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Hochschild and cyclic homology
of Q-difference operators

By

Jorge A. GUCCIONE and Juan J. GUCCIONE

Introduction

Let £ be an arbitrary field and A =k[x, z7']. The ring D; of formal dif-

ferential operators on A is the k-algebra generated by z, x™', 0 and the
Heisenberg relation dx —xd=1. This algebra was studied in [K], where the
author built up an explicit 2-cocycle on the Lie algebra underlying D, which
restricts to the 2-cocycle defining the Virasoro algebra. To carry out his
plan Kassel computed the Hochschild homology of D by using a complex sim-
pler than the canonical one. In this same work, the g-analogue of D, which is
the algebra D, (g €k\ {0} ) of g-difference operators on A, has been studied.

By definition D, is the algebra generated by x, 7!, 0 and the relation dx—qx0
=1 (which is the g-analogue of the Heisenberg relation). One of the main re-
sults proved in [K] is that the Hochschild homology of D, is the homology of a
complex Rssx (D;) simpler than the canonical one of Hochschild. By using
this complex Kassel obtained some partial results about the Hochschild homol-
ogy HH,(D,).

In this paper following the results of [K] we make a further step in the
sense that we can compute the Hochschild and cyclic homologies of D, (for de-
finitions, basic notions and notations about these theories we remit to [L, Chl,
2 and 3]). When ¢g=1 or ¢"#1 for all n €N these homologies are known
(see [W], [K] and [G-G]). So, we can assume that ¢ is a primitive m-th
root of unity with m>1. The results that we obtain resemble the case when
g"#1 for all n€EN. In this sense, the case ¢=1 is a special one.

The paper is divided in two sections. In the first one we compute the
Hochschild homology of D, by means of the study of a natural filtration of
Rsx (D;). The graded complex associated to this filtration gives the Hoch-
schild homology of the k-algebra generated by x, x7!, @ and the relation 0x =
qxd. The first time that this homology (that plays a basic role in our work)
has been studied was in [T], and has been fully computed in [G-G]. In the
second section we give an explicit formula for the morphisms Bsx: HH, (D;) —
HH; (Dy) and Bx: HH; (Dg) — HHz (Dg) (see [L, 2.1.7.4]). This fact together

Communicated by Prof. M. Jimbo, November 14, 1994



414 Jorge A. Guccione and Juan J. Guccione

with the study of the Gysin-Connes exact sequence allows us to compute the
cyclic homology of D,.

1. Hochschild homology of D,

Let k be an arbitrary field and g€£\ {0} . In this section we compute the

Hochschild homology of the k-algebra D, generated by x, x~!, @ and the rela-
tion 0r —qrd=1. We use the following standard notations. Given g€\ {0}

we put (n)q=gq_;11 for all n€Z (of course, (n),=n), (0),=1, (n)!,=

n
[17z}(n—j), for all nEN and ( ) for the Gaussian binomial coefficients de-

T 74
fined by
0 if —jEN,n€Z
<”>: 1 if j=0,nEZ
T H{=1(M_T_:1)'L ifjEN,nEZ .

From the equality dxr —qx0=1 it follows that
. ] n
alxnz 2 <] ) < ) (S) !q an—srxn—sar .
Ar/\s/,
r+s=j

In particular, if g1 is a root of unity of order m, then dx™=x"0 and 0"xr =
x0™. 1In [K] it was proved that the Hochschild homology of D, is the homolo-
gy of the bicomplex

0
Dy % DRk
R (Dg): l do l o
50,1

Dy  “—— DoQinw
where

¢ (x"0) = (1—¢") x"0'*' — (n) g 2" 10’
¢ ("0dx) = (¢"—q ) x"0" dx+ (n) ;2" 107dx
0o (x"0dx) = [0, x] = (¢ — D) x"*'d'+ () ; x"0’
011 ("ddx) = ("0’x —q x"07) = (¢’ —¢ 2”07+ () g 2”077t .
It is easy to see that D, is the Ore’s extension A[0, a, 0], where A =

klr, x7'] and a¢ A — A is the isomorphism that sends x to gr and 0§ the
a-derivative that sends x to 1. So, the complex Rsx(D,) is a particular case
of the one obtained in Proposition 3.2 of [G-G] for an Ore's extension of a
smooth algebra. Using this proposition together with Theorem 1.4 of the
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same paper, we obtain the quasi-isomorphism 7x Tot (Rsx (Dg)) = Cx (Do),
where Cx (D,) is the normalized Hochschild complex, defined by

ro=id 11(@"0") =2"0"®0 , 71,(*"0/dx)=2"0'®x

12 ("0dx) =2"0' ®xr ®0—q 'x"0’' ®0®x .
Let us consider the filtration F& (D) SFks (Dg) SFhx(Dg) S+ SRux (Dy) of
Rs+(D,) defined by F7o(D,) = ®7§ A.07 and F7,(D,) = (®72A.0") Qk, (=0,
1). The r-th component G+ (Do) =F%«(Dg) /Fi(Dq) of the graded complex

0
associated to this filtration is A « 23, when v=0, and

5r—l
A o i
s | ot
57
A = Qb

when >0, where

#rx") =(1—¢gx" , ¢i(x"dx)=(¢"—q¢ ")x"dx ,
0%, (x"dx) = (¢"—1)x™* and 077! (x"dx) = (¢" '—q 1™ .

When g is not a root of unity the complexes Gk« (Dg) (r>0) are exact.
Hence, in this case the Hochschild and cyclic homologies of D, and A coincide
(see [G-G, Example 3.5]). On the other hand the Hochschild and cyclic
homologies of D; were calculated in [W] when k is a characteristic zero field
and in [K] in the general case (in spite of that Kassel works with the field C
of the complex numbers his method works for arbitrary characteristic). So,
we assume that ¢ is a primitive m-th root of unity with m>1. To carry out
the computation of the Hochschild homology of D, we will need the following
result

1.1. Lemma. Let r be a multiple of m and uE€Z. We have that x*"0" !
~ ~ s-1 ~
EFo(D,), 2" '07dx €EF}1(Dy) and 227, <1_2_q> "9 Sdx €F11(D,) are
cycles of Tot (Rs,%(Dg)).

Proof. It is immediate that @o (x*”07~!) =0 and Jo; (x*" '07dx) =0. In

order to prove that (i1 + ¢1) (X7 (%) 20" %dx) = 0 it suffices to
observe that

(51’1+¢1) (xum—sar—sdx) — (q—s_q—l)xum—s+lar—s+ (_S) Qrum—sar—s—l
+ (q—s_q-l)xum—sar—s+ldx+ (_S) ?rum—s—lar—sdx ,

which follows by direct computation.
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1.2. Theorem. Let m>1 and q be a primitive m~th voot of unity. We
have:

HH, D)= P rxt & P ka*mom
i€Z u€Zr>0

HH (D)= P k@' ®x)® @ kY1uo® D kYo,
i€Z HEZr>0 wE€Zv>0

HH, (Dq) = @ k~Y3,u,v
w€Zr>0

HH,(D,) =0 VYu>2

where

Yl,u,uzl'umavm_l®a ’ Yz,u,u:I“'”'la””’ ®x and

L -1
Y3,u,v= Z(T%)S (xum—savm—s ®1, ®a_q—1xum—savm-s ®a ®l’) )

s=1

Proof. 1t is clear that HH,(D,) =0 for all n>2. If >0 is not a multiple

of m, then Hy, (G%%(Ds)) =0 for all n>0. Hence H, (Fix(Dy)) =H, (Fii (D,))
for all n=0. Now let >0 be a multiple of m. In this case

Ho(Ghx(D,)) = €D kxm

uE€Z

H (Ghx (D)) = @ bx“" ® @ kx*" ldx
=y wEZ

H,(Ghn (D) = P k™ dx .
nE€Z

Moreover, the canonical maps

T Hy (Fix(Dg)) — H, (GChx(Dg)) and 7z Hy (Fhx(Dg)) — Hy (Ghx(Dy))

are epimorphisms (this follows easily from Lemma 1.1). Hence, from the
long exact sequence of homology associated to 0 — Fii(Dy)) — Fis(D,) —
G4+ (Dy) — 0, we obtain

Ho(F%x (D)) =Ho (F54(D,)) ® €D kx"o”

u€Z
Hy (F5% (D)) =H: (F54(Dy) ® @ kx"o" '@ € k" 1074z
uEZ nEZ

H, (Fas (D,)) = Hy (Fik (D)) @ EBkZ( o) o

v€Z

So,
Ho(Rux (D))= P kxi® € kx o™

i€Z wEZp>0
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HRex (D))= P kx'dz® P kxmom'® @ kx"'0"™dx

i€Z wE€Z1r>0 u€Zr>0
L s—-1
H,(Rex(D)) = P kZ(l—ﬂ—q—) Bl L P
w€Zr>0

s=1

Now, the proof can be finished applying 7% to this homologies.

2. Cyclic homology of D,

In this section we compute the cyclic homology of D,. As in section 1 we
assume that ¢ is a primitive m-th root of unity with m>1. In this case we
will carry out the promised computation giving an explicit formula for the
morphisms Bx:. HH,(D,) — HH,(D,) and Bx: HH,(D,) — HH,(D,) and studying
the Gysin-Connes exact sequence associated to D,, We first establish some
results that will be needed later.

Preliminaries

2.1. Notation. Let (Cx, d%) be a chain complex. Following [M] we
will say that two cycles z and z° of C, are homologous if they define the same
element in H,(Cx). That is to say if z—2  is a boundary.

2.2. Proposition. Let q be a primitive m~th root of unity with m>1, u €
Z and vEN. We havh:

1)  The cycles u (@ V""" 1@ @0 —x“ P @0 1 ®0 ®x™) and
B@“9"™'®0) of Cx(Dg) are homolrgous.

2)  The cycles v (x*™ 19"V Q0" Qxr —x*" 10 V" Qxr ®9™) and
Bx“=19" ®zx) of (Cx(D,) are homologous.

Proof. 1) Let D=F|[x, x7%, y] be the k-algebra generated by x, ™%, y and
the relation xry =yx. It is easy to see that the morphism

0d, 0d»

¢ D®5®2_’ Qs (,l)z(do@dl ®d,) :doﬁr‘ oy

induces an isomorphism from HH. (D) onto £23,:, which is the inverse of the
canonical isomorphism &;: 23, — HH, (D). Let T be the cycle u (x* 'y ! ®x
Qy—x* 1y 1®y @x) —B Y™ ' ®y) of Cx (D). As ¢(T) =0, T is a
boundary. Let f: D— D, be the morphism of algebras that sends x to x™ and
y to 0. The proof can be finished by observing that H,(f) (T) = u
(I(u—l)mavm-l ®xm ®a_I(u—l)maum—l ®a®xm) —B (xumavm—l ®a)

2) is similar.

2.3. Proposition. Let m> 1 and q be a primitive m~-th root of unity.
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The cycles 0™ ' ®@x" ®0— 0" '®0®zx, 2" ' Qxr 9" —x" ' ® 0™ Qx and
mg 2T (1) (™50 ®x ® 0 —q 2™ 0"* ®3 ®x) of Cx (D,) are homolo-
gous.

To prove this proposition we will need the following lemmas

2.4. Lemma. The cycles

m m
-1 -1
E <1iq>s qm—s+lam—sxm—sdl. and q2<1_gq)s xm—sam—sdx

s=1 s=1
of Ry,x(D,) are equal.

Proof. Using that 0r=gx0+1 we can see that there exist csEFk
(2<s<m) such that

m m

s—-1
Z <%_q> qm—s+lam—sxm—sd1. :qu—lam—ldx + ch\rm—sam—sdx .
s=1

s=2

On the other hand, in the proof of Theorem 1.2 we showed that

m
s—1
Zy(Rs,x(Dg)) =Hz(Rx.x (D)) = @ k.z (l_i—q) "9 Sdx ,
wEZ1>0 s=1

where Z, (R4, (D,)) is the submodule of the cycles of degree 2 of Ry x (D,).
Consequently there exist Ay, W €Z, vEN), with {(u, v): Au,# 0} finite, such
that

m
gx™ 10" Y+ chr'”’sa”“sdx

s=2
. s-1
— Z /IWZ<1_9 ) LHUM=S VM= ,
wEZIEN q

s=1
From this fact we can easily deduce that A,,=0 if (u, v) # (1.1), A;,,=¢ and
cs=qlt%;)" for all s=>1.
2.5. Lemma. Let B, be the algebra generated by x, 0 and the relation Ox
—qxd=1. The cycles mg2 2 (7%) (@™ 50" ®x ®9 — ¢ 2" 0" *® 3 ®x)
and 0" 1 ®x" ®— 0" ' ®9®x™ of Cx(B,) are homologous.

Proof. 1t is straightforward from the definition of b, the fact that g is a
primitive m-th root of unity and the equality

oo — ] n nY—Sr.n—Sr
0'r Z <7>q<s>q(s)!qq "50

r+s=j
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that
m=—1
b( Z (Im—i—lam—l ®a ®xi ®x_qixm—i—lam—l ®xi ®a Rx
i=1

+qi+1xm—i—lam—1 ®xi ®.’I,' ®a)>
equals to
am—l ®a®xm_am—1 ®Im ®a

I W R

§s=0 =0

<q—1xm—s—lam—s—1 ®a ®x_1,m—s—lam—s—1 ®x ®6> .

So, to finish the proof it suffices to see that

m—1

_1 . ) S
Z( m ) <l> (s) !qqs<s+1—n=m<l—i—) (0<s<m) .
i=0 m—s—1 AN !

This fact can be proved easily by induction on s using that:

h
A(s+1,h)=—q__—(qA(s,h)—A(s,h+1)) (h=20,0<s<m—1) ,
l1—q

where

m=1
m—1 ) .
Als, h)= Z ( ) <1> (s) 1, qstRs+1-D (h=0,0<s<m) .
= m—s—1/,\s/,

Proof of Proposition 2.3. By Lemma 2.5 the first and third cycles are
homologous. Let Bg-1 be the algebra generated by y, § and the relation 0y —

g 'y0=1. Let us consider the morphism of algebras f: B;-1 — B, defined by
f(0) = —gqx and f (y) = 0. This map induces a morphism HHx (f) from
HHyx (Bg1) to HH« (B;). Applying Lemma 2.5 to B, we deduce that x” ! ®
@I — " @™ ®x =Hy () ((—1) ™1 (571 ®y" ®5— 671 ® G ®y™)) is
homologous to

) (- 1)'"“mqi (1—%)1 (y"=56" @y ® 6
=1

m
-1
— ym—sam—s®5®y)>:qu<%>s m—s+1 (am—sxm—s Rr®0o
s=1 1
L 1 s—1
_q—lam—sxm—s ®a®x) :TZ<mZ<T:_q.> qm—s+lam—sxm—sdx> ,

s=1
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where 72 Do24/x — D, ®D_q®l is the morphism defined at the beginning of sec-
tion 1. Hence, by Lemma 2.4, x” ' ®x ®3" —x™ ' ®9™ ®x is homologous to

m
-1
7’2<qu <—L1 — )S x’”‘sﬁ”"sdx>
s=1
m

=mqZ(1—i—q—)s_l (™0™ S ®r ®0—q 2" 59" S ®0®x) .

s=1

Computation of the cyclic homology

2.6. Notation. Given a cycle z of degree n of a chain complex (Cx,
dx) we will denote [z] the class of z in H, (Cx).

2.7. Theorem. Let q be a primitive root of unity with m>1, n, u €Z and
vEN. We have:
1) The morphism Bs: HHo(D,) — HH,(D,) is given by:

B« ([x"]) = [nx" ' ®x] and
Bx ([x"9"™]) = [umx"" 0" ' ® 0+ umx" 10" ®x] .
2) The morphism Bx: HH,(D,) — HHz(D,) is given by:

B*([x”®x])=0 s B*([x“’"a”m'l®5]) =umq.Ysup .
Bx ( [x“""lﬁ”’” ®I]) =—vmq.Ysuyp ,

where Ys,, is as in Theorem 1.2.

Proof. 1) It is a direct consequence of the following equalities:
n—-1
1®x"=pg" ! ®x-b<2x’ ®x ®x”""1> Vu=0 ,

j=0

—-n
1®x"=pg" ! ®x+b<Zx'j ®x ®x"”") Vu<0 ,

j=1
1 ®xumavm :,U,mxumavm—l ® a_umxum—laum ®x

um—1

_b< Z Zl,f,u,v) —b (Zz.u,v) Vu=0 )
j=0

1 ®xumavm :vmxumavm—l ®a_umxum—lavm ®1.

=1
#0( ) Ziss) =0 (Zaws) V<0,

j=um

where Zijupy=x' ®x ®x“77190"" and Zsy,= 2075 "0’ @0 @9,
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2) Let f: k[x] — D, be the canonical inclusion. Since HH; (k[x]) is null and
B« ([x" ®x]) € HH, (f) (HH: (k[x])), it is clear that Bx ([x" ®x]) =0. Let
Z (D) be the center of D, Recall that HH; (D,) is a Z (D,)-module.
Proposition 2.2, the fact that x* ?"9“~Y" & 7 (D,) and Proposition 2.3, we

have that

B* ( [xum—laum ®1‘] )

— [1) (xum—la(v—l)m ®am ®1._xum—la(v—1)m ®1‘ ®am)]
=vx(u—l)ma(u—1)m [xm—l ®am ®1'_.l‘m_l Rx ®am]

(u—l)ma (v=Dm,

—vx mq.Ysi1=—vmq.Yau,

and

Bx ( [xumavm—l ®a] )

— [u (x(u—l)mavm—l Q™ ®a_x(u—1)mavm—1 ®a ®l_m)]
:ux(u—l)ma(u—l)m [am—l ®xm ®a_am—1 ®a®rm]

=ux MMy Ve =umq. Yauy .

2.8. Theorem. Let p=0 be the characteristic of k. Then,

HC,(D)= @ kx"® @ kx"o™
n€Z n€Zr>0
kY .,OkY.
— n 1® =) Luyv L 2,uv
He b = ,,e?i/,,k 90 B vt
HC, (D)= D kx"® @ kxo™® @ k.Y,
nEZLp/n WE€Zr>0 u€Zy>0
p/ue pl/uy

HCs(D)= P k("' ®x) ® D £Y1.® P kYous

wE€Zp/n uEZr>0 HEZr>0
p/n K p/n.u

HCz:( ) ch(Dq) and Hc2i+l(Dq)=Hc3(Dq)

where Yiyp, Youp and Ysu, ave as in Theorem 1.2. In particular, if p=20, then
HCi(D) =k® @ _  k.(z“"7'0""®x) and HCy(Dy) =k for all n>1.

€Zv>0

Proof. From the Gysin-Connes exact sequence we obtain the exact sequ-

ences

Bx
HH,(D,) — HH,(D,) — HC,(D,) — 0 ,

Bx Bx
HH, (Dq) — HH, (Dq) — HC, (Dq) — HH, (Dq) — HH, (Dq) ,

B
0—— HCs(D,) — HC:1(D,) — HH.(D,) ,
S
O—}HCn(Dq) _’HCn—Z(Dq) —)O Vn>3

Now the result follows easily from Theorems 1.2 and 2.7.
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