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Homology and cohomology of Lie superalgebra
sl (2, 1) with coefficients in the spaces of

finite-dimensional irreducible reprsentations

By

Junko TANAKA

Introduction

I n  this paper w e give a  m ethod o f  calculation fo r  homology groups and
cohomology groups w ith coefficients in a space o f  a  representation o f a  L ie
superalgebra, a n d  c a r r y  o u t  t h e  ca lcu la tion  to  de te rm ine  them  f o r  finite-
dimensional irreducible sl(2, 1)-modules.

A motivation of this w ork is to understand to w hat extent the idea of the
cohomological induction is useful fo r representations o f  L ie  superalgebras. In
the case of reductive L ie algebras, th e  theory o f  cohomological induction was
introduced by Vogan and Zuckerman and was developed by Vogan, Knapp and
o the rs  (see  e .g . [ 8 ] ) .  Studies o f  th e  s tru c tu re s  o f  cohomologically induced
m odules, vanishing theorem s a n d  B lattner's m ultiplicity  fo rm u la  a re  very
important, and there, the  Poincaré duality plays a  decisive role.

In the case of Lie superalgebras, Chemla [2] proved a  Poincaré duality under
a restrictive condition tha t the  representation in question has a  finite projective
dim ension. H ow ever, w e d o  n o t k n o w  i f  th is  restrictive condition is really
neccessary and  w h e n  it  h o ld s . In  author's previous work [13 ] (see also [15]),
w e  s e e  th a t  P oincaré  d u a lity  d o e s  n o t  h o ld , excep t the  tr iv ia l case , fo r
finite-dimensional representations of gl (1, 1). This situation is also true for the
present case of sl(2, 1).

I n  [6 ], K ac constructed all finite-dimensional irreducible representations of
Lie superalgebras g = g6 gy = 51 (m, n) as the quotient module V (A) = (A) I 1(A)
o f  a  s t a n d a r d  induced  m o d u le  V (A )  b y  i t s  m axim al p ro p e r  submodule
1(A) . Furutsu studied these modules in detail for sl (2, 1) and sl(3, 1) in [ 5 ] .  In
the case of g = g6 C) gy = sl (2, 1), P(A) is constructed starting from an irreducible
highest weight g6-module with highest weight A. A c c o rd in g  to  g6 sl (2, C) C)
C • C , th e  highest weight A  is g iven a s  A =  c ), where 2 e is  a  highest
weight for sl (2, C) a n d  c  is  a  scalar fo r C  w hich is in  th e  center of g 6 .  We
can  construc t a ll fin ite -d im ensiona l irreducib le  m o d u le s  o f  sl (2, 1) quite
explicitly. F urther, w e  find  tha t any  such  irreducib le  m odule is equivalent to
o n e  o f  V (A ) o r  1(A ), a n d  th a t  a s  g0-modules 17 (A) i s  a  d ire c t  sum  of four
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irreducible ft-submodules while I(A ) is  tha t of two such ones.
L et g  =  g () g y  b e  a  L ie  supera lgebra  o v e r  C .  W e  have a projective

resolution of the trivial g-m odule C  in  a  category of g-modules, w hich is an
analogue of Koszul resolution for Lie algebras (cf. [10] and a lso  [1 2 ]) . In [12]
w e  in tro d u c e d  a  m e th o d  o f  calculating hom ology and  cohom ology  fo r
representations of a  L ie  superalgebra. This method is rather complicated, but
we give in this paper a  short cut via Lem m a 1.6. This lemma reduces the chain
com plex (B , 0) to  b e  s tu d ie d  to  a  sim pler com plex (B  ̀ ior) consisting of
q-invariants, w h e re  q  is  a  su b a lg e b ra  o f  g  w hich  ac ts o n  (B , 0) semisimply.
Cohom ology g ro u p s  a r e  o b ta in e d  b y  t h e  duality  betw een hom ology and
cohomology in Lemma 1.7 after calculating homology groups.

T h is  pape r is  o rgan ized  a s  fo llow s. In  §  1 , w e  f irs t  re c a ll a n  explicit
d e sc rip tio n  o f  finite-dimensional irreducible m odu les o f 51 (2 , 1 ). T hen  w e
introduce a  practical method of calculating homology through a  chain complex
(1.4-6).

The induced module V(A) with highest weight A  = (2, c) is irreducible if and
only if  (1 —  c)(1 + c + 2) 0  0  (cf. Corollary 1.2). W e discuss according to the
th re e  cases (2 —  c)(1 + c + 2) 0 0, 1  —  c = 0 ,  a n d  2+ c  + 2  =  0 .  I n  §  2 ,  we
calculate the homology H„ (g, V (A)), for A  = (A, c) with (2 —  c)(2 + c + 2 )  0  0 .  In
this case V (A ) = V (A ). Studying ft-module structures in the complex (1.4) for
V(A) and applying Lemma 1.6 we find that homology groups H„ (g, (A )) vanish
for any n.

In §3, we describe the homology H„ (g, V(A)) in case A = c > 0. W hen A  > 1,
V(A) -  l(A )  w ith  A' — (1 - 1,c —  1). F o r  sufficiently la rg e  n , th e  spaces of
n -cha ins in  the  chain com plex o f ft-invarian ts  in  (1 .8 ) fo r 1(A ) a re  always
8-dimensional. F ix in g  s ta n d a rd  b a se s  o f  th e se  sp a c e s , w e  c a n  express the
boundary operators by (8 x 8)-matrices. Calculating the ranks of these matrices,
w e get the dimensions of homology groups H„ (g, 1 (A )) . W hen 1 = 0 , V(A) is
a trivial 51(2, 1)-module and the n-chains are 4-dimensional for n > 4.

In §4, the case 2+ c  + 2  =  0  is trea ted . H ere  w e have  a  similar result as
in §3.

Summarizing the  results in §§2-4, w e get the m ain result o f this article as
follows.

Theorem (see  T heorem  5 .1  a n d  T heo rem  5 .3 ). L e t  V (A ) b e  a  finite-
dimensional irreducible representation of g = 51(2, 1) with highest weight A  = (2, c),
AeZ , 0 , ceC.
I f  2 = c , then

dim H„ (g, V (A ))= dim Hn  (g, V (A ))={
fo r  n = 2, 2 + 3

O

I f  1+ c  + 2 =  0, then

dim Hn (g, V (A ))= dim H"(g, V(A)) =

otherwise.

f o r  n = A +1 , 2 + 4
otherwise.
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If (2 —  c)(2 + c + 2) 0 ,  then

H„ (g, V (A)) = Hn(g, V (A)) = (0) f o r any n  O.

§1 . Preliminaries

1.1. Definitions and notations for Lie superalgebras. L e t V = V6 C I VT be a
Z 2 -graded vector space over C , w here Z2 = 10, 71-1. T he  algebra End V  o f all
linear m aps from  V  into itself becomes an associative superalgebra if we define
a gradation as

End i V:= eEnd V X V +k, keZ 2 1 fo r  ie Z 2 .

Then introducing a  bracket operation in g = End V  as

[X, Y ] := X  Y  —  (-1)I x IIY I YX for homogeneous elements X, Ye g,

where XI means the degree of X, we get a Lie superalgebra, that is, this operation
satisfies super-antisymmetry and  Jacobi identity for a Lie superalgebra:

[X, Y ] + (-1)I x IIY I[Y , X ] = 0,

[X, [Y, Z ]] =  [[X , Y], Z ] olxiiYiE [X, Z ] ] ,

for X, Y, Z e g, hom ogeneous. From  now  on, if the notation 1X 1 appears, the
element X  is assumed to be homogeneous. Let dim V0 = m and dim Vy n, then
this Lie superalgebra is denoted by 91(m, n). In  a  natural basis o f  V  consistent

fl
w ith the Z 2 -gradation, gl (m, n) consists of m atrices of the  form ,  and
gl(m, n) = gl (m, n)0 g l (m , n ) i with

( )

Y  6

gl (m, n)6 = {
C0c ° 6 ) } '

g t ( m n ) i= { ( °
T  160  ) } '

where a e.,(m, m), fie n), y (n, m), e J / ( n ,  n). H ere  ,i/ l(m , n) denotes
the set of m  x  n-matrices over C .  Moreover, let

gl (m, 11)-1 = gl(m, n) 0  = gl (m, n)0, 9i (nz, n)1 = {Co fi. ) } ,

and gl(m, n)k = (0) for lk 2. Then we have a Z-gradation on gl (m, n) consistent
with the Z 2 -gradation:

91(m, n) = gl (m, n) - 1 0 91 (m, n)c, (m,

[91 (m, n)a , (m, n)b ] c  gl (m, n).+b (a, b e Z).

( a  fi
On gl (m, n), define the supertrace str: gl (m, n)-* C  by str :=  tr —  tr

y
and then define a subalgebra ( m ,  n) as 51(m, n):= {X  e 91(m, n)Istr X  = 0}.

F o r  ou r la te r use, w e fix th e  following basis of a C artan subalgebra b of
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sl(m, 1):

H i -  E i i 1), c  _  E  El l  +
1=1

and a basis on the odd  part of l(m, 1):

X i = E„,„,,i (1

where E 1 d e n o t e s  the elem entary  m atrix  w ith  1 a s  (1, j)-component and 0
elsewhere. In particular, in the case of g = 61(2, 1), the even part g5 is generated
by its Cartan subalgebra  =  <H, 0 ,  with H = H 1 ,  and two elements Z +  =  E 1 2
and Z_ = E 2 1 .  Further g ,  and g _ , are generated by {X 1 }1= 1 , 2  a n d  ) 7( 11= 1, 2

respectively. Here <21>c  denotes the vector space spanned over C  by  a set of
vectors 21.

The Grassmann a lgebra  A  g  is defined fo r a  L ie  superalgebra g as the
quotient of the tensor algebra of g by the two-sided ideal generated by

{.x  y ± (_ 01x11Y1 Y  X  X, Ye g, homogeneous} .

I t  is  a g-module by  the action given as

X  • (X , A  •— A  X ,) =
I) Tv

A i  A  • • •  A  [X , X i]  A  • • • A

where X, X 1 ,..., X , E g, and its  Z2 -gradation is determined by

IX 1 A A X I X 1 + . + IX L

W e rem ark that the subalgebra A gri here is w hat w e usually call a  symmetric
algebra for a vector space. The universal enveloping algebra 0/1(g) is defined as
the quotient of the tensor algebra by the two-sided ideal generated by

tx  y_  (_ Y O X  — [X , Y ]lX , Ye g, homogeneous},

and g - action on it is given as X • (X 1 --- X „)= X X i ••• X .

1.2. Irreducible modules V (A ) with highest weight A .  Here we consider
g = sl(2 , 1). Note t h a t  g6 51(2, C)10 , C • C .  L et V A  b e  a  finite-dimensional
highest weight representation of 5 1  (2 , C ) with highest weight 2 E Z „ .  We can
fix a  basis {vo , v1 ,...,1/0 of VA such that

Hv i = (2 — 2 i)v,, Z +  = + 1 — _ , Z_ v, =  v1 1,

(i = 0, v_, = v 2 + 1 = 0), (1.1)

and call this basis standard.
Take a Z-graded subalgebra p = go  (:) g, of g and extend sl(2, C)-module VA

to  a  p-module L(A ) by putting

Cv , =  cv , X v = 0 (ve 1 , X  e
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where c e C is a  fixed constant and A = (A, c)E E . W e  d e fin e  an  induced module
V(A)= Ind L (A ):= V(9) L(A ), where the  g-module structure is given by

X (u 0 y) = (X u) 0  y (X  e g, u e ( g ) ,  v e L(A)).

Then -1-/ (A) has a unique maximal proper submodule, say I(A ), and the quotient
is a unique (up to isomorphisms) irreducible representation of sl (2, 1)

V(A) = V(A)/I(A)

w ith  h ighest w e igh t A  (cf. Kac [6 ]). T here fo re  w e  conside r th is  quotient
V(A)/I(A) = V(A) later on.

1.3. Finite dimensional irreducible representations o f 5 1 ( 2, 1). W e have the
following thorem from general theory o f Kac [6] (see also Furutsu [5]).

Theorem 1.1. The 51(m, 1)-module V(A) is irreducible if  and  only  if

fl (A (H ,) + m  —  k ) O.

Here H,',= E,,,—  E k + 1 „ + 1  e sl (m, 1) and A  is a  highest weight o f  P(A).

From this theorem, we get the following.

Corollary 1.2. F o r sl(2, 1), th e  induced m odule V (A ) w ith  A  - (A , c) is
irreducible if  and  only  if

(A —  c)(1 + c + 2) 0 O.

F rom  th is  co ro lla ry , w e  can  lis t up  a ll f in ite -d im ensiona l irreduc ib le
sl (2, 1)-modules a s  follow s. They have highest weights A  = (A , c) with Z >

C E C.
If (A — c)(A + c + 2) 0 0, we have V (A) = V (A).
If A — c = 0, define two irreducible sl (2, C)-modules as

VA'4-1:= <vil0 i A + 1>c , y; := i(Y, 0 y i _,) + Y2 () V ,
(1.2)

VA" := Yi Y2 L(A), := Y i Y2 V i 0 )

T hen 1(A) = Vt '+ 1 +  kl," a n d  i t  i s  isomophic t o  L(A + 1, c + 1) () L(A, c + 2) as
g6-module while V (A ) L (A , c) 03 L(A —  1, c + 1). If A = c = 0, then  V(0, 0) = C
is  a trivial g-module (L( — 1, 1) = (0) by convention).

If A + c + 2 = 0, I(A ) is a direct sum of two sl (2, C)-modules : I(A ) = +
VA”,

131':= (A — i) Y1 0 c i +  Y2 ®v1+1

:=  Y i  Y2 L(A), := Y2 ® V i
(1.3)

and 1 (A )  L(A — 1, c + L(2, c + 2), V (A) Le L(A, c)()L(A + 1, c+ 1). If A — c =
0, o r  A  + c + 2 = 0, 1(A ) is easily seen to be irreducible, so there m ust exist a
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highest weight A ' = (A ', c') such that 1(A) V (A'). W e have A ' = (A  + 1, c + 1)
in the former case and A ' = (A  — 1, c + 1) in the latter case.

So we can realize finite-dimensional irreducible 5l(2, 1)-modules as follows
and we use this realization later on.

Lemma 1.3. T he f inite-dimensional irreducible 51(2, 0-modules V (A ), A  =
(A, c), is equivalent to one of  the following:

V(2, c) if (A — c) (A  + c + 2) 0 0,

1(A— 1, c — 1) i f  A  = c > 1,

1(A + 1, c — 1) if A  = —  c —  2 > 0,

and V (0, 0) = C, a  trivial representation.

1.4. Killing fo rm . A  bilinear form  B  on a Lie superalgebra g = g-6 () gi
given by

B (X , Y ):= str (ad X ad Y), X , Y e g,

is called the Killing form on  g . If B  is non-degenerate, the Casimir element Q
for g  is defined as

Q = E B(E i „ E 12)F i1 F i 2 ,

w here  d = dim g ,  and ( E ) 1 <,<, (F3 1 , i
„  are d u a l  bases  o f g  such  tha t

B(E i , Fi ) = b i i  (1  < i,j d).
In our case of 51(2, 1), the Casimir element Q is

1 1 1 1
Q =  — — C2 + — H 2 + Z_ + — H  - - C  +  X I Y ,+ X2 Y2.

4 4 2 2

It ac ts on V (A ) as a scalar multiple by 1.(A — c)(A  + c + 2).

1.5. Koszul resolution and its application. To calculate the homology groups
of finite-dimensional irreducible representations of Lie superalgebra g = 51(2, 1),
we start with recalling some general results in the theory of the homology of
representations. L e t  g  b e  a  L ie  superalgebra and V  a  g-module. T a k e  a
projective resolution of V:

0 4 - -  V 4—  PO 4 - -  P 1 4 - -  P2 4- -  P3 .

The homology I-1„ (g, V ) is by definition the homology of the derived functor of
the functor ( • ) C) g  C, where C is  the trivial g-module. In other words, denote
by P i g the space of g-invariants in Pi , then I-1„ (g, V ) is the n-th homology of the
chain complex

0 4-  P o g P i g P21I 4-  P3 g  4 - - -  .

The Koszul resolutions of C in the categories of modules of Lie algebras are
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well-known. In  the  case  o f L ie  superalgebras, th e  author introduced a  similar
resolution, given below, for L ie superalgebras in  her master's thesis [1 2 ], which
is another expression of the Koszul complex in  [10 , p. 171].

Theorem 1.4 ( [ 1 2 ] ) .  L et g  be a L ie  superalgebra. The following complex
(A, 0) is a projective resolution of the trivial module C in the category of g-modules:

C A  a ,  A2
 0 2

<-  0 4-

with A :=  oll(g) C), Aug, 0_ 1 (u):= (the constant term  o f  u), and f or n > o,

- (u 0 X 1  A  •••  A  X .) =

= E (— 0  xi  A  ••• • • •  A  X „

i = 1

+ E ( - 1 ) k - " + " " i+'"iu [x k ,  X i ] A X i  A  • • •k •••i••• A  X .,
k<I

where ueql(g), X i eg, IX  I n + • • • + and the symbol t indicates
a  term  X i to be om itted.

I f  V is  a g-m odule, the functor ( • ) (), V  gives a projective resolution o f  V
induced from the  resolution in  Theorem 1.4. Further, by the  functor ( • ) (D g  C,
we have the following complex (B, 0):

0 4 - -  B0 4
2 ') B ,4—  B2 B 3 4 - -  , (1.4)

B =  A ug V, (1.5)

On _,(X i  • • • A Xn v )  =

= E (— 1)' X, A  ••• t • • •  A  X, 0  X i V (1.6)
i = 1

E t y c + 1 4 - n k - l - r p + k 4 1 - -X k , X j  A  X I  A  • •• k • • • i • • •  A  X „  0  14
k<I

where X i eg, v e V, ni = +  + ni = + ••• + Q .  The
module structure of B given by a  natural action pp,:

p „(X ) (0 C) v) = (X 0)C) y + (_ nix lioi 0 0 (X v)

with X eg, Be Ang, ve V . The system Ipn l  commutes with {0„}: an  p „,, = p ,, .  0 ,, .
The homology group l i n (g, V ) can be computed a s  Ker On _i /Im e n .

The following lemma is known as Shapiro's lemma in the case of Lie algebras,
and  w e can prove it for L ie superalgebras similarly.

Lemma 1.5. L e t  g  b e  a  f inite-dimensional L ie  superalgebra an d  p  its
subalgebra. I f  V  is  a  p-m odule, there  is  the follow ing natural isom orphism  of
vector spaces:
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H,, (g, Ind,o, V) H„ (p, V) (n = 0, 1, 2, • • •). (1.7)

W e appeal to the  following lemma to calculate the homology groups.

Lem m a 1.6. L et g  be a L ie superalebra, V  a g-m odule, and (B, 0) the chain
com plex  introduced just before Lem m a 1.5. L et q  be a subalgebra of  g such that
its natural representation N I, on the n-th chain B „ are all sem isim ple. T hen the
homology H„ (g, V ) can be obtained f rom  the following subcomplex (Ba,
Ker (an -  leq)/Im

00 ai n  0  0 2 n 03
0  4-  Do D I  4—  D 2 -  4 —  D 3 '  4 —

where 4, 4 i s  the space of  g-invariants in B „, and 0„1,, is denoted again by  an .
P ro o f . Since th e  representation p „  is sem isim ple, w e can take q-stable

subspace B„ such that B „ =  0 B„', and then O n (Bn' , 1 ) B .  T h e  complex (B, 0)
is  the direct sum of two subcomplexes (B q  at,3,) and (B ' ale).

Consider maps s n (X ): B„--)13„, 1 ,  given as

A  • • • A  X„ C ) y )  =  X A  X I  A  • • • A  X„ 0  v.

B y a sim ple calculation, we get a n  equality s ,_ 1 (X) + e n o s„(X) =  p„(X).
So the  maps p„(X ) are homotopic to 0 w ith hom otopies s„(X ), or, they induce
0-maps on homology groups H, (q, V ) .  This means that p n (X)(Ker 0„_,) I m  an

for X e q .  Take an invariant complement Tn of the  invariant subspace Im an  in
the module Ker 0„ . W e have p n (X)T„ = (0) because p ( X ) T ,  T n nlm  an . SO

B,,q, a n d  every element in  hom ology is represented by som e elem ent in
B„`1 ,  which is contained in the subcomplex alB o . Q. E. D.

1.6. Cohom ology groups of Lie superalgebras. The cohomology H" (g, V ) is
by definition the cohomology of the derived functor of the functor Hom e  ( • , V).
Sim ilarly to hom ology, the cohom ology group H" (g, V ) can  b e  o b ta in ed  as
Ker d n /Im  d„_ , of the following complex (C, d):

do di d2 d30 ,

C,, = Hom ( A" g, V),

(d„_,d))(X , A  • • A  Xn ) =

= E ( —i)'n.+4 , 101x i o ( x ,  A  • - •  t • • •  A  X n )
i = 1

E  H ir i± „ , , , i+4 , 0([x k , xd A X,
k<1

Î A X,),

where X e g, =  X i l ,  rii = + • • • + 4 e  C 1 ,  hom ogeneous. I n  our
present case, where the g-module V  is finite-dimensional, we have the following
duality between homology and cohomology (cf. [8, p. 288]).

alir) as

(1.8)
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Lemma 1.7 (D uality). A ssum e that a L ie superalgebra g  and a  g-module V
are both f inite-dim ensional. Let V *  b e  the dual g-m odule of  V . Then there is a
natural g-module isomorphism

(g, V)* H„(g, V *).

§2 . Homology groups for the induced modules V (A)

2.1. Application of Lemma 1.6. In  this section, we calculate the homology
H ( g ,  (A )) w ith  A = (A , c) fo r (A — c) (A  + c + 2) O. F i r s t  o f  a ll, Lem m a 1.5
gives the following isomorphism :

H„(g, V (A)) = (g, End L (A )) Fin (p, L(A)). (2.1)

Here L(A ) is  the  p-module given in  §1.3.

W e can calculate the  homology Hn (p, L (A )) from the following complex :

0 Bo 42 )  B i B 2 B3 4 . 3 , (2.2)

where B =  A"p C) L(A).
Let us apply Lemma 1.6. W e take a  subalgebra g  =  C  • C C) sl(2, C) as g,

and  consider its representations pn o n  B „ given by (1.7), which a re  semisimple
for a ll n. First we decompose B „ into a  direct sum  of g0 -submodules

B =  Anp C) L(A) C ) n a g Ab g, ® L(A ) (a = 0, 1, 2, 3, 4; b E Z  0 )

as g0-m odules. Since the  eigenvalue of p ( C )  o n  nag,5 C) A b g i  C)L (A ) is equal
t o  —  b + c, th e  space of g0-invariants f i ngr) is contained in  th e  d irec t sum  of
submodules w ith  — b + c = O.

W e co n stru c t a  subcomplex o f  (2 .2 ) consisting o f  submodules B n
c  o f

pn (C)-invariants in  B n :

0 <—  B c
c B c c + , Bcc+2 Bec+34°==3 Bc

c
+ 4  4 - -  O. (2.3)

Here, since — b + c = 0, B c
c

± a  is given by

B c
c

+ a  = (  na g6 C) A`g i ) C)L(A) n
0
g0 C) { Acg i  C)L(A)} (a = 0, 1, 2, 3, 4).

N ex t le t  u s  consider th e  subalgebra sl (2, C)  q  = gE, a n d  i t s  action on
A "p . As s1(2, C)-modules, w e have isomorphisms:

90 C  C )  V 2 , A2 g6 [ 2 ] 1 /2 , A 3 g0 C  C ) A 4 g 6  C ,
(2.4)

Ac gi vc,

w here th e  sym bol [  ]  expresses the multiplicity, a n d  C  denotes the trivial
51(2, C)-module (= Vo ). We introduce eight subspaces o f  A g  a s  follows.
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Y O(1)2 =  <Z.* , — H , —2Z_ >c , Y111/0 = C • C,

3 ' 0 (2)2 =  <H A  Z, , —2Z+  A Z_, 2H  A  Z - >c ,  Y ° (3)0 = C • H A Z + A Z ,

.2 '1 (2)2  = < C  Z + , —  C  H , —2C A  Z— >C, 9%1 (4)0 = C • C A H A Z + AZ_.

Y 1(3)2 =  <C A  H A  Z , —2C A  Z+ A  Z_ , 2C  A  H A  Z_ >c , Y0(0)0 = C,
(2.5)

Here Yi(0 2 a n d  Yrn(n), are 3-dimensional and trivial s1(2, C)-modules and their
standard bases will be denoted by {zi(i) 0 , z (i) 1 , z(i) 2 } a n d  le (n ) 0 1 respectively.

W e put

1
 X I "  A  X V  a n d  .T c := A`g i  =  0 4 1 0  i c>c. (2.6)(c —  i)!

The space is  a  (c + 1)-dimensional irreducible sl(2, C)-module.

2.2. Construction of sl(2, C)-invariant vectors in the tensor product.

Lemma 2.1. L et K (n e Z, 0 ) denote an (n +1)-dimensional irreducible s1(2, C)-
m odule. For k , le  Z ,,, the  tensor product of  tw o m odules vk a n d  iv,' is  a direct
sum  o f  min(k, 1 number o f  sl(2, C)-modules as

vk 0 K c + I - 2 r ,
0 . m in(k ,1)

and the highest weight vector o f  Vk + 1 _2 r  is giv en as

E  (  1 ) i  
(k — — r + i)!

 v 1 C)w r

1=0 i!(r — i)!

where Iv 11 and {wi} are standard bases in Vk and in  E respectively.

Using this lemma, we see that the module Bn contains non-zero 96-invariant
vectors only in  th e  c a se s  c = A ±  2. W e  have excluded the  case  c = A  by
assumption, so we treat the cases c =  A ± 2.

Let h , be a  highest weight vector with weight 2 in  X A + 2  0  K . Further let
i i ( i)  b e  a  96-invariant vector i n  2'i (0 0  0  X A + 2  K  B1 withw ith  j e {0, 1 } ,
i e { I, 2, 3}, which is unique u p  to  a  scalar m ultiplication. The vectors h o  and
iJ(j) can be written as

h0 = (- ok(2  +  1  - k)(A + 2 — k)x 2 V A — k ,

A

k= 0

2
=  E (- okzi(0, h2 _ k , (2.9)

k=0

(2.7)

(2.8)

w here  h1 := V , is defined inductively  (cf. ( 1 .1 ) ) .  Taking 96-
invariants, we can reduce the complex (2.3) to the following :
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0 C <?(2), (2)> c • (3) O. (2.10)

2.3. Homology H (g, (A ) ) . N ow , let us write down the  m ap 0  precisely.
If xe AM (2, C) C )  V (A), then we have 0 ( C  x) = — C  0 ( x ) .  Therefore the
equality 0( 0 (1)) = 0 gives that OW (2)) = a ( C  ?(1)) = O . From  som e calcula-
tions, we deduce

a (? (2 ) )  =  2 ? (1 ) , OW (3)) = — (2).

Thus, dimensions of Im On and K er a„ are given in Table 2.11 below . From  this
we see that the  homology o f  V (A ) vanishes if c = 2 + 2.

—  2+3 2+4 2+5 —

dim D,, 0 1 2 1
dim (Ker 0„ _ i ) 0 1 1 0
dim (Im a„) 0 1 1 0

Table 2.11

Similar caluculations can be carried out for c = A — 2.
Now we have the following result.

Theorem 2.2. A ll the homology groups H„ (g, V (A )) with A  = (A , c) vanish if
(A  — c)(2 + c + 2) O .

§ 3 .  Homology groups for the maximal submodules 1(A ) for A  = c > 0

In §§3.1-3.3, w e com pute th e  homology H„ (g, 1(A )) fo r  1(A) c V  (A ) for
= c 0, and in § 3.4, the homology H„ (g, C) with trivial si(2, 1)-module C.

3.1. Space o f  g6-invariants in A g / (A ) .  W e  c o n s id e r  t h e  following
complex :

0 4 - -  1(A) g ® 1(A ) 4-- A2 g ® 1(A) A39 ® 1(A) , (3.1)

obtained from (1.4) by putting V  = 1 (4 ). To apply Lemma 1.6, we take q = g6
and then determine g5-invariants i n  Ang 0 1 ( 4 ) .  So the complex to be studied
is the following :

0 D2+1 D24.2 a4- -2 D _ F 3 (3.2)

D„:= ( Aug C )/(A )r. (3.3)
where

Put

:= < V il0< i< A  + 1> C , V: := — 0 Vi_i) ± Y2 0 Vi,
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VA"  : =  Y1 Y2  0 L(A), 11,' := Y, Y2  0 v ; (0 i 2 ) ,

1
.K :=  A 1 =  < 4  1 0  i  k> , x :=.x i . =   X ('- ') A  X (1 )

1 2 5(k — i)!

—,:= A 19_ 1 =  <A I 0 i < i>c, y
1Y

1:= y ) A  Yi l -  i )  ( 1 e Z > 0).

(3.4)

The eigenvalue of p „(C) o n  th e  m o d u le  A gô X ,  ®  V  is  eq u a l to
— k + 1 + e+  A, where c = 1 for V = VA'.1.1 and c = 2 for V = Vi ". To be N-trivial,
we should have — k +  +  2  =  O . S o  it is  enough  to  look for g-ô-invariants
in the module

AN CD 111,+l+1  0  VAr+ +  AN 0 Alt+1+2 1 1 1 + / + 2  0  K". (1 5 )

3 .2 .  Description of basis vectors. N ow  w e apply Lem m a 2.1 taking into
account the  isomorphism (2.4). L e t ff o a n d  2 '2  b e  one of 1-dimensional and
3-dimensional irreducible sl (2, C)-modules i n  A gô respectively. Then it is easy
to  see  tha t each  of m odules Y o ,---.1.+/+2 0 A)0  ( 1.'1+1+1 0 A) 0  -  1  and 2 2 06 LT

0  V i " has exactly one N.-trivial vector up to constant m ultiples. Moreover, the
module 2' 2 (X .t  + 1 + 1  0  A )  V'+ i  has two linearly independent gô-trivial vectors,
because the space X 2 + 1 + 1 0  contains exactly once modules with highest weights

+ 1 and 2  + 3  a n d  both  produce  trivial vectors after tensoring. Thus the
module DAA_21+2 is spanned by invariant elements, w(1), w(2),•••, w(8), fo r 1 > 2,
which belong to the  spaces given in the second column in Table 3.6.

w(k) module highest weight m inimum value of

w(1) Z 1 (00 A  Vd VA'+1 + 1 0

w(2) .10(02 (.T A M  1 A  'NO 17,1+1 + 1 0

w(3) ° (1)2 0 0 ' 4 + 1 + 1  A  qn V+ + 3 1

w(4) (3)2 + A V i- j) Kt'+1 + 1 1

w(5) .2° 1 (3)2 (TA +1 A  
1q/- ) 0  "2'+ I + 3 2

w(6) ° (3 ) 0  O (
'
A+1 A  q-111 -1 )0  vA '4 -1 + 1 1

w(7) 1' 1 (2)2 0 ( 1 . .4+1+1 A f1 -1 ) (8 ) 17.1" + 2 1

w(8) Y O (2 )2 CI ..1A- I+ 1 A  'V / - 1 ) 0  v2" + 2 1

Table 3.6

Here the third column represents the highest weight of N-irreducible submodules
of V g  with which w(k) is produced. The last column indicates the minimum
value  o f 1 fo r  w hich th e  corresponding vector w(k)e DA4-2/+2 exists. So that
DA+4 = <w (k)1 1 k  8, k 5> , and Dz+2 = <w(k)1 k = 1, 2>,.

A  basis of the module al.+211-1 is also given in  the  following Table 3.7.
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minimum value of 1

/1(1) 2'0 no 0 (ar A + / + I  A  A) 0 V.1 '4- 1 A + 1 0
u(2) Y 1(2 )2 ® (A -FI A  A -1 )0  V ;+ 1 A ± 1 1

14 (3) Y1  (2)2 0  (X .1 + i  A  Vi - 1) 0 V.i '-E 1 A + 3 2
u(4) Y ° (2)2 0 (X A  A- 1) 0 VA '1- 1 A + 1 1
u(5) Y °

 (2)2 0 (.1" , 1 + 1 A  A - 1 ) 0  VA' i- 1 A + 3 2
u(6) Y1(4)0 C (2" ,i+/-1 A  A-2)0 VA' ± i 2+ 11 2
u(7) .2° ° ( 1 )2 0 (.2" A  A -1 )0  VA" A + 2 1
u(8) 2'1-(3)2 0 (X.11-/ A  A-2)0 Vt" A + 2 2

Table 3.7

N o w  w e  f ix  th e  integer 1 > O. T a k e  a  b a s is  {w'(k)11 < k  < 8 }  of D + 2 1

sim ilarly a s  w (k)'s o f  D,1+21+2. Then derivations 0,i+214-1: DA.+21+2 DA +21+1,
and  0,1+21: D + 2 1 + 1 D A +2 1 , a re  expressed by (8 x 8)-matrices, which we denote
again by 0A+2/+1 and a,i+21 respectively.

L et 41) 0 b e  a  highest weight vector in  .1.,t-1-1+1g i v e n  as

4 1 ) 0  =  E  ( - 1 ) i  
(A + I — I + 1)1 A+1+1Xi A

i=o (1 — i)!

by (2.8) in  Lemma 2.1. A nd le t {t(1) i }  be  a standard basis, starting from 01) 0 ,
of the 51(2, C)-submodule of XA+ i + 1  0  V i generated by 01) 0 . Then u(1) can be
represented with { t(1) i }  as

A +1
u (1 )  = E ( -1 )i t( l) , (3.8)

where {1);} is given in  (3.4). L et us write down other elements in  D A + 1 +2  and
DA + 1+ 1. Put

1
A+1+1 1

=  E aixi A
i = 0

a i (  1 ) i

(2 + I — +  1 ) !
(1 — i)!

,
— 1)'

. (i + 1)(A + 1 —  i + 1)! 
flo E

i=o
A hi = ( 

(/ — i — 1)! (3.9)

1-1 . (A . + 1  —  i + 1)!A+1+1 1-1
7o = CiXi A  Y i-i-1 , C i  =

1=0 (I -  i -

and le t the  symbol '  (prime) mean substitution / — 1 for I. F o r  example, if we
regard a o  = c 0 ( l)  a s  a  function in  1, then  aO = a d /  — 1), cr(,; := (at)' = a 0 (/ — 2).
Moreover, let

s(1)0 = C A  ao

2
s(2)0 = 1 -1 A  Oto + 

A +  1  +
Z  A  0(1

2 2
s(3)0 =  —  2Z _ A  A )  + H  A  )61 + z +  A  /32

+  3 (A + 2)(2 + 3)
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2
s(4)0 =  2C  A Z +  A  Z_ A a;) + C A H A Z+A oci

+1
4

s(5)o =  2C  A H A Z_ A +
2 + 3

C A Z +  Z _  A 13', (3.10)
2

C A H A Z +  A  /3'2
(2 + 2)(1 + 3)

s(6)0 H  A  Z + A  Z_ A  OCP,

s(7)0 = — 2C A Z_ A  Yo +
2 2

C A H A y i + C A  Z +  A  y2
2 + 2 (2 + 1)(2 + 2)
4

s(8)0 =  2H  A Z_ A yo  +  Z+ A Z_ A  yi +
2

H A Z +  A  Y2
2 + 2 (2 +1)(2 + 2)

and

t(1), = a ,

t(2)0 = C A H A
2

4 + C A Z +  A ai
2 +1

2 2
43) 0 = —  2C A  Z - A  ■%+ cA H A fli+ C A Z +  A 13;

2 + 3 (2 + 2)(2 + 3)
2

44) 0 =  2Z +  A Z_ A  4  +
2  + 1

H A  Z +  A  OCi (3.11)

4 2
t(5)0  = 2H A Z_ A )% + Z+ A Z_ A fli + H A Z +  A  ia

/1 + 3 (2+  2)(2 + 3)
t(6)0 = C A H A Z +  A Z _  A  OC(j

2 2
47) 0 =  — 2 Z  A  yo  + H A Yi +  Z + A  Y2

2 + 2 (2 + 1)(2 + 2)
,,

t(8)0 =  2C  A H A Z_ A y
2

,  +   C.- A Z +  A  Z_ A  yi
2 + 2

2 
1)(2 + 

2)C A H A Z+A y'2
+ 

H ere a l  =  Z_ • ao , a 2 =  Z_ • a i , a n d  fli , #2, Y l l  Y 2  a re  s im ila r ly  d efin ed : f3;  =
• #0 , y i = • y , (j = 1, 2). Sim ilarly as  {t(1)1} g iven  by 41) 0 ,  we determine

{s(k) i }  from s(k)0 an d  {t(k) i }  from t(k) 0 .

Proposition 3.1. The bases w(k) (1 < k  8) f o r DA + 2 1 + 2  and u(k ) (1 <k  8)
f o r D A + 21+ 1 are expressed as follows:

A.+1
w(k) = ( - 1 6 ( 4  6 .+ 1 - k

i =0

A

w(k) = E (— nisco, ®
1=0
A+1

u(k ) = E (— 1)' t(k), C A + ,_, f o r k  =

for k  = 1,•••, 6,

f o r k  = 7, 8,

(3.12)
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A

u(k) =  E (— n i t(k); 0 e:t-k f o r k  = 7, 8.
i=o

3.3. Matrices for boundary operators. Let us now decompose the boundary
m ap eni n  (1.6) a s  an _  = E 4

i =  n (_0 , , where

„Ti (x  A • • • A X „O v )= — E [X »  X k ]  A X 1 A  •••/••• k ••• A X n ®  V ,

„Ti (x  A  ••• A  X n 0 V ) =  E (—nix, A  ••• t••• A  X n 0 X iV
XiEgU

— H  i r k + n k  [ X i , X d  A  X 1 A  •••J••• k A  X n  0  V , (3.13)
XiE95, X k E 9

n (3 ),(x A  ••• A  X n 0 V ) = ( —  1 E x, A  •••t•• • A  X n 0 X i V,
Xieg,

an (4 ),(x 1 A • • • A X n 0 V ) = H 1)11 E x 1 A  • • • t • • •  A  x n ox i y.

XiE9 -

From the beginning, we know that some of elements in the matrices aA4-21+1

and aA + 2 , are equal to zero. In fact, the derivation a has the following property :

( i ) a( Ai s1(2, C) A  gi 1 (A))
{( ® ;= ± i  A 3 sI(2, C)) ( C ®  A1(2, C ))) A  gy C) 1(A)

(ii) (c A1(2, C) A gi 0 1(A)) C  { I 0  j = i , i ± i  A iM(2, C)}  0  A  gy 0 1(A)
(iii) 0 2 ) 1(51(2, C) 0 A g i  0  (A ))9  = {O},

a( 2 ) ((c ® 51(2, C) A -1® 1 (A )))  = {0}.

L e t  u s  n o w  c o m p u te  t h e  m atrix  e lem en ts co rrespond ing  to  each  au)
(1 < j <  4).

First consider am .  Let f i e l ;  a n d  y i se s  b e  as in  (3.4) respectively:

a(X:: A  ys.) =  —  C  A

 X ( r – i )  A  X ( i )
2

(r —  i)!

H  •

(

y 1(i) A  y ls – M.

s  —  j) !  

(3.14)

Then we have

1 r - 1 A  y i
s_ 1

1 — A  y i s 1 )  —  Z +  A 1 A  y i
s  1

2

Put

+ —

1 

H A ( j x r  1 A + i x i
2

+ ijZ_  A  .4_71 A  y

(3.15)

+ 1 + 1 + 2
 P2  =  P2( 1) — 

+  3  
, p 3 = p 3 (1) =- — (A +  +  3), E = (— 1)A ;

2
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(3.16)
PZ = P2( 1 — 1 ), PZ = P3( 1 — 1 ), V3 = P311 —  2 ).

Then the following equality holds for a t(1)0 := a(t(1) 0 )

1
at(1)0 = + /3 s'(2)0 + —

2  

s'(3 )o. (3.17)

O n  th e  o ther hand, w e  know  tha t 0;111 (u(1)) = 0  for j  = 2, 3, 4, according to
Tables 3.6 and  3.7, then,

A+1 A+1

au (l) =  a (i)( E  t(1), =  E  (atom (X)
i =0 i =0

A+1

=  {P 3 S ' (1
)0 P IP s '( 2 )0 + —

2  

s'( 3 )o} CA.+1 + E (at(1)i) 0  v:1+1-1.

In the last expression, the first and the seond terms are linearly independent. This
means that au(1) = pw' (1) + p 1 p'3 w'(2) + lw'(3). By similar calculations, we get
matrix elements related to a(1 ) of the m atrices a = a,+21+1 and  a = 8,1+2/ in.

Secondly we discuss about 0(2 ) . We constructed the vectors w(i)'s and u(i)'s
(1 < i < 8 )  a s  e lem ents in  th e  m o d u le  (  A  g6 C) A gy) C) 1 (A ). T h e r e  i s  an
isomorphism

( A  g6 C) A  gy) C) 1(A) A  g5 C) ( A  gy C) I(A))

as gLmodules. So w e can express the vectors u(4) and w'(2) as

u(4) = 2H A Z_ A ho  + 2Z +  A  Z_ A  hi +  H  Z +  h 2 ,
(3.18)

w'(2) = — 2Z_ A +  H  h , +  H  h , +  Z  h2 ,

where th,, h 1 , h2 1 is  a  standard  basis in  a n  irreducible sl(2, C)-module w ith a
highest weight 2  in the m odule (TA+ , A  V ) C )  VA:+ 1. We get

a(2 ) (u(4)) = — 4Z_ A h, + 211 A h, + 2Z +  A  h2 =  2w'(2).

Similarly, we get the action of a(2 ) o n  other vectors.
Thirdly, we discuss about 0(3 ) a n d  a(4) a t the same tim e . F o r  z(k) C)

C) vi" A k gb C) .2; C) C )  VA "  and for z(k) 0 xy 0 yl„ C) v; A k 0  1 ;  0 ,
with j + k + m = n, the  derivations a(3) and 3 (4) act a s  follows :

0(3 ) (z(k)C) xy -  I  0  y n,q

= (— l)z(k) {(2 — + 1)xl1 - 1  0 y„,q C) +  / 4 = 1
1 C) y„,q v ; +  ,

3(4 ) (z(k)C) x i; .1, n,q 01);) = (— 1 )z(k) x i; ® + jy1 ® v;'- 11.
(3.19)

Derivations 0(3 ) a n d  a(4) can be calculated using these equalities.
Finally, a s  a  result, we get the following matrices for / 2 :
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/ 0 0 0 0 0 0 0 0
— Pil) P'3 0 —2 0 0 2Ep 2 0

— 1 0 P3 0 —2 0 —e 0

0 —P2 2P1P2P3 0 0 0 0 2Ep 2

A +2 I+1  = 10 2 P1P3 0 0 0 0 —E

0 0 0 —2p' —4p 2 6 p' 0 0

0 —e 2E131 133 0 0 0 0 2
\ 0 0 0 —E 2 E19 11) 0 .13 1;1'3

7 P 0 0 0 0 0 0 0

/3 1/3 '3 0 0 2 0 0 —2Ep2 0
2
1

0 0 0 2 0 E 0

o 13; — 2 13113Z.P 11 0 0 0 —2ep'2
.1+21  =

0 —1 13113'3 0 1;, 0 0 e

0 0 0 2p' 4p 2 6 0 0 0

0 E —2ep i p 0 0 0 13, —2
\ 0 0 0 E 2epiP'3 0 — 10 '3 0

(3.21)

When 1=  1, we can calculate 0A+ 2/+ 1 and a A +21 sim ilarly . In  this degenerate
case, there vanish vectors w(5), u(3), u(5), u(6), u(8), and w'(i) (3 i 8). So the
matrices are given by

1

(3.20)

\
\

0 0

o —E 2EP1P3 0 0
(3A+3 = 0 —p2 2 P1P2P3 0 0

n'3 0 —2 0

0 0 0
19A+2 =

P113 3 2EP2 0 0

W hen 1= 0, w e have

0 0

0 2
0 2Ep2

2E/320

A +1 = (0  0 )  and 0 =  (0).

Now, calculating the rank of these matrices, we get dim (Im 0 ,1+ ) =  rank 0, + „
and dim (Ker 0 A + ,,) = dim 1),H .„± , — dim (1m 0,1,„ )  a s  follows.
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'1 +1 A + 2 Â + 3 À + 4 A + 5 Â + 6 • • •

dim D„ 1 2 4 7 8 8
dim (Ker „ i ) 1 2 2 5 4 4
dim (Im an ) 0 2 2 4 4 4

Table 3.22

From this result, we have the following theorem.

Theorem 3.2. L e t  A  = (A, c) w ith A  = c > 0. T h e n  the dim ensions of
homology groups o f  the  irreducible g-module 1(A) are

dim IL (g, 1(A)) =
(1 f o r  n = A + 1, A + 4,

otherwise.

3 .4 .  Homology groups for the trivial module C. If V (A )= C, the complex
to be studied is as following :

0 f —  Do 4 `) D , D24- D3 4
2

 D 4  4- -  0, (3.23)

where D„ = ( Ang C ru  =  (  A" g) u. The basis vectors in D 2 1 + 1  and those in  D21

are given by letting A = — 1 in Table 3.6 and in  Table 3.7 respectively, and thus
w e get the following tables correnspondingly.

w(k) module highest weight minimum value of

w(1) f f 1 (1) 0 0  (X , A V i) 0 0

w(3) T
°

(I )2  0  (T i A &I) 2 1
w(5) 2 ' 1 (3 )2 0 (.1 .  1- i  A  Vi - i) 2 2
w(6) -T O P° CD (Ti -1 A 'N /-1) 0 1

Table 3.24

u(k) module highest weight minimum value of 1

u(1) 2°°(0)0 0 (X I A  N I) 0 0

u(3) 2'1(2)2 C> (di -1  A 1_ 1 ) 2 2

u(5) (2)2 0 (X - A A-1) 2 2

u(6) .2°1 (4)0 (gr -  2 A VI- 2) 0 2

Table 3.25

By similar calculations, we get the following matrices for boundary operators.

0 0 0 0

—1 1( 1+2) —2 0
a2.1 = 0 0 0 0

(1 > 2),

0 0 — 1(1+1)
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10 22 0
2l-1 = (1 > 2),

0 0 1(1-1- 1) 0
0 01 41+1)

02 = (0O o o), al = (1), ao  = (o),

for 1 = 1  and 0. For the dimensions of D„, Ker On _1 a n d  Im en , we get Table
3.26 bellow.

0 1 2 3 4 5 •••

dim D„ 1 1 1 3 4 4 •• •
dim (Ker 0„ 1 ) 1 1 0 3 2 2
dim (1m 0,,) 0 1 0 2 2 2 •• •

Table 3.26

Now we have the following result for the trivial module.

Theorem  3.3. Let V (0 , 0) =  C  b e  a triv ial representation o f  g = 51(2, 1).
Then,

dim 1-1,(9, C) = {01 f o r  n = 0, 3
otherwise.

4. Homology groups for the maximal submodules 1(A) for 2 + c + 2 = 0

In this case, the maximal submodle 1(A ) of the module I 7  (A) is decomposed as

1(A) = +

<v — 1>c , v i :=  (2—  1)Y1v i + Y2 ® v + 1 , (4.1)

VA" := Y 2  0 14 4

where tv i Vi=0 is  the standard bases in  (1.1) o f L(A) VA , an d  Vi"  a re
irreducible as ga—modules.

In place of Tables 3.6 and 3.7, we have Table 4.2 for D+21+1 and Table
4.3 for D A4-21 as follows:



= a ix ; _ i  A  y r + 1
,

i =0

1-1

16 0  = y bx 1 A
 y)+1+1

= o
1-1
E c 1x I 1 A y r  ,
= o

vo =
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(k) module highest weight minimum value of

i)(1) g  I (1)0 0 g  A  V,i+ d v2" A
'115(2) Y °(1)2 0 (X, A VA+ i) 0  VA" A

y ° ( 0 2 ( r, A VA+ i) 11: A + 2
tri)(4) .2°1 (3)2  0  (X ,-  A  q,i+1-1) 0 VA" A

e l (3 )2  0  (Xi- 1 A  V A -11-1) C) VA" +  2
ii,(6)O ( 3 ) ( Xi- 1 A  V2+1-1) 0 1 A
ri,(7) 1 (2)2 0 (.1 . 1- 1 A + PA'-- 1 A +  1

O(2)  0  (1  -  A  (NA+ d 0  17,1'.- 1 A +  1

Table 4.2

u(k) module highest weight minimum value of /
174 1) -1.°

(Ø
)0 g i  A VA + d A 0

ii(2) Y1(2)2 0 (X - 1 A  qA+1-1 )0  VA" A
t4(3) Y1(2)2 0 (X I- 1 A  ‘NA+/-1) 0 VA" A + 2 2
ii(4) Y°(2)2 ( f i - A  qA + I -  1) 0 VA" A
t7(5) ° (2)2 0 g  -  A  qA +1- 00 v)." A + 2 2
i(6) ./ 1(4) (Ari_2 A  qA +/-2 )0  VA" A 2

/7 (7 ) .TO(1)2 0 (YI- 1 A ,1+1) A + 1
27(8) Y1(3)2 0 (x,-2 A 2 + 1 _ 1 )® ) + 2

Table 4.3

In place of (3.9), w e take the following (4.4).

o
o

2

a ,  =  (  1 ) `
. (A + 1 — i + 1)!

(1 — i)!

b  =  (  1 ) i
(A + 1 —  + 1)! 

( i  +  1 ) ,(1 — i — 1)!

.(2 + 1 —i + 1)!
ci = 1Y  •(1 — i — 1)!

(4.4)

In place of
defined  as Et;

substituting A —
By similar

ai , f i and y;  in (3.10) and (3.11), we have if , g;  and )7i  respectively,
=  Zi_50 , fi. = ZL fi,, )7i  = Z-Lj70 . W e  d e f in e  g(k ) a n d  t ( k )  by
1  to  A in s(k) in (3.10) and t(k) in (3.11) respectively.

calculations as in §3, we obtain the following matrices:
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o 0 0 0 0 0 0 0

— (116 — 6 0 —2 0 0 2eq2 0

— 1 0 q3 0 —2 0 —e 0
0 —q2 2q 1 q2 q3 0 0 0 0 2 q2

°A i-21+ 1 = O '41(43 0 0 0 0 —e
0 0 0 —2q; —4q2 q; —g' 0 0

0 — e 284403 0 0 0 0 2

0 0 0 — e 2 eq, 6 0 g'3 —43

(4.7)

0 0 0 0 0 0 0

0 0 2 0 0 — 2 eq2 0

0 0 0 2 0 e 0
6 —2g 1 6g3 6 0 0 —2c6 0

i
2 q1q3 0 —6 0 0 E

0 0 2q; 4q2 q; 0 0 0

e —2eg1 6 0 0 0 — g'3 —2
0 0 e —2eg1 6 0 — 6 0

(4.8)

where

+ 1 + 1 1
91= 

A  +  2  

q2 = q2( 1)  =   ,  q3 = q 3 (1) = (A + 1 + 2), e =
+ 2 2

and g'3 = 6(1 — 1), = g 3 (1— 2), g'2 = g 2 (1 — 1).
(4.9)

F or exceptional values 1 = 1 and 0, these matrices degenarate as in  § 3.4.
Calculating the ranks of the  above matrices, we get the  next table.

A 1+1 2+ 2 1+ 3 2+ 4 2+ 5•  •  •

dim D„ 1 2 4 7 8 8
dim (Ker 0„_ 1 2 2 5 4 4
dim (Im 0 2 2 4 4 4

. Table 4.10

From these results, we get the following theorem.

Theorem  4.1. L e t A  = (A, c ) w ith  A = —c— 2e Z > o .  T hen dimensions of
homology groups o f  irreducible module 1(A) are

dim (g, 1(A)) = 1 f o r  n = A, 2 +  3,

  

- q

q

  

+2/

 

i1
0

0

0

0

0
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H„ (g, 1(A)) = 0 otherwise.

§ 5 .  Homology and cohomology for the irreducible modules V (A)

5.1. Homology groups. In  §§ 2-4, w e have the results about homology
groups of the induced module 17 (A) and the maximal submodule 1(A) in respective
cases. Summarizing them, we obtain all the homology groups as follows.

Theorem 5.1. L e t  V (A ) b e  a  finite-imensional irreducible representation of
g = sl(2, 1) with highest weight A  = (A, c), 2 E Z > 0 ,  C E C .  I f  2 = c , then

dim (g, V (A)) 
= {10

I f  2 + c + 2 =  0, then

dim (g, V (A)) 
= {10

I f  (1 - c)(1 + c + 2) 0 0, then

Hn (g, V (A)) = (0) f o r an y  n > O.

We compute cohomology groups from the result on homology groups using
Lemma 1.7. To apply Lemma 1.7, we should specify the dual representation
V (A)* .

As w e have seen in  §1.3, when A =  c, V (A )L L(1, c)() L(1 -  1, c + 1) as
g6-modules, and when A + c + 2  =  0 , V (A ) L (1, c)() L (A  + 1, c + 1). On the
other hand, L(A, c )* L(2, -  c) as 96-modules. We have g6-module isomorphisms,
in case A = ceZ>0.

V(2, c)* (L (1, c) + L (1 - 1, c + 1))* L (1 , -  c ) ( )  L (1  - 1 ,  -  c  -  1 )

V (1  -  1 , -  c  -  1),

where we have A' + c' + 2  +  0  with A' = 2 -  1, c' = -  c -  1. On the contrary,
i f  A' + c' + 2  =  0 , th en  V (1' , c')* L.= V(2' + 1, -  c' -  1). Therefore, V (1' , c')*
V(1' -  1 , -  c' -  1 )  as g-modules if A =  c > 1. T h us w e see  th at g6-module
structures distiguish g-modules in these cases.

By Lemma 1.7, we have the following lemma.

Lemma 5.2. L et the notations be  the sam e in  Theorem 5.1. i f  2 = c > 1,

H" (g, V (2, c)) H„ (g, V (1 -  1, c - 1))*

and if  A = - c -  2 0,

Hn (g, V(1, c)) L Hn (g, V (1+ 1, c - 1))*

Finally we have the result about cohomology groups. Note that V(0, 0) = C
is  the trivial g-module.

f o r  n = A, 2 + 3
otherwise.

f o r  n = A + 1, A + 4
otherwise.
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Theorem 5.3. L et the notations are the sam e as  in  Theorem 5.1 ag ain . I f
A = c, then

dim Hn (g, V(A)) = { 0
1

I f  A + c + 2 =  0, then

dim H" (g, V(A))
 { 1 0

If (A  — c)(2 + c + 2) 0  0 , then

f o r  n = À, A + 3
otherwise.

f o r  n = 2 + 1, 2 + 4
otherwise.

Hn (g, V (A ))= (0) f o r an y  n O.

Acknowledgement. T h e  a u th o r  expresses h e r s in ce re  th ank s to  P ro fesso r
T. H ira i f o r  h i s  c o n s ta n t  a t te n t io n  a n d  v a lu a b le  a d v ic e . S h e  is  g ra te fu l to
Professor K . Nishiyama fo r several enlightening d iscu ssio n s. She is also obliged
to  P rofessor H . Y am ash ita  f o r  h is  k in d n e ss  to  re a d  h e r  f irs t  m a n u sc r ip t and
helpful advice.

DEPARTMENT OF MATHEMATICS
KYOTO UNIVERSITY

References

[ 1 ] I. N. Bernstein, I. M. Gelfand and S. I. Gelfand, Differential operators on the base affine space
an d  a  study of g-modules, in  "L ie  groups and  their representations", pp. 21-64, 1975.

[ 2 ] S. Chemla, Propriétés d e  dulité d a n s  le s  représentations coinduites d e  superalgèbres de
L ie ,  Thèse d e  Doctrat, Université Paris 7, 1990.

[ 3 ] C. Chevalley and S . E ilenberg, Cohomology theory of L ie  groups and  L ie  algebras, Trans.
Amer. Math. Soc., 63 (1948), 85-124.

[ 4 ] D. B. Fuks, Cohomology o f infinite dimensional Lie algebras, Plenum Publishing Corpora-
tion, 1986.

[ 5 ] H. Furutsu, Representations of Lie superalgebras, II. Unitary representations of Lie superal-
gebras of type A (n, 0), J . M ath. K yoto Univ., 29 (1989), 671-687.

[ 6 ] V. G. Kac, Representations of classical Lie superalgebras, in  L ecture  N otes in  M ath., 676,
pp. 597-626, Springer-Verlag, 1978.

[ 7 ] V. G . K ac, Lie superalgebras, Advances in  M ath., 26 (1977), 8-96.
[ 8 ] A. W. K napp, Lie groups, Lie algebras, and  cohomology, Princeton University Press, 1988.
[ 9 ] D. A. Leites, Cohomologies of L ie superalgebras, Funct. Anal., 9 (1975), 340-341.
[10] Y. I. M a n in , Gauge theory a n d  complex geometry, A  Series o f  Comprehensive Studies in

Mathematics, 289, Springer-Verlag, 1988.
[11] M. Scheunert, T h e  Theory o f  L ie  Superalgebras, L ecture  N otes in  M ath ., 716, Springer-

Verlag, 1978.
[12] J. Terada, Lie superalgebras and cohomological induc tion , Master's thesis, Kyoto University,

1992 (in Japanese).
[13] J. Terada, Representation of Lie superalgebra and  cohomology, in "Reports of Symposium



756 Junko Tanaka

on Representation Theory at Yamagata", pp. 66-83 (in Japanese), 1992.
[14] J. Tanaka (née Terada), Homology of irreduceble modules of a Lie superalgebra sl(2, 1), in

"Reports of Symposium on Representation Theory at Toyama", pp. 67-88, (in Japanese), 1994.
[15] J. Tanaka, On homology and cohomology of Lie superalgebras with coefficients in their

finite-dimensional representations, Proc. Japan Acad., 71 Ser. A (1995), 51-53.


