Hochschild and cyclic homology of Q -difference operators

By

Jorge A. Guccione and Juan J. Guccione

Introduction

Let k be an arbitrary field and $A=k\left[x, x^{-1}\right]$. The ring D_{1} of formal differential operators on A is the k-algebra generated by x, x^{-1}, ∂ and the Heisenberg relation $\partial x-x \partial=1$. This algebra was studied in [K], where the author built up an explicit 2-cocycle on the Lie algebra underlying D, which restricts to the 2-cocycle defining the Virasoro algebra. To carry out his plan Kassel computed the Hochschild homology of D by using a complex simpler than the canonical one. In this same work, the q-analogue of D, which is the algebra $D_{q}(q \in k \backslash\{0\})$ of q-difference operators on A, has been studied. By definition D_{q} is the algebra generated by x, x^{-1}, ∂ and the relation $\partial x-q x \partial$ $=1$ (which is the q-analogue of the Heisenberg relation). One of the main results proved in [K] is that the Hochschild homology of D_{q} is the homology of a complex $R_{*, *}\left(D_{q}\right)$ simpler than the canonical one of Hochschild. By using this complex Kassel obtained some partial results about the Hochschild homology $H H_{1}\left(D_{q}\right)$.

In this paper following the results of $[\mathrm{K}$] we make a further step in the sense that we can compute the Hochschild and cyclic homologies of D_{q} (for definitions, basic notions and notations about these theories we remit to [L, Ch1, 2 and 3]). When $q=1$ or $q^{n} \neq 1$ for all $n \in \mathbf{N}$ these homologies are known (see [W], [K] and [G-G]). So, we can assume that q is a primitive m-th root of unity with $m>1$. The results that we obtain resemble the case when $q^{n} \neq 1$ for all $n \in \mathbf{N}$. In this sense, the case $q=1$ is a special one.

The paper is divided in two sections. In the first one we compute the Hochschild homology of D_{q} by means of the study of a natural filtration of $R_{*, *}\left(D_{q}\right)$. The graded complex associated to this filtration gives the Hochschild homology of the k-algebra generated by x, x^{-1}, ∂ and the relation $\partial x=$ $q x \partial$. The first time that this homology (that plays a basic role in our work) has been studied was in [T], and has been fully computed in [G-G]. In the second section we give an explicit formula for the morphisms $B *: \mathrm{HH}_{0}\left(D_{q}\right) \rightarrow$ $\mathrm{HH}_{1}\left(D_{q}\right)$ and $B *: \mathrm{HH}_{1}\left(D_{q}\right) \rightarrow \mathrm{HH}_{2}\left(D_{q}\right)$ (see [L, 2.1.7.4]). This fact together
with the study of the Gysin-Connes exact sequence allows us to compute the cyclic homology of D_{q}.

1. Hochschild homology of $\boldsymbol{D}_{\mathbf{q}}$

Let k be an arbitrary field and $q \in k \backslash\{0\}$. In this section we compute the Hochschild homology of the k-algebra D_{q} generated by x, x^{-1}, ∂ and the relation $\partial x-q x \partial=1$. We use the following standard notations. Given $q \in k \backslash\{0\}$ we put $(n)_{q}=\frac{q^{n}-1}{q-1}$ for all $n \in \mathbf{Z}$ (of course, $\left.(n)_{1}=n\right),(0)!_{q}=1,(n)!_{q}=$ $\prod_{j=1}^{n-1}(n-j)_{q}$ for all $n \in \mathbf{N}$ and $\binom{n}{j}_{q}$ for the Gaussian binomial coefficients defined by

$$
\binom{n}{j}_{q}= \begin{cases}0 & \text { if }-j \in \mathbf{N}, n \in \mathbf{Z} \\ 1 & \text { if } j=0, n \in \mathbf{Z} \\ \prod_{i=1}^{j} \frac{(n-i+1)_{q}}{(i)_{q}} & \text { if } j \in \mathbf{N}, n \in \mathbf{Z}\end{cases}
$$

From the equality $\partial x-q x \partial=1$ it follows that

$$
\partial^{j} x^{n}=\sum_{r+s=j}\binom{j}{r}_{q}\binom{n}{s}_{q}(s)!_{q} q^{n r-s r} x^{n-s} \partial^{r} .
$$

In particular, if $q \neq 1$ is a root of unity of order m, then $\partial x^{m}=x^{m} \partial$ and $\partial^{m} x=$ $x \partial^{m}$. In [K] it was proved that the Hochschild homology of D_{q} is the homology of the bicomplex

where

$$
\begin{aligned}
& \phi_{0}\left(x^{n} \partial^{j}\right)=\left(1-q^{n}\right) x^{n} \partial^{j+1}-(n)_{q} x^{n-1} \partial^{j} \\
& \phi_{1}\left(x^{n} \partial^{j} d x\right)=\left(q^{n}-q^{-1}\right) x^{n} \partial^{j+1} d x+(n)_{q} x^{n-1} \partial^{j} d x \\
& \delta_{0,1}\left(x^{n} \partial^{j} d x\right)=\left[x^{n} \partial^{j}, x\right]=\left(q^{j}-1\right) x^{n+1} \partial^{j}+(j)_{q} x^{n} \partial^{j-1} \\
& \delta_{1,1}\left(x^{n} \partial^{j} d x\right)=\left(x^{n} \partial^{j} x-q^{-1} x^{n+1} \partial^{j}\right)=\left(q^{j}-q^{-1}\right) x^{n+1} \partial^{j}+(j)_{q} x^{n} \partial^{j-1}
\end{aligned}
$$

It is easy to see that D_{q} is the Ore's extension $A[\partial, \alpha, \delta]$, where $A=$ $k\left[x, x^{-1}\right]$ and $\alpha: A \rightarrow A$ is the isomorphism that sends x to $q x$ and δ the α-derivative that sends x to 1 . So, the complex $R_{*, *}\left(D_{q}\right)$ is a particular case of the one obtained in Proposition 3.2 of [G-G] for an Ore's extension of a smooth algebra. Using this proposition together with Theorem 1.4 of the
same paper, we obtain the quasi-isomorphism γ_{*} : $\operatorname{Tot}\left(R_{*, *}\left(D_{q}\right)\right) \rightarrow \bar{C}_{*}\left(D_{q}\right)$, where $\bar{C}_{*}\left(D_{q}\right)$ is the normalized Hochschild complex, defined by

$$
\begin{aligned}
& \gamma_{0}=i d \quad \gamma_{1}\left(x^{n} \partial^{j}\right)=x^{n} \partial^{j} \otimes \partial, \quad \gamma_{1}\left(x^{n} \partial^{j} d x\right)=x^{n} \partial^{j} \otimes x \\
& \gamma_{2}\left(x^{n} \partial^{j} d x\right)=x^{n} \partial^{j} \otimes x \otimes \partial-q^{-1} x^{n} \partial^{j} \otimes \partial \otimes x .
\end{aligned}
$$

Let us consider the filtration $\widetilde{F}_{*, *}^{0}\left(D_{q}\right) \subseteq \widetilde{F}_{*, *}^{1}\left(D_{q}\right) \subseteq \widetilde{F}_{*, *}^{2}\left(D_{q}\right) \subseteq \cdots \subseteq R_{*, *}\left(D_{q}\right)$ of $R_{*, *}\left(D_{q}\right)$ defined by $\widetilde{F_{i, 0}^{r}}\left(D_{q}\right)=\oplus_{j=0}^{r-i} A . \partial^{j}$ and $\widetilde{F_{i, 1}^{r}}\left(D_{q}\right)=\left(\oplus_{j=0}^{r-i} A . \partial^{j}\right) \Omega_{A / k}^{1}(i=0$, 1). The r-th component $\widetilde{G} *, *\left(D_{q}\right)=\widetilde{F}_{*, *}^{r}\left(D_{q}\right) / \widetilde{F}_{*, *}^{r-1}\left(D_{q}\right)$ of the graded complex associated to this filtration is $A \stackrel{0}{\leftarrow} \Omega_{A / k}^{1}$ when $r=0$, and

when $r>0$, where

$$
\begin{aligned}
& \phi_{0}^{r}\left(x^{n}\right)=\left(1-q^{n}\right) x^{n}, \quad \phi_{1}^{r}\left(x^{n} d x\right)=\left(q^{n}-q^{-1}\right) x^{n} d x, \\
& \delta_{0,1}^{r}\left(x^{n} d x\right)=\left(q^{r}-1\right) x^{n+1} \quad \text { and } \quad \delta_{1,1}^{r-1}\left(x^{n} d x\right)=\left(q^{r-1}-q^{-1}\right) x^{n+1} .
\end{aligned}
$$

When q is not a root of unity the complexes $\widetilde{G}^{r}, *\left(D_{q}\right)(r>0)$ are exact. Hence, in this case the Hochschild and cyclic homologies of D_{q} and A coincide (see [G-G, Example 3.5]). On the other hand the Hochschild and cyclic homologies of D_{1} were calculated in [W] when k is a characteristic zero field and in [K] in the general case (in spite of that Kassel works with the field \mathbf{C} of the complex numbers his method works for arbitrary characteristic). So, we assume that q is a primitive m-th root of unity with $m>1$. To carry out the computation of the Hochschild homology of D_{q} we will need the following result
1.1. Lemma. Let r be a multiple of m and $u \in \mathbf{Z}$. We have that $x^{u m} \partial^{r-1}$ $\in \widetilde{F}_{1,0}^{r}\left(D_{q}\right), x^{u m-1} \partial^{r} d x \in \widetilde{F}_{0,1}^{r}\left(D_{q}\right)$ and $\sum_{s=1}^{m}\left(\frac{q}{1-q}\right)^{s-1} x^{u m-s} \partial^{r-s} d x \in \widetilde{F}_{1,1}^{r}\left(D_{q}\right)$ are cycles of Tot $\left(R_{*, *}\left(D_{q}\right)\right)$.

Proof. It is immediate that $\phi_{0}\left(x^{u m} \partial^{r-1}\right)=0$ and $\delta_{0,1}\left(x^{u m-1} \partial^{r} d x\right)=0$. In order to prove that $\left(\delta_{1,1}+\phi_{1}\right)\left(\sum_{s=1}^{m}\left(\frac{q}{1-q}\right)^{s-1} x^{u m-s} \partial^{r-s} d x\right)=0$ it suffices to observe that

$$
\begin{gathered}
\left(\delta_{1,1}+\phi_{1}\right)\left(x^{u m-s} \partial^{r-s} d x\right)=\left(q^{-s}-q^{-1}\right) x^{u m-s+1} \partial^{r-s}+(-s)_{q} x^{u m-s} \partial^{r-s-1} \\
+\left(q^{-s}-q^{-1}\right) x^{u m-s} \partial^{r-s+1} d x+(-s)_{q} x^{u m-s-1} \partial^{r-s} d x,
\end{gathered}
$$

which follows by direct computation.
1.2. Theorem. Let $m>1$ and q be a primitive m-th root of unity. We have:

$$
\begin{aligned}
& H H_{0}\left(D_{q}\right)=\bigoplus_{i \in \mathbf{Z}} k . x^{i} \quad \oplus \quad \bigoplus_{u \in \mathbf{Z}, v>0} k . x^{u m} \partial^{v m} \\
& H H_{1}\left(D_{q}\right)=\bigoplus_{i \in \mathbf{Z}} k .\left(x^{i} \otimes x\right) \oplus \bigoplus_{u \in \mathbf{Z}, v>0} k . Y_{1, u, v} \oplus \bigoplus_{u \in \mathbf{Z}, v>0} k . Y_{2, u, v} \\
& H H_{2}\left(D_{q}\right)=\bigoplus_{u \in \mathbf{Z}, v>0} k . Y_{3, u, v} \\
& H H_{n}\left(D_{q}\right)=0 \quad \forall n>2,
\end{aligned}
$$

where

$$
\begin{aligned}
& Y_{1, u, v}=x^{u m} \partial^{v m-1} \otimes \partial, \quad Y_{2, u, v}=x^{u m-1} \partial^{v m} \otimes x \quad \text { and } \\
& Y_{3, u, v}=\sum_{s=1}^{m}\left(\frac{q}{1-q}\right)^{s-1}\left(x^{u m-s} \partial^{v m-s} \otimes x \otimes \partial-q^{-1} x^{u m-s} \partial^{v m-s} \otimes \partial \otimes x\right) .
\end{aligned}
$$

Proof. It is clear that $H H_{n}\left(D_{q}\right)=0$ for all $n>2$. If $r>0$ is not a multiple of m, then $H_{n}\left(\widetilde{G}_{*, *}^{r}\left(D_{q}\right)\right)=0$ for all $n \geq 0$. Hence $H_{n}\left(\widetilde{F}_{*, *}^{r}\left(D_{q}\right)\right)=H_{n}\left(\widetilde{F_{*}^{r-*}}\left(D_{q}\right)\right)$ for all $n \geq 0$. Now let $r>0$ be a multiple of m. In this case

$$
\begin{aligned}
& H_{0}\left(\widetilde{G}_{*, *}^{r}\left(D_{q}\right)\right)=\bigoplus_{u \in \mathbf{Z}} k \cdot x^{u m} \\
& H_{1}\left(\widetilde{G}_{*, *}^{r}\left(D_{q}\right)\right)=\bigoplus_{u \in \mathbf{Z}} k \cdot x^{u m} \oplus \bigoplus_{u \in \mathbf{Z}} k \cdot x^{u m-1} d x \\
& H_{2}\left(\widetilde{G}_{*, *}^{r}\left(D_{q}\right)\right)=\bigoplus_{u \in \mathbf{Z}} k \cdot x^{u m-1} d x .
\end{aligned}
$$

Moreover, the canonical maps

$$
\pi_{1}: H_{1}\left(\widetilde{F}_{*, *}^{r}\left(D_{q}\right)\right) \rightarrow H_{1}\left(\widetilde{G}_{*, *}^{r}\left(D_{q}\right)\right) \quad \text { and } \quad \pi_{2}: H_{2}\left(\widetilde{F}_{*, *}^{r}\left(D_{q}\right)\right) \rightarrow H_{2}\left(\widetilde{G}_{*, *}^{r}\left(D_{q}\right)\right)
$$

are epimorphisms (this follows easily from Lemma 1.1). Hence, from the long exact sequence of homology associated to $\left.0 \rightarrow \widetilde{F}_{*, *}^{r-1}\left(D_{q}\right)\right) \rightarrow \widetilde{F}_{*, *}^{r}\left(D_{q}\right) \rightarrow$ $\widetilde{G^{r}, *}\left(D_{q}\right) \rightarrow 0$, we obtain

$$
\begin{aligned}
& H_{0}\left(\widetilde{F}_{*, *}^{r}\left(D_{q}\right)\right)=H_{0}\left(\widetilde{F_{*}^{r-1}}\left(D_{q}\right)\right) \oplus \bigoplus_{u \in \mathbf{Z}} k . x^{u m} \partial^{r} \\
& H_{1}\left(\widetilde{F}_{*, *}^{r}\left(D_{q}\right)\right)=H_{1}\left(\widetilde{F_{*, *}^{r-1}}\left(D_{q}\right)\right) \oplus \bigoplus_{u \in \mathbf{Z}} k . x^{u m} \partial^{r-1} \oplus \bigoplus_{u \in \mathbf{Z}} k \cdot x^{u m-1} \partial^{r} d x \\
& H_{2}\left(\widetilde{F}_{*, *}^{r}\left(D_{q}\right)\right)=H_{2}\left(\widetilde{F}_{*, *}^{r-1}\left(D_{q}\right)\right) \oplus \bigoplus_{u \in \mathbf{Z}} k \cdot \sum_{s=1}^{m}\left(\frac{q}{1-q}\right)^{s-1} x^{u m-s} \partial^{r-s} d x .
\end{aligned}
$$

So,

$$
H_{0}\left(R *, *\left(D_{q}\right)\right)=\bigoplus_{i \in \mathbf{Z}} k . x^{i} \oplus \bigoplus_{u \in \mathbf{Z}, v>0} k . x^{u m} \partial^{v m}
$$

$$
\begin{aligned}
& H_{1}\left(R_{*, *}\left(D_{q}\right)\right)=\bigoplus_{i \in \mathbf{Z}} k \cdot x^{i} d x \oplus \bigoplus_{u \in \mathbf{Z}, i>0} k \cdot x^{u m} \partial^{v m-1} \oplus \bigoplus_{u \in \mathbf{Z}, \gg 0} k \cdot x^{u m-1} \partial^{v m} d x \\
& H_{2}\left(R_{*, *}\left(D_{q}\right)\right)=\bigoplus_{u \in \mathbf{Z}, r>0} k \cdot \sum_{s=1}^{m}\left(\frac{q}{1-q}\right)^{s-1} x^{u m-s} \partial^{v m-s} d x .
\end{aligned}
$$

Now, the proof can be finished applying γ_{*} to this homologies.

2. Cyclic homology of $\boldsymbol{D}_{\boldsymbol{q}}$

In this section we compute the cyclic homology of D_{q}. As in section 1 we assume that q is a primitive m-th root of unity with $m>1$. In this case we will carry out the promised computation giving an explicit formula for the morphisms $B_{*}: H H_{0}\left(D_{q}\right) \rightarrow H H_{1}\left(D_{q}\right)$ and $B *: H H_{1}\left(D_{q}\right) \rightarrow H H_{2}\left(D_{q}\right)$ and studying the Gysin-Connes exact sequence associated to D_{q}. We first establish some results that will be needed later.

Preliminaries

2.1. Notation. Let $\left(C_{*}, d_{*}\right)$ be a chain complex. Following [M] we will say that two cycles z and z^{\prime} of C_{n} are homologous if they define the same element in $H_{n}\left(C_{*}\right)$. That is to say if $z-z^{\prime}$ is a boundary.
2.2. Proposition. Let q be a primitive m-th root of unity with $m>1, u \in$ \mathbf{Z} and $v \in \mathbf{N}$. We havh:

1) The cycles $u\left(x^{(u-1) m} \partial^{v m-1} \otimes x^{m} \otimes \partial-x^{(u-1) m} \otimes \partial^{v m-1} \otimes \partial \otimes x^{m}\right)$ and $B\left(x^{u m} \partial^{v m-1} \otimes \partial\right)$ of $\bar{C}_{*}\left(D_{q}\right)$ are homolrgous.
2) The cycles $v\left(x^{u m-1} \partial^{(v-1) m} \otimes \partial^{m} \otimes x-x^{u m-1} \partial^{(v-1) m} \otimes x \otimes \partial^{m}\right)$ and $B\left(x^{u m-1} \partial^{v m} \otimes x\right)$ of $\left(\bar{C}_{*}\left(D_{q}\right)\right.$ are homologous.

Proof. 1) Let $D=k\left[x, x^{-1}, y\right]$ be the k-algebra generated by x, x^{-1}, y and the relation $x y=y x$. It is easy to see that the morphism

$$
\psi_{2}: D \otimes \bar{D}^{\otimes^{2}} \rightarrow \Omega_{D / k}^{2}, \quad \psi_{2}\left(d_{0} \otimes_{d_{1}} \otimes d_{2}\right)=d_{0} \frac{\partial d_{1}}{\partial x} \frac{\partial d_{2}}{\partial y}
$$

induces an isomorphism from $H H_{2}(D)$ onto $\Omega_{D / k}^{2}$, which is the inverse of the canonical isomorphism $\varepsilon_{2}: \Omega_{D / k}^{2} \rightarrow H H_{2}(D)$. Let T be the cycle $u\left(x^{u-1} y^{v m-1} \otimes x\right.$ $\left.\otimes y-x^{u-1} y^{v m-1} \otimes y \otimes x\right)-B\left(x^{u} y^{v m-1} \otimes y\right)$ of $\bar{C}_{*}(D)$. As $\psi_{2}(T)=0, T$ is a boundary. Let $f: D \rightarrow D_{q}$ be the morphism of algebras that sends x to x^{m} and y to ∂. The proof can be finished by observing that $H_{2}(f)(T)=u$ $\left(x^{(u-1) m} \partial^{v m-1} \otimes x^{m} \otimes \partial-x^{(u-1) m} \partial^{v m-1} \otimes \partial \otimes x^{m}\right)-B\left(x^{u m} \partial^{v m-1} \otimes \partial\right)$.
2) is similar.
2.3. Proposition. Let $m>1$ and q be a primitive m-th root of unity.

The cycles $\partial^{m-1} \otimes x^{m} \otimes \partial-\partial^{m-1} \otimes \partial \otimes x, x^{m-1} \otimes x \otimes \partial^{m}-x^{m-1} \otimes \partial^{m} \otimes x$ and $m q \sum_{s=1}^{m}\left(\frac{q}{1-q}\right)^{s-1}\left(q x^{m-s} \partial^{m-s} \otimes x \otimes \partial-q^{-1} x^{m-s} \partial^{m-s} \otimes \partial \otimes x\right)$ of $\bar{C}_{*}\left(D_{q}\right)$ are homolo. gous.

To prove this proposition we will need the following lemmas
2.4. Lemma. The cycles

$$
\sum_{s=1}^{m}\left(\frac{1}{1-q}\right)^{s-1} q^{m-s+1} \partial^{m-s} x^{m-s} d x \quad \text { and } \quad q \sum_{s=1}^{m}\left(\frac{q}{1-q}\right)^{s-1} x^{m-s} \partial^{m-s} d x
$$

of $R_{*, *}\left(D_{q}\right)$ are equal.
Proof. Using that $\partial x=q x \partial+1$ we can see that there exist $c_{s} \in k$ $(2 \leq s \leq m)$ such that

$$
\sum_{s=1}^{m}\left(\frac{1}{1-q}\right)^{s-1} q^{m-s+1} \partial^{m-s} x^{m-s} d x=q x^{m-1} \partial^{m-1} d x+\sum_{s=2}^{m} c_{s} x^{m-s} \partial^{m-s} d x
$$

On the other hand, in the proof of Theorem 1.2 we showed that

$$
Z_{2}\left(R_{*, *}\left(D_{q}\right)\right)=H_{2}\left(R_{*, *}\left(D_{q}\right)\right)=\bigoplus_{u \in \mathbf{Z}, v>0} k \cdot \sum_{s=1}^{m}\left(\frac{q}{1-q}\right)^{s-1} x^{u m-s} \partial^{v m-s} d x,
$$

where $Z_{2}\left(R_{*, *}\left(D_{q}\right)\right)$ is the submodule of the cycles of degree 2 of $R_{*, *}\left(D_{q}\right)$. Consequently there exist $\lambda_{u, v}(u \in \mathbf{Z}, v \in \mathbf{N})$, with $\left\{(u, v): \lambda_{u, v} \neq 0\right\}$ finite, such that

$$
\begin{aligned}
& q x^{m-1} \partial^{m-1} d x+\sum_{s=2}^{m} c_{s} x^{m-s} \partial^{m-s} d x \\
& \quad=\sum_{u \in \mathbb{Z}, v \in N} \lambda_{u, v} \sum_{s=1}^{m}\left(\frac{q}{1-q}\right)^{s-1} x^{u m-s} \partial^{v m-s} d x
\end{aligned}
$$

From this fact we can easily deduce that $\lambda_{u, v}=0$ if $(u, v) \neq(1.1), \lambda_{1,1}=q$ and $c_{s}=q\left(\frac{q}{1-q}\right)^{s-1}$ for all $s \geq 1$.
2.5. Lemma. Let B_{q} be the algebra generated by x, ∂ and the relation ∂x $-q x \partial=1$. The cycles $m q \sum_{s=1}^{m}\left(\frac{q}{1-q}\right)^{s-1}\left(x^{m-s} \partial^{m-s} \otimes x \otimes \partial-q^{-1} x^{m-s} \partial^{m-s} \otimes \partial \otimes x\right)$ and $\partial^{m-1} \otimes x^{m} \otimes \partial-\partial^{m-1} \otimes \partial \otimes x^{m}$ of $\bar{C}_{*}\left(B_{q}\right)$ are homologous.

Proof. It is straightforward from the definition of b, the fact that q is a primitive m-th root of unity and the equality

$$
\partial^{j} x^{n}=\sum_{r+s=j}\binom{j}{r}_{q}\binom{n}{s}_{q}(s)!_{q} q^{n r-s r} x^{n-s} \partial^{r}
$$

that

$$
\begin{array}{r}
b\left(\sum _ { i = 1 } ^ { m - 1 } \left(x^{m-i-1} \partial^{m-1} \otimes \partial \otimes x^{i} \otimes x-q^{i} x^{m-i-1} \partial^{m-1} \otimes x^{i} \otimes \partial \otimes x\right.\right. \\
\left.\left.+q^{i+1} x^{m-i-1} \partial^{m-1} \otimes x^{i} \otimes x \otimes \partial\right)\right)
\end{array}
$$

equals to

$$
\begin{aligned}
& \partial^{m-1} \otimes \partial \otimes x^{m}-\partial^{m-1} \otimes x^{m} \otimes \partial \\
&++\sum_{s=0}^{m-1}\left(\sum_{i=0}^{m-1}\binom{m-1}{m-s-1}_{q}\binom{i}{s}_{q}(s)!q q^{s(s+1-i)}\right) \\
& \quad \cdot\left(q^{-1} x^{m-s-1} \partial^{m-s-1} \otimes \partial \otimes x-x^{m-s-1} \partial^{m-s-1} \otimes x \otimes \partial\right)
\end{aligned}
$$

So, to finish the proof it suffices to see that

$$
\sum_{i=0}^{m-1}\binom{m-1}{m-s-1}_{q}\binom{i}{s}_{q}(s)!_{q} q^{s(s+1-i)}=m\left(\frac{q}{1-q}\right)^{s} \quad\left(0 \leq_{s}<m\right)
$$

This fact can be proved easily by induction on s using that:

$$
A(s+1, h)=\frac{q^{h}}{1-q}(q A(s, h)-A(s, h+1)) \quad(h \geq 0,0 \leq s<m-1)
$$

where

$$
A(s, h)=\sum_{i=0}^{m-1}\binom{m-1}{m-s-1}_{q}\binom{i}{s}_{q}(s)!_{q} q^{(s+h)(s+1-i)} \quad(h \geq 0,0 \leq s<m)
$$

Proof of Proposition 2.3. By Lemma 2.5 the first and third cycles are homologous. Let $B_{q^{-1}}$ be the algebra generated by y, δ and the relation $\delta y-$ $q^{-1} y \delta=1$. Let us consider the morphism of algebras $f: B_{q-1} \rightarrow B_{q}$ defined by $f(\delta)=-q x$ and $f(y)=\partial$. This map induces a morphism $H H_{*}(f)$ from $H H_{*}\left(B_{q^{-1}}\right)$ to $H H_{*}\left(B_{q}\right)$. Applying Lemma 2.5 to $B_{q^{-1}}$ we deduce that $x^{m-1} \otimes$ $x^{m} \otimes \partial^{m}-x^{m-1} \otimes \partial^{m} \otimes x=H_{*}(f)\left((-1)^{m+1}\left(\delta^{m-1} \otimes y^{m} \otimes \delta-\delta^{m-1} \otimes \delta \otimes y^{m}\right)\right)$ is homologous to

$$
\begin{aligned}
& H H_{*}(f)\left((- 1) ^ { m + 1 } m q \sum _ { s = 1 } ^ { m } (\frac { q ^ { - 1 } } { 1 - q ^ { - 1 } }) ^ { s - 1 } \left(y^{m-s} \delta^{m-s} \otimes y \otimes \delta\right.\right. \\
& \left.\left.-q y^{m-s} \delta^{m-s} \otimes \delta \otimes y\right)\right)=m q \sum_{s=1}^{m}\left(\frac{1}{1-q}\right)^{s-1} q^{m-s+1}\left(\partial^{m-s} x^{m-s} \otimes x \otimes \partial\right. \\
& \left.-q^{-1} \partial^{m-s} x^{m-s} \otimes \partial \otimes x\right)=\gamma_{2}\left(m \sum_{s=1}^{m}\left(\frac{1}{1-q}\right)^{s-1} q^{m-s+1} \partial^{m-s} x^{m-s} d x\right)
\end{aligned}
$$

where $\gamma_{2}: D_{q} \Omega_{A / k}^{1} \rightarrow D_{q} \otimes \bar{D}_{q}{ }^{\otimes^{2}}$ is the morphism defined at the beginning of section 1. Hence, by Lemma 2.4, $x^{m-1} \otimes x \otimes \partial^{m}-x^{m-1} \otimes \partial^{m} \otimes x$ is homologous to

$$
\begin{aligned}
& r_{2}\left(m q \sum_{s=1}^{m}\left(\frac{q}{1-q}\right)^{s-1} x^{m-s} \partial^{m-s} d x\right) \\
& \quad=m q \sum_{s=1}^{m}\left(\frac{q}{1-q}\right)^{s-1}\left(x^{m-s} \partial^{m-s} \otimes x \otimes \partial-q^{-1} x^{m-s} \partial^{m-s} \otimes \partial \otimes x\right)
\end{aligned}
$$

Computation of the cyclic homology

2.6. Notation. Given a cycle z of degree n of a chain complex $\left(C_{*}\right.$, d_{*}) we will denote $[z]$ the class of z in $H_{n}\left(C_{*}\right)$.
2.7. Theorem. Let q be a primitive root of unity with $m>1, n, u \in \mathbf{Z}$ and $v \in \mathbf{N}$. We have:

1) The morphism $\left.B_{*}:{H H_{0}}^{(} D_{q}\right) \rightarrow H H_{1}\left(D_{q}\right)$ is given by:

$$
\begin{aligned}
& B_{*}\left(\left[x^{n}\right]\right)=\left[n x^{n-1} \otimes x\right] \quad \text { and } \\
& B_{*}\left(\left[x^{u m} \partial^{v m}\right]\right)=\left[v m x^{u m} \partial^{v m-1} \otimes \partial+u m x^{u m-1} \partial^{v m} \otimes x\right] .
\end{aligned}
$$

2) The morphism $B_{*}: H H_{1}\left(D_{q}\right) \rightarrow H H_{2}\left(D_{q}\right)$ is given by:

$$
\begin{aligned}
& B_{*}\left(\left[x^{n} \otimes x\right]\right)=0, \quad B_{*}\left(\left[x^{u m} \partial^{v m-1} \otimes \partial\right]\right)=u m q \cdot Y_{3, u, v}, \\
& B_{*}\left(\left[x^{u m-1} \partial^{v m} \otimes x\right]\right)=-v m q \cdot Y_{3, u, v},
\end{aligned}
$$

where $Y_{3, u, v}$ is as in Theorem 1.2.
Proof. 1) It is a direct consequence of the following equalities:

$$
\begin{array}{cl}
1 \otimes x^{n}=n x^{n-1} \otimes x-b\left(\sum_{j=0}^{n-1} x^{j} \otimes x \otimes x^{n-j-1}\right) \quad \forall n \geq 0, \\
1 \otimes x^{n}=n x^{n-1} \otimes x+b\left(\sum_{j=1}^{-n} x^{-j} \otimes x \otimes x^{n+j-1}\right) \quad \forall n<0, \\
1 \otimes x^{u m} \partial^{v m}=v m x^{u m} \partial^{v m-1} \otimes \partial-u m x^{u m-1} \partial^{v m} \otimes x & \\
-b\left(\sum_{j=0}^{u m-1} Z_{1, j, u, v}\right)-b\left(Z_{2, u, v}\right) \quad \forall u \geq 0, \\
1 \otimes x^{u m} \partial^{v m}=v m x^{u m} \partial^{v m-1} \otimes \partial-u m x^{u m-1} \partial^{v m} \otimes x & \\
+b\left(\sum_{j=u m}^{-1} Z_{1, j, u, v}\right)-b\left(Z_{2, u, v}\right) \quad \forall u<0,
\end{array}
$$

where $Z_{1, j, u, v}=x^{j} \otimes x \otimes x^{u m-j-1} \partial^{v m}$ and $Z_{2, u, v}=\sum_{j=0}^{v m-1} x^{u m} \partial^{j} \otimes \partial \otimes \partial^{v m-j-1}$.
2) Let $f: k[\mathrm{x}] \rightarrow D_{q}$ be the canonical inclusion. Since $H H_{2}(k[\mathrm{x}])$ is null and $B_{*}\left(\left[x^{n} \otimes x\right]\right) \in H H_{2}(f)\left(H H_{2}(k[\mathrm{x}])\right)$, it is clear that $B_{*}\left(\left[x^{n} \otimes x\right]\right)=0$. Let $Z\left(D_{q}\right)$ be the center of D_{q}. Recall that $H H_{2}\left(D_{q}\right)$ is a $Z\left(D_{q}\right)$-module. By Proposition 2.2, the fact that $x^{(u-1) m} \partial^{(v-1) m} \in Z\left(D_{q}\right)$ and Proposition 2.3, we have that

$$
\begin{aligned}
B_{*}(& {\left.\left[x^{u m-1} \partial^{v m} \otimes x\right]\right) } \\
& =\left[v\left(x^{u m-1} \partial^{(v-1) m} \otimes \partial^{m} \otimes x-x^{u m-1} \partial^{(v-1) m} \otimes x \otimes \partial^{m}\right)\right] \\
& =v x^{(u-1) m} \partial^{(v-1) m}\left[x^{m-1} \otimes \partial^{m} \otimes x-x^{m-1} \otimes x \otimes \partial^{m}\right] \\
& =-v x^{(u-1) m} \partial^{(v-1) m} m q . Y_{3,1,1}=-v m q . Y_{3, u, v}
\end{aligned}
$$

and

$$
\begin{aligned}
B_{*}(& {\left.\left[x^{u m} \partial^{v m-1} \otimes \partial\right]\right) } \\
& =\left[u\left(x^{(u-1) m} \partial^{v m-1} \otimes x^{m} \otimes \partial-x^{(u-1) m} \partial^{v m-1} \otimes \partial \otimes x^{m}\right)\right] \\
& =u x^{(u-1) m} \partial^{(v-1) m}\left[\partial^{m-1} \otimes x^{m} \otimes \partial-\partial^{m-1} \otimes \partial \otimes x^{m}\right] \\
& =u x^{(u-1) m} \partial^{(v-1) m} m q . Y_{3,1,1}=u m q . Y_{3, u, v} .
\end{aligned}
$$

2.8. Theorem. Let $p \geq 0$ be the characteristic of k. Then,

$$
\begin{aligned}
& H C_{0}\left(D_{q}\right)=\bigoplus_{n \in \mathbf{Z}} k \cdot x^{n} \oplus \bigoplus_{n \in \mathbf{Z}, .>0} k x^{u m} \partial^{v m} \\
& H C_{1}\left(D_{q}\right)=\bigoplus_{n \in \mathbf{Z} \phi / n} k .\left(x^{n-1} \otimes x\right) \oplus \bigoplus_{u \in \mathbf{Z}, v>0} \frac{k . Y_{1, u, v} \oplus k . Y_{2, u, v}}{\left\langle v m \cdot Y_{1, u, v}+u m \cdot Y_{2, u, v}\right\rangle} \\
& H C_{2}\left(D_{q}\right)=\bigoplus_{n \in \mathbf{Z}, / n} k x^{n} \oplus \bigoplus_{\substack{u \in \mathbf{Z}, />0 \\
p / u, v}} k . x^{u m} \partial^{v m} \oplus \bigoplus_{\substack{u \in \mathbf{Z}, \nu>0 \\
p / u, v}} k . Y_{3, u, v} \\
& H C_{3}\left(D_{q}\right)=\bigoplus_{u \in \mathbf{Z}, p / n} k .\left(x^{n-1} \otimes x\right) \oplus \bigoplus_{\substack{u \in, .,>0 \\
p / n, v}} k . Y_{1, u, v} \oplus \bigoplus_{\substack{u \in \mathbf{Z}, r>0 \\
p / u, v}} k . Y_{2, u, v} \\
& H C_{2 i}\left(D_{q}\right)=H C_{2}\left(D_{q}\right) \quad \text { and } \quad H C_{2 i+1}\left(D_{q}\right)=H C_{3}\left(D_{q}\right) \quad \forall i>1 \text {, }
\end{aligned}
$$

where $Y_{1, u, v}, Y_{2, u, v}$ and $Y_{3, u, v}$ are as in Theorem 1.2. In particular, if $p=0$, then $H C_{1}\left(D_{q}\right)=k \oplus \bigoplus_{u \in \mathbf{Z}, v>0} k .\left(x^{u m-1} \partial^{v m} \otimes x\right)$ and $H C_{n}\left(D_{q}\right)=k$ for all $n>1$.

Proof. From the Gysin-Connes exact sequence we obtain the exact sequences

$$
\begin{aligned}
& H H_{0}\left(D_{q}\right) \xrightarrow{B *} H H_{1}\left(D_{q}\right) \longrightarrow H C_{1}\left(D_{q}\right) \longrightarrow 0, \\
& H H_{1}\left(D_{q}\right) \xrightarrow{B *} H H_{2}\left(D_{q}\right) \longrightarrow H C_{2}\left(D_{q}\right) \longrightarrow H H_{0}\left(D_{q}\right) \xrightarrow{B *} H H_{1}\left(D_{q}\right), \\
& 0 \longrightarrow H C_{3}\left(D_{q}\right) \longrightarrow \xrightarrow{\longrightarrow} H C_{1}\left(D_{q}\right) \xrightarrow{B} H H_{2}\left(D_{q}\right), \\
& 0 \longrightarrow H C_{n}\left(D_{q}\right) \xrightarrow{s} H C_{n-2}\left(D_{q}\right) \longrightarrow 0 \quad \forall n>3
\end{aligned}
$$

Now the result follows easily from Theorems 1.2 and 2.7.

References

[G-G] Jorge A. Guccione and Juan J. Guccione, Hochschild and cyclic homology of Ore's extensions and some quantum examples, Preprint.
[K] C. Kassel, Cyclic homology of differential operators, the Virasoro algebra an a q-analogue, Comm. Math. Phys., 146(1992), 343-356.
[L] J. L. Loday, Cyclic Homology, Springer-Verlag, Berlin-Götingen-Heidelberg, 1992.
[M] S. Mac Lane, Homology, Springer-Verlag, Berlin-Götingen-Heidelberg, 1963.
[T] L. A. Takhtadjian, Noncommutative homology of quantum tori, Punkts. Anal. Pril., 23 (1989), 7576; English translation: Funct. Anal. Appl., 23 (1989), 147-149.
[W] W. Wodzicki, Cyclic homology of differentiial operators, Duke Math. J., 54 (1987), 641-647.

