J. Math. Kyoto Univ. JMKYAZ)
35-4 (1995) 733-756

Homology and cohomology of Lie superalgebra
sl(2, 1) with coefficients in the spaces of
finite-dimensional irreducible reprsentations

By

Junko TANAKA

Introduction

In this paper we give a method of calculation for homology groups and
cohomology groups with coefficients in a space of a representation of a Lie
superalgebra, and carry out the calculation to determine them for finite-
dimensional irreducible sl(2, 1)-modules.

A motivation of this work is to understand to what extent the idea of the
cohomological induction is useful for representations of Lie superalgebras. In
the case of reductive Lie algebras, the theory of cohomological induction was
introduced by Vogan and Zuckerman and was developed by Vogan, Knapp and
others (see e.g. [8]). Studies of the structures of cohomologically induced
modules, vanishing theorems and Blattner’s multiplicity formula are very
important, and there, the Poincaré¢ duality plays a decisive role.

In the case of Lie superalgebras, Chemla [2] proved a Poincaré duality under
a restrictive condition that the representation in question has a finite projective
dimension. However, we do not know if this restrictive condition is really
neccessary and when it holds. In author’s previous work [13] (see also [15]),
we see that Poincaré duality does not hold, except the trivial case, for
finite-dimensional representations of gl(1, 1). This situation is also true for the
present case of sl(2, 1).

In [6], Kac constructed all finite-dimensional irreducible representations of
Lie superalgebras g = g5 @ g7 = sl(m, n) as the quotient module V(A4)= V(A)/1(A)
of a standard induced module V(A4) by its maximal proper submodule
I(A). Furutsu studied these modules in detail for sl (2, 1) and sI(3, 1) in [5]. In
the case of g = g5 ® g7 = sl(2, 1), V() is constructed starting from an irreducible
highest weight gg-module with highest weight 4. According to g5 =sl(2, C)®
C- C, the highest weight A is given as A4 = (4, c), where AeZ,, is a highest
weight for s[(2, C) and ¢ is a scalar for C which is in the center of g5. We
can construct all finite-dimensional irreducible modules of sI(2, 1) quite
explicitly. Further, we find that any such irreducible module is equivalent to
one of V(A) or I(A), and that as gg-modules ¥(A) is a direct sum of four
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irreducible ggz-submodules while I(A4) is that of two such ones.

Let g=g5® g7 be a Lie superalgebra over C. We have a projective
resolution of the trivial g-module C in a category of g-modules, which is an
analogue of Koszul resolution for Lie algebras (cf. [10] and also [12]). In [12]
we introduced a method of -calculating homology and cohomology for
representations of a Lie superalgebra. This method is rather complicated, but
we give in this paper a short cut via Lemma 1.6. This lemma reduces the chain
complex (B, d) to be studied to a simpler complex (B, 0|g) consisting of
g-invariants, where q is a subalgebra of g which acts on (B, ) semisimply.
Cohomology groups are obtained by the duality between homology and
cohomology in Lemma 1.7 after calculating homology groups.

This paper is organized as follows. In §1, we first recall an explicit
description of finite-dimensional irreducible modules of sl(2,1). Then we
introduce a practical method of calculating homology through a chain complex
(1.4-6).

The induced module V(A) with highest weight 4 = (4, ¢) is irreducible if and
only if (A —c¢)(A+c+2)#0 (cf. Corollary 1.2). We discuss according to the
three cases (A—c)(A+c+2)#0, A—c=0, and A+c+2=0. In §2, we
calculate the homology H, (g, V(A)), for A = (4, ¢) with (A —c)(A+c+2)#0. In
this case V(A4) = V(A). Studying gg-module structures in the complex (1.4) for
V(A) and applying Lemma 1.6 we find that homology groups H, (g, V(4)) vanish
for any n.

In § 3, we describe the homology H, (g, V(4)) in case A =c¢>0. When 4 > 1,
V(A) = I(A") with A'=(1—1,¢c—1). For sufficiently large n, the spaces of
n-chains in the chain complex of gg-invariants in (1.8) for I(A') are always
8-dimensional. Fixing standard bases of these spaces, we can express the
boundary operators by (8 x 8)-matrices. Calculating the ranks of these matrices,
we get the dimensions of homology groups H, (g, I(4’)). When A =0, V(A4) is
a trivial sl(2, 1)-module and the n-chains are 4-dimensional for n > 4.

In §4, the case A+ ¢+ 2 =0 is treated. Here we have a similar result as
in §3.

Summarizing the results in §§2-4, we get the main result of this article as
follows.

Theorem (see Theorem 5.1 and Theorem 5.3). Let V(A) be a (finite-
dimensional irreducible representation of g = sl(2, 1) with highest weight A = (4, c),
A€Z,,, ceC.

If A=c, then
1 for n=241+3

dim H, (g, V(4)) = dim H"(g, V(1)) = { .
0 otherwise.

If A+c+2=0, then

1 for n=A+1,1+4

dim H, (g, V(A4)) = dim H"(g, V(1)) = { )
0 otherwise.
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If A—c)(A+c+2)#0, then
H,(g, V(4)) = H" (g, V(4))=(0)  for any n>0.

§1. Preliminaries

1.1. Definitions and notations for Lie superalgebras. Let V=1;® V5 be a
Z,-graded vector space over C, where Z, = {0, 1}. The algebra End V of all
linear maps from V into itself becomes an associative superalgebra if we define
a gradation as

End; V:= {X€End V| XV, < V4, keZ,} for ieZ,.
Then introducing a bracket operation in g = End V as
[X,Y]:=XY—(—1)*MyYXx  for homogeneous elements X, Yeg,

where | X | means the degree of X, we get a Lie superalgebra, that is, this operation
satisfies super-antisymmetry and Jacobi identity for a Lie superalgebra:

[X, Y]+ (=D¥M[Y X]=0,
[X,[¥, Z1]1=[[X, Y], 2]+ (=DM [X, Z]],

for X, Y, Zeg, homogeneous. From now on, if the notation |X| appears, the
element X is assumed to be homogeneous. Let dim V5 = m and dim V4 = n, then
this Lie superalgebra is denoted by gl(m, n). In a natural basis of V consistent

o
with the Z,-gradation, gl(m, n) consists of matrices of the form ( B), and
al(m, n) = gl (m, n)s @ gl(m, )7 with Vo

PO R
womme={(2 ) wn={(° 1)}

where ae #(m, m), fe M (m, n), ye #(n, m), d€ .#(n, n). Here .#(m, n) denotes
the set of m x n-matrices over C. Moreover, let

[ = 0 O> [ = gl 5. al = 0 F
g(m’n)—l_{(y 0 }sg(man)o_g(m’n)Oﬂg(m»n)l_{<0 0)}#

and gl(m, n), = (0) for |[k| > 2. Then we have a Z-gradation on gl (m, n) consistent
with the Z,-gradation:

gl(m, n) = gl(m, n)_; @ gl(m, n)o @ gl(m, n),,
[gl (m’ n)a’ g[ (m’ n)b] < gl (m’ n)a +b (aa bGZ)

On gl(m, n), define the supertrace str: gl(m, n) > C by str <oz §>:= tra —trd,
Y

and then define a subalgebra sl(m, n) as sl(m, n):= {X egl(m, n)|str X = 0}.
For our later use, we fix the following basis of a Cartan subalgebra b of
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sl(m, 1):

Hi=E;—E | ;,(1<i<m—1), C= Z Ejj+ mE, . m+1s
i=1

and a basis on the odd part of sl(m, 1):

Xi=Ei,m+1’ Y'=Em+1,i (l stm),

where E;; denotes the elementary matrix with 1 as (i, j)-component and 0
elsewhere. In particular, in the case of g = sl(2, 1), the even part g; is generated
by its Cartan subalgebra ) = (H, C) with H = H,, and two clements Z, = E,,
and Z_ =E,,. Further g, and g_, are generated by {X;};-,, and {Y;};_,
respectively. Here () denotes the vector space spanned over C by a set of
vectors 2.

The Grassmann algebra A g is defined for a Lie superalgebra g as the
-quotient of the tensor algebra of g by the two-sided ideal generated by

(X® Y+ (—1)*MY® X|X, Yeg, homogeneous}.

It is a g-module by the action given as

X- X, A nX,)= Z(_l)lxl(|x||+”'+|xi—l“X1 A ALX, XA AX,,

where X, X,,---,X,€gq, and its Z,-gradation is determined by
IXp A AKX =1X ]+ 41X,

We remark that the subalgebra Agj here is what we usually call a symmetric
algebra for a vector space. The universal enveloping algebra %(g) is defined as
the quotient of the tensor algebra by the two-sided ideal generated by

{(X® Y- (—-1)*"Yy®X — [X, Y]| X, Yeg, homogeneous},
and g-action on it is given as X - (X, - X,) = XX, - X,.
1.2. Irreducible modules V(A) with highest weight A. Here we consider
g =s5l(2,1). Note that g5=sl(2,C)@C-C. Let V; be a finite-dimensional

highest weight representation of sl(2, C) with highest weight AeZ.,. We can
fix a basis {vy, vy,--+,v;} of ¥, such that

Hv,=(A—=2i)v;, Zyv,=iA+1—=i)v,_y, Z_v; =0;44,
i=0,1,-,4:v_, =04, =0), (1.1)

and call this basis standard.
Take a Z-graded subalgebra p = g, @ g, of g and extend sl(2, C)-module ¥,
to a p-module L(A) by putting

Cv=cv, Xv=0 (veV,, Xeq,),
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where ceC is a fixed constant and 4 = (4, c)eh*. We define an induced module
V(A) = Ind8 L(A):= %(3) ®, L(A), where the g-module structure is given by

Xu®v)=Xuy®v (Xeg, ue(g), ve L(A)).

Then V(A) has a unique maximal proper submodule, say I(A4), and the quotient
is a unique (up to isomorphisms) irreducible representation of sl(2, 1)

V(4) = V(A)/1(4)

with highest weight A (cf. Kac[6]). Therefore we consider this quotient
V(A)/1(A) = V(A) later on.

1.3. Finite dimensional irreducible representations of sl(2, 1). We have the
following thorem from general theory of Kac [6] (see also Furutsu [5]).

Theorem 1.1. The sl(m, 1)-module V(A) is irreducible if and only if
[T AH)+m—k)#0.
1<k<m
Here H, = E, , — E, . 4+1€5l(m, 1) and A is a highest weight of V(A).
From this theorem, we get the following.

Corollary 1.2. For sl(2, 1), the induced module V(A) with A= (1, c) is
irreducible if and only if

A=A +c+2)#0.

From this corollary, we can list up all finite-dimensional irreducible
sl(2, 1)-modules as follows. They have highest weights A4 = (4, ¢) with AeZ.,,
ceC.

If (A—c)(A+c+2)#0, we have V(4) = V().

If A—c¢ =0, define two irreducible sl(2, C)-modules as

V=<0 <i<i+ 1), vii=—i(Y,®v_4)+ ,®u,

(1.2)
V=Y, Y, ® L(A), o/:=Y,Y,®0 (0<i<i).

Then I(A)= V., + V,” and it is isomophic to LA+ 1,c+ 1)@ L(A, ¢ + 2) as
gg-module while V(A) = L(A, c)® LA —1,c+1). If A=c=0, then V(0,0)=C
is a trivial g-module (L(—1, 1) = (0) by convention).
If A4 c+2=0, I(A) is a direct sum of two sl(2, C)-modules: I(4) = V_, +
A
Vii=<Gl0<i<i—1)e, §i=A—-DY, @0+ Y, @0, 3
K=Y, Y, ® L(A), v :=Y,Y,®0 (1)

and I(A)=LA—-1,c+ 1)L c+2), VW)= LA o)®LA+1,c+1). IfAi—c=
0, or A+c+2=0, I(A4) is easily seen to be irreducible, so there must exist a
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highest weight A’ = (4, ¢’) such that I(A4) =~ V(A'). We have A'=(A+1,c+ 1)
in the former case and A" =(4 — 1, ¢ + 1) in the latter case.

So we can realize finite-dimensional irreducible sl(2, 1)-modules as follows
and we use this realization later on.

Lemma 1.3. The finite-dimensional irreducible sl(2, 1)-modules V(A), A =
(4, ¢), is equivalent to one of the following:

V(A c) if A—c(A+c+2)#0,

IA—1,c—1) if A=c>1,

IA+1,c-1) if A=—¢c—2>0,
and V(0, 0) = C, a trivial representation.

14. Killing form. A bilinear form B on a Lie superalgebra g = g5 ® g7
given by

B(X, Y):=str(ad X ad Y), X, Yegq,

is called the Killing form on g. If B is non-degenerate, the Casimir element Q
for g is defined as

Q= Y B(E, E,)F,F

1<iy,iz<d

iz

where d =dimg, and (E);<;cq» (F)i<ica are dual bases of g such that
B(E;, F)) =6;; (1 <i,j<d).
In our case of sl(2, 1), the Casimir element Q is

1 1 1 1
Q=—-—C*+-H>+Z_Z,+ -_H——-C+X,Y, +X,Y,.
4 4 2 2

It acts on V(A) as a scalar multiple by (4 — ¢)(4 + ¢ + 2).

1.5. Koszul resolution and its application. To calculate the homology groups
of finite-dimensional irreducible representations of Lie superalgebra g = sl(2, 1),
we start with recalling some general results in the theory of the homology of
representations. Let g be a Lie superalgebra and V a g-module. Take a
projective resolution of V:

0‘_V‘_P0(__—P14_P2‘_P3‘_"'

The homology H, (g, V) is by definition the homology of the derived functor of
the functor (-)®,C, where C is the trivial g-module. In other words, denote
by P;® the space of g-invariants in P;, then H,(g, V) is the n-th homology of the
chain complex

O— PP e— P ¢— P8 e— Py% e— .-

The Koszul resolutions of C in the categories of modules of Lie algebras are
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well-known. In the case of Lie superalgebras, the author introduced a similar
resolution, given below, for Lie superalgebras in her master’s thesis [12], which
is another expression of the Koszul complex in [10, p. 171].

Theorem 1.4 ([12]). Let g be a Lie superalgebra. The following complex
(A, ) is a projective resolution of the trivial module C in the category of g-modules:

- a 0 a
00— Cdl Ayl A, 2 g,

with A,:= U(g) ®c A"a, 0_,(u):= (the constant term of u), and for n >0,
O U@ X A A X)) =

(— D)X, @ X, Al A X,

s

i=1

+ Y (— ety @ (X, XJA Xy Akl A X,
k<l
where uc(g), X;€q, & = |Xil, 1= &(&, + -+ &), and the symbol i indicates
a term X; to be omitted.

If Vis a g-module, the functor (-) ®cV gives a projective resolution of V
induced from the resolution in Theorem 1.4. Further, by the functor (-) ®,C,
we have the following complex (B, 0):

0 By«X B, & B, 2 B, & ..., (1.4)
B,= A"g®YV, (1.5)

Op1(Xy A A X, @) =

= Z (_1)i+'l;X1 N /\X"®X‘~U (]6)
i=1

+ Y (=D nrh i, XAAX Ak D A X, @0,
k<l
where X;eg, veV, & =IXl, n;=&(& + -+ &ioy), mi = &i(&uy + -+ &), The
module structure of B, is given by a natural action p,:

Pa(X) (O ® 1) = (XO® v+ (— )0 @ (Xv)

with Xegq, fe A"g, veV. The system {p,} commutes with {0,}: 3, pp+1 = P 0,-
The homology group H,(g, V) can be computed as Kerd,_,/ImJ,.

The following lemma is known as Shapiro’s lemma in the case of Lie algebras,
and we can prove it for Lie superalgebras similarly.

Lemma 1.5. Let g be a finite-dimensional Lie superalgebra and p its
subalgebra. If V is a p-module, there is the following natural isomorphism of
vector spaces:
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Hn(gs Indg V) = Hn(pa V) (n = 07 la 25"')- (1'7)
We appeal to the following lemma to calculate the homology groups.

Lemma 1.6. Let g be a Lie superalebra, V a g-module, and (B, d) the chain
complex introduced just before Lemma 1.5. Let q be a subalgebra of g such that
its natural representation p,|, on the n-th chain B, are all semisimple. Then the
homology H, (g, V) can be obtained from the following subcomplex (B%, 0|g) as
Ker (0, -1 1p2)/Im (8, pa):

0 B« Boel Bac2 pact ... (1.8)

where B,° is the space of q-invariants in B,, and 0,|g is denoted again by 0,.

Proof. Since the representation p, is semisimple, we can take q-stable
subspace B, such that B, = B, ® B,, and then 0,(B,.,) = B,. The complex (B, 9)
is the direct sum of two subcomplexes (B?, d|g) and (B, dlg).

Consider maps s,(X): B, — B,,,, given as

5,(X)X A A X, @) =XAX A AX,®u

By a simple calculation, we get an equality s,_;(X)°0,_; + 0, ¢ s,(X) = p,(X).
So the maps p,(X) are homotopic to 0 with homotopies s,(X), or, they induce
0-maps on homology groups H, (g, V). This means that p,(X)(Kerd,_,) = Imad,
for Xeq. Take an invariant complement T, of the invariant subspace Im 0, in
the module Kerd,_,. We have p,(X)T, = (0) because p,(X)T, < T,nImJ,. So
T, = B,%, and every element in homology is represented by some element in
T, = B,%, which is contained in the subcomplex (B?, d|z). Q.E.D.

1.6. Cohomology groups of Lie superalgebras. The cohomology H"(g, V) is
by definition the cohomology of the derived functor of the functor Hom,(-, V).
Similarly to homology, the cohomology group H"(g, V) can be obtained as
Kerd,/Imd,_, of the following complex (C, d):

0— Co2%C, 450, 02

C, = Hom (A"g, V),
(dn—ld))(xl ZANRRRRAN Xn) =
= Y ()X p(X AT A X)
i=1
4+ Y (el ([X, XA X, A kel A X)),
k<l

where X;eg, &= 1Xil, =& +--+ &), ¢€C,_,, homogeneous. In our
present case, where the g-module V is finite-dimensional, we have the following
duality between homology and cohomology (cf. [8, p. 288]).
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Lemma 1.7 (Duality). Assume that a Lie superalgebra g and a g-module V
are both finite-dimensional. Let V* be the dual g-module of V. Then there is a
natural g-module isomorphism

H"(g, V)* = H,(g, V'*).

§2. Homology groups for the induced modules V()

2.1. Application of Lemma 1.6. In this section, we calculate the homology
H,(g, V(A4)) with 4 =(4,¢) for (A —c¢)(A+c+2)#0. First of all, Lemma 1.5
gives the following isomorphism:

H,(g. V(1)) = H,(g. Indg L(1)) = H, (p, L(4)). 2.1
Here L(A) is the p-module given in §1.3.

We can calculate the homology H,(p, L(4)) from the following complex:

0‘_304"_0314"_'324_"2_3333_..., (2.2)

where B, = A"p ® L(A).

Let us apply Lemma 1.6. We take a subalgebra g5 = C- C®sl(2, C) as q,
and consider its representations p, on B, given by (1.7), which are semisimple
for all n. First we decompose B, into a direct sum of gz-submodules

B,= A"p®LA) = @D A‘ge®@ A’g®L(A) (a=0,1,2,3,4;beZ,,)
atb=n
as gg-modules. Since the eigenvalue of p,(C) on A%gs ® A’g; ® L(A) is equal
to — b + ¢, the space of gg-invariants B, is contained in the direct sum of
submodules with — b + ¢ =0.
We construct a subcomplex of (2.2) consisting of submodules B," of
p,(C)-invariants in B,:

0, 0, 0 Oc
0 BE P BS,, Sl BC, &2 BEL 0 BE 0. @3)
Here, since — b + ¢ =0, BS,, is given by

Bl =(A"85® AG) @ L(A) = Ags ® {A°g; ® LA} (a=0,1,2,3,4).

Next let us consider the subalgebra sl(2, C) = q =g and its action on
A"p.  As sl(2, C)-modules, we have isomorphisms:

wB=COY, A’gs=[21h, A’ge=C@®Y;, Atgs=C, 24)
/\Cgl = K’ .

where the symbol [-] expresses the multiplicity, and C denotes the trivial
sl(2, C)-module (= k). We introduce eight subspaces of Agg as follows.
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291), = <Z,, — H, =275, Z'(1), = C-C,
Z°Q),=<HAZ,, —2Z,ANZ_,2HAZ_ D¢, Z°B)y=C-HAZ, AZ_,
F'Q2),=(CAZ,, ~CAH, —2CAZ Y%, Z'@o=C-CAHAZ, AZ..
Z'(3),=(CAHAZ,, —2CANZ, NZ_,2CAHAZ_), Z°(0), = C,
2.5)

Here Z(i), and 2™(n), are 3-dimensional and trivial sl(2, C)-modules and their
standard bases will be denoted by {z/(i),, z/(i);, z/(i),} and {z™(n),} respectively.
We put
1

x§i= T CXETDAXY and 2= Afg =<X50<i< ). (2.6)

The space %, is a (¢ + 1)-dimensional irreducible sl(2, C)-module.

2.2. Construction of sl(2, C)-invariant vectors in the tensor product.

Lemma 2.1. Let V,(neZ, ) denote an (n + 1)-dimensional irreducible sl (2, C)-
module. For k,leZ,, the tensor product of two modules V, and V| is a direct
sum of min(k, I) + 1 number of sl(2, C)-modules as

h® W= @ Vevi-2rs 2.7)
0 <r<min(k,l)
and the highest weight vector of V,.,_,, is given as
k—il{d—r+i)
itr—i)!

'_io(—l)"( 0@ Wi, (2.8)

where {v;} and {w;} are standard bases in V, and in V respectively.

Using this lemma, we see that the module B, contains non-zero gg-invariant
vectors only in the cases ¢ =4, A+ 2. We have excluded the case ¢ =4 by
assumption, so we treat the cases ¢ = 4 £ 2.

Let h, be a highest weight vector with weight 2 in Z,,, ® ;. Further let
#i(i) be a gg-invariant vector in Zi(i)o® X+, ® V, = B;, ., with je{0, 1},
ie{1, 2, 3}, which is unique up to a scalar multiplication. The vectors h, and
Zi(i) can be written as

ho = i (“D)A+1—kA+2— kx> @ v,y
k=0
2
Zi)= Y (= )Z() @ hy_y, (2.9)
k=0

where h;:=Z_h,_,e%,,,®V, is defined inductively (cf. (1.1)). Taking g;-
invariants, we can reduce the complex (2.3) to the following:
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~0 a3 ~0 ~1 04 ~1 (210)
0—C-2°1) = <{°12),7'2))«—C-z'(3)«—00.

2.3. Homology H,(g, V(A4)). Now, let us write down the map @ precisely.
If xe Asl(2, C)® Z.® V(A), then we have d(C ® x) = — C ® d(x). Therefore the
equality d(Z°(1)) = 0 gives that 9(¢!(2)) = d(C ® 2°(1)) = 0. From some calcula-
tions, we deduce

A(2°(2)) = 22°(1), 8(G'() = —2:'(2).

Thus, dimensions of Im d, and Ker @, are given in Table 2.11 below. From this
we see that the homology of V(A) vanishes if ¢ = 4 + 2.

n | a43 444 Qs

dim D, o 1 2 1

dim (Ker d,_,) 0 1 1 0

dim (Im 9,) o 1 1 0
Table 2.1

Similar caluculations can be carried out for ¢ =4 — 2.
Now we have the following result.

Theorem 2.2. All the homology groups H,(g, V(A)) with A = (4, c) vanish if
A—cdA+c+2)+#0.

§3. Homology groups for the maximal submodules I(A) for A=c >0

In §§3.1-3.3, we compute the homology H,(g, I(A1)) for I(A4) < V(A) for
A=c¢>0, and in §3.4, the homology H, (g, C) with trivial sI(2, 1)-module C.

3.1. Space of gg-invariants in Ag® I(4). We consider the following
complex :

0e—IM) ——g®I(A) — A*g®I(A) e A*g® I(A) e— -, (3.1)

obtained from (1.4) by putting V =1(4). To apply Lemma 1.6, we take q = g
and then determine gg-invariants in A"g® I(A4). So the complex to be studied
is the following:

0e—D,, &0, , 82 p e, (3.2)
where
D,:=(A"g® I(A))®. (3.3)
Put

Bori= 010 <i <A+ e, b= —i(Y, ®v) + Y, @0,
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V'=1Y,® L), /=Y ,®u 0<i<4), (3.4)
1 , : '
Zii= Akgy = A0<i<k)e,  xfi= ki X{EOAXD,
— i)
(—1)

Y= Alg, =0 <i<De, Y

— . y® (=i
=g AT ez,

The eigenvalue of p,(C) on the module Ag; R Z, ®¥ ®V is equal to
—k+1l+e+ A wheree=1for V=1V, , and e =2 for V=V". To be gz-trivial,
we should have —k+1+¢e+1=0. So it is enough to look for gg-invariants
in the module

AR X1 UV + A3 R X 34142 @ X 34142 F R V. (3.5)

3.2. Description of basis vectors. Now we apply Lemma 2.1 taking into
account the isomorphism (2.4). Let &, and &, be one of 1-dimensional and
3-dimensional irreducible sl(2, C)-modules in A g respectively. Then it is easy
to see that each of modules 2, ® (X341 ®%)® V,; and Z, @ (Z14+142 P %)
® V;” has exactly one gg-trivial vector up to constant multiples. Moreover, the
module Z, ® (Z;+,4+1 ® %) ® V', has two linearly independent gg-trivial vectors,
because the space Z';4,.; ® %, contains exactly once modules with highest weights
A+ 1 and A+ 3 and both produce trivial vectors after tensoring. Thus the
module D,,,,,, is spanned by invariant elements, w(l), w(2),---,w(8), for [ > 2,
which belong to the spaces given in the second column in Table 3.6.

w(k) module highest weight minimum value of [
w(l) Z' (D@ @ 24141 A ® V4 A+1 0
w(2) Z1), ® @ aw141 AH)® Vs A+1 0
w(3) Z°(1); @ (Zas141 AU ® Vv, A+3 1
w(4) Z'3):® X 1e1 A1) @ Vs A+1 1
w(5) '3, ®@in1 A Y- ) ® Wy A+3 2
w(6) Z°3)o ® @ a1 A Y- ) ® Vs, A+1 1
w(7) 22, @ 14141 A Y-)®V A+2 1
w(8) 2°0, @@ 14161 A Y- )® Y A+2 1
Table 3.6

Here the third column represents the highest weight of gg-irreducible submodules
of Z, ® ¥, with which w(k) is produced. The last column indicates the minimum
value of ! for which the corresponding vector w(k)e Di+2:1+2 exists. So that
Dita=<wk)|1 <k <8, k+#5) and Dy+2 = {w(k) |k =1, 2)¢.

A basis of the module D;+2:+1 is also given in the following Table 3.7.
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u(k) module highest weight minimum value of |
u(l) Z°0)o ® @ 4141 A Y ® Vs, A+1 0
u(2) 22, @ asi A Y- )® Vi A+1 1
u(3) 22, X asi A ¥ ) ® Vs A+3 2
u(é) 22, ® @01 A Y1) ® Wiy, A+1 1
u(s) Z°2, @ @201 AYi-)® Vi A+3 2
u(6) L' Do ® @ as1-1 A¥1-2) ® W4y A+1 2
u(7) 20, ®@asi+1 A Y)Y A+2 1
u(8) Z'3), ® (T A _) OV A+2 2
Table 3.7

Now we fix the integer | >0. Take a basis {w'(k)|1 <k <8} of Di+u
similarly as w(k)’s of Dj+2:+2. Then derivations 0;+21+1: Di+2142 = Dis21+1,
and 0i+2:: Di+2141 > Da+21, are expressed by (8 x 8)-matrices, which we denote
again by 0i+2+1 and 0a+2: respectively.

Let t(1), be a highest weight vector in %1+1+1 ® %,, given as

! (A —1i !
(=Y (_1)'('*1—""'2&4““ AV
i=o0 (I—i)

by (2.8) in Lemma 2.1. And let {¢(1);} be a standard basis, starting from t(1),,
of the sl(2, C)-submodule of %;,,,; ® %, generated by t(1),. Then u(l) can be
represented with {t(1);} as

A+1

ul) = 3 (=1 t(1); ® 341 (3.8)

i=0

where {v;} is given in (3.4). Let us write down other elements in D,,,,, and
D;4i+1- Put

A=+ 1)

1

o = a; ?.+l+1 A l—i’ a; = -1 ,

0 [;0 X Vi (-1 (=)t
-1 i+ DA+T—i+ 1)

_ A+ I o (— 1)

ﬁo_i=0blx' AVi—i-1» bu ( l) (l—l— 1)' s (39)
-1 (A+T—i4+ 1)

Yo = Z cxtt Ayt Ci=(—|)'(—L.—l+—)—,
&, ([—i—1)!

and let the symbol ' (prime) mean substitution / — 1 for I. For example, if we
regard oo = a4(l) as a function in [, then ay = ag(l — 1), ag:= (ag) = ag(l — 2).
Moreover, let

s(1)g = C A g

2
5(2)0=HA“o+mZ+Aa1

2 2
s(3)o = —2Z—/\ﬁo+i—H/\ﬁ1

+3 tatoas i
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2
s(4)0=2C/\Z+/\Z_/\ac(’,+mC/\HAZ+/\oc’1

4
S(5)0=2CAHAZ_AB6+mCAZ+/\Z_/\ﬁi

Y CAHAZ, AP
G1oary M nZenkb

@) =HAZ NZ_Auay,

2
sNo=—-2CAZ_Aypg+ ——CAHA
(Mo Yo a+2 Y1

4
S@) =2HAZ_Ayo+ ——Z, NZ_rYy,
A+2
and
t(1)o = oo
2
t(2)0=CAHAa6+mCAZ+Aa;

2

tB) o= —2CAZ_ABo+——CAHAPB;
A+3
2
t@o=2Z, NZ_Arag+——HANZ, Aoy
A+ 1

4
t(5) =2HAZ APo+ ——Z, AZ_AB;
A+3
t6)g=CAHANZ NZ_ Auag

2
t(7) = —2Z_/\y0+l— AV +

H
+2

S
A+ 1)(A+2)

(3.10)

+ CAZ, Ny,

A+ 1D(A+2

+—HAZ N
G+ D0+2) AT

2

+—F——Cna
A+2)(A+3)

Z, NP

(3.11)

2

T

+ N Y2

2
t8)=2CAHAZ_Ayo+ ——CAZ, NZ_AY,
A+2

2

+—— CAHAZ, AY,
U+ D0+2) ML

Here a, =Z_-ay, 0, =2Z_-o,, and B, f,,7,,y, are similarly defined: B;=
Z7 - Bo, y;=2Z% -y, (j=1,2). Similarly as {t(1);} given by t(1)o, we determine

{s(k);} from s(k), and {t(k);} from t(k),.

Proposition 3.1.
for D, ;. are expressed as follows:

At+1

wik) = > (= 1)'s(k); ® vis1-x

i=0
A

> (= 1)s(k) ® v5 &

w(k)

(=]

At+1

u(k) = z (— 1) t(k); @ Visq—x

i=0

The bases w(k) (1 <k < 8) for D;.,,,, and u(k) (1 <k <38)

for k=1,---,6,
for k=17,8,

(3.12)
for k=1,---,6,
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A
u(k) = Z ('_ l)lt(k),® U;I_k fOr k = 7, 8.
i=0

3.3. Matrices for boundary operators. Let us now decompose the boundary
map 8,_, in (1.6) as 8,_, = Y.}, 8,%,, where

X A AX, @)=~ Y X, XJAX AjokeAX,®u,
X;e8,, Xred_,
LAX A AX, @)= Y (1) X A0 A X, ® X0
XieS5
— Y (WXL XA X A ke A X, @, (3.13)
X;€95, Xres
X A AX,®0)=(—1 Y X; A DA X, ® X,
Xie8,

LEX A AX,@0)=(—1) Y X;A-—iAX,®X.
XieQ_,;
From the beginning, we know that some of elements in the matrices 9;,,,4,
and 0,,,, are equal to zero. In fact, the derivation 0 has the following property:

(i) (A2, O)® Agi®I(4))
(D oiiar M2 C)B(C® A'SI2, )} ® A g7 ® ()
(i) A(C® A2, C)®@ AGIRI(A) = CR{Pjoiis1 Asl(2, C)} ® A g1 ® I(A)
(iii) IP((s1(2, C)® A g7 ® I(A))%®) = {0},
IP(C®sl(2, O)® AgT® I(4)®) = {0}.

Let us now compute the matrix elements corresponding to each 89
(1<j<4).
First consider d'V. Let x{eZ, and y,e%, be as in (3.4) respectively:

Kim L xe- DA XD,
Cor =i
(3.14)
yie Yy oy,
s =)

Then we have
r S 1 sr—1 s— r—1 s—1
B(x,-/\yj)=5CA(1x,- AV = iXIZI Ay = Zo AXT Ay,

1
+EH/\(jx,f YA HIXIZEA YT+ GZo AXIZE Ayt
(3.15)
Put

A+1 A+l+2
= — = lz—, = l --/1 I 3 = —ll
P 143 p2 = pa(l) 143 Ps=ps()=-(A+1+3), e=(-1)%

N
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! ’ " (3.16)
p2=p2(l = 1), p5s=ps3(l = 1), p5=ps(l = 2).
Then the following equality holds for dt(1),:= 0(t(1),)
1
0t(1)o = p3s'(1)o + p1P35'(2)o + 5 s'(3)o- (3.17)

On the other hand, we know that 0¥ (u(1)) =0 for j =2, 3, 4, according to
Tables 3.6 and 3.7, then,

A+1 At+1

ou(l) =3V ( Y, t(1);® visy-) = 2, (A(1)) ® vis—
i=0

i=0

A+1

2, (@(1)) ® vy
i=1

1
= {PSS’(I)O +P1p3s(2)o + 3 S/(3)o} ®vi4y +

In the last expression, the first and the seond terms are linearly independent. This
means that du(1) = p3w'(1) + p, p3w'(2) + 3w'(3). By similar calculations, we get
matrix elements related to 8 of the matrices 0 = 0;,5,4; and 0 = 8,,,, in.

Secondly we discuss about 9®. We constructed the vectors w(i)’s and u(i)’s
(1<i<8 as elements in the module (Ag;® Ag7)® I(A). There is an
isomorphism

(A3 ® AgT) ®I(A) = Agg ® (A8 ® I(A))
as g°-modules. So we can express the vectors u(4) and w'(2) as

u@)=2HAZ_Ahy+2Z . ANZ_Ahy+HAZ, Ah,,

(3.18)
W)= —2Z_Ahg+HAhg+ HAh, +Z, Ah,,

where {hy, h;, h,} is a standard basis in an irreducible s[(2, C)-module with a
highest weight 2 in the module (%, A %,_)) ® V. We get

0Pu@) = —4Z_Ahy+2H Ay +2Z, A hy, =2W(2).

Similarly, we get the action of 0 on other vectors.

Thirdly, we discuss about 8 and 0 at the same time. For z(k) ® x? ® y4,
®vierNgg®Z,@%,® V" and for z(k) @ X’ ® y?, @ v/e A" @ X, @ ¥, ® V1,
with j + k + m = n, the derivations 8® and 8 act as follows:

VR ®xE! ® yu @ v))
=(=1Vz)®@{(A =i+ D)X} @ yud ® vf +jxE"{ ® Yl ® 41},
Mz ® X2 ® yd @ v)) = (=1)"2(k) ® X! ®@ {— jy, i~ @ v/ + iy, ' ®v/_,}.
(3.19)

Derivations 0 and 0 can be calculated using these equalities.
Finally, as a result, we get the following matrices for [ > 2:
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0 0 0 0 0 0 0 0
—p1P3 D3 0 -2 0 0 2p, O
-1 0 P3 0 -2 0 —¢ O
5 _ 0 —p2 2pipaps O 0 0 0 2ep,
At2l+1 0 | —pips 0 0 0 0 . |
0 0 0 —2p5 —4pyp3 p3 O
0 —&  2ep,ps 0 0 0O 0 2
0 0 0 —&¢  2epyps 0 p3 p3
(3.20)
p; O 0 0 0 0 0 0
pips O 0 2 0 0 —2ep, 0
1 0 0 0 2 0 € 0
0rrt = 0  p2 —2pip2ps P3 0 0 0  —2ep
0 =3 pps 0 psy 0 0 &
0 0 0 2p5  4p,p; O 0 0
0 e —2epypy O 0 0 2 -2
0 0 0 e —2ep;py 0 —pi 0
(3.21)

When | = 1, we can calculate 0,,,,,, and 0,,,, similarly. In this degenerate
case, there vanish vectors w(5), u(3), u(5), u(6), u(8), and w'(i) 3 <i <8). So the
matrices are given by

0 0 0 0 0 © 0
0 —& 2epyps 0 O 0 2
a;1+3 =
0 —p2 2pipops 0 0 0 2ep,
—P1Ps D3 0 -2 0 2p, O

3 _( j 29 0 0 0>
e pipy —2¢p, 00 .

When [ =0, we have
0,41 =(0 0) and 0, = (0).

Now, calculating the rank of these matrices, we get dim(Im d,,,) = rank d,,,
and dim(Ker d,,,) =dim D,,,,, — dim(Im d,,,) as follows.
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n A+l 442 A+3 A+4 445 446 -
dim D, 1 2 4 7 8 8
1
0

dim (Ker d,_,) 2 2 5 4 4
dim (Im 8,) 2 2 4 4 4

Table 3.22
From this result, we have the following theorem.

Theorem 3.2. Let A=(Ac) with A=c>0. Then the dimensions of
homology groups of the irreducible g-module 1(A) are

1 for n=A+1,4+4

dim H, (g, I(4)) = {0 otherwise

3.4. Homology groups for the trivial module C. If V(A4) = C, the complex
to be studied is as following:

0e— Do ™D, 2D, D, D0, (3.23)
where D, = (A"g® C)% = (A"g)®. The basis vectors in D,;,; and those in D,,
are given by letting A = —1 in Table 3.6 and in Table 3.7 respectively, and thus
we get the following tables correnspondingly.

w(k) l module highest weight minimum value of [
w(l) Z (1) ®(X AY) 0 0
w(3) 2°01), R (T, A %) 2 1
w(5) 213, @@ -1 A%-y) 2 2
w(6) Z°3) ®(Z1-1 A ¥1-y) 0 1
Table 3.24
u(k) module highest weight minimum value of !
u(1) Z00)o ® (T, A ¥) 0 0
u(3) Z'2), X AY ) 2 2
u(5) Z°02), @ &1 ~¥i-0) 2 2
u(6) L' WD ® X -2 A¥-2) 0 2
Table 3.25

By similar calculations, we get the following matrices for boundary operators.

0 0 0 0
-3 d(+2 -2 0

0= : 242 (1> 2),
0 0 0 0

0 0 —Il+1) il
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i+ o 0 0
3 0 2 0
Oy = 0 0 L(I+1) 0 (1 =2),
0 0 l I(I+1)

0,=0 00 0), 0,=(), 9=1(0),

for I=1 and 0. For the dimensions of D,, Kerd,_; and Im J,, we get Table
3.26 bellow.

n 012345 .

dim D, 1113 4 4.

dim (Ker d,_,) 110322 .

dim(Im 8,) 010222 .
Table 3.26

Now we have the following result for the trivial module.

Theorem 3.3. Let V(0,0)=C be a trivial representation of g=sl(2,1).
Then,

1 for n=0,3

dim H,(g, C) = {0 otherwise.

4. Homology groups for the maximal submodules I(A) for A+ c¢+2=0
In this case, the maximal submodle I(A) of the module V(A) is decomposed as
IA) =+ W,
V=i 0<i<i—1)¢, vii=(A—D)Y, ®v + Y, ® vis1, @.1)

V=Y, Y, ® L(A),

where {v;}f=0 is the standard bases in (1.1) of L(A) =V, Viiy and V" are
irreducible as gg-modules.

In place of Tables 3.6 and 3.7, we have Table 4.2 for Dji+2:+1 and Table
4.3 for D+ as follows:
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w(k) module highest weight minimum value of [
w(l) 2@ @AY )RV 4 0
w(2) 20, @AY )W 4 0
w(3) 1), X AU, )RV A+2 1
w(4) Z'3), @@ A Y- )® W i 1
w(5) 231y A Y)Y A+2 2
w(6) Z°(3)o ® (%)-y /\@ul—l)@ Vi A 1
w(7) 2'2; @@ A %) ® W, A+1 1
w(8) Z°2, @& - AT ) ® V-, A+1 1
Table 4.2
(k) module highest weight minimum value of /
u(1) Z°0) ® @ A Y)W i 0
u(2) Z'(2:®F1-1 A Y- )@V A 1
u(3) Z'2: @@ 1-1 AYs1-)® W A+2 2
u(4) 22, @@ A Y- )® W A 1
u(s) Z°2), @1\ A Y- )® K" A+2 2
u(6) L@@ @12 A Y1) O A 2
u(n 2, @11 A ) ® K-, A+1 1
u(8) Z'0), ® @ 1-2 A Y111-)® V-, A+1 2
Table 4.3
In place of (3.9), we take the following (4.4).
~ ! (A+T—i4+ 1)
&g = Z aixi_y Ay, gy = (1) g _w
i=0 (I—!
S A+l—i+ D
Bo= Y bixtog AV b= (— 1 S gy,
i=0 (I—i—=1n!
-1 A+1—i+ 1)
> 1-1 At+1+1 i
= C:Xi— i 4 AV , ¢=(—1)—m—m——.
Yo i;()llll Vi i ( ) (l—l—l)'

4.4)

In place of a;, f; and y; in (3.10) and (3.11), we have &;, ﬁj and 7; respectively,
defined as d;=Z%d,, Bj =22 Py, 7;=2.%,. We define §(k) and i(k) by

substituting 4 — 1 to 4 in s(k) in (3.10) and t(k) in (3.11) respectively.
By similar calculations as in §3, we obtain the following matrices:
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0 0 0 0 0 0 0 0
—4193 —4q3 0 -2 0 0 2¢q, O
-1 0 —q5 0 -2 0 —-e 0
P _ 0 -4, 29,9,95 O 0 0 0 2eq,
A+20+1 0 % _qlq3 O 0 0 0 e 5
0 0 0 —295 —44,93 —q3 O O
0 —&  2¢q,4; 0 0 0 0 2
0 0 0 —&¢  2eq195 0 g3 —q;
4.7)
—q5 0 0 0 0 0 0 0
q:95 O 0 2 0 0 —2¢, O
1 0 0 0 2 0 ; 0
0 g2 —29,9395 —4q; 0 0 —2¢; O
Oivar = 1 , , >
0 -3 USUK] 0 —q3 0 0 €
0 0 0 2q5 449,95 O 0 0
0 € —2¢q,9; 0 0 0 —q; =2
0 0 0 e —2eq,95 0 —gqj 0
4.8)
where
A+l+1 1
= —, = l = —) = l = — l + l + 2 , &= _1 2.’
q: 142 q2 = q,(l) P q3 = q3()) 2( ) (=1 o)

and g3 = q3(1 = 1), g5 =q5(1 = 2), g3 =q,(I = ).

For exceptional values / =1 and 0, these matrices degenarate as in §3.4.
Calculating the ranks of the above matrices, we get the next table.

n A A+l 242 A+3 A+4 A+5
dim D, 12 4 7 8 8
dim(Ker 9, _,) 1 2 2 5 4 4
dim (Im d,) 0 2 2 4 4 4

. Table 4.10
From these results, we get the following theorem.

Theorem 4.1. Let A= (A c) with A= —c—2€Z>o. Then dimensions of
homology groups of irreducible module 1(A) are

dim H, (g, I(A4)) = 1 for n=24,1+3,
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H,(g, I(4))=0 otherwise.

§5. Homology and cohomology for the irreducible modules V(A)

5.1. Homology groups. In §§2-4, we have the results about homology
groups of the induced module ¥(4) and the maximal submodule I(A4) in respective
cases. Summarizing them, we obtain all the homology groups as follows.

Theorem 5.1. Let V(A) be a finite-imensional irreducible representation of
g = sl(2, 1) with highest weight A = (4, c), A€Zxo, ceC. If A =c, then

1 for n=2,A+3

dim H, (g, V(A4)) = {0 otherwise

If A+ c+2=0, then

1 for n=4+11+4

dim H, (g, V(1)) = {0 otherwise

If A—c)(A+c+2)#0, then

H,(g, V(A)=0)  for any n>0.

We compute cohomology groups from the result on homology groups using
Lemma 1.7. To apply Lemma 1.7, we should specify the dual representation
V(A)*.

As we have seen in §1.3, when A=¢, V(A)= LA c)®L(A—1,c+ 1) as
gg-modules, and when 1 +c+2=0, V(A) =LA c)® LA+ 1,c+1). On the
other hand, L(A, ¢)*=L(A, — c) as gg-modules. We have gz-module isomorphisms,
in case A =ceZso.

VA, o* 2 (LA, o)+ LA—-1Lc+ )y*=2 LA —c)®LA—-1, —c—1)
~V@A—-1, —c—1),

where we have ' +¢ +2+0 with  '=41—1, ¢ = —c—1. On the contrary,
if V+c¢+2=0, then V(A,c)*>V@A' +1, —c¢ —1). Therefore, V(4 ¢')* =
V(A —1, —c — 1) as g-modules if A=c>1. Thus we see that ggz-module
structures distiguish g-modules in these cases.

By Lemma 1.7, we have the following lemma.

Lemma 5.2. Let the notations be the same in Theorem 5.1. if A =c¢ =1,
H"(g, V(4, ) =H,(g V(A —1,c—1)*
and if 1= —c—22=0,
H"(g, V(4, ¢)) = H,(g, V(A + 1, c — 1))*

Finally we have the result about cohomology groups. Note that ¥(0, 0) = C
is the trivial g-module.
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Theorem 5.3. Let the notations are the same as in Theorem 5.1 again. If
A=c, then

1 for n=41+3

dim H"(g, V(1)) = {0 otherwise.

If A+ c+2=0, then

1 for n=A+1,1+4

dim H"(9, V(1)) = {0 otherwise.

If A—c)A+c+2)#0, then
H"(g, V(4)) = (0) for any n>0.
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