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On dynamics of hyperbolic rational semigroups
By

Hiroki SuMi

1. Introduction

For a Riemann surface S, let End(S) denote the set of all holomorphic
endomorphisms of S. It is a semigroup with the semigroup operation being

composition of functions. A rational semigroup is a subsemigroup of End (C)
without any constant elements. Similarly, an entive semigroup is a
subsemigroup of End(C) without any constant elements. A rational
semigroup G is called a polynomial semigroup if each gEG is a polynomial.
When a rational or entire semigroup G is generated by {fi, fa... fa...}, We
denote this situation by

G= <f1,f2,... fn,...>,

The rational or entire semigrop generated by a single function g is denoted by
{¢>. We denote the n-th iterate of f by f*.

The study of rational semigroups is a generalization of the study of
Kleinian groups, iteration of rational functions and systems of contraction
maps related to self- similar sets in C in fractal geometry. D. Sullivan
pointed out that there are many points of similarity between Kleinian groups
and iteration of rational functions in [Sul]. In view of the study of rational
semigroups, we can show some basic results similar between Kleinian groups
and iteration of rational functions. For example, limit sets of Kleinian
groups, Julia sets of rational functions and self-similar sets in C are Julia sets
of rational semigroups. By Lemma 1.1.5.6, which is a result by A.
Hinkkanen and G. J. Martin, the fixed points are dense in these sets. Several
properties of dynamics of rational semigroups have been shown in [ZR],
[GR], [HM1], [HM2], [S1] and [S2]. In 1992, the first study was
investigated by W. Zhou and F. Ren ([ZR]). In 1996, the study of infinitely
generated semigroup of meromorphic functions was investigated by Z. Gong
and F. Ren ([GR]). In 1996, A. Hinkkanen and G. J. Martin studied about
nearly abelian rational semigroups ([HM1]). They showed that Julia sets of
finitely generated rational semigroups are uniformly perfect ([HM2]).

In this paper, we use the notations in [HM1], [HM2], [S1] and [S2]. We
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will show the following results. The Julia sets of finitely generated rational
semigroups have the backward self-similarity (Lemma 1.1.4). If the
hyperbolic rational semigroup is finitely generated and satisfies some
conditions, the limit functions of the semigroup on the Fatou set are only
constant functions that take their values on postcrical set (Theorem 2.2.8).
When the generators of a finitely generated hyperbolic rational semigroup are
perturbed, the hyperbolicity is kept and the Jilia set depends cotinuously on
the generators of the semigroup (Theorem 2.4.1). Furthermore, if the
finitely generated rational semigroup is hyperbolic and if the inverse images
by the generators of the Julia set are mutually disjoint, then the Julia set
moves by holomorphic motion (Theorem 2.4.1).

Because of the backward self-similarity, if the postcritical set is included
in a Fatou component, then the Julia set has a property which is like usual
self-similarity (Theorem 2.5.1), and moreover, if the inverse images by the
generators of the Julia set are mutually disjoint, then the Julia set is a Cantor
set (Theorem 2.5.2).

In [S3], it is shown that the hyperbolicity and the expandingness are
equivalent if the semigroup is finitely generated and contains an element with
the degree at least two. In that paper, the study of a construction of
conformal measures and Hausdorff dimension of Julia sets of hyperbolic
rational semigroups will be given. The study of generalized Brolin-Lyubich’s
invariant measures and estimates of Hausdorff dimension of Julia sets will be
given in [S4].

The author will discuss about the existance and uniqueness of conformal
measures and self-similar measures in more general cases in [S5].

Acknowledgement. The author would like to express his gratitude to
Prof. S. Ushiki, Prof. M. Taniguchi, Prof. J. Kigami, Prof. T. Sugawa and Prof.
M. Kisaka for many valuable discussions and advices. The author especially
would like to express his gratitude to the referee for many valuable and
helpful advices.

1.1. preliminaries

Definition 1.1.1. Let G be a rational semigroup.

def _
F(G) ={z€C|G is normal in a neighborhood of z}
def

J(G) =C\F (G)

F(G) is called Fatou set for G and J(G) is called Julia set for G. Similarly.
Fatou set and Julia set for entire semigroup are defined.

Definition 1.1.2. Let G be a rational semigroup and z a point of C.
The backward orbit O~ (z) of z and the set of exceptional points E (G) are
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defined by:
def _
0~ (z2) = {wEClthere is some gEG such that g (w) =2},
def _
E@G)=1{€C|#0 (z) <2).

Definition 1.1.3. A subsemigroup H of a semigroup G is said to be
finite index if there is a finite collection of elements {gi, gz, ..., go} of G such

that G = U%7.,¢;H. Similarly we say that a subsemigroup H of G has cofinite
index if there is a finite collection of elements {g), g, ..., g»} of G such that for
every g€G there is aj€{1, 2, .., n} such that g,gEH.

Lemma 1.1.4. Let G be a rational semigroup.
1. For any f€G.

fF(G))CF(G),fU(G)) ) (G),
F(G)CF(P), JKp)CJ(G)

2, If G=XA,, ..., fw, then
F(G) =N ' (F(G)), J(G) = Vi (G)
Proof. By definition, it is easy to show 1. We show 2. By 1,
F(G) N fit(FG)).

Now take any point z0€ N7, f7*(F(G))) and set w;=f;(z0) EF(G).
For any €>0, there is some 0>0 such that if §€G, 1<j<#u, and d (w, w;)
<0, then

d(gw), gw;)) <e.
For this 0, there is some >0 such that if d (z, 20) <7 then
d(fi(2), fi(z0) <0,j=1, ..., n.

So if g€G, 1<j<n, and d (2, z0) <7 then
d(gf;(2), gf; (z0)) <e.

G is equal to U {G U {id}} +f;, so G is equicontinuous at zo, and
N (F(G)) CF(G).

If a set K satisfies that K = U7, f;7! (K), we say that K has backward
self-similarity.
Next lemma was shown in [HM1], [ZR].

Lemma 1.1.5. Let G be a rational semigroup.
1. If a subsemigroup H of G is of finite or cofinite index, then
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JH) =] (G).

In particular, when G is rational semigroup genevated by finite elements {fi, fo, ...
fa) and m is an integer, if we set

_ Hw={g=fir..[s EGlm devides k},
In={gE€G|g is a product of some elements of word length m}

then

J(G) =] (Hm) =] (Im).

Here we say an element f € G is of word length m if m is the minimum inleger
such that

S=fivSim

2. If J(G) contains at least three points, then J(G) is a perfect set.
3. If theve is an element g € G such that deg(g) =2 or there is an element
GEG such that deg(g) =1 and the order of g is infinite, then

E(G)=1{z€Cl#0 (z) <oo}, #E(G) <2.

4. If a point z is not in E (G), then for every x €EJ(G), x belongs to 0~ (2) .
In particular if a point z belongs to J(G)\E (G), then

07 (2) =J(G).

5. If there is an element g€ G such that deg(g) =2 or there is an element
JE G such that deg(g) =1 and the order of g is infinite and J(G) contains at
least three points, then J(G) is the smallest closed backward invariant set
contaming at least three points. Heve we say that a set A is bacward invariant
under G if for each gEG, g~ (A) CA.

6. If J(G) contains at least three points, then

J(G)= {z€Clz is a repelling fixed point of some gEG}
Proof. [HM1].
Remark. A similar result of 6 for entire semigroups can also be stated.

Proposition 1.1.6. Let {Q:} be a family of polynomials that are not of
degree one and G a polynomial semigroup genevated by {Qz}.

If a transformation 0(z) = pz+ 7€ AutC, = exp(®), k €N satisfies for
every A
a(J(Qw)) =J(KQw),
then

a((G)=J(G).
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Proof. For every polynomial Q that is not of degree one, J (Q) is
completely invariant under a transformation z— (exp (%)) (z) if and only if
Q=azP (z*), where P is a polynomial, a is a number, and d is an integer
([Bell). Soitis easy to see the stagement using Lemma 1.1.5.6.

Example 1.1.7. For a regular triangle pipsps, we set gi (z) =2 (z—p;)
+p;, i=1,23. And let G be a rational semigroup generated by {g;}, not as a
group. Then J(G) is the Sierpinski Gasket.

2. Dynamics of hyperbolic rational semigroups

2.1. Limit Functions. First, we will give some comments about
limit functions of semigroups. The study of limit functions plays a very
important role in the study of complex dynamical systems. The forward
invariant domains of iteration of rational functions are classified into five
types by the limit functions ([Bel], [Mi]).

Let S be a hyperbolic Riemann surface, S. the one point
compactification of S, and H a subsemigroup of End (S).

Definition 2.1.1.

— def
%4 (S) ={¢ | S—S.|there is a sequence (g;) of mutually distinct elements
of H such that g;/— ¢ locally uniformly on S as j—0o0}.

Remark. Every family A of elements of End(S) contains a sequence
that converges to an element of End (S) or o. ([Mi]).

Lemma 2.1.2. Let S be a hyperbolic Riemann surface and H a
subsemigroup of End (S). If g€ H is non-constant and ¢ belongs to Ly (S), then
(pgegy (S).  Moreover if @ also belongs to End (S), then gq)E.‘?H (S).

Proof. Let ¢ be an element of £ 5 (S). There is a sequence (f;) of
mutually distinct elements of H such that ff— ¢. Then the sequence (f;g)
converges to ¢g and {f;jg} are mutually distinct because ¢ is non-constant.
By definition @g belongs to £x(S).

Next assume ¢ also belongs to End(S). The sequence (gf;) converges to
go. We will show {gf;} contains infinitely many elements that are mutually
distinct. For each number 17, j, we set

Ci=1{z€S8| 1 (2) =£;(2)}, C= U 14;Cy;.

C is a countable set and we can take a point x of S which does not belong to C.
Then {f;(x)} are mutually distinct and the sequence (f;(x)) converges to ¢
(r) €S. Now assume that there exists a subsequence (j;) of (j) such that
j¥—0°° as k= and all elements of {gf;,} are equal to an element # €End (S).
Then for each k, gfj, (x) = g¢ (x) and this is a contradiction because g is
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nonconstant. So 1{gf;} contains infinitely many elements that are mutually
distinct. By definition, it follows that g¢ belongs to £x(S).

Lemma 2.1.3. Let S be a hyperbolic Riemann susvface and H a finitely

genervated subsemigroup of End (S). If there is a non-costant element (pE.‘? 2 (S),
then at least one of these assersions is true:

1. 1dsELH(S) and there is a genevator go€ H such that go is injective on S.

2. There is a sequence (bj) of elements of H such that for every j there is an
element h; € H such that bj.1=h;b; and (b;) converges to ° locally uniformly on
S.

Proof. We fix a generator system {g, .., gi} of H. There is a sequence
(f;) of mutually distinct elements of H such that f;—¢ and word length of f;
strictly increases as j— . We represent each f; by its reduced word. We
take a subsequence (f1;) of (f;) as follows. There is a generator g;, of H
such that for each j

Inductively when we get a sequence (fy,); we take a subsequence (fy4+1;); of
it as follows. There is a generator g;,., of H such that for each j

fn+l,}':“'°ginﬂ°.”ogib
Now we get a sequence ( fy.)» and
fnn=Qn°Ay, where a,€H, a=gin°"**°gir.

There are subsequences (a»,) of (a@,) and (as) of (a,) and maps @, g : S—Sa
such that (@), (as) converge to a, g locally uniformly on S, respectively.
Because {a,,)} are mutually distinct.

ge-(?}l (S).

If ¢ is not a constant, g(S) C€S. If g is a constant, then g =00, for ¢ is not
constant. In the former case, we can assume that for each j, there is an
element h; € H such that {h;} are mutually distinct, as,, = hj°an, and h;
converges to a map h loally unformly on S as j—°°. Then g=h°g and

hzlds.
We can also assume that there is a generator g; such that for each 7,
h}.: cee °gi-

Then for z, wES, if we have g; (z) =gi (w), then for each j, h;(z) =h; (w) and
so z=w. This implies that g; is injective on S.

Next we define stable domains ([HM1]).

Definition 2.1.4. Let G be a rational semigroup and U a connected
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component of FF(G). We say that U is a stable domain if there is an element
g€G\Aut C such that g(U) CU. And we set

def
Gv=1{g<Glg(U) CU}.

Similar definitions for entire semigroup can Iso be given.

Defintion 2.1.5. Let U be a domain of C and H a subsemigroup of
End (U). Then we set

def —
%y (U) ={¢ : U—Ulthere is a sequence (g;) of mutually distinct elements
of H such that g;/—¢ locally uniformly on U as j—0}.

Remark. If gEH is non-constant and ¢ belongs to £y (U), then ¢°g€
%5 (U). Moreover if ¢ also belongs to End (U), then ge o €%y (U).

Now we consider a case such that there are only finitely many constant
limit functions taking its value in a domain U. In this case £y (U) has only
finitely many elements.

Propositon 2.1.6. Let G be a rational semigroup and U a subdomain of
F(G) and we set

H={gE€G|g(U) CU}, d={L€U| 3 p€Lx(U), 9=0{).

If H is finitely generated and if 1 < # o <oo, then any ¢ € Ly(U) is a

constant map being its value €U. And M=HN Aut(C) has only finitely many
elements.

Remarks. A similar result for entire semigroup also holds. And if we
set

— 2 i6 _0_ —_
C= o, 5 €Q, U={lz|<1}.

then
#loeLy(U)|3CEU, o=0=1,1dyE ¥, (V).

Next we consider a case such that there are infinitely many constant limit
functions taking its value in a stable domain.

Proposition 2.1.7. Let G be a rational (entire) semigroup, U a stable
domain of G. We set

H=Gy,
A2 CeU|To=2u (). o=0). B={CET] T 0Ly (). =0}

If 4 has an accumulation point i U. then B is a perfect set, in particular an
uncountable set.

Proof. First, it is easy to see that B is a closed subset of U. Assume
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that & has an accumulation point in U and { €% is an isolated point. There
is a sequence (g;) of H converging to { locally uniformly on U. By our
assumpsion & is not empty and take a point x €. Then g; (x)—{ as j— o
and g;(x) €4 by the remark after Definition 2.1.5. So { belongs to U, for it
is an isolated point. Now g;({)—{ as j—° and ¢, ({) = for large enough j
because { is isolated. Also for each compact set K. g; maps K into a small
disc about { for large enough j. It follows that for large enough j, the point {
is an attracting fixed point of g;. Take a large enough number j and set g=
g;. For each yE4 the sequence (g”(y)) converges to { as n—00. Because {
is an isolated point, g" (y) = for each large enough n. So &< U,g *{{}, and
each point of & is isolated in U because {g"} is normal in U. This is a
contradiction.

If & has infinitely many points and there is no accumulation point of & in
U, then by the proof of Proposition 2.1.7, for any {E4 there is an element g

of H such that  C U ,g™"{{}. It is a problem whether this situation can
occur or not.

Conjecture 2.1.8. If 4 has infinitely many points, then A has an
accumulation point in U.

If this conjecture is true, by Proposition 2.1.7, it implies the following
conjecture.

Conjecture 2.1.9. If 4 has wnfinitely many points, then B is a perfect

sel. . . . . ..
®* Next we consider the nearly abelian semigroup in [HM1] and the limit

functions as an example.

Defintion 2.1.10. Let G be a rational semigroup containing an
element g with deg(g) = 2. We say that G is nearly abelian if there is a
compct family of Mobius (or linear fractional) transformations @ = {¢} with
the following properties.

¢ (F(G))=F(G) for all p€ED

* for all f, gEG there is a ¢ € D such that f g=¢g f

Then by [HM1], if g€G is of degree at least two, then J(G) =J(g). And it is
also shown in [HM1] that in each stable domain U, the type of each element
gE Gy such that deg(g) is at least two coincides. Here we define by the type
of gEGy the type of the connected component of F(g) containing U.

Let X be a subset of C that is not a round circle. We set

G=1{glg is a polynomial, J(g) =X}.

If G contains an element g such that deg(g) is at least two, then G is nearly
abelian and we can take a family @ of Definition 2.1.10 so that it contains
only finitely many elements.

Proposition 2.1.11. Let G be a nearly abelian rational semigroup, D the
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family in Definition 2.1.10 and U a stable domain. We set H=Gy and B={(E
Ul3 o€y (U), =08 If @ has only finitely many elements, then for any
element g of H,

BC U g " {fixed point of g™},

nm, 21 ntm< # 0+1

in particular, B has at most finitely many elements, Movover if B is not empty,
either all points of B belong to U or all points of B belong to O U.

Proof. Let a be an element of £5(U). Then there is a sequence (g;) of
mutually distinct elements of H converging to « locally uniformly on U. Let g
be any element of H. For every j there is an element ¢; € @ such that

99;= 9igi9.
We can assume that (¢;) converges to an element ¢ of @. Then
ga=glimgj=1im(0;gjg=(0ag.
]-—Om ]—5@

If a is identically equal to a constant value {E U, then

g0 =0(0).

There are some positive integers n, m with n+m < # @+1 such that g™ ({) is
a fixed point of g”. Now assume that BNU#* @ and BNOUF . Letx, y be
points of B N U, B N QU respectively. Then there is a sequence (h;) of
mustually distinct elements of H converging to y locally uniformly on U. The
sequence (h; (x)) converges to y as j7— and h; (x) belongs to # for each j,
this implies that # has infinitely many elements.

Example 2.1.12. Let n be integer such that #=>2 and we set f(z) =2"
+c, 0(z) =exp(®)z, and G=</, of, .., 6""'f>. Then G is nearly abelian. If
|c| is small enough, then O belongs to F (G). Let U be the stable domain
containing 0. Then

Ly (U) =10’ (20),7=0, ..., n—1}.

where zo is an attracting fixed point of f in U and # €5 (U) =n. Also there is
a number ¢ such that each element of £y (U) is a constant value of U and #

Example 2.1.13. Let m, n be integers greater than 1. We set f(z) =
2" (z—c), gz) =2"(z—c¢) +¢, G=<f, ¢». lilc| is small enough, then 0 and ¢
belong to the same connected componnt U of F(G). Now f(0), f(c) =0 and g
(0), g(c) =c and it implies that

P (U) =A@, @c}, where ¢o=0, ¢.=c.

Also G is not nearly abelian, for, the type of f in U is super attracting and
different from that of g.

2.2. No wandering domains. Now we consider hyperbolic rational
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semigrpups.

Defintion 2.2.1. Let G be a rational semigroup. We set

P(G) = U {critical values of g}

geG
and we say that G is hyperbolic if P(G) CF(G).

Remark. In [S3], it will be shown that the hyperbolicity and the
expandingness are equivalent if the semigroup is finitely generated and
satisfies that it contains an elememt with the degree at least two and each
Mobius transformation in it is not elliptic.

Definition 2.2.2. Let G a rational semigroup and U a component of F
(G). For every element of G, we denote by U, the connected component of F
(G) containing g (U). We say that U is a wandering domain if {U,} is
infinite.

Theorem 2.2.3 Let G a rational semigroup and U a wandering domain.
Then theve is a constant limit function ¢ of G on U taking its value Cin J(G).

Proof. We have a sequence (g;) in G such that it converges to a map ¢
locally uniformly on U and each Uy, is mutually disjoint. Now we assume ¢
is nonconstant. Then ¢(U) is an open subset of F(G) and this is a
contradiction because (g;) converges to ¢ and each Uy, is mutually disjoint.
So ¢ is constant. Now we assume the value { is in F(G). But this is also a
contradiction because for each large j component U, is included in the
component of F(G) containing {.

Now we show a sufficient condition so that there is no wandering
daomain.

Theorem 2.2.4. Let G be a rational semigroup and U a wandering
domain. Also let ¢ be a constant limit function of G on U taking its value { in
J(G). If there is an element of G such that the degree is at least two, then the
value {is in P(G).

Corollary 2.2.5. If G is a hyperbolic vational semigroup containing an
element of degree at least two, then theve is no wandeving domain of F(G).

Proof of Theorem We assume that there is an element of G such that the
degree is at least two. We will show that the value { is in P(G). We can
assume that P (G) contains at least three points. Assuming that  is not in
P(G), there is a simply connected neighborhood V of { disjoint from P(G).
Then for every gE€G, we can take all branches of ¢g~! that are well defined on
V. We denote by & the family of meromorphic functions on V such that each
element of & is a branch of the inverse of an element of G. Then & is a
normal family on V. Let (g;) be a sequence with g;|y— € compact uniformly
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and g; (U) C V for large j. Now we take a curve 7 in U containing at least
two points. For large j, we take a branch h; of g;™! on V such that it maps
g;(1) to 7. Now (g; (7)) converges to { and so for any neighborhood W of {
there is a number j such that ; (W) contains 7. But this is a contradiction
because (k;) is equicontinous.

Similarly we can show the following result.

Theorem 2.2.6. In the same situation as Theorem 1.2.3, assume that
every element of G is of degree one. For every point xE€C, we denote the closure of

G orbit of x by A (x). Then for all x EC but at most two points of G-fixed points,
¢ belongs to A (x).

Corollary 2.2.7. If every element of G is of degree one and there is a

point x €EC such that A (x) contains at least two points and is included in F (G),
then there is no wandering domain of F(G).

Next we consider limit functions of a hyperbolic rational semigroup on the
Fatou set.

Theorem 2.2.8. Let G be a finitely generated hyperbolic rational
semigroup which contains an element of degree at least two and assume that each
Mobius transformation in G is neither the identity nor an elliptic element. Then
for every compact subset K of F(G), the G-orbit of K can accumulate only to P(G)
and every limit function of G on F(G) is a localy constant function that takes its
value in P(G).

Proof. We denote by A the union of all components each of which has a
non-empty intersection with P(G). Let U be a component of F(G). By
Corollary 2.2.5. there are only finitely many elements in {U;},ec. Let h be
an element of G such that the degree is at least two. Let V be a component of
F(G) and suppose h (V) CV. Then the component of F(<h)>) that contains V
is an attracting basin of <#> and contains a critical point of & because G is
hyperbolic. So V has a non-empty intersection with P(G). We fix a system
of generators of G. It follows that for large positive integer m, if g€G is a
product of m generators of G, then U;CA. And so we have only to consider
the dynamics of G on A. We take the hyperbolic metric in each component of
A. For large positive integer m, every element of G which is a product of m
generators of G is a contraction map from A to A and the contraction rate is
bounded by a constant strictly less than one in each fixed compact subset of
A. Now the statement of the theorem follows immediately.

Proposition 2.2.9. Let G be a hyperbolic rational semigroup, U a stable
domain of G.  We set

H=Gy, dif{ceul ey (U), ¢={}.
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If A has infinitely many points, then d is a perfect set.

Proof. Because U is a stable domain, by definition, there is an element g
of H with the degree at least two. If we denote by V the connected component
of F(g) containing U, there is a critical point x € V of g and for large enough
n, the point g"(x) belongs to U. So P(G) NU# @. Assume that 4 NOUF* @ .
Then P(G) NOU#* @ and this is a contradiction because G is hyperbolic. So
ANOU= 0 and & has an accumulation point in U. By Proposition 2.1.7.
the statement follows.

2.3. Continuity of Julia sets.

Definition 2.3.1. Let E be a metric space. We denote by Comp* (E)
the set of non-empty compact subsets of E. For every A, B€E€ Comp*(E) we
set

0(4.B) =supld x,B) |x€A4)
and
du(AB) =max{0(A.B), d(B,A)}.

It is well known that dg is a distance on Comp* (E). We call it the Hausdorff
metric.

Next we consider if a Julia set depends continuously on the generators.
For the case of iterations of rational functions, see [D], [MSS] and [Mc].

Definition 2.3.2. Let M be a complex manifold. Suppose the map

(za) ECXMPf;4(2) €C

is holomorphic for each j =1, .., n. We set G4 = {f1,4, ..., fna>. Then we say
that {G4}senm is a holomorphic family of rational semigroups.

Remark. If a map F : C XM—C is holomorphic, then for each a €M the
map F(, a) is a rational map and deg(F ( , a)) is a constant function on M
when M is connected. For, if two maps f, g from S? to S? are continuous and
homotopic, then deg(f) = deg(g). Holomorphic families of usual iteration of
rational functions have been studied in [MSS]. It is well known that the set
of J-stable parameters is open and dense in the parameter space ([MSS],

Mc]).

Definition 2.3.3. Let G be a rational semigroup. We say that a
compact subset K of F(G) is a confinement set of G if for every zEF(G), for
all but finitely many elements g of G the point g (z) is included in K.

Theorem 2.3.4. Let {Ga} asem be a holomorphic family of rational
semigroups where Ga={fi,a, ..., fna’>. We assume that for a point b EM there is a
confinement set K of Gp. Then the map
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a=](G4) €Comp*(C)
1S cotinuous al the point a=>b with respect to the Hausdorff metric.
Proof. By Section 1. Lemma 1.1.5.6, for any £¢<O0 there is a finite set
Xo={x16, oo 2163 CJ(Gy)
of repelling fixed points of G, such that
0 (Gy), X»)) <e/2.

By the implicit function theorem, there is a neighgborhood W of b in M such
that for every a € W and for every j=1, ..., | there is a repelling fixed point
%j,a of G4 such that

d (x1,5, %5.0) <€/2.
For each a €W we set Xo={x14, ... 214}. Then
0(Xs, J(Ga)) (X, Xa) /2.
So
0(J(Gy),J(Ga)) <0(J(G), X») +0(X,, J(Ga)) <e.

Next, for every a €M we fix the generator system {fj.} of Go.. We denote by
A the union of all components of F (G,) that have a non empty intersection
with K and we take the hyperbolic metric in each coponent of A. Let & be a
positive number and K, the compact Za neighborhood of K in A and K; be the
compact a neighborhood of K in A. Then if we take the neighborhood W of b
smaller, there is an integer m such that for every a € W and for every integer
t satisfying m <t<2m every element g €EG, of a product of ¢ generators of G,
satisfies

g(Kz) CK,

So for every a € W and for every integer ¢ satisfying m <t every element
g€ G, of a product of ¢ generatosrs of G, satisfies the above. Now we take
the ¢ neighborhood O of J (G;) with respect to the chordal metric and we

denote by L the set C\O. And if we take W smaller again there is an integer
u such that for every a € W every element g €EG, of a product of u generators
of Gg satisfies that g (L) CK, and so L is included in F(Ga). So

0((Ga), J(Gy)) <e.

Hence a+J (G4) is continuous at the point b with respect to the Hausdorff
metric.

2.4. Strucural stability of hyperbolic rational semigroups.

Theorem 2.4.1. Let {Ga} aem be a holomorphic family of rational
semigroups wheve Ga=< f1,a, ..., fna>. Then
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1. Let b be a point of M. Assume that Gy is hyperbolic. And also assume
that deg (fi5) is at least two and each Mobus transformation in Gy is neither the
identity nor an elliptic element. Then there is an open neighborhood W of b such
that for every a € W the rational semigroup Gq is hyperbolic and the map a—] (Ga)
s continuous with respect to the Hausdorff metric.

2. Under the same assumption as 1, if the sets (f71(J(Gy)),); are mutually
disjoint, then theve is an open neighborhood V of b and a continuous map i .

C X V—C such that for every zE€ C the map a—i (z, a) is holomorphic, and for
every z—1 (z, a) is a quasiconformal homeomorphism of C mapping | (G,) onto

J(Ga).

Proof of 1. For every a € M we fix the generator system {fj. of Ga.
We denote by A the union of all components of F (G,) that have a non empty
intersection with K = P (G,) and we take the hyperbolic metric in each
component of A. Let a be a positive number and K, the compact 2«
neighborhood of K in A and K, the compact & neighborhood of K in A. Then
if we take a amall neighborhood W of b there is an interger m such that for
every a € W and for every integer t satisfying m <t <2m every element g€G,
of a product of t generators of G, satisfies

g(K;) CK,.

So for every a € W and for every integer t satisfying m <t every element
g€G, of a product of ¢t generators of G, satisfies the above. Now let @,
denote the union of all critical points of all generators of G,. Let L be a
relatively compact neighborhood of Q; in F (G,). If we take W smaller, for
every a€ W the set @, is in L. And we can assume that there is a positive
integer u# such that for every a € W every element g € G, of word length u
satisfies g (L) CK,. So for every a € W the set P(G,) is included in F(G4)
and so G, is hyperbolic. And from this fact combind with theorems 2.2.8,
2.3.4, it folows that the map a—J(G,) is continuous in W.

Proof of 2. We take a neighborhood W of b as above. We can assume

that W ia a polydisc and for each a € W the sets (fja(J(G,))); are mutually
disjoint. Let ¢ be a point of W and x a repelling fixed point of gc=fj;c °***°
fimec Where the number m is the word length of gc. Then there is an analytic
function x(a) in a small neithborhood U of ¢ in W such that x(a) is a repelling
fixed point of g, and x(c) =x. If ao is a point of U N W, then x(ao) is a
repelling fixed point of g,, because Gg, is hyperbolic. So we can take an
analytic continuation of x (a) throughout W such that x (a) is a repelling fixed
point of g,. Next if h, is an element of G4 such that the word length is at
most m and x(a) is a fixet point of it then h, is equal to g, because G, is
hyperbolic and the sets (fj+(J(G4))); are mutually disjoint. So by the A

lemma ([MSS], [BR], [ST]) and Lemma 1.1.5.6 the statement follows
immediately.
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2.5. Self-similarity of Julia sets. When G is genarated by a single
rational function f, we know that if all the critical points and in the immediate
attractive basin of a fixed point, then the Julia set is a Cantor set. Now we
consider the following situation similar to that.

Theorem 2.5.1. Let G = <fi1, .., fa> be a finitely generated rational
semigroup. Assume that G contains an element with the degree at least two and
each Mobius tmsformation in G is neither the identity nor an eliptic element. If
P(G) is included in a comnected component U of F(G), then there are simply
connected domains Vi, ..., Vi and mappings hi, ..., hs from W= U ;V; to W such
that for each j, i the map hj is a contraction map from Vi to a domain Vi with
respect to the hyperbolic metric with the rate of contraction bounded by a constant
strictly less than one throughout V; and

JG)ew, Un;(J(G) =] (G).

Proof. There is a relativery compact subfomain V of U including P(G).
For each positive integer m we denote by G, the subsemigroup of G generated
by all elements ¢i, .., g; of word length m. If we take a number m large
enough, then for each g€ G, g maps the closure of V into V. So the closure
of g7 (C\V) is included in C\V. Each connected component of C\V is
simply connected because V is connected. For each component of C\V we
take all branches of g~! on it. Then each branch is a contraction map on

each component of C\V with respect to the hyperbolic metric with the rate of
contraction bounded by a constant strictly less than one. Now from Lemma
1.1.4.2 and Lemma 1.1.5.1.

J(©) =1 Gw) = U g ((Gm)),

j=1
so the statement follows.

Remark. In the above proof, if we can take V as a simply connected
domain, then the Julia set is a self-similar set in C\V with respect to the
hyperbolic metric.

By Theorem 2.5.1 and the proof, we can show the following result.

Theorem 2.5.2 Let G = {f1, .., fa> be a finitely generated rational
semigroup. Asswme that deg(f1) is at least two. If P(G) is included in a

connected coponent U of F(G) and the sets {fi*(J (G))} jo1,..n are mutually
disjoint, then the Julia set J(G) is a Cantot set. '

Example 2.5.3. Let Ge=<%*+c, 22+ci>. Then J(G.) is a Cantor set
for sufficiently large positive number c.
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