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On ill-posedness and a Tikhonov regularization for a
multidimensional inverse hyperbolic problem

By

Masahiro YAMAMOTO

§1. Introduction

We consider an initial/boundary value problem for a hyperbolic equation:

w r, t)=Adu(x, t) +A) f(x) € 0<t<T)

(1.1) u(x, 0) =u'(x, 0) =0 (xe0)
ulx, t)=0 (xre0, 0<t<T).
Here v=2 and £ € R” is a bounded domain with smooth boundary 082, T >0,
2
and we set u’ (x, t) =%(x, t), u' (x, t) =%l:— (x, t), and 4 is the Laplacian.

Henceforth we always assume
(1.2) 2(0)#0, A€cC'(0, T].

Let L2(82) be the space of all real-valued square integrable functions with the
inner probuct (*,*) 2 and the norm || * [l2@). Let us denote the Sobolev space
of order s>0 by H°(f) (e. g. Lions and Magenes [13]). Under the assumption
(1.2), for any fEL2(R), there exists a unique solution u=u (f) to (1.1) such
that

w=u(f) €C ([0, TI;H}(L)) NC([0, T];:L2(Q))

and

0D o, 7, 12(9)
(Lasiecka, Lions and Triggiani [10, Theorem 2.1] and the argument in §4 of
Yamamoto[24]).
The term A (t) f (x) is considered an external force causing a vibration.
We assume that A is a known non-zero C'-function and is independent of the
space variable x, and fEL*(R2) is unknown. We discuss
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Inverse problem. Determine f from

0 ) (weoQ 0<e<T).

Here we set
Mey=Su@ @ @)
i=1 1
where v(z) = (v, (z),**, v, (x)) is the outward unit normal to 68 at x.
More precisely, in this inverse problem, we are required to discuss

(1) (Uniqueness) Is the correspondence

ﬁ—*Q%%lhxn (x€000<t<T)

one to one? That is, does %lﬁ (x, ) =0 €0, 0<t<T) imply f(x) =0
(x€0)?

(1) (Continutity) Estimate f by Q%S/L‘&(x t) with appropriate norms.

(I) (Existence of f realizing given boundary data) Does fEL?() exist such
that

Q%gluj)zy@xg (€0, 0<t<T)

for a given y? In other words, can we characterize

oulf)

(IV) (Reconstruction) Give a reconstruction formula of f in terms of 5

Throughout this paper, as the set of unknown f's, we take L2(£2), although
another choice such as H® (£2) is possible. Then we notice that firstly we have

ou, . . . .
to choose a space of data on S and its topology in order to discuss "(II) Con-
tinuity”. For theoretical discussions of our inverse problem, it is desirable to

0 .
search for the space Y, and the topology of —a’%'s which guarantee that the map

)
on

from L% () to Y, is bijective and the inverse map is continuous on Y, As
such a result, by Theorem 1 in Yamamoto [24], we have
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Theorem 0. We set

(1.3) d=sup {lo1—x2l; 1, x2 € 2l =the diameter of Q.
We assume
(1.4) T>d.

(1) (Uniqueness) If the solution to u (f)to(1.1) satisfies

%L)(I' D=0 (x€02 0<t<T),

then f(x) =0 for almost all x € Q.
(2) (Continuity) There exists a constant Ci=C1 (R, T) such that

1| 0u(f). Ou(f)
(1 . 5) Cl ! an HY(0,T:L?(39)) S ”'f"LZ(Q) SCI“ an H'(0.T;L*(09))
for any FEL*(Q).

Here and henceforth we set
HY0, T; L?(08)) = ueL?(0, T; L2(00)): ' €L%(0, T; L?(0R))},
T
e ) worom= [ [ e, vl ) +u' (e, 00 (2, 0)dSedt
o Jag

and
lhelli 0722 000y = (, ) Ho 722501
for u, vEH' (0, T: L?(38)).

Remark. Yamamoto [24] gives also characterization of the range
[0, re @) o, 1 12(02)

ou (f)
Y

and a representation formula of f in terms of

For the uniqueness and the continuity, the restriction like (1.4) is neces-
sary because of the finiteness of propagation of waves. That is, T is greater
than the diameter of £ in which the wave propagates at the speed 1 according
to (1.1).

This theorem means that we have to observe the time derivative of %;i as

well as % itself for stable construction of fE€L?(£). However, from a practi-
cal point of view, the observation of the time derivative is not desirable, and
frequently we are obliged to construct f€L?(£) only on the basis of % itself

which is polluted with L%-errors. As is seen by Theorem 1 in §2, if we choose
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L*(0, T; L*(08)), not H' (0, T; L2(8£)), as the range spacc of G, then the map
(1.6) or=20) 12 (@) 120, 7 12(09))

is compact, so that G™* cannot be continuous from L2(0, T; L2(6R)) to LZ(R).
Thus the problem of determining f€L%(Q) from Q%(;LQ-ELZ 0, T; L2 (0R)) is

tll-posed in the sense of Hadamard. For stable construction of solutions of the
ill-posed problem, we have to apply regularization techniques such as Tikho-
nov's regularization (Baumeister [1], Groestch [6], Hofmann [7], Tikhonov
and Arsenin [20]). In this paper, we will apply Tikhonov’s regularization to
the equation y =Gf for y €L%(0, T; L?(0R)).

The proposes of this paper are
(1) to discuss the asymptotic behaviour of the singular values of G, which
gives information about the degree of ill-posedness.
(2) to discuss convergence rates of the regularizing scheme for finding
approximate solutions of y =Gf with a given y €L%(0, T; L%(09) ).

This paper is composed of ten sections and two appendices.
§2: we present the compactness of the operator G from L% () to L* (0, T;
L?(082)) (Theorem 1) and the asymptotic behaviour of the singular values of

G (Theorem 2).
|ou(0 it
o ilLe0rL260)

§3: we derive conditional stability estimates of || f 2 by

a-priori boundedness on /s (Theorem 3).

84: we treat a Tikhonov regularization on the basis of Theorem 3 and derive
convergence rates of regularized solutions (Theorem 4).

85: we discuss a discretization in the Tikhonov regularization in §4 and con-
vergence rates of discretized regularized solutions (Theorem 5).

86: we prove Theorem 1.

§7: we prove Theorem 2.

88: we prove Theorem 3.

89: we prove Theorem 4.

§10: we prove Theorem b.

§2. Ill-posedness of the inverse problem and the singular values
Let us recall that the operator G is defined by (1.6). First we show

Theorem 1. The operator G is compact from L2(2) to LZ(0, T; L2(0R)).
Since GL%(£2) is infinitely dimensional (e.g.[24, Theorem 2]), our inverse
problem of solving

(2.1) y=Gf

for a given y € L2 (0, T; L?(dR)), is ill-posed (e.g. Theorem 2.6 (p. 20) in
Baumeister [1]). Moreover by Theorem 1, there exist a sequence {0y .>1 of
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real numbers and {@u} »>1CL2(R2) and (@l »>1SL%(0, T; L2(82)) such that

(22) 0'120'22 """ , limo,,=0,
(¢n. ¢m) L2(.O)=5mn
T
(2.3) (Dm, (/)n)mo.r-.wam)zj; Lgd)m (x, t) P (x, t)dSdt
=5mn (‘Vl, m= l)
and
(2.4) Con=0nn  G*Pu=0npy W 21)

(e.g. Baumeister [1], Groetsch [6], Hofmann [7]). Here and henceforth we set

5 _{1, if n=m,
" 0, ifu m

and G* is the adjoint operator G : L2(2)—L%(0, T; L?>(0R)).

The real numbers g, (#=1) and the system {0n, @n, Pl n21 are called re-
spectively the singular values and a singular system of G. The singular system
of G is useful for studying the ill-posed problem y=Gf, and in particular, the
asymptotic behaviour of the singular values specifies the degree of
ill-posedness (e.g. [1], Colton and Kress [4], [6]). As for the asymptotic be-
haviour, we have

Theorem 2. We assume (1.2) and (1.4). There exists a constant C; =
C2(8,T) >0 such that

(2.5) 0 < Con ™77,

provided that we renumber 0, (n=1) if necessary. Here we recall that v is the spa-
tial dimension.

This theorem gives an upper bound of the singular values. So far we cannot
determine the order of the asymptotic behaviour of g, However, the upper
bound gives a lower estimate of the degree of ill-posedness of our inverse
problem. That is, we consider perturbations around f, € L?(£2) and deviations
of y by them. More precisely, we assume yo=Gf, for some fo € L?(§2). Let data
Yo be perturbed in the direction of ¢ Yo =yYen=yo+ ¢, with eER. Then by
(2.4) the corresponding solution f., is

fo+a%¢n
and by Theorem 2 we have

(2.6) ”fO _fe.n"u(a)

=0;1>Cy ioD
lyo—yenlizorizaen On 2C2 niG-1,

This means that errors ﬂfo — fellz2@ in solutions may arbitrarily become large
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with a lower bound (2.6), no matter how small errors e=||yo—ys||mo.r;u<am) in
data may be.

Theorem 2 can be restated by the degree of ill-posedness of our problem
y=Gf(e.g. Definition 2.42 (p.31) in [7]): The degree of ill-posedness is great-

1
er that or equal to -1

Thus some techniques such as the regularization are necessary for stably
solving y = Gf on the basis of data polluted by errors. In §4 and §5, we will
discuss a regularization method by Tikhonov.

Remark. We can consider the ill-posedness of our inverse problem in
terms of a factorization of G into the ill-posed part and the well-posed part.

We define an operator G form L% (2)to L2(0, T; H3 (02)) NHY (0, T; L?(082))
by 5f=§u7§LL). Moreover let I be the embedding of L2 (0, T, Hz (3Q)) N H* (0,

T; L2(08)) into L2 (02 % (0, T)). Then we can factorize G: L2 (2)—L*(0, T:
(092)) into the ill-posed factor I and the well-posed factor G:G=IG. In fact,

as is proved in Lemma 2 in 86, both G and 6'1|m(5) are continuous, while [ is a
compact operator. Therefore the ill-posedness in solving y = Gf comes mainly
from I. With respect to such factorization, we can refer to Theorem 5.2 in
Hofmann [8], where mainly nonlinear ill-posed problems are discussed in the
case where the linearized well-posed part has not only a continuous inverse,
but also is a surjective (cf. Lemma 2.46 (p.33) in [7]).

§3. Conditional stability with a-priori information

It follows from Theorem 1 in §2 that G™! is not continuous from L% (0, T;
L2 (0RQ)) to L? (). However if we can assume a-priori information on un-
known f's so that f's can be restricted to a compact set U in L?(£2), then we

can restore the stability of G™' In fact, by a well-known theorem (e.g.
Lavrent’ev, Romanov and Shishat-skii[11, p. 28]), the restriction G to the set

U has a continuous inverse G fp, €U =1) and |Gf— Gflirw0.r1:69)—0 as
n— o imply ||f, —flzz—0. The rate of the convergence |f, — fliz—0, de-
pends on the choice of the admissible set U of f's and from the general
theorem, we cannot, in general, specify the order of continuity of the restricted
inverse. On the other hand, for discussions of convergence rates in Tikhonov's
regularization treated in §4 and 85, it is necessary to determine the order of
continuity. In this paper, adopting spaces of fractional order defined by the
elliptic operator (see below) as admissible sets of f’s, we will give rates of con-
tinuity of restricted inverses.

For defining admissible sets, we will introduce an operator and notations.
Let A be the operator in L?(£2) defined by
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(3.1) (Au) (r) =—4Au(x) @€,
' D(A) = wEH(Q); ulag=0l =H2(Q) NH}(Q).

Then for any @ € R, we can define the fractional power A® (e. g. Pazy [17])
and for 0<a<1, by Fujiwara[5], we see:

(A7) =t (Q), 0Sa<y,
(3.2) D(A%) =H3* (), ;1£<aS1, a#%

QU CHI(Q), DA CH(Q),
and there exists a constant C=C (2, a) >0 such that
(3.3) I lzar < ClA A2 (feD(A%))

for =0 and that
(3.4) CNA% e <|f e <ClA%f ey (FED(A)

for a€ [0, 1], a # % % In particular, for m € N, we have @ (4%) =
{feH™ (Q); A’flaa=0 (0<;<m—1)|. For given @=>0 and M >0, we set
(3.5) Una= 1fED(AY); | A ||y <M

as an admissible set of f's.
Our answer to specification of order of the restricted inverse on GUy q is

Theorem 3. We assume (1.2), (1.4) and
(3.6) iec=[0, T].

Let a= 0 and M> 0 be arbitrarily given. Then there exists a constant Cs =
Cy(R. T, 2, a) >0 such that

2a+1
L2(0.T;L*(882))

0u(f) _0ulg)
o on

(3.7) ”f gl < CsMZ"“

for any f, §EUp.a.
This theorem asserts that the restricted inverse is Holder continuous with
2 L .. .
exponent Za—ﬁT which increases as the degree a of a-priori regularity on f

increases.
If we do not assume any a-priori regularity on f and g, that is, @=0, then
the estimate (3.7) is trivial.

Remark. In a similar inverse problem for a parabolic equation, if we
adopt norms such as || . [[,,. o.1.2(32)) for boundary data, we can merely obtain a
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much weaker conditional stability estimate, namely, a logarithmic continuity
even with a similar a-priori information (Yamamoto[22],[23]). The difference
comes from the smoothing property in the parabolic equation. Under an
assumption on A, we can specify the norm for boundary data admitting an
equivalent stablility estimate for the L? (£2) -norm of f (Vu Kim Tuan and
Yamamoto [21]).

§4. Convergence rates of regularized solutions by a Tikhonov method

Let us proceed to stably solving
(4.1) y=Gf

with respect to fEL?(£2) for a given y EGL?(2) L2 (0, T; L?(89)) around
exact data. That is, we consider the following reconstruction problem of fo
from inexact data y: Let yo € GL? (£2), that is, let a solution fo to (4.1) exist.
Moreover, as available data of yo, we can observe only y. which is polluted by
L*-errors:

4.2) lye —yollizto.raz a0 <e.

This is very usual in practical applications. Then we are required to search
for approximate solutionﬁ such that

VA —follz@—0 as € | 0.

Moreover it is very desirable to specify the convergence rate of ||fe _‘f()"u(g).
Here it should be noticed that we do not know whether or not y. €EGL?(8), so
that the equation y5=Gﬁ does not necessarily possess a solution f; Even if we
can choose ye, (#=>1) such that ye, EGL2(£2) and llye,— yolliz0r1:(0)—0 as n—
0, by Theorem 1 we can not always conclude that “ﬁ,,"‘fo"],z(g)—’o.

For overcoming these difficulties, various regularization techniques are
proposed. In this section, we discuss a regularized method with a-priori in-
formation (e.g. Baumeister [Chapter 6, 1], Natterer [15], [16], Tikhonov and
Arsenin [20, Chapter 2]) and derive convergence rates of regularized solu-
tions toward fo. We assume that a-priori information of f, is available:

(4.3) FoED(A%), A %oll2r <E

with some constants >0 and E >0.
The Tikhonov regularization method which we discuss, is formulated as fol-

lows.
Minimize

2
(4.4) F(e E, a, ye) (f) =G —yelt-or:00) +~§;IIA“fI|2u<m.

Remark. It is possible to discuss convergence rates of regularized solu-
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tions in another regularization (e.g. Groetsch [6, Chapter 3]) which requires
no a-priori information of higher regularity of an exact solution. In a forth-
coming paper, we will treat such a regularization on the basis of the factoriza-
tion mentioned in Remark in §2.

The regularization adopted here is with term prescribing higher regular-
ity (G.e. [|A%2@), and a similar method is discussed in relation with the
Radon transformation (Natterer [15], [16]). For his argument, detailed in-
formation of the degree of ill-posedness (e.g. (1.1) in [15]) is necessary,
while in our case, it is difficult to obtain such information. Thus we must mod-
ify his approach for our inverse problem.

First we show existence and stability of the minimizer of (4.4).

Proposition 1. Let >0, €>0 and E>0 be given.
(1) For given y € L%(0, T; L?(3R)), there exists a unique minimizer f=f (y) €
D(A%) of F(e,E, a, y).

(2) For y1, y2€L%(0, T; L*(0R)), there exists a constant C—_-C(a,
that

(4-5) "f (yl) _f(yz) l|u<mSC||y1—yz||u (0.T:L*(342)) -

The proof of this proposition follows, for example, from Theorem 3.7
(p. 35) in [1], and for convenience, we will prove it in Appendix 1.

This proposition means that for fixed é>0, we can construct the minimiz-
er fe stably against deviations of y. provided that the error bound of y.'s is €,
that is, y¢'s satisfy (4.2). Furthermore we can show that lim fe =f, (e.g. [1]),

£

E) >0 such

elo
but so far we do not know the rate of convergence. With our formulation (4.4)
with(4.3), we have

Theorem 4. Let fe=f(ye) be a unique minimizer of the regularvized problem
(4.4) for y. €L%(0, T; L?(0)) satisfving (4.2). Let us assume (4.3). Then
theve exists a constant C3=Cs (R, T, A, @) >0 such that

_1 __2a
(4.6) Il fe = follown S CsEZa+TeZa+T,
Here Cs is independent of E and e.

The larger a> 0 we choose for a-priori information on regularity of fo,
the better the convergence rate of regularized solutions toward fo is. However
the exponent of convergence rate can not exceed 1.

§5. Discretization in the Tikhonov method

In this section, we discuss the problem of minimizing (4.4) in a discre-
tized version, which is a modification of an approach in Natterer [15],
Baumeister [1, pp. 109-111] and establish a convergence result of discretized



834 Masahiro Yamamoto

regularized solutions toward the exact solution. We do not intend that this
section is devoted to a complete description concerning discretization, and we
do not mention concrete discretizations in L?(£2) and L%(0, T; L2(052)).

We assume (4.3) for some a>0 and E>0. Let {Xil4s0 be a family of
subspaces of LZ(£2) such that the following properties hold.

(5.1) X, CD(A%), dimX,<oo,
There exist a linear operator I: ©(A%)—X; and 8>0 such that

(5.2) 1= 1 N2y S CPIl A% N2y Frev(A”))
and
(5.3) laenf e <ClA 2 (FED(A).

Here C>0 is a constant independent of A.
Example for X, (h>0). Let
(5.4) QCR?

be a bounded domain with smooth boundary 082 and for >0 let T,= |K| be a
triangulation of £ such that

hg=the diameter of KET,

ox=the diameter of the circle inscribed in K

h=max hg
KeTy
2= UK
KeTn

(e. g Ciarlet [3], Johnson [9], Raviart and Thomas [18]). We assume that
there exists a constant 7>>0 independent of #>0 such that

(5.5) %ZT
K

for any KE€T). Moreover we set
(5.6) X,= e (Q): vl is linear for any KE Ty and v]aa=0}.

For f€D (A7), we define [,fE X, by

if x is a node which does not belong to 082,
if x is a node € 0%2.

u(x),
(5.7 Lf) @)= {0
Then we can prove
Lemma 1. We assume (5.5). Then X, and Iy given by (5.6) and (5.7)

satisfy (5.1)-(5.3) for a=% and B=1.
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For completeness, we will prove this lemma in Appendix ]I .
Let us return to the general framework (5.1) - (5.3). The discretized
problem is to determine the minimizer fe,» of

2
(5.8) G —yel? 01200 +§"Aafh”%2(m

in X,C 9D (4% . Similarly to Proposition 1 in §4, we see that there exists a uni-
que minimizer f., €X; for a given ye..

Our next problem is concerning the convergence rate of f, toward f, as
hlOandelO.

Theorem 5. Let us assume (4.3) for the exact solution fo. If for a given
7>0, we choose

(5.9) h=0(e),

then there exists a constant C4=C4 (2, T, A, @, B) >0 independent of €, h, E and
the choice of y. such that

2042 2a 1
Cy (E+1) 2a+1g2a+T if TZE

11
Y a1

6.10)  lfer—folza < sasz 5 1
Cy(E+1)2a+1" 2a+1

1
<r<-4.
B
If 7’<—1—'l then Br—#<0 namely, (5.10) is meaningless for
“2a+1p 2a+1 =7 Yo R9e &
the convergence of discretized regularized solutions. The optimal choice of 7's

. 1 . . 2

is seen to be 7= E The fastest rate guaranteed by this theorem is Zr—frl-—l and
1 . .

for the rate, rZ*B should be satisfied. Moreover we cannot improve the rate

2a . I ( l) .
Sq+1 even though we choose finer discretization \i. e. y> 5) provided that

a and B are fixed. The exponent & corresponds to a-priori information on reg-
ularity of the exact solution and, in general, the greater « is, the greater 8 we
can take in the finite element method (e. g. Johnson [9], Raviart and Thomas
[18]). Therefore the greater 8 we can take, the less 7 (i. e. the coarser i)

. 2a .
gives the fastest rate Sa+1 Furthermore the greater « is, the greater the fas-

. 2o .
test rate Satl S but cannot exceed 1.

In the example, from Lemma 1, we can rewrite (5.10) as follows: if h=
O (e"), then

31
Ci(E+1)2e2,  if r=>1
“fe,h‘"f"LZ(mS

3,1 1]
CoE+1)2%772, if 5<y<1

’
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under (5.4)-(5.7).

§6. Proof of Theorem 1

First we introduce Sobolev spaces on 82X (0, T). For r, s=0, we set
(6.1) H™s (002X (0, T)) =L2(0, T; H” (82)) NH*(0, T; L?(8R))

(e. g. Lions and Magenes [13, Vol. II, pp. 6-8]), and this is a Hilbert space
with the inner product(*,*),s and the norm [ - ||,,5:

6.2) (u, v) 5= (u, v) orar 22 + (U, v) B0 717 32)

” u“r,s = (llulliz (0.T.H(39)) + ”14"?1 (O,T;Lz(a.Q))) 71
In particular, we can rewrite H*° (02X (0; T)) =L2(0, T, L?(08)). In order to
prove Theorem 1, it is sufficient to prove
Lemma 2. There exists a constant C=C (Q, T) >0 independent of fE L*
() such that
(6.3) C7US e S"Gf"—z‘—.x <l flzo
for any fEL*(Q).

Let Lemma 2 be proved. Then since the embedding Hz (09Q)—L% (59) is

compact, the embedding Hz' (89 % (0, T)) =12(0, T; Hz (32)) N H (0,T;L?
(09))—H* (02 % (0, T)) is compact (Theorem 2.1 (p. 271) in Temam [19]).
Therefore the operator G is compact from L?() to L2(0, T; L?(08)).

Now we proceed to

Proof of Lemma 2. The left inequality is easily seen from (1.5) in
Theorem 0, by ||y IIHI(O,T;Lz(a_Q))SIIy ||%1 For the right inequality, we will proceed

as follows. Since A€C'[0, T], we can apply Theorem 2.1 (pp. 95-96) in Lions
and Magenes [13, Vol. Il ], so that we obtain

lbe (1)

Here C=C (£, T) >0 is a constant which is independent of f. By the trace
theorem (e. g. Theorem 9.4 (pp. 41-42) in [13, Vol.11]), we get

ou
6/l oramcaon = “ _%nD— LT HI(02)
< Cllu () s o000 < Clfllzcor

01202 <ClAlze.

(6.4)

for any fEL* ().
Next we have to prove
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(6.5) | 2240 <M

L*(0.T;L*(0Q2))

for any fEL%(Q).
Let z be the weak solution to
Z(x, t)=2z(x, ) X W) f(x) @€ t>0)
z2(x, 0)=0, z' (x, 0) =2(0)f (x) (ren)
z(r, t) =0 (x€0f, t>0).

Since Af€L'(0, T; L2(082)) and A (0)fEL?(Q), it follows from Lemma 3.6
(p. 39) and Théoréme 4.1 (p. 44) in Lions [12] that

(6.6) zec’ ([0, T]; H () ncr ([0, T]; L2 ()
and
(6.7) [Z]......... <COXloreen +120) )

<Al
for any f€L%(2). By (6.6) we can set

alx, t) =ftz(;r, s)ds (€0, 0<t<T),
0
so that #€C' ([0, T1; H}(82)) NC?([0, 1]; L*(2)) and u satisfies (1.1). By
uniqueness of weak solution (Lemme 3.6 (p.39) in [12]), we get
u(f) (x, t) =alx, t) (x€Q, 0<t<T)
and
z(x, ) =u(f) (x,t) (xeR 0<t<T).

Therefore we can prove (6.5) by using (6.7). Combining (6.4) with (6.5),
we complete the proof of Lemma 2.

§7. Proof of Theorem 2
We will divide the proof into the following four steps.

FIRST STEP. We factorize G: L?(2)—L*(0, T; L*(08)) as follows. Let I be
the embedding of H3' (99 X (0, T)) into L?(0, T; L?(3£2)), and G be the oper-
ator from L2(2) to H' (92X (0, T)) such that

GI=G/  (JEL*(Q)).
Then we have

(7.1) Gf=IGf  (fEL*(D))
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and we can rewrite (6.3) as

(7.2) CGA <l f ez < CliGF Il
for any fFEL%(R). Here we set C=C(Q,T) >0.

SECOND STEP. The operator I is compact from Hz " (8@ X (0, T)) to
L0, T; L*(08)), so that I has a singular system {7, Cn, Onl w21

(7.3) 71270220, limz,=0

n—oo

LEHTN (2% (0, 7)), (Cn Cn) 1=

(7.4)

0nEH0'O(aQX (O, T)), (en. 0m) 0,0=5mny ('m‘ "21)
(7.5) ' [G=10n  *0,=7,00  >1)
(7.6) v=5 (. G4 G yEHH (02X 0.1))

7.7 2= 3 (2 60 ool 2EIP0(BRX (0, T)) =L2(0. T: L2(58)).

n=1

The series in (7.6) and (7.7) are convergent respectively in H3 (080 x (0,

T)) and H** (002 x (0, T)). Since it is not easy to directly estimate the singu-
lar values themselves of G, we will do via the singular values 7, ®>1) of I.
To this end, we will show

Lemma 3. Let 6, w=>1) be the singular values of G. Then theve exists a
constant C=C(8, T) >0 such that

(7.8) 0, <CT, h=1).

Proof of Lemma 3. By (7.1) and the min-max principle (e.g. Theorem
4.19 (p. 65) in [1], Lemma 2.44 (p. 32) in [7]), we have

(7.9) o= mf[sup{H[fG 00. 71 £, (1<k<n), f4=0} fi, - -f,,ELz(.Q)].

Here and henceforth we write f L g when (f, g) 1200 =0. Therefore by the left
inequality in (7.2), we get

[ [IIIGfllo oL
leAlsalf lezo”

SCinf{sup[JJ"IEC[lJIL— FLlf(1<k<n), f=/=0] Sfi, e, ,,ELZ(.Q>]
1

=C inf{sup{-'m%g; yL (G Vi (1<k<n), y#0, ye%(c';')];
1

f_Lfk(1_<.kSn),f¢0};f1, o fEL? (.Q)}

On+1=
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fl, “',anLZ (Q)]
At the last equality we note that (G*) ! exists. Moreover
(7.10) (G*) 'L (@) =Hz' (32X (0, T))

since G is injective and G L?(£2) can be proved to be closed in HZ' (90 X
(0, T)) by (7.2). Consequently we get

on+1£Cinf{sup[|ﬁ"l-‘~ yLlyrQ1<ke<n), y#0, yEQ(G)}

yu. . ynEHF (52X (0, 7))
<C inf{sup{lﬁlﬁo; YLy (1<k<n), y#0};

2

Y1, -, yn EHZ (82X (0, 7))
=CTns1

for n=>1. At the last equality, we use the min-max principle for the embedding

I H3! (02 x (0; T))—L?(0, T; L*(88)). Thus the proof of Lemma 3 is com-
plete.

Remark. Since R(G) £H3' (2% (0. T)). we do not know whether we
can get a reverse estimate 7,<C'0,(n>1).

THIRD STEP. By Lemma 3, for the proof of Theorem 2, it is sufficient to
discuss the asymptotic behaviour of 7, (n=>1). In this step, we construct a
singular system of I. For this, let us introduce notations and an operator. Let
Ase be the Laplace-Beltrami operator on 3£2. There exist countable eigenval-
ues of — Ao and we number them repeatedly according to their multiplicities:

(7.11) 0= o<ty <++v — 00

(e.g. Minakshisundaram and Pleijel [14]). Let 7, be the eigenfunction of
— Asg for pn,(n=>0) such that

(712) (nﬂv 77m)L2(9)=5mn (m, n—>—-0)
Furthermore we define ¢,€L%(0, T) n=0) by
Y2  umt

Y =cos—, n=1
JT T’
(7 ]-3) €n (t) =

ﬁ, n=0.

Then as is direclty seen, we have
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(714) (en' em) 120,17 = Omn (m. n 20) .
The purpose in this step is to prove the following proposition.

Proposition 2. We set

2.2 -1
n'm l) 2 (m’nZO)

pv +uz

(7.15) Omn= (
The operator I has a singular system |Gum, Oumen (&) Nm @), €0 () Nn ()} . m>0.
This proposition is proved by Lemmata 4-6.

Lemma 4. The system le,(t) Nm @)| .m0 is an orthonormal basis in
H* (02X (0, T)) =L%(0, T; L*(0R)).

Lemma 5. We set
(7.16) (u, v) = Z_Oﬂ'n_n% (1, enlm) 0,0 (V, €M) 0,0

provided that the right hand side is convergent. Then <>%1 is an inmer product

defining the norm in H 2100 X (0, T)) provided that a constant multiplier is
neglected.

Lemma 6. The system !Gumen(t) Nm (X)), m20 is an orthonormal basis in

H2' (02% (0, T)).

Let Lemmata 4-6 be proved. Then we can complete the proof of Proposi-
tion 2 as follows. For the proof, by Lemmata 4 and 6, it is sufficient to verify
X 17) I(O'nmenr)m) = Gnm X enNm

. r* (ennm) = Onm X OnmenMm (m, n 20) .
The first equality in (7.17) is trivial. Let us verify the second. Since
<>%1 is an inner product in Hz' (392 x (0, T)) by Lemma 5 and

(T, enlim) 0.0= <, I*en77m>%.1 for any WEHTL (AR X (0, T)), we see
(uy ennm) 0,0= (uy on—rgtl*enr]m) 0,0

for any uEH%'l(G.QX (0, T)), which is the second inequality in (7.17).
Now we proceed to proofs of Lemmata 4-6.

Proof of Lemma 4. The orthonormality is directly seen from (7.12) and
(7.14). Assume that y EH*® (0R2 % (0, T)) satisfies (y, €x7m) 0,0="0(m, n=0).
We have to prove that y =0. For this, we have

T
0=y, extimao= [ (s (-0, 1) romren()dt m, n20).
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By the completeness of lenl w20 in L2 (0, T), this implies (y (*, t), Nm) L20m
=0(m=0) for almost all t€ [0, T]. Since {fml 20 is an orthonormal basis in

L2(89) (e. g. Chavel [2]), we reach y (x, t) =0 for almost all z €0, tE [0
T]. Thus the proof of Lemma 4 is complete.

Proof of Lemma 5. We note

00
1
(u, v) gton= Z#,z,, (. Nm) 202

m=0

provided that a constant multiplier is neglected (e. g. [13, p. 37, Vol.1]). Let
wEHT (2% (0, T)). We have

L2(0.T:L? (3RQ))

R -

'_f le,,,(u ). Nm) F20000dt
+f Z <6l ), n"‘)LZ(am

n,m=0

= Z ﬂ,z,,| (G, Nm) 22, en)L!(OJ)‘

n,m=0
\ V2 . nnt)
" Z0<< n nm)’-z(‘”’) x/_ L20.7)
nm=
= Z Uz (u, exm) §0
n,m=0
: t(Ou 2
5 a3 ]

n,m=0
At the first equality and the second term in the third equality, we use respec

tively

> 1
) B 1
”¢"le‘(39) = Z#rzn (@, 1m) 102

m=0

and

\ V2 M)z =|lgl2
Z(g, ﬁsm T Lz(o'r)—”g“u(o.n

n=0

for any g(t) = (6t 1), r]m) o EL2 (0, T). Moreover by integration by parts,
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we See
TJ2 . nmt{0u
ﬁ %SIHT<W(.' t), ﬂm)wamdt
_ur

=T (u, Unz)Lz(am, en)LZ(O,T)

niw
= T (‘Mv ennm) 0,0-

Therefore we get

1 an
M@,l: Z (ﬂ,%,+nTz )(u, enlm) 8.0

= Z 0'71_75 (u, en77m> (2),0~

nm=0

Thus the proof of Lemma 5 is complete.

Proof of Lemma 6. The orthonormality of the system in Hz' (32 (0, T))
follows from Lemmata 4 and 5. Noting that <lu, Gnmenr]m>%,1=0;,,§ (i, €M) 0.0,
we can readily get that {Gumenlml » .20 is a basis in H%"I(B.QX 0, 7)).

FOURTH STEP. We renumber the singular values Oum (m, n=0) with dou-
ble suffix which is given by (7.15). We define the rearrangement {7, ,>1 of
io'nm} mn 20 by

O —k2—1,k, if P11k R+
(7.18) Ti=

Ok, (k+1)2—1, if k2+k+1 Slg (k+].) 2,
for £=0. In other words,

Tkz414n — Onk (0<n<k)

(7.18)
Twsnz—m=0wm (O0<m<k).

We will derive the asymptotic behaviour of the 7 (121). For a given lEN, we
fix €N such that #*+1</< (k+1)% Then by (7.15) we have
O S Ty <max *O'Ok, O'kO} ,

namely,

. Bt B\2 T 1
(7.19) ( = +4?) <t <max|-L, —{}.
‘uk
By [14], we have

(7.20) um=60m%+0 (m%) as m—0,



Multidimensional inverse hyperbolic problem 843

Here =2 is the spatial dimension and co=co (£2) >0 is a constant. Therefore
for sufficiently large k€N, we obtain

<max |, —
Tr>max _k' 1
Tk oz (1+0(1))
<c(F+——)
k2tr—1)
_ . ) 1 1 1
where C=C (8, T) >0 is a constant. Since m<l, we have n >;, SO
r kTe-T
that
1 1 2
?4— <

k2= k2r-D

Therefore 7, <——. Noting that k>./1—1by (k4+1)2>1, we get ;<

k2Gr=D 1T6-D

Therefore by Lemma 3, we can reach the conclusion of Theorem 2.

§8. Proof of Theorem 3
For the proof, we will prove

Proposition 3. Let a=0 be arbitrarily given. Then there exists a constant
C=C(R, T. 2, @) >0 such that if fED(A%), then

lau )

o <CllAa®fla.
Here we recall (6.1) and (6.2).

2a+%.2a+l

Proof of Proposition 3. We will prove the proposition in the following four
steps.

FIRST STEP. In this step, we will prove: if
(8.1) fEDA™)
for m&NU {0}, then v, =A™u (f) satisfies
vm €C° ([0, T]; H5(2)) NC' ([0, T; L*(RQ))
v €L2(0, T; L2(Q))

(8.2)

and
vm(x, £) =Avy (x, ) FAM A" (x) (xE€02,t>0)

(8.3) v (2, 0) =v;, (x, 0) =0 (xeN)
vz, t) =0 (x€00, t>0).
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We prove this assertion as follows. Let v, be the weak solution to (8.3). That
is, we have

(8.4) W (0, @)yt (Vg (-, 1), Vo) o= (A{)A™, ¢) 2o
for any t>0 and any ¢E€EH} (L), and
(8.5) vm (x, 0) =45, (x, 0) =0 (ref).

By Lemme 3.6 (p. 39) in [12] and Theorem 2.1 (pp.95-96) in [13, Vol. 1],
we see that v, satisfies (8.2). Therefore by uniqueness of weak solutions, it is
sufficient to prove that A ™™, is the weak solution to (1.1).

First it is clear that A~ (x, 0) =0. Since v, €C' ([0, T]; L?(2)) and A™™ is
bounded from L?(2) to itself, we have (4 ™"vy) (x, 0) =A™y (x, 0). There-
fore (A™™;) (x, 0) =0(x € Q) follows from v, (x, 0) =0. Firstly we have to
prove

(A™)" (-, 1), @) ey + (V(A™55) (-, 1), V)12

=AW, ¢) o

for any t>0 and any ¢EH} (£2). To this end, we will prove

(8.6)

(8.7) A™)" (x, 8) =A""0" (x, t) xEQ 0<t<LT).

In fact, since v;," €L2(0, T; L?(£2)), we have
T, - T "
[0 o0 Mg Oar= [T wn 0. D g’ s

for any 71E€L*(R) and ¢ ECy (0. T). Setting n=A""n for any n€L?(2), and
using (A7) *=(A*)™=A4"" we obtain

T T _
j; (A" (+, 1), Y})Lum(/)(t)df:j; (A (4, ), M) " (£)dt

for any n €L%(Q). Therefore we get

2
(A7 (+, 1), U)LZ(Q)ZC;LF'(A‘MU;:('y RN

= (A7) " (. 1), 1) 2@
for any n € L2 (), which is (8.7). Let us return to the proof of (8.6). By
(8.7) and (A ™)*=A""™ we have

(A™m)" (. 1), @) ra= A" (-, 1), @) 2@

(8.8) =y (-, 1), D) 2.

1
On the other hand, since HL(R) = D(A?) (e.g. Fujiwara [5]), we have
(Vo V) rwm= (A%gb. A%gl)) g for ¢, ¢EH(2). Consequently
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(8.9) (V(Aa™5) (o, t), Vo) pay= (4 _mA%U;(‘. t), A%¢) L2(@)
= (A2 (-, 1), A2(A7")) = (Viim (-, 1), V(A™"9)) 2o
We apply (8.8) and (8.9), so that we obtain

(A™55)" (-, 1), @) et (VA ™) (1), V) e
(), A7) iyt (Vi (-, 1), V(A™™)) 12y

= (vm

=A™, A"P) 1210).

At the last equality, we can use (8.4) by A™™¢ € H; (2). That is, we have
proved (8.6), namely, that A=, is the weak solution to (1.1).

SECOND STEP. In this step, we prove: if (8.1) holds, then u, =
aZm-f-l

u (f) satisfies

at2m+l
(8.10) un €C*([0, T1; H§(2)) NC' ([0, T]; L2(Q))
' up €CO([0, T1: H1(R2))
and
Uz, ) =AU (x, 1) FA2"Y () f(z) @€ t>0) )
U, 0)= ) A0 0) W)@ &EQ)
8.11) 4 k=0 »
Uz, 0) = Y. 2%%2 (0) (4%) (z) eQ)
{ L_I(x, t) =0 (reoR, 0<t<T)..

Here and henceforth we set H™' () = (H5(£2)) " the dual of H5(£2) and A (¢)
_d2

o (t). For the proof, we prove

Lemma 7. Let

XEC?[0, T], fED(A)
aED(A), Aa€HLVQ), bED(A).

Let w be the weak solution to

(8.12)

wx, t) =dwx, t) +xt)fx) @€ 0<t<T)
(8.13) w(x, 0)=a(x), w (r, 0)=b(x) (xr€e2)

wlx, 1) =0 (€0, 0<t<T).
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2
Then v (x, t) E%w(x, t) satisfies

vEC([0, T1; HY(8)) NCr ([0, T]: L2(RQ))
v"E€C ([0, TIH(Q))

(8.14)

and v is the weak solution to

Vi, ) =4vx, t)+x?P W) flx) e 0<i<T)

(8.15) vix, 0) =4da(x)+x ©0)f(x) (rEN)
. v (x, 0)=4b(x) +x (0)f(x) (xreN)
vix, t)=0 (x€082, 0<t<T).

Proof of Lemma 7. Let z be the weak solution to (8.15). Since z(+,0) €

H§(Q) and 2’ (+,0) €EL2(Q) by (8.12), it follows from Theorem 8.2 (p.275) in
[13, Vol. 1] that

2€C°([0, T]; H5(Q)) N ([0, TT; L2(2))
2’ €c([0, T]; H'(9Q)).

(8.16)
We set

8.17) wlx, t)zfo'(t—s)zu, Ods+ib () +ale) (xEQ 0<t<T).

This 0 is proved to be a weak solution to (8.13). In fact, since z is the weak
solution to (8.15), we have

(Vz(:, 1), Vo) o
== "), ®) ot xX?Of ¢) e
for any t>0 and ¢EH§(2), and

z(x, 0)=A4a(x) +x (0)f(x)
Z(x, 0)=A4b(x) +x (0)f(x) (xr€E)

(8.18)

(8.19)

Therefore for any @EH; (), we get
@ (1), ) o+ (Va(, 1), Vo)

=(z(-, 1), ¢)L2(Q)+j:(t—3) (Vz(,s), Vo) iads
+{tVb+Va Ve  (by®17))

= () D= [ =9 & 5), §) s

+j;t (t=s) (x?$)f, ) r2ards
+ Vbt Va, Vo) Lo (by (8.18)).
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On the other hand, carrying ont integrations by parts, we obtain

_—/:)' (t=s) (" (+, s), §) aards
=t (+,0), @) et (z(+, 0), ) 2y — (2 (. 1), @) 120

and

j; (t=5) (X? (). @) reards
=—t(x'0)/, ) 20— (X 0)f, @) 12r + (x (), B) r20a0.
Moreover, by Green's formula, (8.12) and ¢ EH} (), we have
(Vo+Va, V¢)ua=—(db+4e, ¢) .
Therefore for any t>0 and ¢EH (2), we get

@” ), ¢)L2(.Q)+ (Vaw(,t), V¢)Lz(g)

=t((+,0) —x' (0)f—4b, @) r+ (2(+,0) —x (0)f—Aa, ¢) 120>
+ (x (Of, @) 122

=(x O)f, ¢) 12 (by (8.19)).

Therefore @ is the weak solution to (8.13), so that by uniqueness of weak

solutions we get w(x, t) =w(x, t) @€ L, 0<t<T) and

2
z2(x, t) =v(x, 1) :%w(x. ) (€N 0<i<T).

Consequently (8.16) implies the conclusion of Lemma 7.

Now we proceed to the proof of (8.10) and (8.11) by induction. Let m=
1, namely, f € @ (4). From the proof of Lemma 2 in §6 and Theorem 8.2

(p. 275) in [13, Vol.T], we see that M():M satisfies
ot

uo€C ([0, T1; H§(2)) ncr([o, T1; L2(2))

ue’ €C°([0, T]; H71(Q))

and (8.13) with x () =2 (t) (0<t<T), a(x)=0,b(x) =200 f(x) @ E Q).
azuo

ot?

(8.20)

Since (8.12) is satisfied by fED(A), we can apply Lemma 7, so that u;=
.
=Q%}3L) satisfies (8.14) and
" (x, t) =Au, (x, 1) AP () f(x) (€N 0<t<T)
uy (x, 0) =2 (0)f (x) (ren)

ui (x, 0) =2(0) Af (x) +21? (0)f (x) (x€Q)
uy (x, t) =0 (xen, 0<t<T),
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which is (8.11) with m =1, that is, we see that (8.10) and (8.11) hold for
m=1.

Next assume that (8.10) and (8.11) hold if fED (A'). Then we have to
prove that (8.10) and (8.11) hold for fED (A'*!). By the assumption, u; sat-
isfies (8.13) where x (t) = A%*Y (1) (0 <t <7T), a (x) = Xiha@-1-20 (0)
(4%) (x) and b (x) = Z=0A% 720 (0) (4%) (x) (x € Q). 1t follows from fE
D(A™Y) that a €D (A), 4a €D (A) CTHL () and bED (4). Consequently we

2
can apply Lemma 7, so that u,+1=%-;% satisfies (8.10) and
Wint (z, 1) = Bus (x, ) 2249 ()7 (x) x€0,0<t<T) |
-
iz, 0) =4 A1 (0) A%) (2) + 2%+ (0)£ (z) (e
1 k=0 >
1
iz, 0) =4 £ (0) 4%) () +A%42 (0)f x) @)
k=0 .
uin (x, £) =0 (x€09, 0<t<T),

which is (8.11) with m=I+1. Thus by induction, we have proved (8.10) and
(8.11) if (8.1) holds for any m=>1.

THIRD STEP. In this step, we prove: if (8.1) holds for m =0, then

(8.21) st <clA s,

2m+3om+1

Here C=C(, T. A, m) >0 is independent of f.

For m =0, the estimate (8.21) is nothing but Lemma 2 in §6. Therefore
let us prove (8.21) for m=> 1. First, as is shown in First Step, A™u (f)
satisfies (8.3). Consequently by Theorem 2.1 (pp. 95-96) in [13, Vcl.II], we
get

(8.22) la™u () ez om0y SClA™f 2y

with C=C (8, T, A, m) >0. Since A™u (f) (+, 1) €ED (A) for almost all ¢t € [0,
T1, we see that [ (f) («, £) e S C (R, m) |40 () (¢, t) |12, sO that (8.22)
implies

e () Nz 71202 00y S CIA™F 120

By the trace theorem (e.g. pp. 41-42 in [13, Vol.1]), we reach
(8.23) |20

< m
L*(0,T:H™1(58Q)) _C”A f”LZ(m.

_ 62m+1u (i)

pyro satisfies (8.11), we apply

Second, from Second Step, um
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Théoreme 4.1 (p. 44) in [12] to get

” o 92m+y, gf)
on o2m+1

L2(0,T:L2(3%2))

<cta ([T 07 @

+ “ iz(Zm—le) (O) Akf
k=0

L2(Q) L2(@)

+ ”2‘”’“{fﬂv(o.r;ﬁ(m)))

<c(@, 1) (R, 2 m) A"l +C (2, 2, m) A2+ C (4, m) [flle)
(by A¥E€D(A): 0Lk<m—1)
=C(Q, T, A, m) A" 2.

Consequently we obtain

aded. 0

at2m+1 SC(Qy T. 2' n"’) ”Amf”LZ(_Q),

L*(0,T:L*(09))

with which we combine (8.23), so that we reach (8.21).

FOURTH STEP. By the interpolation theorem, we will complete the proof
of Proposition 3. The estimate (8.21) implies Proposition 3 for any m € N U
{0} . Let @=0 be not an integer. We take the m €N U [0} such that m<a<m

+ 1. Since the map fﬁ%gﬁ is bounded from @ (A™) to H™+z2m+1(3Q x (0,

T)) and from D (A™*) to H2"*2+ 3243 (3Q x (0, T)) by (8.21), it follows
from Theorem 5.1 (p. 27) in [13, Vol. I] that the map is bounded from [P
(14m+1), @(Am>]l—a+m to

[H2m+2+~21-,2m+3 BR% (0, T)). HZ"”%'Z'"“(O.QX 0. T ] 1—aem.

Noting that An=Alswun is positive self-adjoint operator in the Hilbert space Y
=9 (A™) with the inner product (. v) » = (A™u, A™) 12y and D (A,,) =
D (A™*Y), by the interpolation theorem (e.g. [13, Vol. 1]), we get

[DA™), DA™) J1-asm=[D(A™), Y]i-asn=D (A5 ™) =D (AY).
Moreover by [13, pp. 6-8, Vol.I[], we see
[H2m+2+—é—,2m+3(agx 0. 7)), H2m+%.2m+l(agx ©. T T 1easm
=H2a+%.2a+1(agx 0, T)).
Thus the proof of Proposition 3 is complete.

Now we are ready to finish the proof of Theorem 3. By the interpolation



850 Masahiro Yamamoto

incquality (e.g. Proposition 2.3 (p. 19) in [13, Vol. I]) and the interpolation
result (pp. 6-8 in [13, Vol.II]), we see that for each < [0, 1]

“y”(l 0 a+l 2)h (- 2a+1) < C(a 0) |'y||2a+ 2a+1”y”g.0

for yEHz‘”%'z"‘“ (02x (0, T)). Let 0=22—3_1A This value is the maximal §&€

[0, 1] such that (1—6) <2a+%) >0 and (1—6) (2a+1) 21, that is,
H<1—0>(2a+%>,<1-9>(2a+1)(agx 0, T)) CH" (392X (0, T)).

Consequently we have

lyllo<C(a) Hyllz"’L1 lyliT

2a+ 2a+1

for any yEHZ"‘+l 2a+1(9Q % (0, T)). Let f, g€ Up.a. Then by Proposition 3, we

%ﬁ' ang) H2a+ 2a+1(30 % (0, T)) and

”%f ) O(n ) M%,MHSC(“) A% —A%le@ <2MC (R, T, 2, ).
Therefore we reach
e
<Cla) 2MC(Q. T, A, a)) za+t _(L) fa(nﬁ jzﬂ
=C(Q, T, A, a) Mz _ﬁL _6% sc;u

with which we combine (1.5) in Theorem O in §1 and we can complete the
proof of Theorem 3.

§9. Proof of Theorem 4
We set

9.1) wa (g, E) =sup I flee; IGAbo<e, €D (AY), | A% |2y <E} .
Then by Theorem 3.4 (p. 32) in [1], we get
“fe _fOHLZ(Q) < Zﬁwa (8, E)

on the assumption (4.3). On the other hand, by Theorem 3, we see

1  _2a
(9.2) wale, E) <C5(Q. T, A, @) EBFLEIT (>0, E>0).

Therefore we obtain
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1 _2a
Ife = follcor < Cs (@) EZa+T2a+T

which is the condition of Theorem 4.

§10. Proof of Theorem 5

First we show

Lemma 8. Let H, and H; be Hilbert spaces and A be a positive self-adjoint

operator from Hy to Hy such that A™" is compact from Hy to H,. For a fixed a>0,
let Hy(h>0) be subspaces of Hy such that the following properties hold:

(10.1) HyCD(AY), dim H,<oo,
There exist linear operator Iy: D (A*)—Hy and B>0 such that

(10.2) Ilf—T0af e, < CRE[ A,
and
(10. 3) ”Aankf"Fh —<—C“Aaf1|Hl

for all FED(A%). Here C>0 is a constant independent of f.
Let K be a bounded linear operator from Hy to Hy with D (K) =H,. We set

(10.4)  pale, E) =sup I/ lw: [Kflln.<e, 7€ D (A%), |A*An <E}.

Then

(i) For an arbitrarily fixed y EHz and €>0, h >0, there exists a unique minimizer

fen=fen (y) of

2
(10.5) Folf) =l =yl t 147715,

over fEH,.

(ii) We assume that

(10.6) Kfo=yo. fo€D(AY), [A%lm<E
and
(10.7) ||yg—yol|m—<-€. Yye EH,.

Then there exists a constant C>0 such that

(10.8) lo—fuslinSoa(c E+e). o(E +)).

Here C>0 is independent of E and the choice of ye.
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In (10.4), since {f€ D (A%); | A%y, <E! is a compact set in H), we see
Pa (e, E) <0 for any ¢>0 and E>0(e.g. [1, pp. 21-26]).

Remark. Th.is lemma is a variant of Natterer [15] and Theorem 6.6
(p. 109) in [1], where it is assumed that there exists a>> 0 such that the

norms ||Kf &, and | A=% ||, are equivalent for any f€ H,. In our case and simi-
lar inverse problems for a parabolic equation (e.g. Yamamoto [22, 23]),
however, it is difficult to get such equivalence and so we modify Natterer's re-
sult for our purpose in terms of the degree of continuty o4 (¢, E).

Proof of Lemma 8.  The part (i) is a standard result in the regularization
(e.g. Theorem 3.7 (p. 35) in [1]) and proved similarly to Proposition 1 in §4.

We can prove the part (ii) similarly to [15] or Theorem 6.16 (p. 109) in
[1], but for completeness, we give the proof. Since f., is the minimizer, we
have

2
H\

2
lu(fe.h_ys||%12+_2;|lAafs.h
. . | & )
<SIKTafo—yelly + E”A“H:Jolﬁn
< (I (Mafo—fo) llwe + 1K f o —yell,) 2
2
+§CIIA‘%II%1 (by (10.3))
< (WA olluy+e) 2 +Ce?
(by (10.6), (10.7), (10.2) and the boundedness of K)

(10.9) <C(h*#E*+¢?) (by (10.7)).

Here and henceforth C>0 is a constant independent of ¢, h, E and y.. There-
fore by (10.9) we get

IKfen— K folls, SIKFen—yell + lye — Kfolla,

<C(Cm®E+e)i+e  (by (10.7))
(10.10) <CnfE+e),

and

BEZ
% eslin <c(BE+E).

82
WE +E) 2F, so that

Without loss of generality, we may assume that C( c

hBEZ
”Aafe,h”m, “AOIf(,”H1 < c<_8_+E)
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by (10.7). Consequently applying (10.10) in (10.4), we see (10.8). Thus the
proof of (ii) of Lemma 8 is complete.

Now we proceed to the proof of Theorem 5. By (5.1) - (5.3), in Lemma 8,
setting H1=L%(Q), H,=L%(0, T; L?(3%2)), A=A defined by (3.1), K=G, Hy=
X»(n>0), I, =1, we can apply (10.8) in our inverse problem. Therefore we
obtain

B2
Fo—serlsar<po(cW2E+e), c(PE+E)).

On the other hand, by Theorem 3 and the definition (10.4) of p., we have an
estimate

Oa (5. E) S.(,‘BEMlﬁEEEZ«'%y
where C3=Cs3(R, T, A, @) >0. Therefore we get

1

B2 2
Ifo—Fenlie < C(h—e’E— +E> 2% (hBE+-¢) Til.

Here and henceforth C=C(, T, A, @) >0 is a constant independent of ¢, h, E
and the choice of y.. Then we get

2a+1

“fo _fe,h”u(g)

SC(hfe'E*+E) (h**E? +¢%)

=c(h2aﬂ+38—lEZa+2 + hB€2a—1E2 + hZaBEzaH + E&za)
SC(E+1)Za+2 (82aBr+Br—l + 82a+Br—l + €2aﬁr + eza)‘

Moreover we have

min {2aBy+Br—1, 2a+Br—1, 2aB7, 2a} =2«, if 72%

and

Sl

- _ _ — a1 1
min {2aBr+Br—1, 2a+Br—1, 2aBy, 2at =2aBy+By—1, if B(2a+1)<7 5

so that we reach

- C(E+1)2a+2£2a if T—%
“fo _fe.h"u(m s 1 1
2a+2.2aB8r+8r-1 =
C(E+1)2+2% U Gat ) <Tp

which is (5.10), the conclusion of Theorem 5.

Appendix I. Proof of Proposition 1

L e? . . .
For simplicity, we set ,B=E>O, because we fix the ratio _E% in the prop-
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osition. Since it follows from (1.5) that ”Gf”u(o.r;wag))SHﬂle(m, and the norm

1
G IB 0 712000 F A B2ie) 2

is equivalent to the norm |A%f|lxq) for FED (A%). we can apply a result in the
regularization (e.g. Theorem 3.7 (p. 35) in Baumeister [1]), so that we see
1)-@3):
(1) There exists a unique minimizer / (y) €D (A%) of F (e, E, a, y) for any
yELX0, T; L*(09)).
(2) There exists a constant C (a, B) >0 such that
G*G+B(4%) *A%) ! yllw <C(a, B) Iyl o762y

for y €L%(0, T; L?(082)). Here and henceforth G* and (4%)* are adjoint oper-
ators respectively of bounded operators G: L2(2)—L%(0, T; L?(02)) and A
D(A*)—LH(Q).
(3) /= (G*G+BA%)*A%) 7'G*y.

Thus the parts (i) and (ii) of Proposition 1 follow.

Appendix II. Proof of Lemma 1

Since X»C D (47) =HY (Q) ([5]), by the definitions (5.6) and (5.7) of
Xy and In, we see (5.1). Next we have to verify (5.2) and (5.3). By a result
on interpolation with piecewise linear functions (e.g. Johnson [9, Chapter 4])

for any fEH} () =D (A7), there exists a constant C=C () >0 independent of
h such that

(1) I = 1f ecom < ChI e com.

On the other hand, for example, by the estimate (5.2-18) (p. 118) in Raviart
and Thomas [18], we have

£ iz iovem < C () (Rl N2+ B2 i cananm)

(2)
<C (D) hf lnio.

At the last inequality, we note that ||fllizee =0 by fFEHL(2). By the definition

(5.6) and (5.7) of If, we have Iifloe,=0 (f€H}(R)). Therefore by (1) and
(2), we see

If = Inf leeor <N = Inf lzcam 1 F—Inf e nan
<Ch (1+h) |A% |20
<Ch (1+ad) |47 o
Here we recall that d =sup {lx1—x2|; z1, x2€ 2} . Thus (5.2) is verified with

_1 -
a=s and B=1.
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Finally we have to verify (5.3). For example, by the estimate (4.23)
(p. 91) in Johnson [9], we obtain |[f—Inf |g1@mn <C (7) f llr1com. namely,

(3) 14 lerrcam < (C (2) +1) Al can,

by the triangle inequality. Let fEH}(2) =9 (A%). Since I, f is piecewise linear
in 2 and Iiflae.=0, we have |[Iyf lmi@ <IIfllaign. Thus (3) implies (5.3)

R §
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