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On Chern numbers of homology planes of certain types
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Toru SUGIE and Masayoshi MIYANISHI

1. Introduction

A nonsingular algebraic surface X defined over C is called a homology plane
if homology groups H;(X;Z) vanish for all i>0. We know how to construct
a homology plane with Kodaira dimension x(X) <1 (cf. [2]). As for homology
planes with x(X) = 2, though plenty of examples of such homology planes have
been constructed, we are still far from classifying them completely.

Since a homology plane X is an affine rational surface and X has a fiber
space structure whose general fibers are isomorphic to C"*, where CM* is the
affine line minus N points, it seems natural to begin with a study in the case
N =2, that is, a homology plane with a C**-fibration. Note that the case N = 1
corresponds to x < 1. In our previous paper [5], we treated this case N =2
and classified homology planes with C**-fibrations. In [1], tom Dieck gave
several examples in the case N = 3. 1In this context, the following problem seems
interesting.

Problem 1. Let X be a homology plane of general type. Define the number
F(X) by

F(X) = min {N | there exists a CN*-fibration on X} .

Is F(X) then bounded or not? Namely, does there exist a constant A independent
of X such that F(X) < A?

The Chern numbers and the Miyaoka-Yau inequality play an important role
in the classification theory of projective surfaces. The inequality gives the first
restriction to the existence area of surfaces in the (c,, c?)-plane and further precise
research is made for the surfaces corresponding to values in this area. We would
like to use Chern numbers in the study of homology planes. The Miyaoka-Yau
inequality was extended to the open surfaces in [3, 4] and the inequality ¢} < 3c,
holds also for open surfaces if ¢? and c, stand for logarithmic Chern numbers.
We note that if X is an open surface, ¢ could be a rational number. (See
below for the definition of ¢3.) Since Betti numbers of a homology plane X are
zero except for by, the Euler number ¢, of X equals one.
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In the second section we calculate ¢? for homology planes with C**-fibrations
and obtain the following:

Theorem. Let X be a homology plane of Kodaira dimension 2 with a C**-
fibration. Then the second Chern number c,(X)* of X is less than 2. Moreover
there exists a sequence of homology planes with C**-fibrations whose c? converge
to 2.

This result is compared with Xiao’s result for projective surfaces with fibra-
tions of curves of genus 2 (cf. [8]). In the third section, we calculate c¢? for
surfaces with C3*-fibrations given by tom Dieck. In several cases c? attains a
value which is very close to 5/2 and it seems that there should be some relation
between F(X) and c,(X)%. So, we shall pose the following question:

Problem 2. Does there exist a sequence of homology planes X; whose Chern
numbers c,(X;)?* converge to 3?

If there exist a sequence of surfaces X; for which c¢,(X;)? converge to 3, it
is more plausible that F(X) is unbounded.

Now we recall several notions and terminologies from the open surface
theory (cf. [6]). We embed X into a nonsingular projective surface V. The
boundary divisor D := V — X is called a simple normal crossing divisor if D satisfies
the following three conditions:

1. every irreducible component of D is smooth,

2. no three irreducible components pass through a common point,

3. all intersections of the irreducible components of D are transverse.

Furthermore we say that D is a minimal normal crossing divisor if any (—1)
curve in D intersects at least three other irreducible components of D. We
choose below an embedding of X into V so that D is a minimal normal crossing
divisor. A connected curve T consisting of irreducible components in D is called
a twig if the dual graph of T is a linear chain and T meets D — T in a single
point at one of the end components of T. A connected component R (resp. F)
of D is called a rod (resp. a fork) if the dual graph of R (resp. F) is a linear
chain (resp. the dual graph of the exceptional curves of a minimal resolution of
a non-cyclic quotient singularity, where the central component may have intersec-
tion >—1).

A connected curve B contained in D is said to be rational if each irreducible
component of B is rational. B is also said to be admissible if none of the
irreducible components of B is a (—1) curve and the intersection matrix of B is
negative definite. An admissible rational twig T is maximal if T is not extended
to an admissible rational twig with more irreducible components.

Denote by K, the canonical divisor of V. By the theory of peeling [6],
we can decompose the divisor D uniquely into a sum of effective Q-divisors
D = D* + Bk (D) such that

1. Bk (D) has the negative definite intersection form.
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2. (K, + D*-Z) = 0 for every irreducible component Z of all maximal twigs,
rods and forks which are admissible and rational.

3. (Ky + D*-Z) >0 for every irreducible component Y of D except for the
irrelevant components of twigs, rods and forks which are non-admissible
and rational.

Here we restrict our attention to the homology planes of general type. We
know from [7] that a homology plane of general type is almost minimal. This
implies (K, + D*-C) > 0 for every irreducible curve C on V. We define the
Chern number c,(X)? of X by (K, + D*)?, where K, + D* is described also in
the following way:

We contract all maximal twigs, rods and forks which are admissible and
rational. We get a normal surface S. Let p: V — § be the contraction morphism.
Then the total transform of the canonical divisor Kz of S plus p,D* as a
Q-divisor equals K, + D*. Thus we obtain ¢,(X)* := (K, + D*)? = (K5 + p,D*)%
We use below the surface S to calculate ¢,(X)>2.

2. Calculations of ¢2(X) for homology planes with C**-fibrations

We use the notations of [5] freely. There are four types of homology planes
with C**-fibrations, which are types (UP;_,), (UC,_,), (TP,), and (TC,_,).

Type (UP;_,)
We start with a configuration of curves on P! x P! given as follows:

Lo
b
"A /

M, A >
¢, ?, 2y /

Figure 1

|~

where 1, |, and I; represent the fibers of the first projection p,: P! x P! - P!
and M,, M, and M, the fibers of the second projection p,: P* x P! > P! Let
R, =M,NIl;, R,=M;NIl,, Ry=M; NI, and R, = M,NI;. We perform oscil-
lating sequences of blowing-ups ¢: V —» P! x P! with initial points R,, R,, R,
and R, (cf. [5]). The projection p, induces a P'-fibration on V.

Let E; (1 <i < 4) be the unique (—1) curve contained in the exceptional set
6"!(R,). Let T,, be the connected component of ¢”!(R,) — E, connecting with
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the fiber component [; which is the proper transform of I/;. Let T,, be the
connected component of ¢ '(R,) — E, connecting with the section M’ which is
the proper transform of M,. We define T,, T;, 2 <i < 4) in a similar way. We
write the total transforms of /; and M, as follows:

o*(l)~1l{+a,E, +a,E, +---

o*(l) ~ 15 + a3 E5 +

o*(3)~ 5+ aEf + -
o*(M{) ~ M| + b E, + byE; +
o*(M,) ~ M5 + bE, +
o*(M;3) ~ M5y + b,E, +

We define the boundary divisor D on V by

4
D= I’+M Z

Tle

Then X := V — D is a homology plane provided the following condition is satisfied:
a3a4blb2 + a1a4b2b3 - a2a3b1b4 - a1a3b2b4 = il .

The dual graph of D is given as follows:

Tl a T4b T3 a T2 b T4a Tl b

(e, O O O
L, LT M; I My I3 My Ty

Figure 2

We remark that the branch T, is empty if and only if b; =1 and the branch
T, is empty if and only if a; = 1.

We denote by S the surface obtained by contracting all components of T;
and T,,. Let n: ¥V — S be the contraction morphism. We denote by § the surface
obtained by contracting all components of Supp Bk (D). Since T, and T, are
contained in Supp Bk (D), the contraction morphism V — § factors through S.
Let p: S — § be the natural factoring morphism. Put I.=n(l}) and M, = n(M}),
put also I; = p(I;) and M, = p(M;) and put finally 4 = n(D) and 4 = p(4). If all

T, and T, are not empty, Supp Bk (D) = (UT,,)U(UT;) and S = S. In this case
the Chern number c,(X)? of X equals (Kg + 4)>. In any case we make use of
the surface S in order to calculate the Chern number c,(X)>.

By symmetry we have to consider the following twelve cases separately, where
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the case 1 is a general case with all T, and T;, not empty, while in the other
cases some of T, and T, are empty and more components of D have to be
contracted under p: S — S.

(Case 1) A=I,+M,+1,+M;+1;+M,
(Case 2) A=M,+1,+ M;+1,+ M,
(Case 3) A=1,+M,+1;+M,
(Case 4) A=M,+1,+ M,

(Case 5) A=1,+M,

(Case 6) 4=M,

(Case 7) A=M,+1,+M;+1,
(Case 8) A=1,+M;+1;

(Case 9) 4 =M, + 1,

(Case 10) 4 =1,

(Case 11) 4 =1,+ M,

(Case 12) 4 =M,
We shall look into each of the above cases separately.
(Case 1) A=1,+M,+L,+ M, +1;+M,

The configuration of the components of 4 and E, on the surface S is given
as follows:

/ ! Y
; 7 M,
~ / .
7 E s E;
/| vz Mz 23
\
AN
zl A E -
\‘ EZ
\ _
\ M.
I
Figure 3

The linear equivalence relations I, ~ I, ~ I3 and M; ~ M, ~ M; on P! x P! give
rise to the following relations on S:
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il +a1E1 +a2§2~72+a3E3~i3+a4E4
Ml+blEI+b3§3~M2+b4E4~M3+b2E2

Using these relations we get the intersection numbers of various curves on S as

follows.

72— a, 4 M g %
(ll) <bl b ) (12) b37 (13) b4 5

~ b b ~ b -
1= (P e o
a, 3 as a,
~ 1 ~ 1 ~ 1
E )2 , 2 _ ; 2 _ (B = — i
(Ey) b, (E;) @b, (E3) b (Eq) asbs
~ ~ 1 -~ o~ 1 ~ o~
(El M1)=_« (Ez M3)=—’ (E3 Ml):_! (E4 M2)=— >
a; a; as as

Next we have to write down the canonical divisor Kg of S. We start with
the canonical divisor Kpi, pi ~ —2M — 2[ of P! x P!, where M is a section of
p;:P' x P! 5 P! and | is a general fiber. Then using an induction on the
number of blowing-ups, it is not hard to obtain the following formula:

4
Ky, ~ —20*(M) — 20*(I) + Z (a; + by — 1)E; + (components of T;, and T;,).
By construction, we obtain the following expression of Kj.

4 -~
Ks~ —2n,0*%(M) — 2n,0%() + Y, (a; + b; — 1)E; .
=

Then
4 ~ 3 ~ -
Ks+ 4~ —2n,0*(M) — 2n,o*(l) + ;1 (a; + b, — )E; + .-; {l + M;}.
We express [,, I, M,, M, by the rest of the curves and obtain:
Ks+ A4~ —2(M, + b E, + byEy) = 2(I, + a,E, + a,E,)
+ Y4 @+ b — VE +1, + (0, +a,E, + a,E, — ayE5)
+(, +a,E, + ayE; —a,E) + My + (M, + b E, + byE, — b,E,)
+ (M, + b E, + byE; — b,E,)
=1, + M, +(a, + by — DE, + (a, — VE, + (bs — )E; — E, .

Therefore we have



Chern numbers 337
¢ (X)? = (Ks + 4)?
=12 4+ M? + (a, + b, — 1)*E? + (a, — 1)2E% + (b, — 1)?E3 + E}
+2@a, + b, — (I, E;) + 2(a, — (- E,)
+2(a, + by — 1)(M,-E,) + 2(b; — 1)(M, - E;)

) Lo - Lo 1
B a,b,  a,b, asby ab,

< 2.

(Casez) A—:A_42+i2+M3+i3+A_41

In this case T,, or T,, is empty and [; is contained in Supp Bk (D). We
have to perform the peeling of the bark of I, on S, and obtain c,;(X)* as
(X)) =(Kg+ 4+ al,)?, where the number « is determined by the condition:

(Ks+ 4 +al-1;))=0,
ie.,
(Ks+4-1y)
(Y
We use the expression of Kg+ 4 and the intersection numbers obtained in
(Case 1) to compute

(Ks + A'T1) = if +(a; + b, — 1)(71'E1) +(a; — 1)(71'E2)

=_<ﬁ+a_2)+a1+b1—l+a2—l

by b, b, b,
1 1
= 1 — f— _ R
(bl * b:)
b,b, — b, —
which entails o = L—b’—bz and
a;b, + a,b,

¢ (X)? = (Kg+ 4 +al)?
=(Kg + 4?2 + a(Kg+ 4-1))

_2_<1 L 1) (byby — by — by)?
a;b, a,b, asby  asb, byby(a b, + ayb,)

<2.
Here we note that by =1 or b, = 1.

(Case 3) Ad=1,+M,+1,+ M,
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In this case Ty, (or T,,) and T,, are empty and !; and M) are contained
in Supp Bk (D). This case occurs when b; =1 (or b, = 1) and a, = 1. We deter-
mine the numbers « and f by the following conditions:

{ (Ks+ 4 +al, + pM,-1,) =0
(Ks+ 4 +oal, + pM,-M,) =0,

ie.,

“(71)2 + B(Mzil) = —(Ks + A'il) =—1+4 (El_ + i}.)
1 2

aly - My) + B(M,)? = —(Ks + 4-M,) = 0
Hence we have

"= by{b,b, — (b, + b,)} B o
by(ayb, + aby) — by by’ b,

and
¢, (X)? = (Ks + 4 + ol; + pM,)?
=(Ks+ 4 + a(Ks + 4-1;) + B(Ks + 4-M,)

=2_< 1 1 1 1 >+ b,(b;b, — b, — b,)?
a,

et
b, a;b, asby a,b, by b,{bs(a;b, + a,b,) — b b,}

<2.
(Case 4) A=M,+1,+ M,

In this case T, (or T,), T,, and Tj, are empty, and I}, M5 and I, are
contained in Supp Bk (D). This case occurs when b; =1 (or b, = 1), a, =1 and
by =1. We determine the numbers «, f and y by the following conditions:

. . 1 1
ally)? + p=—(Ks+4-1))=—1 +<b_1+b_2>
o+ BMy)?* +y=—(Ks+4-M)=0
B+y(0)? = —(Ks+4-1,)=0.

As seen from the former case, we need only the value of «. We consider the
case by = 1. Then

azb, — 1
(asby — 1)(a;b, + a;) — azb,

o =

and
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¢ (X)? = (Ks + 4 + oy + BM, + y1,)?

, <1+1+1+1>+ ash, — 1
a; ab, ay; b, b,{(asb, — 1)(a, b, + a;) — a3b,}

< 2.
(Case 5) A=1,+M,

In this case T, (or Ty,), Ty, T3, and T,, are empty and I, M}, I; and
M} are contained in Supp Bk (D). This case occurs when b, =1 (or b, =1),
a,=1, by=1 and a, =1. Here we assume b, =1. We can treat the case
b, =1 in a similar way. We determine the numbers o, f, y and & by the
following conditions:

~

i _
ali)? + B =—(Ks+ 4-T) =
2

Ja+ Bl +y=—(Ks+4-M)=0

B+ +0=—(Ks+4-1,)=0
Y+ 6(My)? = —(Ks+ 4-M;) =0.

The only value we need is «, which is given as follows:

B balashs — 1) + b, 3
{bs(azb, — 1) + by} (a,b, + 1) — by(azh, — 1)

o =

0.

Hence we have

c1(X)? = (Ks+ 4 + al, + M, + yl, + M,)?

=2_<i+i+i+i>
a, b, a3 b,
N bu(ash, — 1) + b,
by[{bs(azb, — 1) + by} (a; b, + 1) — by(azh, — 1)]
<2.
(Case 6) 4 =M,

In this case T, (or Ty,), Ty, Ts,, Top and T, are empty and I}, My, 13,
Mj; and 5 are contained in Supp Bk (D). This case occurs when b, =1 (or
b,=1) and a4, = by =a, =b, =1. Here we assume b, = 1. We determine the
numbers o, ff, y, 6 and ¢ by the following conditions.

ol + = —(Ks+4T) =
a+ M) +y=—(Kg+4-My)=0
B+y0)+6=—(Ks+4-1,)=0
Y+ O0(My)> +e=—(Ksg+ 4 -M;)=0

0+e(l})?=—(Kg+41,)=0
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Then we obtain the following:

(ay — (b, — 1) =1
{(a — 1)(b, — 1) — 1}(a; by + 1) — by{as(b, — 1) — 1}

CI(X)Z = (Ks + A + 0(71 + ,BMZ + ')JTZ + 5M3 + 873)2

1 1 1
ﬂ‘(z*z*a“)
+ (azs — 1)y —1) -1
b,[{(ay — 1)(b, — 1) — 1}(a, b, + 1) — by{as(b, — 1) — 1}]

<2

a=—

We can calculate c¢,(X)? for the remaining cases (7) ~ (12) by combining the
former cases. For example we consider the (case 8). In this case I/}, M5 and
M are contained in Supp Bk (D). We obtain c¢,(X)? by combining the (case 1)
and the (case 2). We give the result when b, = a, =a, = 1. Namely, we have

b 1
c(X)2=2—<1+v+—+—>+ 4 + .
' a,b, asby b, by{by(b, + a;) — b} ~ as(b; + as)

We note finally that the Ramanujam surface is obtained by this construction.
The corresponding values of a; and b; are as follows:

a,=a,=ay=a,=1,b,=1,b,=3,b3=2,b,=2.
We thus obtain ¢,(X)?> = % for the Ramanujam surface.
Type (UC,-,)

We start with a configuration of curves on P' x P! given as follows.

/ /
R R;
1 3 " 7{\ )(
M:
o
R R, \\ \
" VAR
£, P £
Figure 4

We perform oscillating sequences of blowing-ups o: V — P! x P! with initial
points R,, R,, R; and R,, where R, = M, Nl,, R, = M;NI,, Ry =M Nl;, Ry =
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M;NI,. We use the notations [;, M;, E;,
former case.

T,, and T, in the same way as in the
We write the total transforms of /; and M, as follows:

o*(l)~ 15+ a,Ey + aE, +
o*(l3) ~ 15+ asE; + a,Ef +
o*(M,) ~ M{ + b E, + bE; +
o*(M5) ~ M3 + bE, + bE, +

We define the boundary divisor D on V by

D= (l’+M) (T + Typ)

IIMw
[\/]A

i

i=1

Then X := V — D is a homology plane provided the following condition is satisfied:
a,asb b, —ajasb,by = +1.

The dual graph of D is given as follows.

Tza Tiq

I 22
Tia O

©

O Tia

T, O l l O Ty,

T Tis

<
o bx
;: C

Figure §

We also use the notations such as S, 4, § and 4.
By symmetry we have to consider the following six cases.

(Case 1)

Ny}
I
~i

+L+M,+1, + M, + M,

(Case 2) A=0+M,+1, + M, + M,
(Case 3) A=M,+1,+ M, + M,
(Case 4) A=0,+M,+1, + M,
(Case 5) A=M,+1, + M,

(Case 6) A4=M, +1,

The last four cases are treated by combining the other cases.
have to consider the first two cases.

Therefore we
The computation of ¢,(X)? in these cases
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are similar to the former case of type (UP,_;). We simply give the values of
¢ (X)*:

(Case 1)

QX = (Ks+ 42 =2+ (B =2

iMe

(Case 2)
c1(X)? = (Kg+ 4 + al,)?
=(Ks+ 4 + a(Kg+ 4-1,)

_ _ 2
gy, L, bbby

+
<2.

a;b; ~ byby(a b, + a,b,)

Here we note that b, =1 or b, = 1. For the remaining cases, we only list
up the results in the cases 3 and 6.

(Case 3)

1 (biby— by —b,)*  (b3by — by — b,)?

X 2 _ 2 — f"_ I
¢ (X) i=1 a;b;  byby(a;by + a,by)  bybs(asb, + aubs)

<2.
(Case 6)
. 1 (byb, — by — by)? . 1 (aa4 — a; — a,)’
a;b,  byby(a;b, + aby) a,b,  ayaula,by + ayb,)

_ 1 (a,ay — a, — a3)° _ 1 (b3by — by — b,)?
asby  ayazla;by + azby) asb,  byby(azb, + auby)

ci(X)? =2

<2.

Here we note that one of the integers equals to one for each pair (b,, b,), (a5, a,),
(a,, as) and (bs, b,).

Type (TP,)

We start with the ruled surface 2;. Let M, be the minimal section of X,
and let p, be the morphism from X, to P! which gives the natural P!-bundle
structure on X,. Let C be a 2-section of X, disjoint from M, and let /, and
I, be fibers of p; containing ramification points of p,|c and I; be a fiber of p,
other than I/, and /,. We blow-up [;NC, I,NC and their infinitely near points
on C. We call this surface 2| and let o,: 2] — 2, be the composition of the
above four blowing-ups. Thus we obtain the following configuration of curves
on X, where M, is the proper transform of C and G,, G;, H, and H; are the
exceptional curves of ;.
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G

M,

Gs

AN

M.
M

Figure 6

Next we perform oscillating sequences of blowing-ups. Let R; be one of two
intersection points of I; and M,. There are following six possibilities for choosing
initial points R, and R, of these oscillating sequences. We shall consider first
three cases since calculations of the remaining cases are similar.

(Case 1) R, =M, NG, and R, = M;NH,
(Case 2) R, =G;NG; and R, =M, NH,
(Case 3) R, =G;NM, and R, =M, NH,
(Case 4) R, =G,NG; and R, =H,NH,
(Case 5) R, =G;NM, and R, = H,NH,
(Case 6) R, =G;NM, and R, =H;N M,
(Case 1)

Put R, = M,NG, and R, =M, NH,. Now let g,: V- X be the composi-
tion of oscillating blowing-ups with initial points R;, R, and R;. Let E(1 <i < 3)
be the unique (— 1) curve contained in o7 '(R,). Let T;, be the connected compo-
nent of o;!(R,) — E, connecting with the section M; and T;, be the connected
component of a;'(R;) — E, connecting with the fiber component G;. We define
T.. T, (i=2,3) in a similar way. We write the total transforms of ;, M; and
C as follows, where ¢ = g,0,.

a*(l;) ~ G, + Gy + 2Gy + a,E| + -+
o*(l,) ~ Hy + Hy + 2Hy + a,E, + -+~
o*(l3) ~ I3 + asE5 + -+

o*(M,) ~ M + b E; + byE; + -
o*(C) ~ M}, + G, + 2Gy + Hy + 2H; + by E3 + -

We define the boundary divisor D on V by
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2 4
D=3 Mi+13+ Y (G+Hi + T, +T).
i=1 i=1

Then X:=V —D is a homology plane provided the following condition is
satisfied:

a;a,(2as — by) + 2a,a3b, + 2a,a3b, = + 1.

The dual graph of D is given as follows.

Figure 7

In this case Supp Bk (D) contains not only T, T, but also Gj, G, H; and
H,. Let m: V - S be the contraction of T,, T, G;, G;, H; and H,. Let S be
the surface obtained by contracting all the components of Supp Bk (D) and let
p:S— S be the natural factoring morphism. We use the notation like M, (with
tilde) for the curves on S and M, (with bar) for the curves on S. Put 4 = (D)
and 4 = p(4).

In this case the above equality shows that by cannot be equal to 1, that
is, the branch T;, is not empty. We have to consider the following two cases
depending on whether or not T;, or similarly T,, is empty.

(Case 1-1) A=Gy+ Hy+ M, + 15+ M,

(Case 1-2) A=Gy+ Hy + M, + 14
Consider first

(Case 1-1) A=Gy+ Hy+ M, + 13+ M,

The configuration of the components of 4 and E,. on the surface S is given
as follows:
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k]

9'
/
\

N

N
\

;l

Figure 8

The linear equivalence relations I, ~ [, ~I; and C ~2M, + 2l; on the surface
2, give the following relations on S:

aIEI + 263 ~ azfz + 2ﬁ3 ~ l~3 + a3E3
M, + 2G, + 2H; + byE; ~ 2M, + 2b, E, + 2b,E, + 4G, + 2a,E, .
Using these relations, we compute c¢,(X)? as follows:

2 2 1

X)?=(Ksg+4?=2— - B
c1(X)* = (Ks ) a,(a, +2by) ay(a, +2b,) asb,

<2.

(Case 1-2) A=G,+Hy,+ M, +1,

In this case T, or T,, is empty and it occurs when a; =1 or a, =1,
respectively. Peeling the bark of M, as in the case (2) of Type (UP,_,), we obtain

2 2 1 (a,a, — a; — a,)?

XP=2_ _ .
€1(X) a,(a, + 2by)  agla, + 2b,)  asby © ayay(a,a, + aib, + ayby)

<2,
where a; =1 or a, = 1.
(Case 2)

Put R, = G, NG, and R, = M;NH,. We use the same notation as before.
First we write the total transforms of G, and G, by o,

of(G,) ~ Gy + a,E; + -+
f(G3) ~ Gy + b E; + -

and next we write the total transforms of I, M; and C by o as follows, where
0 = 000,
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o*(l,) ~ Gy + G, + 2G5 + (a; + 2b))E, + -
o*(l,) ~H{ + H, + 2Hy + a,E, + -
o*(3) ~ I3 +a3Es + -
o* (M) ~ M{ + bE, + -+
d*(C)~ M, + G, + 2G5 + Hy + 2H3 + 2bE; + b3E; + -+ .

We define the boundary divisor D in the similar way. Then X:=V —D is a
homology plane when the following condition is satisfied

(al + 2b1 )az(2a3 - b3) - a2a3b2 + 2(01 + 2b1)a3b2 = il .

The Chern number ¢? is given by the same formula as in the case 1 when all

T,, and T, are non-empty. The calculation of the case when some of T, or T,
are empty is similar to the former case and we always obtain the inequality c7 < 2.

(Case 3)

Put R, = G;NM, and R, = M, NH,. We use the same notation as before.
First we write the total transforms of G; and M, by o,

0¥(G3) ~ Gy + a E  + -
of(My) ~ M5 + b E; + -

and next we write the total transforms of I, M; and C by o as follows, where
g = 0001:

a*(ly) ~ Gy + G5 + 2G5 + 2a,E, + -
o*(l,) ~Hy + Hy, + 2Hy + a,E, + -
o*(y)~ 15+ asEy + -
o* (M)~ M| + bEy + -+
o*(C) ~ M, + G5 + 2G5 + Hy + 2Hy + (2a; + b))E, + b3E5 + -+ .

We define the boundary divisor D in the similar way. Then X:=V —D is a
homology plane when the following condition is satisfied:

2a,a,(2ay — by) — aya3(2a; + by) + 4a,a3b, = £1.

The Chern number c¢? is given by

2 1 1

2 _»n_ _ —
c1=2 a b, ayla, + 2b,)  asbs

when all T,, and T, are non-empty. The calculation of the case when some of
T,, or T, are empty is similar to the former case and we always obtain the
inequality ¢} < 2.
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Type (TC,_,)

We use the same surface X, and the same configuration of curves on 2|
obtained in the former case Type (TP,). We perform oscillating sequences of
blowing-ups as before. The order of H,(X,Z) is given in the previous paper
[5] and the formula given there shows that we have to choose M;NG, and
M, NI; (consisting of two points) as initial points. Put R, = M, NG, and
M, N1y = {R,, Rs}.

Now let a,: V - 2| be the composition of oscillating blowing-ups with initial
points R;, R, and R;. We use the notations like E;, T;,, and T;, for the same
meaning as before. We write the total transforms of I;, M; and C as follows,
where ¢ = g,0,

o*(l,) ~ G, + G, + 2G + a,E, + -+~
o*(l;) ~ H{ + H3 + 2H;
a*(l3)~ 15+ a,E; + azE5 + -
o*(M,) ~ M{ + b E, + -
0*(C) ~ My + G, + 2G5 + Hy + 2Hy + byE; + byEy + .

We define the boundary divisor D on V by
2 3
D=3 Mi+15+ Y (G +H + T, + Tp).
i=1 i=1

Then X:=V — D is a homology plane provided the following condition is
satisfied:

a,a,by —ajazb, = +1.

Here we note that the above condition implies that a; =1 and T;, is always
empty. The dual graph of D is given as follows.

T Q

G/

H;

T Tu
Gi O\;/o |

G: O o H.

Figure 9
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In this case Supp Bk (D) contains T,,, T, G;, G, and H,. Let n: ¥V - S be the
contraction of T, T;,, Gi, G, and H,. Let S, p:S—S, 4 =n(D) and 4 = p(4)
be the same as before.

We have to consider the following two cases depending on whether or not
T,, (similarly T,,) is empty.
(Case 1) A=Gy+M,+H,+H, +M, +1,
(Case 2) 4=G,+ M, + H,

Consider first
(Case3) Z=G3+1\—42+H3+ﬁ1+1\_/]1+i3

The configuration of the components of 4 and E; on the surface S is given
as follows.

Figure 10

The linear equivalence relations [, ~ I, ~I3 and C ~2M, + 2], on the surface
X, give the following relations on S:
E, +2G, ~1, + a,E, + ayE, ~ H, + 2H, ,
M, + 2G, + 2H; + b,E, + byE, ~ 2M, + 2b,E, + 2H, + 4H,

2

Using these relations we compute ¢,(X)* as follows:

2 1 1
1+ 2b, a,b, asb,

(X)) =2 <2.

(Case 2) 4=G,+ M, + H,
We peel the barks of I,, M, and H,, and obtain

2 1LY, (byby — by — by)
1+2b,  ayb, © ashs) ' bybs{(1 + 2b,)(azbs + asb,) — 2b,by}

ey (X)? =2—<

<2.

Finally from the calculations made in this section, we conclude that:
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Theorem. Let X be a homology plane of Kodaira dimension 2 with a C**-
fibration. Then the second Chern number c¢,(X)* of X is less than 2. Furthermore,
for every type of X, there exists a sequence of homology planes whose c,(X)?
converge to 2.

Remark. For each type (UP;_;), (UC,_,), (TP,) and (TC,_,), we can find
a sequence of homology planes whose Chern numbers ¢? converge to 2. First
we recall the following fact [2, Lemma 3.5].

Lemma. Let S be a nonsingular surface and let M and | be smooth curves
on S. We assume that M and | intersect transversally at a point P on S. Then
for each pair of coprime integers (a, b), there exists a composition of blowing-ups
o: T — S which satisfies

o' M)~M +aE+ -, o' ()~1"+bE+ -,
where E is the exceptional curve of the last blowing-up.

Type (UP;_,). We consider the case b, = 1 and rewrite the condition on a; and
b, as follows:

azb,(a; + a;by) — byas(ay, + a b)) = +1.

First we choose a,, a, and b,, then choose b, which is relatively prime to
a,. Next we choose a; such that (az,a;b;) =1, (a3 + a,b;,a, + a;b,) =1 and
(as, b,) = 1. Because b,(a; + a,b;) and as(a, + a,b,) are relatively prime under
these choices, there exist a, and b, which satisfy the above equation. Since we
can choose g; and b; to be arbitrarily large numbers, there exists a sequence of
homology planes of this type whose Chern numbers c? converge to 2.

Type (UC,_,). Since the condition on g; and b; is a,a3b b, — aja,b,by; = +1,
it is easy to see that there exists a sequence of homology planes of this type
whose Chern numbers ¢? converge to 2.

Type (TP,). We rewrite the condition on g; and b; as follows:
2as(a a, + a,by + a1 by) —aaby = +1.

First we choose a,, a,, b, and b, such that (a, a,) =1, (a;, b;) =1 and (a,, b,) =
1 and that a, and a, are odd. Because 2(a,a, + a,b, + a;b,) and a,a, are
relatively prime under these choices, there exist a; and by which satisfy the above
equation. Since we can choose a; and b; to be arbitrarily large numbers, there
exists a sequence of homology planes of this type whose Chern numbers c?
converge to 2.

Type (TC,_;). Since the condition on a; and b; is a,a,b; —a,azb, = +1. Tt is
easy to see that there exists a sequence of homology planes of this type whose
Chern numbers ¢? converge to 2.
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3. c%(X) of homology planes with C3*-fibrations

In this section, we shall calculate ¢,(X)* of homology planes with a C3*-fibration
which are described in a paper of tom Dieck [1]. We make use of his notations
in [1] with slight modifications.

1. Case of cubic with two lines

Let C = P? be a cubic with a cusp s. There is a unique flex p e C whose
tangent we denote by L. Let T be an ordinary tangent to C in a regular point
r. C intersects T in another regular point q. The points g, r are different from
p. First we blow up s to obtain 2;. The exceptional curve M gives a unique
minimal section of the natural P'-fibration on X;,. We use the same symbols
to denote the proper transform of curves on X,. Let t = MNC. Then M-C =

2t. Let I, I, and I; be the fibers of the P'-fibration passing through ¢, p and

r, respectively. Let p: W — 2| be a minimal sequence of blowing-ups with initial
centers t, p and r which makes the total transform of the divisor M + C+ L+ T
a simple normal crossing divisor. We exhibit the configuration of curves on W
and its dual graph as below:

2, I I

Figure 11

D, D,

=

F, - F\

Figure 11 bis



Chern numbers 351

Let C'NF; =R, and T'NG, = R;. We perform oscillating sequences of blowing-
ups o: V> W with initial points R, and R;. For a curve 4 on W, we denote
by A the proper transform of A by 6. Let E; (i = 2,3) be a unique (—1) curve
contained in ¢ !(R;). Let T,, be the connected component of ¢ *(R,)— E,
connecting with the fiber component F; and let Ty, be the connected component
of 6'(R,) — E, connecting with the section C. Similarly, let T;, be the connected
component of 6'(R;) — E, connecting with the fiber component G, and let Ty,
be the remaining connected component of ¢7'(R;) — E; connecting with the
section T. We write the total transforms of F;, C', G, and T’ as follows:

o*(F3) ~ ﬁs + aE; +
o*(C')~ C + bE, +
0*(G,) ~ Gy, + a3 E4 +
o*(T')~ T + byE, +

We define the boundary divisor 4 on V by

A4=M+C+T+L+ Y (G + Z
i=1 i=1

"m
".M“‘

T.a T) -

Then our homology plane is X := V — 4 provided the following condition is
satisfied:

(6a, — by)(6a; + by) — 6aya; = +1.
The total transforms by p of curves on X, are written as follows:
p*¥(T)~ T + G, + 2G,
p*(Ly~ L + F, + 2F, + 3F,
p*(M)~M + D, + 2D,
p*(C)~C + F, +2F, + 3F; + G, + 2G, + D, + 2D,
p*(ly)~1y + D, + D,
p*y)~ 1+ Fi+ F, + Fy
p*(3)~ 13+ G, + G, .

We can show that Supp Bk (4) consists of G,, F,, F,, D,, M, Ty,, T,,, Ts, and
Ty,. Let : ¥V — S be the contraction of these curves except for M. Write 4 =
7(A) for a curve A on V and let 4 =t(d4). First, we calculate (K5 + 4)> and
then make a necessary modification due to the peeling of M.

The linear equivalence relations I, ~l, ~l;, L~T~M+1, and C~ M +
31, on X, give the following relations on S:
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LL+D,~l,+F,+aE, ~I;+ G, + a,E,4
T+ 2G, + byEy + 2a3E; ~ L + 3F; + 3a,E, ~ M + 1, + 3D,
C ~ M + 3D, — 3F, — 2G, + 31, — (3a, + b))E, — 24, F, .

Starting with the canonical divisor Ky ~ —2M — 3, of X;, we can write
Ky and Kz as follows:

Ky ~ —2p*(M) — 3p*(,) + D, + 2D, + F, + 2F, + 3F, + G, + 2G,
K5~ —2(M + 2D,) — 3(I, + D,) + 2D, + 3F; + 3a,E, + 2G, + 2a,E,
+(ay + by — )E, + (a3 + by — 1)E; .
Since
A=M+D,+F,+G,+C+L+T,
we have
Ks+ 4 ~2M + 5D, + 2I, — 2F, — G, — (2a, + 1)E, — (a5 + 1)E; .

So, by computing the intersection numbers of curves on S as in the case 1 of
the section 2, we obtain

We omit the details of the calculations. In order to obtain c¢,(X)? we have to
peel the bark of M. Namely, determine the number o by the condition:

(Ks+4+aM-M)=0,
from which results « = —1 because M? = —3. We therefore have
¢(X)? = (Ks + 4 — §M)?
= (Ks + 4 — }(Ks + 4-M)
1 1

= 2 _——_—
ayb, asb;
2. Case of four sections in X,

Let n: £, — P! be the natural P'-fibration, let F be a general fiber and let
M be the minimal section. We choose curves Q;, Q, and L on X, such that

Qi ~M+2F, Q,~M+3F, L~M+2F
and that the intersection pattern is given as follows:

Q:;M=x, 0,0,=3y. QuL=2, QyL=22+u



Chern numbers 353

where x, y, z, u and v are five different points. Let [, I, and [; be the fibers
of the P!-fibration passing through y, v and z, respectively. Let p: W > X, be a
minimal sequence of blowing-ups with initial centers y, v and z which makes
the total transform of the divisor M + Q, + Q, + L a simple normal crossing
divisor. We exhibit the configuration of curves on W and its dual graph as
below.

Figure 12
G
. G:
o
o
Fl F;L F;
Figure 12 bis

Let R,:=Q|NF; and R;:=L'NH,. We perform oscillating sequences of
blowing-ups o: V — W with initial points R, and R;. We make use of the same
notations as before. For example, T,, connects with F; and T, connects with the
section 0,. We write the total transforms of F;, Q), H, and L' as follows:

0*(F3)~F3 +a,E +-
G*(Q,1)~éx +bE +
o*(Hy) ~ Hy + a3E5 + -+
0*(L')~ L+ byEy + -+
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and define the boundary divisor 4 on V by

l

A=1\~4+1?+i1 ,~+iil(é.-+('§,.+ﬁ,.)+i(T,.a+T,,,).
Then our homology plane is X := V — 4 provided the following condition is
satisfied:
(3a, — by)(2ay — by) —4b, by = +1.

The total transforms by p of curves on X, are written as follows: ‘

p*(Q,) ~ Q) + F, + 2F, + 3F; + G, + 2G,

p*(L)~L + G, +2G, + H, + 2H,

p*(Q,)~ Q5+ F, +2F, + 3F; + H; + 2H,

p*l )~ + Fi+ F,+ F

p*(l) ~ I3 + G, + G,

p*(3) ~ 13+ H, + H,
and Supp Bk (4) consists of F,, F,, G,, Hl, M, 0,, T, Z’Zb, T;, and T;,. Let

1: V > § be the contraction of these curves except for M and Q,. We write
A =1(A) for a curve A on V. Making use of the linear equivalence relations

on X,, we obtain

(K§+A_)2=2—%—ﬁ—¢,
where
A=M+F,+G,+H,+0,+0,+L
and

K§+A—~2A_4+3i2—2F3+2(_}2_H2—(2al+1)E1+(a3+1)E3.

Now we have to peel the barks of M and Q, in order to calculate c,(X)>
Namely, determine the numbers « and f by conditions,

{(K§+Z+a1\_4+ﬂél-1\_4)=0
(Ks+4+aM +B0,0,)=0

and compute c,(X)? as follows:

c(X)? = (Ks+ 4+ oM + p0Q,)?
5
=5~

{1 N b, N 1}
a,b;  3(a; +b;) azby)’

We note that ¢,(X)* > 2 for a suitable choice of the integers a;, b;.
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3. Case of quartic and bitangent

Let Q be a quartic on P? with three cusps {x, y,z} and let T be a bitangent
of Q.

First we blow-up P? at the center u which is one of the intersection points
of T and Q to obtain X,. The exceptional curve M gives a unique minimal
section of the natural P!-fibration on X,. Let [, I, and I; be the fibers of the
Pl-fibration n passing through x, y and z, respectively. Let p: W — X, be the
minimal sequence of blowing-ups with initial centers x, y and z which makes
the total transform of the divisor M + T + Q a simple normal crossing divisor.
We exhibit the configuration of curves on W and its dual graph as below.

e” zz. ej
M . ‘. i
1 I ]
|
0 : | —
| | I
1 | |
| | I
| 1 1
| |
| 1 I
| I I
| I ]
T
Figure 13
Fi Fy F»
o0—0—0
M’ 2 "
, o
' \ / "
D, 0————o0
Dli I.I2
o ———0—0
G Gs G

Figure 13 bis

Let R:= Q'ND,. We perform an oscillating sequence of blowing-ups a: V —» W
with the initial point R;. We make use of the same notations as before. We
write the total transforms of D; and Q' as follows:

o*(D,) ~ D, + aE + -+
o*(Q') ~ Q + bE + -
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and define the boundary divisor 4 on V by

~

i~ ~ 3 ~ -~ ~ ~
A=M+0Q0+T+ Y D;+F+G+H)+T,+T,.
i=1

Then our homology plane is X := V — 4 when the following condition is satisfied:
b—6a=+1.
The total transforms by p of the curves on X, are written as follows:
p*(Q)~ Q + D, + D, + 2D; + 2F, + 3F, + 6F;
+ 2G, + 3G, + 6G; + 2H, + 3H, + 6H,
p*(T)~T + Dy + D, + 2D,
p*(M) ~ M’ + D,
p*U )~ +F L+ F, + F;

and Supp Bk (D) consists of F,, F,, G,, G,, H,, Hy,, D,, M, T, and T,. Let
1: V> § be the contraction of these curves except for M. Making use of the
linear equivalence relations on X, and S, we obtain

- 1
Kg+ 4?2 =2— —
(S+ ) ab’

where

A=M+Q+T+D, +Dy+ F,+G; + Hy,
and

Ks+ A4 ~2M + 2T 4+ 3D, + 3Dy — 3F; — G, — Hy + (3a — 1)E.
After peeling the bark of M, finally we obtain

xp = (ks+a-Lar) =3

c = — = ="

! S 2 2 ab

In this case the solutions of the equation b — 6a = +1 are given by a =n and
b=6n+ 1, where n is a natural number. Therefore there exists a sequence of
homology planes for which c¢,(X)? converge to 3.

4., Other cases

By similar arguments as above, we can obtain homology planes X with the
chern numbers c¢,(X)? as given below.

4.1. Four sections in 2,. We start with the configulation of curves on X,
such that

C~M+3F, L ~L,~M+?2F,
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where M is a minimal section and F is a general fiber, and that
C-M=x, C-L, =3y, C-L,=3z, L-L,=u+v,

where x, y, z, u and v are five different points. We obtain a homology plane
X with

provided that a; and b; satisfy the following equality:
(b, — a3)(2by — ay) —9aja, = +1.

4.2 Cubic, quadric, line. Starting with a cuspidal cubic C, a regular quadric
Q and a line L on P? such that

C-L=3z, C-Q0=3x+2z+y, Q- L=2z,
we obtain a homology plane X with

5 1 1
XP=2o — -
(X 2 ab, a,b,

provided a; and b; satisfy the following equality:
(2a, — b;)(3a, + b)) — 12a,a, = + 1.

4.3. 2-Section and two sections in X,. Starting with the configulation of
curves on X, such that

C ~2M + 5F, T~M+2F
and that
C-M=x, C-T=4y+z,

where M is the minimal section and F is a general fiber, we obtain a homology
plane X with
1 1

2— — e —
aXy=2-5- 4

provided that a and b satisfy 2a — 5h = + 1.

4.4. A quintic with cuspidal tangent. We start with a quintic Q on P? with
three cusps {x, y, z} whose multiplicity sequences are (2,2) and the tangent line
T to Q at x. We obtain a homology plane X with

5 1
2—_—_
¢ (X) =5 "
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