(K,)——>1

is exact for any i ([5], §4.2 Theorem 2), there exists {;e U(K,) such that —=

i

o)
G

Denoting by 7; a uniformizing element of k; (and thus also of K; and K))
then since {;e k;(V,,) one has:

Cl = Z aunn ¢(C = Z “'jn{a aiO # 0’ aije VooU {0}
j=0 i=

Now, if n;e NU{oo} is the exponent of z; in (a; — 1) then ¢({;}) = {;(mod =}¥) and
we derive: afjo; and a;;€k; for j=0,1,...,n, — L.

Hence p; = a0 + a7 + -+ + oy, 7 "€ U(k;) = ker (p; — 1) and denoting
n: = pi *{; one has:

n; = 1(mod n}) and (¢ — )n; = (¢ — 1){; = a; for any i > 1.

Then the product I7;_, n; is convergent and (¢ — D(J[2,n) =][2, @ = a.
(b) Let us prove that ker (¢ — 1) < Imj.
If xeker(¢ — 1) = U(K) then there exists b;e U(K;) such that:

x = lim b,

¢(x) = x implies lim,_ ,, ¢(b;) = lim,_, o, b;, hence lim,_, , v(¢(b;) — b;) = 0.

Put, as above: b; =) 7 o7, o€V, U{0}, o, # 0.

From ¢(b) — b, =) 2 O(a“ — a7l

We derive: of; = o;; and oy;€k; for j =0, 1,...t; — 1, where t,e NU {0} denote
the exponent of =; in (¢(b;) — b,~).

Then, it we put ¢; = o, + ;7 + -+ + o, 7~ ' €k; = k, we have v(b;—c;)i—>o0
o hence x = lim,_,  c;e U(k).

6. The fundamental isomorphism

Let k as in §5 and suppose for the moment that p¥[k: Q,],.
Let E be a finite abelian extension of k, K =k, k, = KNnE the maximal
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unramified extension of k in E and let L= KE = E,,. Denote by ¢, and ¢ the
Frobenius automorphisms of K/k, and L/E respectively. One has: y/K = ¢,
and (y — 1)V(L/K) = V(L/K). Then the homomorphism y — 1: U(L)— U(L)
from §5 induces the (onto) homomorphism, denoted also by y — 1:

¥ — 1: UL)/V(L/K)~> U(L)/V(L/K)

One has the diagram:

A B

l l

1 —> Gal(L/K) - U(L)/V(L/K) 228 U(K) — 1

6.1) v |« s

1 — Gal (L/K) > UL)/V(L/K) 28 U(K) — 1

l l

C D

where y is the null homomorphism, a =y — 1, f = ¢, — 1, A =kera, B =ker §,
C = coker y, D = coker a.

Also one sees that: C = Gal(L/K), D=1, B=U(k) and A = U(E)- V(L/K)/
V(L/K).

The diagram (6.1) is commutative and has exact rows and columns, hence
“Ngg” and “i” define the homomorphisms 4 YL/§ B and C —— D and the “snake
lemma” gives a homomorphism é: B— C such that the sequence A Mgp 2,
C -5 D is exact.

We get then an induced isomorphism:

d: U(ko)/Ngi,(U(E)) » Gal (L/K) ~ Gal (E/ko) ~ Gal (E/k),,m
Theorem 6.1. If pt[k: Q,], and E is a finite abelian extension of k, then
one has an isomorphism
6E/k: U(k_)/NE_/I?(U(E_)) - Gal (E/E)ram

(b) If p/lk: Q,]. and E is a finite abelian extension of k such that pt[E: k]
then one has an isomorphism

5E/k3 U(E)/NF:/E(U(E)) — Gal (E—/,z)ram

(c) If p/lk: Q,), and E is a finite abelian extension of k such that [E: k]
= p' then

Ngi(U(E)) = U(k)

For the proof we need the following result:



334 Adrian lovita and Alexandru Zaharescu

Lemma 6.1. If k is as above and k' is a finite unramified extension of k
then N i(U(K)) = U(k).

Proof. For a proof of Lemma 6.1 one may use Lemma 4 §3.3 of [5] and
the technique used in this paper.

Now for (a) let K=k,, L=E,, Yy = the Frobenius automorphism of
K/k, ¢ = a prolongation of ¢ to L and ¢ = {xeE/y(x)=x}. Then £, =¢-
K=L,¢/nK =k, ¢/k is totally ramified, E// is unramified, 7/k is totally ramified,
E/¢ is unramified and one has:

Ng#U(E))=U(/) and U(k)/Nzi(U(/)) ~ Gal (L/K)
But Nzi(U(/)) = Ngi(U(E)) hence U (k)/Ngi(U(E)) ~ Gal (L/K)

which proves (a).

A proof of (b) comes in a similar way, by reproducing Lemma 6.1, the
diagram [5] and all §5 in the hypothesis stated in (b).

As for (c), let K and L be the maximal inertial extensions of k and E
respectively, denote k, = ENK and let  and ¢, be the Frobenius automorphisms
of L/E and K/k, respectively. Then one has the diagram:

A B

l l

1 — UW)/V(L/K) X8 U(K) — 1

b e

1 — U(L)/V(L/K) =8 U(K) — 1

l

1

From Proposition 4.3 it follows that: U(ko) = Ngi, (U(E)). Applying Lemma
6.1 which is also true in this case if k' is a finite inertial extension of k, we
obtain U(k) = Ngi(E).

Remark 6.1. The isomorphism Jy, defined by Theorem 6.1 (a) and (b) will
be called “fundamental isomorphism.”

If k and E are as in Theorem 6.1 (a) or (b) and if Q, Sk, Sk, S--Skis
a sequence of finite extensions of @, such that {J;, , k; = k, then there exists noeN
such that ([K: k], [ki;+,: k;]) =1 for any i > n,. Let ' be a uniformizing element
of E,,. If ueU(k) there exists uge U(ko) with Ng(uo) =u. Then there exists
{e U(L) with N g({) = uo and there exists oe€Gal (L/K) such that

Y=t =27 ! (mod V(L/K)).
The isomorphism Jg, is given by:

u(mod Nz (U(E)))— geGal (L/K) ~ Gal (E/k),am,
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The isomorphisms J;, has an important property of functoriality.
Let k and E be as in Theorem 6.1 (a) or (b) and let k < E' < E.
Then NE-,,;(U(E)) c NE,,,;(U(E’)) and one has the diagram:

U(k)/Ngi(U(E)) — Gal(E/k)

(6.2) | |

U(k)/ N i(U(E") — Gal (E'/k) o

ram

where the vertical homomorphisms are the canonic ones.
Proposition 6.1. The diagram (6.2) is commutative.

For the proof, see [5], §5.2, Lemma 3, and the above remark.

7. The subgroups of norms

Proposition 7.1. Let Q, < k = Q such that the residual field k, of k is finite
and pt[k: Q,l,. Let k=¢ be a finite abelian extension and let {k;}, {¢;} be
sequences as in §2. Denote: Hy = N, (U(£)), H= N,,(U(¢)) and H= N,—,,;(U({_’)).
Then:

(1) Hiyy= Nk_e.ln/ki(Hi) Jor any ieN*.

(2) H;cH,,, for any ie N*.

(3) H=Ujsi, H; where ineN is such that ([k;: kyo],[£:k])=1 for any

i>iy.

4 H=H.

Proof. (1) follows from the equality £;,, = ki1, - ¢;.

(2) is obvious.

(3) follows from the equalities: N, ., = Ny, for any i>i,.

(4) If xeH then x = Nzi(y), yeU(¢). Since y = lim,_, y,, where y,e U(¢)
one has x = Ngz(lim,., ,) = lim,_  N,,(y,), hence H < H.

In order to obtain the other inclusion it is enough to prove that H is closed
in U(k). We shall show that H is an open subgroup of U(k), hence it is also
a closed subgroup of U(k). Let aeH and choose ae U(#) such that « = Nzi(a).
Denote by

fO)=x"+o, x4+, x40

the minimal polynomial of a over k. Then « =« where m = [/: k(a)]. Let
6 >0 and BeU(k) such that v(e — ) > 6.

Let f,eQ be a root of Fy(x)= X" — B for which v(a, — B,) is largest. If
{ €8 denotes a primitive root of 1 of order m, then:

1 m-1 1 o
v(aq_ﬂq)ziv( l—[ (aq_cm'ﬂq))= fv(a_ﬁ)> —
m i=0 m m

Hence for large 6 one has:
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U(th - Bq) >Sup; cigm—1 V(1 — Cl) > Sup;(ef?!gﬁ/f) U(aq - G(aq))
and from Krasner’s Lemma we derive: k(B,) < k(a,), i.e. B, is in k.
Now let g(x) =x?+o;x?" ' + -+ a,_,x + a, and denote by b,,....b, the
roots of g(x) in Q, arranged such that v(a — b;) > v(a— b)) for 2 <j<gq.

Since o(a — by) > v((a — by) -+ (a — b)) =~ v(g(@) = ~v(f, — a) > ——, it
q q q q-m

follows from Krasner’s Lemma that for large 6 one has k(a) < k(b,), hence g(x)
is irreducible over k, k(a) = k(b,), and H3 Nz(b,) = f7 = f. Thus H is open in
U(k) and this completes the proof of (4).

Let k, {k;} be as in Proposition 6.1. Let i;eN and H; be a subgroup of
U(k;) such that: |U(k,)/H;,| is relatively prime with [k;: k] for any
i>iy. Denote for i>iy: Hi= Ny ;,(Hy) and let H ={J;5, H; Denote by
H (k) the set of subgroups H of U(k) which are obtained in this manner (by
varying i, and H;) and by (k) the set of subgroups H of U(k) where H runs
over (k).

Proposition 7.2. Let Q, < k = Q such that pt[k: Q,] and k, is finite. For
any He H# (k) there exists a finite totally ramified abelian extension ¢ of k such
that: N, U({) = H and Nzp(U(£)) = H.

Proof. For any i > i, let £; be a totally ramified finite abelian extension of
k; such that H; = H,,,,(U(¢;)). One has ¢;,, = k;,,¢; hence if £;) = k; («) then
£; = k;(a) for any i > i,. Now put £ = k(a) and conclude the proof by applying
Proposition 7.1.

Theorem 7.1. Let k, ¢, {k;}, {¢;} be as in Proposition 1.1. There exists an
isomorphism &, such that the following diagram (where Res is the restriction and
¢ is induced by the inclusion U(k) < U(k)) is commutative:

Uk)/H 225 Gal (2/k),,,

N e -

U(k)/H 225 Gal (£/k),um

Proof. We have to prove that ¢ is an isomorphism (then we put J,, =
Resc dz;0 ¢~ 1). Let a,,d,,...,d,€ U(k) be a system of representatives for
U(k)/H.

For any neN let af”,...,a™ e H be such that v(a; — a)>n for i=1,...,m.
We assert that for large n the images of o{”,...,a in U(k)/H are distinct. If
not, then there exists iy #j, and an increasing sequence {n},y such that
%)/ e H for any t, and this implies (d)/(%;o) = lim,_, ((f5’)/(e55’)) € H,
contrary to our assumption.

We have thus the inequality:
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|U(k)/H| > |U(k)/H|

If there exist B,...,B,+,€U(k) which have distinct images in U(k)/H then
they also have distinct images in U(k;)/H;, where “i” is chosen large enough
such that B,,.... B+ €U(k). But |U(k)/H;| = [¢i: k]am = [£: kK]pam = |U(k)/H|.
Therefore:

|Uk)/H| =|U(k)/H|.
Now let ae U(k)n H. Fix an ae U(#) for which Njji(a) = o. Let f(x) = x? +

a;x?" ' + .-+ «, be the minimal polynomial of a over k, then o =aj where
m=[7: k(x)]. Let:

gx)=xT+ B, x* '+ + -y x +a, where pek, v(f; —o)>9.

If § is large enough, then from Krasner’'s Lemma it follows that there exists a
root b of g(x) such that k(a) = k(b). Moreover, g(x) is irreducible over k and
Nzji(b) = af = . Since g(x)ek(x) it follows that beZ and aeH.

This proved ¢ is injective. Hence it is an isomorphism, as asserted.

Theorem 7.2. Let Q, < k < Q such that pt[k: Q,], and |k,| =q < co0. Let
q,=(q—1,[k: Q,],) and V, = the group of roots of 1 of order q, in U(k).
Then:

ﬂ Nz/k(U(/)) = l{“.

2k
ab

Proof. Let aeV; and let £ be a finite abelian extension of k. Then
dy = |U(K)/Np(U ()| = |Gal (£/k)rypm|

is prime with [k:Q,], hence is prime with gq,. Since the order of
a(mod N, (U(¢))) is a divisor of both d, and g, it follows that ae N,,(U(?)).
Thus:

Vo€ N NewlU(0)
¢k
ab

Now let aeU(¢), a¢V, . We have to prove the existence of a finite abelian
extension //k such that a¢ N,,(U(¢)). Let ieN such that:

(1 (p-q_], [kj:k,.]>=1 for any j > i.

qi

(2) aeU(k).

Let meN. Denote U™(k;) = {uek;/u=1(mod [} and V"(k)=U"k)-V,,.
Since |V™(k)/U™(k)|=4q; and [U(k)/U™(k)|=g"(q—1), it follows that |U(;)/V" (k)|
= q__(g—_l) is relatively prime to [k;: k;] for any j > i.

q1
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Let H = V™(k), H]' = N \,(H") and H™ = |, HY.
it follows that there exists a finite abelian extension ¢, of k for which
Nt,,./k(U(fm)) =H".
Since a¢ ¥;,, there exists meN such that a¢ V™(k). Then one has for any
j=i:

From Proposition 6.2

Ny (@) = a* ¢ HP hence a¢ H'.
Therefore a¢ H™.

Corollary 7.1. Let Q,< k< Q such that pt[k:Q,]l,, and |k,|=q < co.
Then () N,y(U(£)) =1 if and only if q — 1 and [k: Q,],, are relatively prime.

£2k
ab

Theorem 7.3. The hypothesis and notations being as in Theorem 7.2, let k,,
be the maximal abelian extension of k. Then one has:

7~
Gal (kab/k)ram =~ U(k)/l/‘;l .
P

(where U(k) is the completion of U(k) w.r. to the subgroups of finite index)
Proof. For any finite abelian extension ¢ of k one has the isomorphism:

U(k)/N i (U(2)) 225 Gal (£ k)

ram

and if k£ </, such that /' is finite and abelian, the diagram

U(k)/ N (U(£)) 225 Gal (£ /K)ram

l l

U(k)/N i (U(2)) 22 Gal (£/k)am

is commutative. Then there exists a canonic isomorphism

O imU(k)/ N (U(£)) —» imGal (£ / k), om
But

o~ P

UmU (k)/Np(U(2)) = Uk)/ (e Nep(U(£)) = UK)/ V.,
and
mGa] (//k)ram ~ Gal (kab/knr) ~ Gal (kab/k)ram .

We conclude this paper with the following result which comes naturally from
what was already proved.

Theorem 74. Let Q,c k< Q such that the residual field of k is finite and
ptlk: Q,1,. Then there exists a canonical one-to-one correspondence between
H (k) and the set of finite abelian extensions of k.. and a canonical one-to-one
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correspondence between # (k) and the set of complete finite abelian extensions of k,,.
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