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On ill-posedness and a Tikhonov regularization for a
multidimensional inverse hyperbolic problem

By

Masahiro YAMAMOTO

§1.

(1.1)

Introduction

We consider an initial/boundary value problem for a  hyperbolic

u"(x , t) = (x , t) (Of (x) (x ..(2, 0 <t <T)
u (x, 0) =-u'(x, 0) =0

equation:

(x, t) =0 (xeaS2,0< t< T).

Here 2  and D c IV is  a  bounded domain with smooth boundary a , T> 0,
, aua  2u

and w e se t u' (x, t) =  att ) ,  u "  ( x ,  t ) (x , t), and d  is  the  Laplacian.

Henceforth we always assume

(1.2) 2 (0) , E C i [0, .

Let L 2 (Q) b e  the space of all real - valued square integrable functions with the
inner probuct (•,•)L2o2) and the norm II • IlL2(p)• Let us denote the Sobolev space
of order s> 0  by Hs (S2) (e. g. Lions and M agenes [13]). Under the assumption
(1 .2 ) , for any f E ( 9 )  ,  there exists a  unique solution u= u (f) t o  (1 .1 )  such
that

u=u (f) G ' uo, T] ; 111.,(Q )) n c2( [o, v  (Q ))

and

au ( f )   eli` (0 , T; L2 (a .(2))On

(Lasiecka, Lions and T riggian i [10 , Theorem 2 .1 ]  and the argum ent in  §4 of
Yamamoto [24] ) .

T he term A (t) f  (x ) is considered a n  external force causing a vibration.
W e assume that A  is a  known non-zero 0 - function and is independent of the
space variable x, and f EL 2 (Q ) is unknown. We discuss
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Inverse problem. Determine f  from

als(t) 
an (x , t) (xe 0<t<T).

Here we set

where 2.)(x) = (1)1(x)(x ), , 1.r ( X ) )  is the outward unit normal to  aS2 at x.

More precisely, in th is inverse problem, we are required to discuss
( I )  (Uniqueness) Is the correspondence

f - - - a
uan

(f ) (x, (xEas2,o<t<T)

au 01 one to one? T h a t is , does an ( x ,  =  0 (x E  aS2, 0 G t < T ) imply f (x ) =  0

E  ?

( (Continutity) Estimate f  b y  
auavt

(f ) (x, t )  with appropriate norms.

(ifi) (Existence of f  realizing given boundary da ta ) Does f EL 2 (Q ) exist such
that

au -f) (x
' 0 '=  (x E OS2, 0 Gt <T)an Y 

for a given y ? In other words, can we characterize

[au(f) , f  E L 2 (Q ) ?

(1V) (Reconstruction) Give a  reconstruction formula of f  in  terms o f  au ( f )

an
Throughout this paper, as the set of unknown fs , we take 1.2 (Q), although

another choice such as H' (Q )  is possible. Then we notice that firstly w e have
au 

to choose a  space of data
,

an s and its topology in order to discuss " (H) Con-

tinuity". F o r theoretical discussions of ou r inverse problem, it is desirable to

search for the space 170 and the topology of ,

an s which guarantee that the map

(f) 
f

from 12 (Q) t o  Yo, is  bijective and the inverse m ap is continuous o n  Yo. As
such a  result, by Theorem 1 in Yamamoto [24], we have
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Theorem O. We set

(1.3) d= sup lixi — x2i; Xi, x2ES2F =  the diameter of Q.

We assume

(1.4) T > d .

(1) (Uniqueness) If the solution to u(f)to (1.1) satisfies

au ( I )
'

 =  0 E  aS2, 0 <t <T) ,an 

then f (x) = 0 for almost all x E S2.
(2) (Continuity) There exists a constant C1=C1(S2, T) such that

 

au (  

an

 

au(f) 

 

(1 . 5) ^  If IlL2 (Q) C1
1P (0,74' (0S2)) 1-P(O.T;L,2 (ap))

  

for any f E L 2 (Q) .

Here and henceforth we set

111 (0, T; L 2 (as2)) = uEL2 (0, T; L2 (aS2)); (0, T; L 2 (as2))i
(14, 11) (0,T;L

2
 (N M =

0 a

f
 ll 

(14 , t) V —, t) 14 (X,1 7 , )d S td

and

IUIIH( O T ( u 5 )  =  t, it) 11A,T,L 2 (m )

for u, v E H1 (0, T; L 2 (aS2)).

Rem ark. Yamamoto [24] gives also characterization of the range

f E L2 (Q ) C H ' (0, T; L 2 (as2))

(f) and a representation formula of f  in  terms of an

For the uniqueness and the continuity, the restriction lik e  (1.4) is neces-
sary because o f the  finiteness of propagation of w aves. That is , T  is greater
than the diameter of S2 in  which the wave propagates at the  speed 1 according
to  (1.1).

auThis theorem means that we have to observe the time derivative of as

well a s  au i ts e lf  for stable construction of f  E  (D). However, from a  practi-

cal point of view, the observation of the ti m e derivative is not desirable, and

frequently we are obliged to construct f e L 2 (D ) only on the basis of   ian t s e l f

which is polluted with L2 - errors. As is seen by Theorem 1 in  §2, if we choose
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L 2 (0, T; L 2 (0S2)) , not (0, T; 1, 2 (as2)), as the range space of G, then  the map

(1.6) au ( f )Gf : L 2 (Q )  L 2 (0, T; L' (5Q))an
is  compact, so that cannot be continuous from L2 (0, T; 1, 2 (as2)) to L' (Q).

Thus the problem of determining f  L 2 (Q) from  a l s ( f ) E L 2  (0, T; (as2)) is
ill -posed in  the  sense of Hadamard. For stable construction of solutions of the
ill-posed problem, we have to apply regularization techniques such as Tikho-
nov's regularization (Baumeister [1], Groestch [6], Hofm ann [7], Tikhonov
and Arsenin [20]). In  th is  paper, w e w ill apply Tikhonov's regularization to
the equation y =G f  for y E L 2  (0, T; (a,(2 ))  .

The proposes of this paper are
(1) to  d iscuss th e  asymptotic behaviour o f  th e  singular values of G , which
gives information about the degree of ill-posedness.
(2) to  d is c u s s  c o n v e rg e n c e  ra te s  o f  th e  regulariz ing schem e f o r  finding
approximate solutions of y =G f  with a given y EL 2  (0, T; (as2)) .

This paper is composed of ten sections and two appendices.
§2: w e presen t th e  compactness o f  th e  operator G  from  L 2 (Q) to L ' (0, T;
1,2 (Q12)) (Theorem 1) and the  asymptotic behaviour of the singular values of
G  (Theorem 2).

u§3: we derive conditional stability estimates of ilf-IlLzua) b y  a ( f) 
an Lo,T,L, (OD)) 

with

a-priori boundedness on f  s (Theorem 3).
§4: w e trea t a  Tikhonov regularization on the  basis of Theorem 3 and derive
convergence rates of regularized solutions (Theorem 4).
§5: w e discuss a  discretization in  the  Tikhonov regularization in  §4 and con-
vergence rates of discretized regularized solutions (Theorem 5).
§6: we prove Theorem 1.
§7: we prove Theorem 2.
§8: we prove Theorem 3.
§9: we prove Theorem 4.
§10: we prove Theorem 5.

§2. Ill-posedness of the inverse problem and the singular values

Let us recall that the operator G is defined by (1.6). First we show

Theorem 1. The operator G is compact from 1,2 (Q) to L 2 (0, T; (as2)).
Since GL' (Q ) is infinitely dimensional (e.g. [24, Theorem 2]), our inverse

problem of solving

(2.1) y -=Gf

fo r  a  given y E L ' (0, T; L 2  (a.(2)), is ill-posed (e.g . Theorem  2.6 (p. 20) in
Baumeister [1 ]). M oreover by Theorem  1, the re  ex ist a  sequence io'n of
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real num bers and fOn} cL 2 (Q) a n d  iOn[ ŒL2 (0, T; L 2  (a,Q)) such that

(2 .2 ) (71 iiMan= 0,

(On, Om) 1..2(12) =  5mn

(2.3) (0m, On) 1:(0,T,V (a.(2))
0
t ) (x , t) dS.rd t

OS?
= 5.,, (n, m 1)

and

(2.4) G On= anOn G*On= any5. (n>--1)

(e.g. Baumeister [1], Groetsch [6], Hofmann [7 ]). Here and henceforth we set

Ii, i f  n = M ,
5mn=

0, if n*m

and G* is  the adjoint operator G : L 2 (.(2) - - +L2  (0, T; L 2 (as2)) .
The real num bers an (n  ..1 ) and the system fan, On, OnIni are  called re-

spectively the singular values and a singular system  of G. The singular system
of G is useful for studying the  ill - posed problem y = G f, and in particular, the
a sy m p to tic  b e h a v io u r  o f  t h e  s in g u la r  v a lu e s  sp e c if ie s  t h e  d e g re e  of
ill-posedness (e.g. [1] , Colton and  Kress [4 ], [6 ]). A s fo r th e  asymptotic be-
haviour, we have

Theorem 2. W e assum e (1.2) an d  (1.4). T here ex ists a constant C2 =
C2 (S2,T) >0 such that

(2. 5) C2TI 7 71---11

provided that we renumber an (n_  1) i f  necessary. Here we recall that r is  the spa-
tial dimension.

T his theorem gives a n  upper bound of the  singular values. So fa r  we cannot
determine th e  o rd e r  o f  th e  asymptotic behaviour o f  an . However, th e  upper
bound gives a  low er estim ate o f  th e  degree o f  ill - posedness o f  o u r  inverse
problem. That is, we consider perturbations around f o L 2 (Q ) and deviations
of y by them. More precisely, we assume yo=Gfo for some f 0 EL 2 (0 ). Let data
yo be  perturbed in the direction of On; Yo YE,n

= yo -F- 60,,, with B E R.  Then by
(2.4) the corresponding solution f ,, n is

6
f 0+  ,7

-
j

-
.n

On

and by Theorem 2 we have

(2.6) IV° — femilLz(D) _  - 1 >  f - ,  i n4(r 
1 
- 1 ) .

ilyo—Yemllo(o,T;L2(as2))

T his m eans that errors Ilio — fe IlL2to) in solutions m ay arbitrarily becom e large
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with a  lower bound (2.6), no matter how small errors E= 11110---- YAL2(o,r4-(asm in
data may be.

Theorem 2 can  be  resta ted  by  the  degree o f  ill - posedness o f our problem
y =Gf (e.g. Definition 2.42 (p.31) in  [7]): The degree of ill - posedness is great-

er that o r equal to 4 (r-1)
Thus some techniques such as the regularization are necessary for stably

solving y  = Gf on the  basis o f da ta  polluted by errors. In  §4 and  §5, we will
discuss a  regularization method by Tikhonov.

Remark. W e can consider the ill - posedness of o u r  inverse problem in
term s o f a  factorization of G  into the  ill-posed part and  the  well - posed part.

We define an operator 5 form L 2 (D) to  L2 (0, T; H (as2)) rl H1 (0, T; (0S2))

by d f=  
au ( f )  

 . Moreover let I  be the embedding of L2 (0, T, (0,Q)) n H1 (0,an
T; L 2  (8.i2)) into L 2  (ap  X  (0, T )) . Then we can factorize G: 1,2  ([2) —>L2 (0, T;
(5.(2)) into the ill - posed factor I  and the well - posed factor d: G = i d .  In fact,
as is proved in Lemma 2 in  §6, both e",- and  d - l IA(5) are continuous, while / is  a
compact operator. Therefore the  ill - posedness in  solving y = Gf comes mainly
from  I. W ith  respect to  such factorization, w e can refer to  Theorem  5.2 in
Hofmann [8], where mainly nonlinear ill - posed problems are  discussed in the
case where the  linearized well - posed p a rt has not only a  continuous inverse,
but also is a surjective (cf. Lemma 2.46 (p.33) in  [7]).

§ 3 . Conditional stability with a-priori information

It follows from Theorem 1 in  §2 that is not continuous from .0 (0, T;
(0S2)) to  L 2 (Q ). However if  w e  can  assum e a-priori inform ation on un-

known f 's  so that f 's  can be restricted to  a compact set l.1 in (Q ), then we
c a n  re s to re  th e  s tab ility  o f  G- 1 .  In  f a c t ,  b y  a  well-known theorem  (e.g.
Lavrent'ev, Romanov and Shishat•skii [11, p. 28]), the restriction G to the set
611 has a  continuous inverse G- 1 : f ,  f  Eil (n 1) and liGfn — Gf Illoo,Tv(as2)) — >0 as
n --4 co im ply Ilfn — filyn2) - 4  0. The rate of the convergence ilfn

f Il w
0,  d e

p e n d s  o n  th e  choice o f  th e  ad m issib le  se t 1/ of f 's  and f r o m  Ltzlie) genera l
theorem, we cannot, in general, specify the order of continuity of the restricted
inverse. On the other hand, for discussions of convergence rates in Tikhonov's
regularization treated in  §4 and §5, it is necessary to determ ine the  order of
continuity. In  th is  paper, adopting spaces o f  fractional order defined by the
elliptic operator (see below) as admissible sets of f  s, we will give rates of con-
tinuity of restricted inverses.

F or defining admissible sets, we will introduce an operator and notations.
Let A be the operator in (Q ) defined by
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(A u) (x) =  Au (x) (xE  Q ) ,

0 (A) = lu EH' (Q) ; ul 042=  01 = H2 (D) n  (Q) .

Then fo r any  a E R , we can define the  fractional power A a  (e. g. Pazy [17])
and for 0 by Fujiwara [5], we see:

0 (A ct) _,H2a (s2) , 0  a  < 14 ,

(3.2) (A") = (S2) , < a ,+

1 1 3 3(A 4)
 C H

2 (Q) (A 4)
 C H

2 (Q)

and there exists a constant C=C (D, a) > 0 such that

(3.3)

for and that

(3.4) CHIA afilL2(Q) —<ilf!IH2.(12) Ciiil afilL2w) (f  ED (Aa ))
1 3fo r  a E  [ 0 ,  1] , a —4 ,  4 .  In  p a r tic u la r , fo r  m E N, w e  have (ila) =

IfEH 2m CO; A if  OS2=  0 (0 . For given cr._>0 and M> 0, we set

(3.6) J E  (Aa); liAafilL.2u2)

as an admissible set of f 's .
Our answer to specification of order of the restricted inverse on Gailm,a  is

Theorem 3. We assum e (1 .2 ), (1 .4 ) and

(3.6) AE C00[0, 7 ] .

Let 0  an d  M > 0  be arbitrarily  giv en. T hen there ex ists a constant C3 =
C3 (Q, T, A, a) >0 such that

 

au (f) a u  (g)
an an

2a
2a+ t
L'(0,T,i, ( OD) )

1
(3.7)l l f g lIL2w C3M2a+1

  

for any f, g E qim,a .

  

This theorem asserts that the restricted inverse is Wilder continuous with
2 a  exponent 2a±1 w h ich  inc reases a s  th e  degree a o f a -p rio ri regularity on f

increases.
If we do not assume any a-priori regularity on f  and g, tha t is, a=- 0, then

the estim ate (3 .7 ) is  trivial.

(3. 1)

If IIH2a(S2) Clill a filL2 (12) ( fE (A a ) )

Rem ark. In  a  sim ilar inverse problem fo r  a  parabolic equation, if  we
adopt norms such a s  II • 11/P (0,T,o(a.f2)) for boundary data, we can merely obtain a
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m uch weaker conditional stability estimate, namely, a  logarithmic continuity
even with a similar a-priori information (Yamamoto [22],[23]). The difference
com es from  th e  sm ooth ing  property  in  t h e  parabo lic  equation . U nder an
assumption o n  Â, w e can specify  th e  norm  fo r  boundary d a ta  adm itting an
equivalent stablility estim ate fo r  th e  L 2 (Q ) - norm  of f  (V u K im  Tuan and
Yamamoto [21] ) .

§4 . Convergence rates of regularized solutions by a Tikhonov method

Let us proceed to stably solving

(4.1) y=G f
w ith respect to f E L 2  (9 )  fo r a  given y E GL 2 (Q) C L 2 (0, T; L 2 (aS2)) around
exact data . T h a t is , w e consider th e  following reconstruction problem o f  fo

from inexact data y: Let y o  GL2 (Q), th a t is, let a solution fo t o  (4 .1 ) exist.
Moreover, as available data of yo, we can observe only y e which is polluted by
L2 - errors:

(4 . 2) 11YE—Y oilL'(o, T./. 2 (ap)) E.
T his is  ve ry  usua l in  practical applications. Then w e a re  required to search
for approximate solution rj; such that

If foilL2(Q) - - *0 as E I 0.

M oreover it is very desirable to specify the convergence rate of 11.7-6 — folL2a2).
Here it should be noticed that we do not know whether o r not y E G L 2 (Q), so
that the equation y  —  does not necessarily possess a  solution i; . Even if we
can choose y ( n _ l )  such that y,„c GL2 (Q) and IlyEn— Yollc(o,ri. , (as2))— '0 as n -

00, by Theorem 1 we can not always conclude that
F o r  overcom ing these difficulties, various regularization techniques are

proposed. In  th is  section, w e d iscuss a  regularized m ethod with a -p r io r i in-
formation (e.g. Baumeister [Chapter 6, 1] , Natterer [15], [16], Tikhonov and
Arsenin [20, Chapter 2 ] )  and  derive convergence - rates of regularized solu-
tions toward fo. We assume that a-priori information of fo is available:

(4 . 3) foED (A a ) , ikl af0ilL2(Q) E

with som e constants a> 0 and E >O.
T he Tikhonov regularization method which we discuss, is form ulated a s  fol-
lows.

Minimize

(4.4) F (e, E, a, y ) V ) Jib (o,r (a.o)) ±
82 

112V.f 112 1.2(9)•E2

R e m a rk . It is possible to discuss convergence ra tes of regularized solu-
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tions in  another regularization (e.g. Groetsch [6, Chapter 3 ])  which requires
no a-priori inform ation of higher regularity of an  exact so lu tion . In  a  forth-
coming paper, w e w ill treat such a  regularization on the basis of the factoriza-
tion mentioned in Remark in  §2.

T he regularization adopted here is w ith term  prescribing higher regular-
ity  ( i .e . 11,4"f1112(a)), a n d  a  sim ilar m ethod is d iscussed in  re la tio n  w ith  the
Radon transform ation (N atterer [15], [16]). F o r  h is  argument, detailed in-
formation o f  th e  degree o f  ill - posedness (e.g. (1 ,1 )  i n  [1 5 ])  is necessary,
while in our case, it is difficult to obtain such information. Thus we must mod-
ify his approach for our inverse problem.

First w e show existence and stability of the minimizer of (4.4).

Proposition 1. Let a> 0, e > 0  and E > 0 be given.
(1) For given y  E L ' (0, T; L 2 (as-2)), there ex ists a  unique minimizer f= f  ( y )  E

(A a )  of F (e, E, a, y) .

(2) For yl, y2E L 2  (0, T; L 2 (0 ,Q )), there exists a constant C= C (a, i)>  0  such

that

(4 . 5) Ilf  (y 1 ) - f  (y 2)110(2) y211L, (03'12 (as2))•

T h e  proof o f  th is  proposition follows, f o r  exam ple, from  Theorem  3.7
(p. 35) in  [1], and for convenience, we will prove it in Appendix I.

This proposition m eans that for fixed E> 0, we can construct the minimiz-
er f ,  stably against deviations of y , provided that the error bound of y E 's  is e,
tha t is, y e 's  sa tis fy  (4 .2 ). Furthermore we can show tha t lirn fe =f0 (e.g. [1]),

o
but so fa r we do not know the rate of convergence. W ith our formulation (4.4)
with (4.3), we have

Theorem 4 .  Let f ,= f  ( y , )  be a unique minimizer of  the regularized problem
(4.4) f or ye E L2 (0, T; L 2 ( a f2 ) )  satisf y ing (4 .2 ) .  L et us assum e (4 .3 ). Then
there exists a constant C3 =  C3 T, 2 , a) >0 such that

(4 . 6) lIfe 2a2,1.— f011/2(12) C3E2a1+1 E .

Here C3 is independent of E and E.

T he la rger a> 0  we choose fo r  a -p r io r i information o n  regularity  of fo,
the  better the convergence rate of regularized solutions toward fo is. However
the exponent of convergence rate can not exceed 1.

§5 . Discretization in the Tikhonov method

In  th is  section, w e discuss th e  problem o f  minimizing (4 .4 ) in  a  discre-
tized version , w h ic h  is  a  m o d if ic a tio n  o f  a n  approach  i n  Natterer [15],
Baum eister [1, pp. 109-111] and establish a  convergence result of discretized



834 M asahiro Yamamoto

regularized solutions tow ard  the exact solution. W e  d o  not in tend  that th is
section is devoted to a  complete description concerning discretization, and we
do not mention concrete discretizations in L 2 (Q) and L 2 (0, T; L 2 (a9)).

W e assu m e  (4 .3 )  fo r  some a> 0 a n d  E >  0. Let IXhih>0 b e  a  family of
subspaces of L 2 (Q ) such that the following properties hold.

(5.1) XhC.0 (A a ) , dimXh< œ.

There exist a  linear operator (lia)-4Xh and /3>0 such that

(5 . 2) iif —bifilL2(12) —<ChsliAafilLz(s2)( r e  ( A " ) )
and

(5.3) IL2(Q) -Cilfl ailly(Q) E (A " )).

H ere C >0 is a constant independent of h.

Example for Xh (h> 0) . Let

(5.4) Qc112

be a bounded domain with smooth boundary 0,S2 and for h > 0  le t Th = 110 be a
triangulation of Q such that

hx= the diameter of K ET h

PK=  the diameter of the circle inscribed in K

h-= max hi(
Kent

S2h-= U K
K E T h

(e. g . C iarle t [3], Johnson [9], R aviart and  T hom as [18]). W e assume that
there exists a constant r> 0  independent of h >0 such that

(5.5) (4> r
hic —

for any K  T h . Moreover we set

(5.6) X h =  E C (Q ) ;  d x  is linear for any KETh and visav2h=01.

For J . E , w e  define Ih fE X h by

u (x ) ,  if x  is  a  node which does not belong to aQ h

(5.7) (i h f) (x)
0, if x  is a nodeEaQh.

Then we can prove

Lemma 1. We assum e (5 .5 ) . T hen X h an d  Ih g iv en  b y  (5 .6 )  a n d  (5.7)

s a t i s fy  (5 .1 )-(5 .3 )  for and g=1.
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For completeness, we will prove this lemma in  Appendix
L e t  u s  re tu rn  to  th e  general fram ew ork (5 .1 ) - (5 .3 ). T h e  discretized

problem is to determine the minimizer f,, h of

(5.8)I  Gfh (5,Q))
E 2  

A afh

in X  h C  (A") . Similarly to Proposition 1 in  §4, w e see that there exists a  uni-
que minimizer f s ,h EX h fo r  a  given y,.

O ur next problem is concerning the convergence rate of f,, h tow ard f o a s
h 1. 0 and E 1 0.

Theorem 5. L et us assum e (4.3) for the exact solution f o . If  f or a  given
T>0, we choose

h=0  (Er ),(5.9)

then there exists a constant C4
=

 C 4  (Q ,  T, /1, a, 13) >0 independent of  E, h, E and
the choice of y , such that

C 4 (E + 1) 2a+162a+1, if r.— —
(5.10) if,h — fo ilL2u2)

{
2a+2 2a 1

2a+2 1 1 1 1C4 (E+1) 2a+1E 2a+1
if 2a+1 )8G  y

1 1 1
If then 2 a + 1 nam ely, (5.10) is m eaningless for 2 a + 1

the convergence of discretized regularized solutions. The optimal choice of r's
1 2a  is seen to be 0 . The fastest rate guaranteed by this theorem is and2a+1
1

fo r the  ra te , y —„ should be satisfied. M oreover we cannot improve the rate
13

2a1
9 a + i , even though we choose finer discretization (i. e. y> -0 ) , provided that

a and j3 are  fixed. The exponent a corresponds to a - priori information on reg-
ularity of the exact solution and, in general, the greater a is, the greater g we
can take in  the  finite element method (e. g. Johnson [9], Raviart and Thomas
[18]). Therefore the  greater 16  w e can take , the  le ss  y  (i. e. th e  coarser h)

2 a  
gives the fastest rate 2 a + 1  Furthermore the greater a is, the greater the fas -

2 a  te st ra te  
2 a ± 1  

s
'  

but cannot exceed 1.

In  the  example, from Lemma 1, w e can re w rite  (5 .10) a s  follows: if h
0 (sr ) , then

i

Ilf„h-f110(p)
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under (5 .4 )- (5 .7 ).

§ 6 .  Proof of Theorem 1

First we introduce Sobolev spaces on 0,S2 x (0, T). For r, s. 0, we set

(6.1) Irs (aS2 x (0, T ) )  =  (0, T; f i r (as2)) n Hs (o, T; (as2))
(e. g. L ions and M agenes [13, V ol. II, pp. 6 -8 ] ) ,  and th is  is  a H ilbert space
with the inner product (•,•) r y s  and the norm H 0 r .s :

(6.2)
(u, y ) r,s = , V) (0,T;11' (012)) t , y) IP T,L.` (a.(2))

11'11 r , s = (1114f2 (0,(OT ;R' (812)) +1114 1111'(O.T;L'(012)) ) 2

In particular, we can rewrite .fro (as2 x (0; T )) =L 2 (0, T, L 2 (a s2)) . In order to
prove Theorem 1, it is sufficient to prove

Lemma 2. There exists a constant C  C  (S2, T) >0 independent of JE

(Q ) such that

(6.3) C-10f lit.2(32)-- II Gfil-1
2-L ,I C111c 111.2(sa)

for any f EL 2 (Q)

Let Lemma 2  be proved. Then since the  embedding HI (as2)—.1,2( .0) is
compact, the embedding op X  (0 ,  T )) =  L 2 (0 , T; (as2)) 1.1 (0,T;L 2

(as4)-1-10, 0 (as2 x (0, T ) )  is compact (Theorem 2 .1  (p. 271) in Temam [19]).
Therefore the operator G is compact from L2 (Q ) to L2 (0, T; L 2 ( Q)).

Now we proceed to

Proof o f  Lemma 2. T h e  le f t  in e q u a lity  is  e a s ily  se e n  f ro m  ( 1 .5 )  in
Theorem 0, b y  0Y0h0(0.7-1as2)) 11:1101-,1. For the  right inequality, we will proceed

as follows. Since ÂEC 1 [0, T ], we can apply Theorem 2 .1  (pp. 95-96) in Lions
and Magenes [13, Vol. II], so that we obtain

(f)iii2 (o.T:L= (ap)) _ C i f

Here C =  C  (Q, > 0  i s  a  constan t w hich is independent of f .  By the trace
theorem (e. g. Theorem 9 .4 (pp . 41-42) in  [13, Vol. T ] ), we get

avt 
(0,T Hi (OD) )

clIvi (f) IL (0.7.0 D )) C IfIIL2uy

for any fE  (Q ) .
Next we have to prove

(6.4)
11Gf  ill! (0 ,T;iii (d.f2))
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a au (r) 
a t  an

  

(6.5)
L (03',12 (al))) sclItlIvco

   

for any fE L 2 (S2) .
Let z be the weak solution to

{ z"(x , t)=  Az (x, t) + 2' (t)f (x) (x E Q, t> 0)

z (x, 0) -=0, z' (x, 0) =2 (0)f (x) (x E ,S2)
z (x, t) =0 (x e aQ, t > 0) .

Since 27 E L 1 (0 , T; L 2 (as2)) and 2 (0)f E L 2 (Q) , it follows from Lemma 3.6
(p. 39) and Théorème 4.1 (p. 44) in L ions [12] that

(6.6) z cC ° ([0 , 7]; 1-4(s2)) ncl([o, T]; L 2 (s2))
and

a Z II
(0.TV (aS2)) +11/1 ( 0 ) f IlL2(0 )an (0,T;L' (OD))

for any fE L 2 (D). B y (6 .6 ) we can set

ft"(x, t) =  fo
tz(x, s)ds (x E Q ,  0 < t< T ) ,

so  that fic  C ' ([0 , 7] ; Hô (Q)) (1 ( [0, 71; L 2 (S2)) and ft-  sa tisfies (1 .1 ). By
uniqueness of weak solution (Lemme 3.6 (p.39) in  [12 ]), we get

u (f) (x, t) =- , t) ( x  S2, 0 t  <T )

and

z (x , t) = u  (f)'(x , t) (xCQ , 0 < t< T ).

Therefore  w e can prove (6 .5 )  b y  u s in g  (6 .7 ) . Combining (6 .4) w ith  (6 .5),
we complete the proof of Lemma 2.

§ 7 .  Proof of Theorem 2

We will divide the proof into the following four steps.

FIRST STEP. We factorize G: L2 (S2) - 4L2 (0, T; L 2 (0,Q)) as follows. Let I  be

the embedding of (aQ X (0, T ) )  into L 2 (0, T; L 2 (a Q)), a n d  5 be the oper-

ator from L 2 (S2) to (0 9 x  (0 , T ))  such that

= Gf (fe L2  (Q)).

Then we have

(6.7)

(7.1) Gf =1G.f ( f (S2) )
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and we can rew rite  (6.3) as

(7.2) 111-,1

for any fEL 2 (Q). Here we set C=C(S2,T) >0.

SECOND STEP. T h e  operator / i s  compact from  HY•1 (N2 x (0, T ) )  to
L 2 (0, T; L 2 (as2)), so that / has a singular system  irn , C,i,

(7.3) limr„=0
n - .

(7.4)
cnEH O  (a,S2 x (0, T)), Cm4,1=5.

On EH"(0,f2x (0, T )), (l9 n , 0.)0,0=5.,

(7 . 5) = rn en, /*On =- 1-nCn 1)

(7,6)y  = (y, Cn, y EH2 .1 (as2 x (0, T ))
n=1

(7. 7)z = (z, en) °,00,,, z ir9,°(aQ x (o, T)) = L 2 (0, T, L 2 (as2)) .
n=1

T he series i n  (7 .6) a n d  (7 .7 ) are convergent respectively in (aQ X  (0 ,

T ) )  and H"(0..(2 x (0, T ) ) .  Since it is not easy to directly estim ate the singu-
la r  values themselves of G, w e  w ill do  v ia  the  singular values i n (n 1) of I.
To this end, we will show

Lemma 3 .  L et un  (n •  1 ) b e the s in gu la r values of  G . Then there ex ists a
constant C=C, (9 , T )>0 su ch  that

(7.8)

Proof of L emma 3. B y  (7 .1 ) a n d  th e  min-max principle (e.g. Theorem
4.19 (p. 65) in  [1], Lemma 2.44 (p. 32) in  [1 ) ,  we have

(7.9) o-„.+ 1 = inf [sup{ .0 (
°
9'°),  f I f  k (1 k _<n) , f=01; fl, • • ..fn E L 2 (Q)}.

Here and henceforth we write f _L g w hen (f, g) L 2( Q ) -= O. Therefore by the  left
inequality in  (7.2), we get

ilidf110 011df 11 1 
an+1

=  infisuff ,  f i j k f*01; • • •, fn EL2 (S2)}

infisup f f k  (1- k . P t )  , f  *01; •• •  fnE 1, 2 ([2)1

= C  inf {sup 11141 /1
1°'° , y CC* ) - Ifk (1 , y * 0 , y E R (U) ;



Multidimensional inverse hyperbolic problem 839

ft, • • • fn L 2 (S2)).

At the last equality we note that (d- * ) -1  exists. Moreover

(7.10) (d-*)-1L2 (Q ) =H 12'1 OD X  (0, T) )

since d-  i s  injective and d- L2 (Q ) can  be  proved  to  be  c losed  in  T R  (0S2 X
(0, T ) )  b y  (7.2). Consequently we get

Ii 1c)c y k (1 y *0, yER(G )};ann inf Isup
y ID

•••, y nc (0S2 x (0, T))}

11.410,0(  <  k <n ) (;) •i n f i s u p

tilY1 1 .1' Y  " k  —  ' "  
*

•.•, nE (as2 x (o, T))1

for n At the last equality, we use the min-max principle for the embedding

I: H P  (aS2 X  (0; T) )--> L 2 (0, T; 1, 2 (a Q)). T h u s  the  proof of Lemma 3 is  com-
plete.

Rem ark. Since 91(G) 1-11. 1 (OD X  (0, T ) ) ,  we do not know whether we
can get a reverse estimate r,, C"o'n(n . 1).

THIRD STEP. By Lemma 3, for the proof of Theorem 2, it is sufficient to
discuss th e  asymptotic behaviour o f  r n (n  ..__ 1). In  th is  step , w e construct a
singular system of I. F o r  th is, le t us introduce notations and an operator. Let
J a p  be th e  Laplace - Beltrami operator on  OS2. There exist countable eigenval-
ues of — dap and we number them repeatedly according to their multiplicities:

(7.11) 0 = t t o - P i - • • ' '  œ

(e.g. Minakshisundaram a n d  P le ije l [14 ]). L e t rin b e  th e  eigenfunction of
— dap for ,u,i (n. 0) such that

(7.12) (7)n, 1)m) L2(a) —  5mn (rn , n _.>: 0) .

Furthermore we define enEL2 (0, T ) (n O) by

{ 4  n r t  -  ,cos T  ,  n.-_'• .t

Then as is  direclty seen, we have

(7.13) en (t) =
1 n=0.

'
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(7.14) (en, em)L2(o,r)= mn (m, n

The purpose in this step is to prove the following proposition.

Proposition 2 .  We set

(7.15)
( n 271.2 1

amn —

T 2 + 14
(m, n O)

The operator I has a singular system  law n , anmen (t) m (x) , en (t) TJm (r )F

This proposition is proved by Lemmata 4 - 6.

Lemma 4. The sy stem  !e n (t) 12m (x)I n,,n>.o i s  an orthanorm a l basis in
H o,o (a—  xsd (0, T)) =L2 (0, T; L 2 (09 ) ) .

Lemma 5. We set

(7.16)v ) i_' 1
=

 E (U , en 77m) 0,0 (1), ennm) 0,02 n,m=0

provided that the right hand side is convergent. Then < • ,•> 4, 1 i s  an inner product

def ining the norm  in  111' 1x  (0, T ) )  prov ided that a constant m ultiplier is
neglected.

Lemma 6. The sy stem  ?anmen(t))7m(x)1 i s  an orthonorm a l basis in

H1 (as2 x (0, T )).
Let Lemmata 4-6 be proved. Then we can complete the  proof of Proposi-

tion 2 as follows. For the proof, by Lemmata 4 and 6, it is sufficient to verify

(a n m e n n  =  •nm X e nn m

(en n m) = anm X (7nmenn m (m, n O)

T h e  f irs t  e q u a lity  i n  (7 .1 7 ) i s  t r iv ia l .  L e t  u s  v e r ify  th e  se c o n d . Since

< •  • >  ,  i s  a n  in n e r p ro d u c t in  if (0 9  X  ( 0 ,  T ) )  by L em m a 5  and
2

ennin) o,o= I*ennin>+,1 for any uEl-A 1 (5,(2x (0, T )) ,  we see

(u, ennm )o,o=  (n, aatI * ennni)o,o

for any u E T /0  (as2x (0, T )) ,  which is the second inequality in  (7.17).

Now we proceed to proofs of Lemmata 4-6.

Proof of Lemma 4. The orthonormality is d irectly  seen from  (7.12) and
(7.14). Assume that y (aS2 X (0, T ) )  satisfies (y, ennnz)0.0= 0 (m, n 0).
We have to prove that y =O. For this, we have

0 = (y, ennni) f  (y ( • ,t) 77 i n )  1,2 (0S2)en(t)Cit (m,

(7.17)
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B y th e  com pleteness of leni in  L2 (0, T), th is  im p lie s  (y  ( ',  t ) ,  nm) L2(O12)
= 0(m for almost all tE [O, T ]. S ince  inmi is  an orthonormal basis in
L2  (a,Q )  (e. g. Chavel [2]), we reach y (x, = 0 for almost all x Eas2, t  e [0,
T ]. Thus the proof of Lemma 4 is complete.

Proof of Lemma 5. W e note

„,)„zoi.= n a p )
m=0

provided that a constant multiplier is neglected (e. g . [13, p. 37, Vol. 1 ]) . Let

u EHP (aS2 x (0, T)) . W e have
au  2

11/41121,1 -112411b (0, T;Iil (OM 0) a.,2 ( f t  V L2 (0,T;L2 (au) )

10 T t) , 77,n) 2„(..).
m=0

aU 2▪ E t), 72m)d t
L2 (00)

n,m=0
00

E .1 1

,n) v(6,2), en) v(0, T ) 2

n,m =0

• E (., t)   . nz t) 2

T  

sin' nm )nas/)• ,L 2 ( 0 ,T )
n,m

E ,t,t1 (14, ennn.i)
n,tyi=0

▪ E (f r  . von
2
(au  (

0 f 7 ,  s in  T a t  \• , t), 72m )L 2(a9)(10
n ,m=0

A t the first equality and the second term  in  the  third equality, w e use respec-
tively

110112 0 ), = E t l  m2  ( 0 ,  77m) 2L2 (0 S2)H2 (12
m=0

and
0 0

,

4  .  nrct) 2

s in  T  
/
,

L 2 ( 0 , T )
=Ilg2 (,) T)

n=0

au for any g (t) =( 
a t  

( •  ,  t ) ,  )7.) EL 2 (0, T). Moreover by integration by parts,
L2(9)
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we see

rT  .  rurt (ausin—
T  

—

a t  
• , t), 7bn)L2(amdt

n TC f
".= nm) L2 (0.(2), en) L2 (0,T)

n r
 (u

'

 e )0,0.T  

Therefore we get

CO

2  2
II 112
IIuI = (fit+  n )(u, en77m)g,0

2' T2
n,m=0

CO

an»? (u , en n  n z )

n,m=0

Thus the proof of Lemma 5 is complete.

Proof of Lemma 6. The orthonormality of the system in HI' l (a.i2>< (0, T))

follows from Lemmata 4 and 5. Noting that < it, 0'1110 0 )  i n > 1 =  a n n ii  (S , en n  in )  0 ,0 ,

we can readily get that lanm enT)J,0 is a  basis in I/1' 1 (aQ x (0, T )) .

FOURTH STEP. We renumber the singular values anm (M, 0 )  with dou-
b le  suffix  w hich  is g iven  by  (7.15). W e define th e  rearrangem ent ji-

111 1 o f
”),,, c) by

(7.18) fTi ==
if k2 - t- 1 .1 k2 H- k- r1

if Ig-l-k - 1- 1 1 _(k+1 ) 2 ,

for In other words,

(7.18)
k2+1+n = ank

r (k +1 )2 -In  a km

(0

(0

W e will derive the asymptotic behaviour of the r (/ _ 1 ) .  F or a given l E N , we
fix k E N  such that k2 + 1 .1 ._ (k + 1 ) 2 . T hen by  (7.15) we have

CrickT I .  max luok, ako ,

namely,

( k 27.1.2 1 _32- T 
(7.19) +122

1
T2

)

Irk' J. -1

(-

B y [14], we have

(7.20)
2

Pm 
= Coin r -2 1 + 0  m r - 1 ) as m—,00.
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Here 2 is  the spatial dimension and co=co (9) >0 is  a constant. Therefore
for sufficiently large k E N , we obtain

1 
maxi

7CK Cok2(r
1
- 1 )  (1+  0  (i)) 1

+   1
)

k2(r-1)

1 1where C=C(S2, T) >0 is  a constant. Since 
2 ( r

1

 1 )  <1, we have > 
k '  

so
k2(r-1)

that

1 , 1 2  ,pe
k  

 •
2(r-1)k 2 & -1)

Therefore .z- 1 . Noting that j  1 b y  (k+1) 2  l ,  we get r i .
k2(r1-1) 14(r-1)

Therefore by Lemma 3, we can reach the conclusion of Theorem 2.

§ 8 . Proof of Theorem 3

For the proof, we will prove

Proposition 3. L et a 0 be arbitrarily  given. Then there ex ists a constant
C=C (9, T, 2, a )>0  such that if  fED(A a) , then

ôfl 2a+-3
2-,2a-1-1

(f) < af IlL2Cf2).

Here we recall (6.1) a n d  (6.2).

Proof of Proposition 3. W e will prove the proposition in the following four
steps.

FIRST STE P. In  th is step, we will prove: if

(8.1) fE(.2(1."`)

for m ŒN U IC  th e n  v . =A m u (f ) satisfies

(8.2)
vn i Ec'ao, T j; H(s2)) n ([o, L2 (Q))

v;',1 E L2 (0, T; L 2 (9 ) )

and

(x, (x, 0 + 2  (t) A'nf (x) ( x  Q, t>
(8.3) v . (x, 0) =v.(x, 0) =0 (xE D )

v . (x, t) = 0 (xEaS2, t>0) .
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W e prove this assertion as follows. Let v ;  be the weak solution to  (8 .3 ). That
is, we have

(8.4) (15 " (•, t), (h) V (Q ) (  v7n (., t), 0) L2(12) — (2. (t) A m f , 0) L2(n)

for any t > 0 and any 0E 14(S2), and

(8.5) (x, 0) (x, 0) = 0 (x E Q).

By Lemme 3 .6  (p. 3 9 )  i n  [1 2 ] and Theorem 2 .1  (p p .95 -96 ) i n  [13, Vol. 11],
we see that v ;  satisfies (8 .2 ) . Therefore by uniqueness of weak solutions, it is
sufficient to prove that A - my; is the weak solution to  (1 .1 ).
First it is clear that A -

m y ; (x, 0) =0. Since EC ' ( [0, T] ; L 2 (Q ) ) and A m  is
bounded from L2 (S2) to itself, we have ( A 'v ) '( x ,  0) =A - rn v;;;: (x, 0 ). There-
fore ( A '7 ) ' ( x ,  0 )  =  0 (1 E Q) follows from v-, ; '(x , 0 )  = 0 . Firstly  w e have to
prove

( ( 4  - m 1 ); ) "  ( . t)  , 0 )  L 2(D) + ( 17 (A —"iv;) t), 0) L 2(Q)

— (A (t)f, 0) L2(Q)

for any t > 0 and any 0 E 1 4 0 .  To this end, we will prove

(8.7) (x, t) A - mv;" (x, t) ( x  Q , <  t <T ).

In fact, since ii;"E L 2 (0, T; L 2 (Q)) , we have

(1);" (• t) ,)7) L 2 (S2)(1)  ( t ) d t =  f  (v . (• , t), 1-5) L2 (.0)0 "  (t)dt

for any 7) E L 2 (Q ) and 0 E C',7 (0, T ). Setting 77= A - m r) for any )7E/2 (Q) , and

using ( A ' ) * =  (A * )'= -A - m, we obtain

f
T

(A - m 17; " (• t) )7) L 2 (S2)(1) ( t)d t =  f  (A 'v ;(• , t), 17) L 2co)0" (t)dt

for any n e L 2.  Therefore we get

d2

'v ;"  ( •  , t) , )7)7.2un 'v „ ; ( • , t) , L2(Q)d t2

= ((A - m v;2)" (• , t) , 7)) L2 (D)

fo r a n y  77 E L 2 (Q) , w h ic h  is  (8 .7 ) . L et u s  re tu rn  to  th e  proof o f  (8 .6). By

(8.7) a n d  (A ')  * = A ',  we have

— (v;i" ( • , , 0) L2(.s7)•

O n  th e  o th e r  h a n d , since H ( Q )  = ( A )  ( e .g .  Fujiw ara  [ 5 ] ) ,  w e  have

( V , 0) c2(0)= (A45, /1-4)1,242) for 0, 0E111) (D) . Consequently

(8.6)

(A - m VM) " (. , t) , 0) L2(2) = (A - m V711"  (. , t) , 0) L 2 (Q)
(8 .8)
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( (A ( • , t) L2(s2) = (.11- m A k T n (• , , AO) L 2(D )

= (A li; (• , t) , ,21+ (A - m  0)) 1,2(12) = (V v ,, (11 - m  q5)) L2(a).

W e apply (8 .8 ) and (8 .9 ), so that we obtain

((A - m v )" ( • ,  t ) , L2(1)1+ (V (A - m frn ) (• ,  V 0) L2 ( Q )
= (• , t) , A - nz v c o + (V v 7 ;,( .  t) , V (A - m0)) L2(9)
= (2 (t) Amf, A'Sb) L2(o)•

At the last equality , w e can  use (8 .4 )  by A - "10 E  1-4 (Q ) .  T h a t is, we have
proved (8 .6 ), namely, that A. - mt;;;, is the weak solution t o  (1.1) .

SECOND STEP. In t h i s  step, w e  p ro ve : if ( 8 .1 )  h o ld s , th e n  u m -=-
a2m+1
a t2 m + 1

u ( f )  satisfies

(8.10)

and

({o, H V Q)) nclao, T ]; L2 (s2))
// cco([0, T]; (Q ))

U" (x, t) = AU (x, t) + Pni+" (t)f (x) (x e S2, t>0)

(8. 11)

u(r, 0 ) =  
E  2 ( 2 m - 1 - 2 k )  ( 0 )  ( A k f )  ( x )

(X E
k=0
ni

4, = E/V2m-2k) (0) ( i kf )  (X ) E
k=0
U ( X ,  t )  = 0 (X E aQ , 0 < t< T ).

Here and henceforth we set 11- 1 (..(2) =  (H1
0 (,(2))': the dual of IA (a  and 2 ( k )  (t)

d k  

= (t) . For the proof, we prove

Lemma 7. Let

(8.12)
X EC 0 [0, f E  (A)

a E 0  (A) 4 1 aE ln (S 2 ) , b e 0  (A)

Let w be the weak solution to

w" (x, = dw (x , l) + X  (t) f  (x ) e  S2, 0 t  < T )
(8.13)w  ( x ,  0 )  =a (x) , w ' (x, 0) =b (x)

w (x , t) =0 ( x e aS 2 ,0 <t<T ) .

(8.9)
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a2
Then y (x, t) w (x , t) satisfiesat 2

(8.14)
v Ec° ([0, '] ; F (D)) n c' ([0, TT L2 (s2))
v" E ([0, 7];H - 1  (s2))

and y is the weal? solution to

(8.15)

y" (x, =Ay (x, x ( 2 ) (t) f (x)
v (x, 0) = Ja (x) (0) f (x)

y' (x, 0) = A b (x) +' (0) f  (x)
(x , t) =- 0

(1ES2, 0<t<T)
(/' E 12)

E S2)
(XEOS2, 0 < t< T ) .

 

Proof of Lemma 7. Let z  be the  weak solution to (8.15). Since z(•,0) E
Hio (D ) and z'(•,0) EL 2 (D ) by (8.12), it follows from Theorem 8.2 (p.275) in
[13, Vol. I ]  that

(8.16)
z Ec° ([0, T ]; H (Q )) ncl ao, 71; L 2 (Q ))

z " E 0 1 1 o , 71; H- 1 (s2)).

We set

(8.17) ft7 (x, f  (I — s)z (x, s)ds - F tb (x) +a (x) S 2, o<t<T )0

This /47 is proved to be a  weak solution to (8.13). In fact, since z is the weak
solution to (8.15), we have

( Vz(•, t), 0)L2(Q)

= (z " (,t), 0) L2 (0 + (x ( 2 ) (O f, 0) L 2 (52)

for any t>0 and 0E1116 (S2) , and

z (x , 0) = d a  (x) +x (0) f (x)
z' (x, 0) = (x ) +' (0) f  (x )

Therefore for any OEM (S2), we get

(if" (•, t ) ,  0)L2uz) -1-  (17 i7(•, t), V  45)L2w)

— (z (., 0)Lz(i2)+f (t — s) (7 z (• , s) ,

I7+  ( t  b +  Va,0 )L .2 (°Q) (by (8.17))

= ( • , t),O)L2w) — f o
t (t — s) (z" (• , s), 0)1,202>cls

f o
t (t — s) (x ( 2 )  (s)f, L2(Q)cls

(t b +  Va, g5) Dap (by (8.18)).

(8.18)

(8.19)

0) ocods
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On the other hand, carrying ont integrations by parts, we obtain

— f  (t — s) (z" ( • , s), 0)L2(9)cis

=t (z ' ( • , o ),L 2 C Q ) ±  ( z  (  •  ,  0) , 0) L2(D) —  (z  ( • , t) 0 )  L 2 (.01

and

1. s )  (X ( 2 )  (s) f , L2(124S

= t (X '  (0)f , 0) L 2 (S)) —  (X  ( 0 ) f , 0 )  L 2 (.(2) + (X  ( t)  f , 0 )  L 2 (12)•

Moreover, by Green's formula, (8 .12) a n d  E HP (Q) , we have

(t b +  Va, V95)L2(.(2) = — (tdb+ 0)L2(Q).

Therefore for any t > 0  a n d  çbEllô(Q), we get

(ii" ( • , t) , 0) Lzu» +  ( V w ,  t ) ,  V 0) L2 (12)
= t (2 ' ( • , 0 ) (0 ) f  — db L2(12) (• ,0) X  (0 )f  

—
da, 0)L2(Q)

+ (X (t)f, O)L2a2)
=  (x (t)f, ) L2u) (b y  (8.19)).

Therefore g  i s  th e  w eak  so lu tion  to  (8 .13 ), so  tha t by  un iqueness o f  weak
solutions we get itY (x, t)=w(x, t) E Q , 0  t <T ) and

z (x, = v ( x ,  /) = w(x (xEs2, o< t< T ).a,  2

Consequently (8.16) implies the conclusion of Lemma 7.

Now we proceed to the proof o f  (8 .10 ) a n d  (8 .11 ) by induction. Let m=
1, namely, f  E  (A ) . From  th e  proof o f  Lemma 2  in  §6  a n d  Theorem  8.2

au ( f )  (p. 275) in  [13, Vol. J], w e see that u o =  a, satisfies

uo C
°

([0 , ;  H (Q ) )  n c i ( [ o ,  T ] ; L2 (f2))

uo" EC
°
( [0, 7]; (Q))

a n d  (8 .13 ) w ith  x  (t) =  (t) (0 t  T )  ,  a (x ) = 0, b (x) = A (0) f (x) E S2) .
2

Since (8.12) is satisfied by f (A) , we can apply Lemma 7, so that u i=
(31t...

0t 2

a3u, 

at3
satisfies (8 .14 ) and

  

lu i " (x, t) = Au i (x, t) + .1' ) (t)f (x)
u i  (x , 0) = 2' (0)f (x)

tti(x, 0) =A (0) 4c( ' ) +2(2> (0)f (x)
It, (x, 1) =0

( x  Q ,  0<t<T)
S2)

,Q)
(xEQ, 0<t<T),

  

(8.20)
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w hich  is  (8 .11) with m =1, th a t is, w e  see  tha t (8 .10) a n d  (8 .11) hold for
m=1.

Next assume th a t  (8 .10) a n d  (8.11) hold if f ED (A') .  Then we have to
prove that (8.10) a n d  (8.11) hold for f E  (A 1 + 1 ) . By the assumption, u, sat-
is f ie s  (8.13) w here  x  ( t )  =  »21+1) ( t )  (0 T )  ,  a  (x) n c-202(2/-1-2k) (0 )

(d kf )  ( x )  and  b  (x ) = vl(21-21c) (0 ) (A k f) (X) E  " . "L i )  It follows from f  E
D (A 1 + 1 )  tha t a E D (A ), da  E D (A) C fiô (0 )  and b E  (A). Consequently we

52u ,
can apply Lemma 7, so that ut+i=  s a t i s f i e s  (8.10) andat'

(x, t) (x, t) +2 121 +3 ) (1) f (x) E S2, 0 <t< T)

(x ,  0 ) _A (I -2(21-1-2k) (0 ) A kf )  (x ) 4. 2121+11 (0)f(x )
k=0

(x E S2)

U/+1 (X , 0) = ± 2 (21-2k) (0) A k. f )  (x ) +2(21+2) (0)f(x) e  ,S2)
k=0

iii+1 (X , t) 
=

0 (X E a f2 , 0 < t< T ),

w hich is (8.11) with m=1+1. Thus by induction, we have proved (8.10) and
(8.11) i f  (8.1) holds for any m  1.

THIRD STEP. In th is step, we prove: if (8 .1) holds for then

au ( f )  
12m+1

Here C=C(Q, T. A , m) >0 is independent of f.
For m = 0, the  estim ate  (8.21) is nothing bu t Lemma 2 in  §6. Therefore

le t  u s  p ro v e  (8 .21 ) for m a  1. F irs t , a s  is  sh o w n  i n  F ir s t  S tep, Amu (f)
satisfies (8.3). Consequently by Theorem 2 .1  (pp. 95-96) in  [13, Vol. w e
get

(8.22) Amu (f)Iii.z(o.T;H' (D)) Cil Amf IlL2 CS2)

w ith C =C (Q , T, A, m ) > 0. Since Amu ( f )  (•, E D (A) for almost all t E [0,
, we see that lu  (f) (*, t)1111, .. , (0 (Q, m) A m u (f) (. , t) 1L2(.(2), so  tha t (8.22)

implies

lu f  )  Ily(o.T;TP-'(s2))-‹-CilAmf IL2(.52)•

By the trace theorem (e.g. pp. 41-42 in  [13, Vol. 11), we reach

(8.23) au (f) 
an _<cll Any I1L2(12).

t ' (0,T,112" "
1 (0.(2))

  

(8.21) an

a 2m + 174 ( f )
sa t is f ie s  (8 .1 1 ), w e applySecond, from  S econd  S te p , u m  —_

a t2 -1
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Théorème 4 .1  (p. 44) in  [12] to get

a a 2m+ii4
an  a t  2m+1 'IL' (0,T1 2 (OM )

n

(S 2 , T )( E /1 ( 2 n 2 - 1 - 2 1 0  
(0 ) (LW )

k=0

- 1- 11/V2 m + 1 Alt,'(o.rv(âs2)))

   

L2(D) E2 (2m-2k) (0 ) A kf

k=0
L2(12)

(C (Q, 2, m )11A n'A IL 2(12)+C  (Q, 2, m)liA m filv(D)+C (A, m) V11,2(2))

(by ,Akf ED (A): 0__<k m — 1)

(S2 , T, A, m)iiA'nfilv(n).

Consequently we obtain

a2m+1 au  (t-)
at2rn+1 L' (0,TV  (aS2))

(S2, T , 2, ni)IlAm liL2(Q),

 

with which we combine (8.23), so that w e reach (8.21).

FOURTH S T E P . By the interpolation theorem, we will complete the  proof
of Proposition 3. T he estim ate  (8.21) implies Proposition 3 fo r any mENU
101. Let c/c 0 be not an integer. W e take the mENU 101 such that m< a < m

au (f) +  1. Since the  map f is bounded from 0 (Am) to irm+ -f. 2 m + 1  ( Q
 ( 0 ,

T ) )  and  from  D (A' )  to  H2m+ 2 +1'2" 3 ( Q  X  (0 , T ) )  b y  (8 .21), it follows
from  Theorem  5 .1  (p. 27) i n  [13, Vol. I  J  t h a t  the  m ap is bounded from  [21

(4 m + 1 ), (A m )] i-a+m to

[H 2  - - " 1 - 2 - 3  ( a s 2  X (0, T ) ) .  H 2 n14 2 "1 +1x  (0, T ) ) ]

Noting that An, --=- A lo(A-) is positive self-adjoint operator in the Hilbert space Y
O (Am ) with th e  inne r p roduc t (u. v) (Amu, A m y) vco) and O  (Am ) =

D (A' )  , by the interpolation theorem (e.g. [13, Vol. I ] ) ,  w e  g e t

[ 1(A'n+ 1 ), D (An1)] 1 -  a+m=-• [D (Am) , 1-a+m  = cy'n-m) (A") .

Moreover by [13, pp. 6-8, Vol. E], we see

[1 1 2 .+ 2 + 2 .+ 3  (a —SG X  (0 , T )),  H 2m+-1,2m+1 (a — xm ,  T ) ) ]  1-a+m

,...H2a+-1
2+,2a+1 (as? x ( 0 , T ) ) .

Thus the proof of Proposition 3 is complete.

Now we are  ready to  finish the proof of Theorem 3. By the  interpolation
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inequality (e.g. Proposition 2.3 (p. 19) i n  [13, Vol. I ] )  and the interpolation
result (pp. 6- 8 in  [13, Vol. II]), we see that for each OE [0, 1]

IlY (1-0) (2a+-1
2-), (1-a)(2a+1) C (a , 0)1191121,2- 4,2a+1llY

for y E  H2a4-1-,2a+1 (as2 X (0, T)) . Let 0 =  2 a

2 a - H I  
This value is  the maximal OE

[0, 1] such  that (1 -0  (2 a+ and  (1—  6) (2a+1) that is,

H(1-6)(2a4,0-60(2a+1) ( aQ  x (0 , T )) CH"  (a s2 x (0, T )).

Consequently we have
1 2a 

y
2 a + 1

11Y 11(rPly 110,1 C (a)

for any y E H 2 a 4
2 a + 1

.5dr '  x  (0, T )) ,  Let f, gEG/im ,„ Then by Proposition 3, we
au ( f )  au (g)  E H2a+J2,2a+1 (aS2  X (0, T ) )  andget '

 

( f ) (g) 
an an 2 a + 1 2 a + 1

.1<_. C (a)IIA"f — A" gilLza2) - 2MC (S2, T, a).
2'

  

Therefore we reach

 

(g)
0,1

T, A, att ) aU (g) 2a
an an
(a) (2MC (12, 2a+1

0,0
a )) +'

au (f )

an
(g)

On
2r+1C (S2, T, a) AI 2a1+ 1
0,0an an

w ith w hich w e com bine (1.5) in  Theorem 0 in  §1 and  we can complete the
proof of Theorem 3.

§ 9 . Proof of Theorem 4

We set

(9.1) wa (s, E)= sup 111f IIL2w); 11Gf110,0 E,fe (A a ),IlA af

Then by Theorem 3.4 (p. 32) in  [1], we get

lifE— folL2a2) 24coa (s, E)

on the assumption (4.3). On the other hand, by Theorem 3, we see
1 2 a  

(9 . (E, E) C3 (S2, T, A, a) E 2 a + 1 E2 a + 1
( s>0, E>0 ).

Therefore we obtain



Multidimensional inverse hyperbolic problem 851

Ilf foIIL2Q)) C 3 (a) E 22+, 2a2 a+ 1

which is the condition of Theorem 4.

§ 1 0 .  Proof of Theorem 5

First we show

Lemma 8. Let H1 and H2 be Hilbert spaces and A be a positive self - adjoint
operator from H1 to Hi such that A - ` is compact from H1 to H1 . For a fixed a> 0,
let Hp (h >0) be subspaces of H1 such that the following properties hold:

(10.1) H pC D  (l1") , dim H p< C °.

There exist linear operator Hh: ( l i a ) — , Hh a n d  > 0 such that

(10.2) 11f— rhfiiH, .chfillnaf11H,
and

(10.3) 11/1"11hfIlHi
for all f c  ( 1 1 a ) .  Here C> 0 is a constant independent off.

Let K  be a bounded linear operator from H i  to H2 with D (K) H1. We set

(10.4) pa (s, E) = sup 11If Illli: 11 K:f11H2 f E (A a ) , .

Then

( i )  For an arbitrarily fixed y E H2 and e> 0 , h>  0, there exists a unique minimizer
f E,h= f Ed: ( y )  of

(10.5)

over f C H h.

GO We assume that

(10.6)

and

(10.7)

F ,( f )  = lI I f_ yII2+IIA af IIi

K A ' Yo, f o  E  (A") , IIAfoIIH1 E

Ilye—yollH2 6, ye e f12.

Then there exists a constant C> 0 such that

(10.8) IV° Pa (C (V E s) , C( IB
E
E 2 + E )).

Here C > 0 is independent of E and the choice of yE.
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I n  (10.4), s in c e  if E  (A"); 1lAafilH1 is  a com pact set in H I , we see
Pa (E, E) < 0 0  fo r  any a >0 and E>0(e.g. [1, pp. 21-26]).

Remark. T h is  lem m a is a  v a rian t o f  Natterer [15] and  Theorem 6.6
(p . 109) i n  [1], w h ere  it is  a ssu m ed  th a t th e re  ex is ts  a>  0 such  tha t the
norms IlKf IIH2 and MA °fIH1 a re  equivalent for any fEH 1. In  our case and simi-
l a r  inverse  problem s f o r  a  parabolic  equation  (e .g . Y am am oto [22, 23]),
however, it is difficult to get such equivalence and so we modify Natterer's re-
sult for our purpose in terms of the degree of continuty p a  (s, E).

Proof of Lemma 8. T he  part (i) is a standard result in the regularization
(e.g. Theorem 3.7 (p. 35) in  [1]) and proved similarly to Proposition 1 in §4.

We can prove th e  p a r t (ii) sim ilarly to [15] o r Theorem 6.16 (p. 109) in
[1], b u t fo r  completeness, we give th e  proof. Since f ,, h i s  th e  minimizer, we
have

82
E 2

IlAaf

1- 1Knido y + EE :  Wa ll/API/1

(IIK (MA — A) liKf0 EIIH2) 2

H- - = .-ClIAafollir, (by  (10.3))
E2

- (Chill/Pfollih+s) 2 +Ce2

(b y  (10.6), (10.7), (10.2) and the boundedness of K)

(10.9) _C(h2sE2+e2) ( b y  (10.7)).

Here and henceforth C> 0  is  a  constant independent of s, h, E and y .  There-
fore  by (10.9) we get

+11YE

(h2s E2 s 2) )1 + (b y  (10.7))

(10 . (1,119E - e ),

and

IlAafe,hillii C ( 1 1 1 3 E 2
 - FE).

Without loss of generality, we may assume that C(h I 3 E 2 + E )E , so that

lAafhiIHI O af C(11° EE 2 +
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b y  (10.7). Consequently applying (10.10) in  (10.4), w e see  (10.8). Thus the
proof o f  (ii) of Lemma 8 is complete.

Now we proceed to the  proof of Theorem 5. B y  (5.1) - (5.3), in  Lemma 8,
setting Hi= L2 (Q) , H2

=
 L2 (0, T; ( a S 2 ) ) ,  A A defined by (3.1), K=G, Hh

=

X h > 0) , Hh - 1n, w e  can  app ly  (10.8) in our inverse problem. Therefore we
obtain

life— fe,hilL2(2) pa(C (h RE + a) , c( 2 + E )).

On the other hand, by Theorem 3 and the definition (10.4) of p a , we have an
estimate

1 2aPa (e, E) <C3E2a+1 e2a+1 ,

where C3
-=

 C3 (D, T, A, a) >0. Therefore we get

hsE2 a  

ilf0—fs,h11L2(0- C (
2
 + E )

2a+1 (h•-■E 2,7+1.

Here and henceforth C C (Q , T , A, a) > 0  is a constant independent of E, h, E
and the choice of y,. Then we get

e,h112:2 )
(hs 6- 1 E2 + E) (h

2 a B E 2 a  s 2 a )

=  (h2aB + R E -1E2a+2 hOs2a-1E2 h2a/3E2a+1 E52a)

< C  (E  + 1 )  
2a+2 ( 6 2aBr+13r - 1 E2a+I3r-1 52a$T 52a)

Moreover we have

min 120 7 2a+Pr — 1, 2a13y, 2a1 =2a, if 1

and

1min 120r-1- 137 — 1, 2a±i3r — 1, 2aBr, 2(x =2agr+137-1' 
.

f

1  

1 - [3 (2a+1) 
<. 

r  13'
so that we reach

C + 1 )
2 a + 2 e 2 a if

lifo— f,,h112:2(
+2)

1 1c (E + 1 ) 2a+2e 2ar+5r--1 i f

(2a+1) < r

w hich is (5.10), the conclusion of Theorem 5.

Appendix I. Proof of Proposition 1

For simplicity, we set 13= 
—E2

>0, because we fix the  ra tio  —

E  
in  the  prop-

E2
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osition. Since it follows from (1.5) that II GfilL'cog»catan . - ILfliczco), and the norm

(HCAIi2(o,T,L2(asz))

is equivalent to the norm ililaf ilL2(Q) for f E0 (A "). we can apply a  result in the
regularization (e.g. Theorem 3.7 (p. 35) in  Baum eister [1]), so that w e see
(1)-(3):
(1) There exists a  unique minimizer f (y) E  0 (A " )  of F (E, E, a, y )  fo r any
y E (0, T; (OD)).
(2) There exists a constant C (a, p) >0 such that

II (G * G +  (A") * A") — 1 ylly(s2) (a, ,8)11YIL, (0,TV (aQ))

for y e L 2 (0, T; L 2 (as2)). Here and henceforth G* a n d  (A " ) *  are adjoint oper-
ators respectively of bounded operators G: L2 (,(2) —L2 (0, T; L 2 (0 0 )) and A":
D (Aa) — q,2 (0) .
(3) j= (G*G +i3(2,1") * A") - 'G* y.

Thus the  parts (i) a n d  (ii) of Proposition 1 follow.

Appendix II. Proof of Lemma 1

Since X  h C 0 (A =  H  (9 ) ( [5]) ; b y  the  definitions (5.6) a n d  (5.7) of
X  h and /h , w e see (5.1). Next we have to  verify  (5.2) a n d  (5.3). By a  result
on interpolation w ith piecewise linear functions (e.g. Johnson [9, Chapter 4])

for any f  (Q )= -,61(M ), there exists a constant C = C (r )  >0 independent of
h such that

(1) V—  IIjfllL2u 2h
)_<ChlIfIlllic").

On the other hand, for example, by the estim ate (5.2 - 18) (p. 118) in  Raviart
and Thomas [18], we have

(2) IV Ill:. ( SAQII) (r) (h If iL2(a Q ) +112 11f16(f2\0))

A t the last inequality, we note tha t IVIiLzos2)=- 0 by f (9) . By the definition

(5.6) a n d  (5.7) of /fif, we have /hf19\s2 (f EI-A(D)). Therefore by (1) and
(2), we see

I If I hf  IIL2 u2) Ihflic2(oh) +11f I ilLIL'uAsah)
(1+ h)11, 4:12ilL,2(o)
(1+ d)11111111L2(o.

Here we recall that d = sup 11x1— x21; x i, 1 2 E  Q  .  T h u s  (5.2) is verified with
1a= - 2-  and ,8=1.
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F ina lly  w e  have to  v e r ify  (5.3). F o r  exam ple, by th e  estim ate  (4.23)
(P. 91) in Johnson [9], we obtain I1f- 1idilin(2h) C namely.

(3) 11Husahi (C (r) +1) lifliHicoh),

by the triangle inequality. Let f (Q) =--• (111) . Since ' h  f  is  piecewise linear
in  S2 and /41. 62,= 0, w e  have 11/11 IIj II w ho. Thus (3 ) im plies (5.3)

1
with a= -

2 *
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