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Module derivations and the adjoint action of a finite
loop space

By

Katsuhiko KURIBAYASHI

0. Introduction

Let G be a finite loop space, in other words, a loop space with the homotopy
type of a finite CW complex. Following Milnor’s description of universal bundles
over spaces [13], we regard the finite loop space as a topological group up to
homotopy. Let LG be the loop group, which is the space of free loops on G, and
QG the subgroup of LG consisting of based loops. We can identify the loop
group LG with the product QG x G as a space. The map @ : QG x G — LG
defined by @(/,g)(¢t) = I(t) - g is a homeomorphism which guarantees the identi-
fication. We define the adjoint action Ad: G x QG — QG of G on QG by
Ad(g,1) = glg~'. If we give the space QG x G the group structure so that (/,g)-
(I''g') = (I4d(g,!"),gg’), then the homeomorphism @ is regarded as an isomor-
phism QG x G =~ LG. Therefore one may expect that it is useful for studies on
both geometry and topology for loop groups to consider the adjoint action of
G on QG. In fact, by calculating the adjoint action Ad*: H*(QG:Z/p) —
H*(G:Z/p) ® H*(2G;Z/p), we can determine the Hopf algebra structure of
H*(LG:;Z/p). Moreover this result enables us to calculate the E,-term of the
Rothenberg-Steenrod spectral sequence converging to the p cohomology of the
classifying space BLG of the loop group LG. Consequently, our knowledge on
the structure of H*(BLG;Z/p) will contribute to studies on characteristic classes of
loop group bundles.

The author would like to express his gratitude to Norio Iwase for valuable
discussions.

1. Aims and results

Let G be a compact simply connected Lie group. In [7], Kono and Kozima
give a good characterization of the triviality of the adjoint action Ad*:
H*(QG:Z/p) — H*(G;Z/p) ® H*(2:Z/p). Before stating the main theorem
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in 7], we explain briefly a fibration whose total space is the classifying space of
a loop group. Let G be a finite loop space. Since QG is a closed normal
subgroup of the loop group LG, we have a principal G-bundle G — BQG —
BLG. Hence BLG has the homotopy type of BQG xg EG. Since the classifying
space BQG is homotopy equivalent to G by a G-adjoint action preserving map, it
follows that BLG has the homotopy type of G xg EG. Here the G-adjoint action
ad: Gx G — G is defined by (g,h) — ghg~'. Thus we have a fibration G 2
BLG — BG.

Theorem 1.1 ([7]). Let G be a compact, simply connected Lie group and p a
prime.  Then the following three conditions are equivalent.

(i) H*(G;Z) has no p-torsion.

(ii) Ad* = pr; : H*(QG:Z/p) —» H*(G,Z/p) ® H*(2G;Z/p), where pr, is
the projection to the second factor.

(i)  There is an isomorphism of H*(BG;Z/p)-algebras ¢ : H*(BLG;Z/p) =
H*(BG:Z/p) ® H*(G;Z/p) which satisfies inc; o ¢ = j*, where inc; : G — BG® G
is the inclusion onto the second factor.

The proof of Theorem 1.1 is based on studies on the classification of simple Lie
groups and their cohomologies.

In [3], Iwase has generalized Theorem 1.1 to the case where G is a finite loop
space and p is odd.

Theorem 1.2 ([3], Theorem 2.2, Theorem 2.3). Let G be a simply connected
finite loop space. For all odd prime p, the condition (i), (ii) and (iii) in Theorem 1.1
are also equivalent to any of the following four conditions:

(iv) The induced homomorphism j*: H*(BLG;Z/p) — H*(G;Z/p) is sur-
Jective;

(v) The Hopf algebra H*(G;,Z/p) is primitively generated,

(vi) The Hopf algebra H*(G:Z/p) is cocomutative,

(vii) There is an isomorphism of H*(BG;Z/p)-modules ¢ : H*(BLG;Z/p) =
H*(BG;Z/p) ® H*(G;Z/p) which satisfies inc; o ¢ = j*.

Recently, Iwase and Kono have considered a generalization of Theorem 1.1 for the
case where G is a simply connected finite loop space and p = 2.

Theorem 1.3 ([4]). Let G be a simply connected finite loop space. At the
prime 2, the conditions (i), (ii) and (iii) in Theorem 1.1 are equivalent.

Let m be the product of G and T : G x G — G x G the switching mapping. In
the proofs of Theorems 1.2 and 1.3, an explicit homotopy H : I x G x G — BLG
which connects the map jom and jomo T plays an important role. In par-
ticular, the homotopy is needed to show the existence of I-implication in
H*(BLG;Z/2), which is a key to prove Theorem 1.3. Therefore we can describe
that the generalization of Theorem 1.1 to the case in which G is a finite loop space
is completely made with a homotopy theoretic approach. On the other hand, we
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can also prove algebraically Theorem 1.2 by making use of the Eilenberg-Moore
spectral sequence of the cobar type converging to H*(EG x¢ G;Z/p) =
H*(BLG;Z/p). (See Remark 1.4 below.)

One of our aims in this manuscript is to give another proof of Theorem 1.3
without using the explicit homotopy H : I x G x G — BLG. One may describe
that the approach is of homological algebra. Our great tools in the proof are the
Rothenberg-Steenrod spectral sequence {45 E*(BLG),d,} converging to H*(BLG:
Z/p) whose E,-term is isomorphic as an algebra to Cotory-(16.z/,)(Z/p.Z/p) and
the module derivation P : H*(BG:Z/2) — H*(LBG;Z/2) defined by [ oev™,
where ev: S' x LBG — BG is the evaluation map and Jsi is the integration along
S'. In general, a module derivation is defined as a linear map with the degree — 1
from an algebra 4 over a field to an A-module which satisfies the Leibniz rule on
A. For the explicit definition see Section 3.

Theorem 1.2 asserts that the conditions (i)—(vii) form one equivalence class
when the prime p is odd. The second aim is to consider how many equivalence
classes are formed form the conditions (i)—(vii) in the case p = 2. To this end, in
Remark 1.4 below, we clarify whether some results which are applied to prove
Theorem 1.2 hold for p =2. At the same time, we prove Theorem 1.2 without
using the homotopy H : I x G x G — BLG.

Remark 1.4. The method of the proof of [7, Proposition 3.3] also works for
our case where G is a simply connected finite loop space and p = 2. Hence we see
that (i) implies (ii) in Theorem 1.3. Moreover, since the classifying space BLG
and the loop space LBG are of the same homotopy type, it follows from the
argument in [7, §4] that (i) implies (iii) in Theorem 1.3. The result [5, Theorem
1.1] of Kane allows us to conclude that (v) and (vi) in Theorem 1.2 are equivalent
for any prime p. Since G is totally non-homologous to zero in BLG with respect
to Z/p if and only if the Leray-Serre spectral sequence for the fibration G
BLG — BG collapses at the E,-term, it is clear that the conditions (iv) and (vii) in
Theorem 1.2 are equivalent for any prime p. In [3, Section 6], Iwase proves that
(ii) implies (vi). The method of the proof also works for any prime p. Let
{E,,d,} be the Eilenberg-Moore spectral sequence converging to H*(BLG:Z/p)
whose Ej-term is isomorphic to Cotory.g,z;p(Z/p, H*(G;Z/p)) as an algebra.
Here the left comodule structure of H*(G;Z/p) is given by the adjoint action ad of
G on itself. By considering the cobar complex of H*(G;Z/p), we see that ad* =
dy: E}* = H*(G;Z/p) — E"" = H*(G:Z/p) ® H'(G:Z/p), where H*(G:Z/p)
denotes (X);,, H'(G:Z/p). Moreover, by using the fact that the edge homo-
morphism

H*(BLG:Z/p) — E%* — ... — E)" < H*(G:Z/p)

is the homomorphism j*: H*(BLG;Z/p) — H*(G;Z/p), we can see that (iv)
implies (v) for any prime p. (See also [4, Section 4].) We stress that the
homotopy H :1 x G x G — BLG mentioned above is not need in this proof
though the original proof 3] relies on the homotopy. The result [1, Theorem 1] of
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Browder states that the condition (vi) implies (i) unless p = 2. Thus we can have
Theorem 1.2.

For the case p = 2, the condition (v) does not imply (i) in general. As such
an example, we can give the case where G is the exceptional Lie group G,. Since
the conditions (iv)—(vii) hold in the case (G, p) = (G1,2), one may conjecture that,
for p =2, the conditions (i)—(vii) are separated into two equivalence classes .o/
consisting of (i)—(iii) and # of (iv)—(vii). Of course the existence of the class .« is
guaranteed by Theorem 1.3. However such an equivalence class # does not exist.
By the following theorem, we see that the condition (iv)—(vii) are separated into
two equivalence classes. One class consists of (iv) and (vii) and the other consists
of (v) and (vi).

Theorem 1.5. The induced homomorphism j* : H*(BL Spin(17);Z/2) —
H*(Spin(17);Z/2) is not surjective.

The third aim of this manuscript is to explain that the concept of module
derivations is not only useful for general theory of the adjoint action of finite loop
spaces but also for some explicit calculation of the adjoint actions. The calcu-
lation is based on the fact that BLG has the homotopy type of LBG and the
following theorem.

Theorem 1.6. Let x be a simply connected space whose mod 2 cohomology is
isomorphic to the polynomial algebra Z/2[y,, y,...,y,]. Then

H*(LX:Z/2) = Z/2[3). 75 Jul

®Z/2y1. a1/ + DS yi = 1,2, )

as an H*(X;Z/2)-algebra, where degp; = deg y; — | and D is the module derivation
defined by Dy; = y,.

To prove Theorem 1.6, we use the Eilenberg-Moore spectral sequence
{emEr*(X),d,} converging to H*(LX:;Z/2) whose E)-term is isomorphic to the
Hochschild homology HH(H*(X;Z/2)). In the proof, the module derivation
9 :H*(X;Z/2) - HH(H*(X;Z/2)) plays an important role in order to solve
extension problems in the spectral sequence.

Applying Theorem 1.6 to the case X = BG,, we determine completely the
algebra structure of H*(LBG,:Z/2), which is isomorphic to H*(BLG»:Z/2) as an
algebra.

Theorem 1.7. H*(BLG»:Z/2) =~ H"(LBGy:Z/2) =

4 2
X3 + X597 + yeXx3
Z/2[x3, x5] @ Z/2[y4, Ys. J’7]/< )

X2 +x3p7 + yax?

The structure of the E;-term of the Rothenberg-Steenrod spectral sequence
{rs EF*(BLG),d,} and a relation between indecomposable elements of H*(LBGa;
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Z./2) enable us to deduce the non-friviality of some adjoint action of G, on QG,.
In consequence, we can obtain a certain important calculation of adjoint action of
G, on QG; due to Kono and Kozima [7] and Hamanaka [11]. Our calculation of
the adjoint action is simple and algebraic. Therefore, from the consideration of
the Hopf algebra structure of the homology H.(LG,;Z/2) due to Hamanaka [11],
we have

Theorem 1.8. Let X be a loop space whose mod 2 cohomology is isomorphic to
that of Gy as an algebra over the Steenrod algebra. Then H.(2X;Z/2) = H,(2Gy;
Z./2) as a Hopf algebra over the Steenrod algebra. Moreover the adjoint action
Ad, : H(X;Z/2) ® H (QX;Z/2) - H.(QX:;Z/2) coincides with that of G,. Thus
H.(LX;Z/2)~ H.(LGy;Z/2) as a Hopf algebra.

Let BDI(4) be the complex constructed by Dwyer and Wilkerson [2] and put
G = QBDI(4). Since H*(BDI(4);Z/2) is a polynomial algebra, by virtue of
Theorem 1.5, we can determine the algebra structure of H*(LBDI(4);Z/2).

Theorem 1.9. H*(BLG:;Z/2) ~ H'(LBG:Z/2) ~ H*(LBDI(4):Z/2) =

Xt + X715 + ygx?
Z/2[x7,x11,x13) @ Z/2[)’8~y|z~)’|4‘J’15]/ x|23 +X1ys+ J’|2X%

X3+ X13p15 + yiaX3

This result also allows us to deduce simply the main theorem [8, Theorem] in
which non-triviality of the adjoint action Ad™: H*(QG;Z/2) - H*(G;Z/2) ®
H*(QG:;Z/2) is clarified.

Throughout this manuscript, let X be a simply connected space. Moreover a
graded commutative algebra A4 over a field k is assumed to be 1-connected, that is,
A=k and 4'=0if i<0ori=1. We denote by 4 the vector space (X);,,4".

The rest of this manuscript organized as follows: In Section 2, we prove
Theorem 1.4. In Section 3, we define important module derivations. Section 4
devotes to prove that (iii) implies (i) and that (ii) implies (i) in the case where G is
a finite loop space and p =2. Theorem 1.6, 1.7 and 1.8 are proved in Section 5.
Consequently, we can calculate the adjoint actions of G, and 2BDI(4) mentioned
above in a simpler and more algebraic manner.

2. Proof of Theorem 1.5

We will prove Theorem 1.5 by reducing to the problem of whether the loop
space QB Spin(17) is totally non homologous to zero in the free loop space
LB Spin(17) with respect to Z/2.

Define the mapy, by ¢ (117, @ -+ @ ta,)(s) = 11y1(s) @ -+ @ luy,(5) and
@o as the restriction to BQG of ¢,. Then we can obtain the commutative
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diagram (2.1):
G —— BQG —— QBG

= (2]
| | |
EGxG «—— BLG —— LBG
[
BG —— BG —— BG.

Notice that the right and left verticals are fibrations. Since the map ¢, induces
the map of fibrations

Q¢ —— QG
EQG —— QEG

|

BQG —— QBG,
(2]

we see that ¢, is a homotopy equivalence and hence so is ¢,. Thus classifying
spaces of loop groups can be considered from the view point of loop spaces.

Our proof of Theorem 1.5 is based on the result [9, Proposition 1.7 (1)] and
depends on the algebra structure of H*(BSpin(17);Z/2) which has been deter-
mined by Quillen. From the diagram (2.1), in order to prove Theorem 1.5, it
suffices to show that QSpin(17) is not totally non-homologous to zero in
LB Spin(17) with respect to the field Z/2. Let {E,(X),d,} and {E,(X),d,} denote
the Eilenberg-Moore spectral sequence of the path loop fibration QX — PX — X
and the Leray-Serre spectral sequence of the free loop fibration QX — LX — X
respectively. We assume that

HY(X;Z/p) = A(y1,-- -, ) ®Z/plx1,. ... %/ (p1s- - Pm)

for x < N, where p,,...,p,, is a regular sequence and each p; is decomposable.
Then we have

Proposition 2.1 ([9], Proposition 1.7 (1)]. Suppose that there exist integers
i(1<i<m) and j(1<j<n) such that 0p;/ox; #0 in Z/p[xi...., x4/
(p1y---pm) and ci,s’ =0forany r=2 sandt; s+t <degp; —2. Then there exist
integers r, s and t such that J:" #0 and s+t < degp; — 2.

Remark 2.2. For any algebra 4 and B, Tor,;*(Z/2,Z/2) = Torg*(Z/2,Z/2)
for the total degrees less than N —2 if 4 ~ B for the degrees less than N.
Therefore we can apply the same argument as the proof [9, Proposition 1.7 (1)]
though the condition such that N = oo is assumed in the original proof.
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By virtue of Quillen’s result [17, Theorem 6.5] concerning the algebra structure
of H*(BSpin(17);Z/2), we have

H*(BSpin(17): Z/2) = Z/2[ws, we, w7, Ws, W10, Wi1, W12, W13, W14, W15, W16/ ()

for x < 33. Here p = wigwi3ws + wigw) 1 we + wigwiow, + a for some a« € I, where
I is the ideal generated by the elements w2, w2, w3, w2, wi), ... wi of Z[ws, we, w7,
W8, WioW11, ..., Wis, Wie]. Since da/dwie belongs to the ideal I, it follows that
6p/w16 = Wi3Wi4 + W1 We + WioW7 + (30(/6“’[6 #0 in H*(BSpin(l7); Z/Z) By
using the Koszul type resolution ([9], [15]), we can get

E;’* ~ A(s 'y, s we, s wr s wg, s T g, sT w57 ) @ Tlep)
for total degrees < 31, where bideg s~'w; = (—1,i) and bideg p = (—2,33). This
fact enables us to conclude that &' = 0 for any r if s+ ¢ < 31. From Proposition
2.1, we have Theorem 1.5.

Remark 2.3. As for the case of the cohomology with the rational coefficient,
by the main theorem of Smith [16], we see that j*: H*(BL Spin(n);Q) —
H*(Spin(n); Q) is surjective for any n > 3. Let k be a field whose characteristic is
a prime p. From the proof of [16, Theorem] due to Smith, it follows that the
Eilenberg-Moore spectral sequence {zE}*(X),d,} over k collapses at the E-term
if H*(X;Kk) is a polynomial algebra generated by elements with even degree.
Therefore we can also conclude that j* : H*(BL Spin(n);Z/p) — H*(Spin(n);:Z/p)
is surjective unless p = 2.

3. Module derivations

We begin with the definition of an algebraic module derivation.

Definition 3.1. Let A be a graded commutative algebra over a field k and M a
left A-module. A module derivation of A with values in M is a k-linear map
D :A— M with degree —1 such that

D(ab) = (—1)deerdebpg ) 4 (—1)*8 5 (b)
for any a,be A.

Let HH(A) be the Hochschild homology of a graded algebra 4. We regard
HH(A) as the homology of the bar complex (4 ® B(4A® A) ® A,9) constructed
from the bar resolution of 4 as an 4 ® A-modules. For details of the bar
complex see [12].

The following module derivation is used in order to solve some extension
problems of the Eilenberg-Moore spectral sequence {,E"*(LBG),d,} (see §5).

Proposition 3.2. Define the map

9:A— HH(A) = Toryg4(A,A) = HAQ B(A® A) ® A,0)
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by x> [x®1-1®x]. Then 2 is a module derivation of A with values in
HH(A).

Proof. It suffices to show that [xy®I1-1@xy= (=1)“"e
Yx®1-1®@x]+ (-1)“%[y®1-1®y] in HH(A), where degx=a and
degy =b. We choose an element

u=@1x@1-10x - (- """igx|yel -1y
from A®BZ(A®A)®A=A®W®W®A. Then we have
dw) = yx® 110X+ (-)""[x@1 - y®x]
= (DY @1 - 1@ )]+ (=DM (=) yx @ 1~ 1 ® xy]}
= @1 -1@x] - (- ye1-1® y]
+ (=) xy @ 1]+ (1)1 @ xy]
=) ®@1-1@x— () e1-10y)

- (—U”“‘“’[xy@ - 1®xy]
This completes the proof.
To prove that (iii) implies (i), we use the module derivation defined below.

Proposition 33. Let ev:S'xLX — X be the evaluation map and
Jgi s H*(S' x LX;Z/p) — H*"Y(LX;Z/p) the integration along S'. Then the
composition

Dy ::J oev*: H*(X:Z/p) — H* ' (LX:Z/p)
s!

is a module derivation of H*(X:Z/p) which is compatible with the action of
Steenrod operations.

Proof. Let QX — LX 2 X be the free loop fibration. We define a map
LX — S'x LX by i(y) = (1,7). Then evoi= p. Therefore we can write that
ev*(u) =1 ® p*(u) + g ® w, where g is the generator of H*(S':Z/2). Since the
integration along S' is defined by fs,(g®w) =w, it follows that Dy (uv) =
(=) p* (1) Dy (v) + Dx(u)p*(v). So Dy is module derivation with values in
H*(LX:;Z/2). The action of the Steenrod operations on H*(S';Z/2) is trivial.
Hence 2y is compatible with the action.

Let {;) E,(LX),d,} be the Eilenberg-Moore spectral sequence converging to
H*(LX:Z/p) and {F'H*(LX:Z/p)},<, the filtration of H*(LX;Z/p) given by
the spectral sequence.

The following proposition says that the cohomology suspension
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o*: H*(G;Z/p) — H* " (QX:Z/p) factors through a module derivation. Let
{HY AemEX* (LX) d} — {pgnEF*(2X).d,} be the morphism of spectral sequence
defined in [9, Lemma 1.3].

Proposition 3.4. (1) The image of H*(LX;Z/p) by the module derivation 9y
is contained in the filter F-'H*(LX:;Z/p).
(2) Define maps ngy and ng by

H*(X:Z/p) <> HH™ " (H*(X:Z/p)) ~m E; V(LX) — pmEZ(LX)

L emES QX)) = FTUHH(QX: 2/ p) — H™(QX:Z/p)

and
H (X:Z/p) 2% Im{@y : H'(X:Z/p) —» H' "' (LX:Z/p)} — HF '(LX:Z/p)
L P HYQX:Z/p) — HN(QX:Z/p)

respectively, where r : gy ES LX) - emEZ (LX) is the natural projection. Then
Mgy =0% and N =a”.

(3) Let m denote the projection F~'H*(LX;Z/p) — gmEL""(LX). Then
no9Pxy =ro9.

Proof. From [10, Lemma 4.3], we have (1) and (3). The result [9, Lemma
1.3] allows us to deduce that f_r2(x)=r'"fo[x®1—-1®x]=r'[x], where
r :EMEZ_"*(QX) —emEZ"(QX) is the natural projection. Hence, from [I5,
Proposition 4.5], we can deduce that 5, = o¢*. Since f, 7= j*, it follows that
Nep=J"Dx = fo,n@x = fu¥yD = ngpy. This completes the proof.

We define a map év:S' x BLG — BG by év(s,.(1y, @ -+ @ tuy,) = 117,(5)
@ - @ t,y,(s). Applying the same argument as the proof of Proposition 3.3, we
see that the map Dpg: H*(BG:Z/p) — H* '(BLG;Z/p) defined by [ oev* is
a module derivation with the values in H*(BLG:Z/2). We mention here that the
module derivation Z2p; coincides with Dgg up to the induced isomorphism
0*: H*(LBG;Z/p) = H*(BLG;Z/p). The following theorem states that the
module derivation P can be decomposed into a morphism of spectral sequences
{9} : {s B2 (BG).d} — {gs E-*(BLG).d;).

Proposition 3.5. There exists a morphism of spectral sequences
{9:} : {gs E-(BG),d,} — {rs E/(BLG),d,} with bidegree (0,—1) such that each map
gr is a module derivation and go. = Pp; rsE"(BG) —rsEL" "' (BLG).

Proof. We denote the singular chain complex with the coefficient Z/p of
a space X by C,(X). Let P.5 C,(x) -0 and Q.5 C,(x) — 0 be the bar
resolutions of C,(*) as C,(LG)-modules and as C.(G)-modules respectively. Define
amap iy, LGX - x LG — LG x --- x LG by gny i(y1v-- 7)) = (71--- - Vi1

k times k-1 times
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Vivis1:Vietr---»¥k) and G ;1 GX---x G— G X --- X G by the similar fashion.

k times k—1 times
Moreover we define a map e :S'xLGx---xLG—Gx---xG by

evk (8,715 Vi) = (21(8)y ... .74 (s)) and, for any Z/2-module 4, a map t A : 4 —
C.(S")® A by t A (a) =t ® a, where ¢ is a representative element of the generator
of H*(S';Z/2). Since evk_) o (1 X1 m,) = 6Ny, 0evx, we have commutative
diagrams of chain complexes:

I®¢
C.(ELG) ®c,(LG) Tot(P.) — C.(ELG) ®c,(Lg) Cs(*)
A A
C.(S") ® C.(ELG) ® 1) Tor(P) ~222%  C.(S") ® CL(ELG) ®c,(16) Cs(%)

5,@(&%,), e, ®1

I®e¢
C.(EG) ®c, ) Tot(Q.) — C(EG) ®c,(g) Cu(*)
LI C.(ELG x 1 *)

A

1®% c(S"Y® C.(ELG x 16 %)

evy

=, G.(EG xg %)
Here &;, and &, are the maps induced from the projections o : ELG X * —
ELG x;6* and oy : EG x * — EG x¢ * respectively. We note that the compo-
sition of 1 x ¢ and a;, induces an isomorphism on homologies, which is called the
Eilenberg-Moore map ([12], [15]). Consider the cohomologies of cochain com-

plexes obtained from the above chain complexes via the dual. Then we see
(3.1) D = H(dual(év, ® (ev.), ot A))

up to the Eilenberg-Moore maps. Let F(BLG) and F(BG) be the filtered dif-
ferential graded modules which give the Rothenberg-Steenrod spectral sequence
{rs E;*(BLG),d,} and {gsE}*(BG),d,} respectively. It is clear, from the def-
initions of the map evy (k > 1), that the map dual(év, ® (ev.), ot A) is a mor-
phism of filtered differential graded modules with degree —1 from F(BG) to
F(BLG). Thus dual(ev, ® (ev.), ot A) derives a morphism of spectral sequences
{g9:} : {rs E}'*(BG).d,} — {gs E}*(BLG).d,} with bidegree (0.—1). The algebra
structure of the E,-term is induced from that of the E,_ -terms. Therefore g, is a
module derivation of EX*(BG) if g, is that of E"(BG). Applying the same
argument as the proof of Proposition 3.3, we see that the map g¢g; =
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Jsroev* ® (evs)” : QUH*(G;Z/2)) - Q(H'(LG;Z/2)) is a module derivation of
Q(H*(G;Z/2)) = E;"(BG), where Q(C) denotes the cobar construction for a
coalgebra C. Hence each map g, is a module derivation of E*(BG). The fact
(3.1) enables us to conclude that g, = Zgg.

In the following section, we will prove Theorem 1.3 by making use of the
module derivations @ : H*(BG;Z/p) — H* ' (LBG;Z/p) and g : rsE5"(BG)
*,k—1
— rsEy" 7 (BLG).

4. Proof of Theorem 1.3

As mentioned in Remark 1.4, in order to prove Theorem 1.3, it suffices to
show the following propositions in the case where G is a simply connected finite
loop space and p = 2.

Proposition 4.1. The condition (iil) implies (i).
Proposition 4.2. The condition (i) implies (i).

In order to prove Proposition 4.1, we need a normalized 2-simple system of
generators of a Hopf algebra.

Lemma 4.3. Let H be a Hopf algebra over a field /2. Suppose that H is
primitively generated and H = (X),_,Z/2[x;]/(x?") as an algebra. Then there exists
a 2-simple system of generators {a;. o?.... ,a2"},.; such that each «; is primitive and
n(o;) = xi, where n: PH — QH is the natural projection.

Proof. Since & is surjective, for any i, we can choose a primitive element a;
so that mo; = x;, that is, o; = x; + d; for some decomposable element d;. It is clear
that {o;,a2,...,a2"},., is a set of generators. Moreover, the set is a 2-simple
system of generators because the elements of the set are linearly independent and
primitive elements.

Let Q be the module of indecomposable elements of H*(BG;Z/2). We
denote by I, the ideal of H*(BG:;Z/2) generated by the s-fold product of Q.

Proof of Proposition 4.1. The condition (iii) implies (vii) and hence (v), that
is, the Hopf algebra H*(G;Z/p) is primitively generated. Assume that H*(G:Z)

has 2-torsion. We choose a 2-simple system of generators S := {x|,x2,..., Xn}
of H*(G:Z/2) so as to satisfy the condition in Lemma 4.3: H*(G:Z/2) =
A(x1,x2,...,x,). We order the elements so that degx; < --- <degx,. Note

that the degree of some x; is even since H*(G;Z) as 2-torsion. Let
{rs E;'*(BG).d,} be the Rothenberg-Steenrod spectral sequence converging to
H*(BG;Z/2). Then we have

rsEy"(BG) = Cotory’ .7 »(Z/2.2/2) = Z/2[sr\.5x2, ..., 5X,]

as a bigraded algebra, where bideg sx; = (1.degx;).
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First we consider the case where H*(BG:Z/2) is not a polynomial algebra.
Let sx; be the lowest dimensional generator which has non trivial image by
some differential d,. Suppose that degx; is even. Then, from the fact that
QV"H*(G;Z/2) = 0 due to Kane [6, Theorem, §40-1], it follows that there exists
a primitive element x; with odd degree in S such that x; = (x,~)2" for some u. By
making use of the Steenrod operations in the Rothenberg-Steenrod spectral se-
quence [14], we deduce that sx; is a permanent cycle, which is a contradiction. So
degx; is odd. Put N =degx;. Then we have H*(BLG;Z/p) = Z/2[y,..... Yil/
(pys---sp,) for *<N+2 where degp,=N+2 and degy, =degx;+ 1.
Moreover, we can write

ki ki
(41) pi:Zy,,I'...in’+W=0

in H*(BG;Z/2), where 1 <k;;, 3 <kj +---+k;=s y;isin{y,....y} and W
belongs to I, for some integer s. Since N is odd, it follows that there is an odd
integer k;,. Without loss of generality we may assume that such an integer is k;,.
The equality (4.1) can be written as follows:

0= Y]y’(:‘ + Ylyill_l__....i_ymy;‘]'m_'_z_,’_ W,

where the elements Y;,... Y, and Z have no term which contains the element Viys
ki is odd and k; # k; if i # j. Applying the module derivation 2p; to the above
equality, we have

(42) 0= Yly,{?_lgBGyh + k2 YZy,!::_IgBGyil + otk me,ﬁm—lgBGyil

+ yff'@m i+ 4+ y,f”’@BG Y+ @cZ + DpcW.

Since H*(BG;Z/2) is isomorphic to Z/2[y,,...,y] for * < N — 1, by using the
usual argument on the Eilenberg-Moore spectral sequence, it follows that
H*(QBG:Z/2) = A(s7'y,,.... s7'y,) for x < N — 3. By virtue of Proposition 3.4,
we see that j*@pgy, =s'y;. where j is the inclusion QBG — LBG. The dia-
gram (2.1) and the assumption (iii) yield an isomorphism ¥ : H*(LBG:Z/2) >
H*(BG;Z/2) ® H*(2BG;Z/2) which satisfies inc; o ¥ = j*. Thus we see that
¥Y(Dpcy;) = s~ y; + w for some element w in the ideal generated by H (BG;Z/2)
of the algebra H*(BG;Z/2)® H*(QBG;Z/2). Let = be the vector space
H*(BG,Z/2)/1;® A(s™'y,,...,s7'y,). Then the equality (4.2) induces an
equality in =
0= Y|yﬁ'“'s_ly,] + ky Y;_y{‘f"s"y,l +-+ky Y,,,y,f"’_'s“y,]
+ YD Y 4 A YD Y+ D'Z.

Here 2’ is the derivation defined by y;,— s~'y;. This equality contradicts the
structure of the vector space Z.

Let us consider the case where H*(BG;Z/2) is isomorphic to the polynomial
algebra Z/2[y,.ys..... »,)- Since H*(G:Z) has 2-torsion, there exists an ele-
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ment with odd degree in the set {y,,,,...,»,} of indecomposable elements of
H*(BG:Z/2). Let y; be such an element with the highest odd degree and put
21+ 1=degy,, Then we can write

(4.3) Sq’y; = Yyi+ > iy + W,

where Y is indecomposable or zero, the element y! is in the set {y,.y,,....p; .
Vitls--- y,,} and W belongs to the ideal /5 of H*(BG:;Z/2). Since Sq'Sq¥y, =
Sq*+'y, = y? #0, it follows that Y is non zero in H*(BG;Z/2). By applying the
module derivation Zp; to the equality (4.3), we have

(286¥:)" = D86(Sq*y;) = v, PsG Y + Y DGy,

+ Z YiZp6y; + ¥; D6y + DpcW. (4.4)

Using the same argument as the case where H*(BG:Z/2) is not isomorphlc to the
polynomial algebra, we have an 1somorphism Y:H” (LBG Z/2) = H*(BG:Z/2)
® H*(L2BG; Z/2) Z/2[y,-- ¥, @4y, 57y which satisfies

¥Y(2p6y,) = s 'y, +w for some element w in the 1de<11 generated by H (BG:Z/2)
of H*(BG:Z/2) ® H*(2BG:Z/2). Let =’ be the vector space QH"(BG:Z/2) ®
A(s 'y, ...os7ly,). We can write Y =31y, in QH*(BG;Z/2), where
deg y, = 2I. Therefore the equality (4.4) enables us to deduce that

0=(s'y)2+ D sy + Y wsT i+ Y s i+ yisT )
i !

! !

in E', which contradicts the structure of the vector space ='.

In order to prove that (i) implies (i), we find some relations between
generators in the Ej-term of the Rothenberg-Steenrod spectral sequence
{rsE}*(BG),d,} converging to H'(BG:;Z/2). To this end, we need a good 2-
simple system of generators of H'(G:Z/2). Assume that H*(G;Z) has 2-torsion.
Let S be a 2-simple system of generators which satisfies the condition in Lemma
4.3. Then S has a primitive element with even degree. Let xee, be such an
element with the lowest even degree. From the fact that Q*V*"H*(G:Z/2) =0, we
see that there exists a primitive element x; with odd degree in S such that x} =
Xeven-  SINCE Xeyen = X? = Sq8¥1 x| = Sq'Sqdeg”"'xl, it follows that Sgdeevi—lx,
is non zero. Put x; = Sgie¥~lx;. If x2,, #0, then x} # 0 because Sg’x3 =
(Sq'x;)* = x! #0. Thus we can get a finite sequence x,.xa, ..., Xy consisting of
primitive elements with odd degree such that x;,; = Sgd&¥~!x; for i< N — 1,
xt#0if i<N-—1, x3}_, #0 and x}_, =0. The finiteness of the sequence is
deduced from that of G. By extending the set {x|,...,xy.x%, ..., x%}, we can
construct another 2-simple system of generators B of H*(G;Z/2) which consists
of primitive elements. If there exists an element y of B such that Sq'y = x3_, +
>°x/, where x] is in B\{xy_,}. then we replace the element y with the element
y+xny. The set of H*(G:Z/2) which is obtained form B with this replacement
can also be a 2-simple system of generators. Thus we have
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Lemma 4.4. Suppose that H*(G;Z) has 2-torsion and H*(G;Z/2) is prim-

itively generated. Let x|,...,xy be the sequence of primitive elements which is
mentioned above. Then there exists a 2-simple system of generators B consisting of
primitive elements such that BD{xl,...‘xN,xlz....,x,zv} and, for any element

yeB, if Sq'y can be written as x%_, + d_x; with x| € B\{x%_,}, then y = xy.

Proof of Proposition 4.2. From the fact mentioned before Theorem 1.4, it
follows that H*(G;Z/2) is primitively generated under the condition (ii). Let us
consider the Rothenberg-Steenrod spectral sequence {jsE *(BG),d,} whose E-
term is isomorphic as bigraded algebra to Coror};’ “Gz /2)(Z/2 7/2). We regard
CotorH (G:2/2) (Z/2 Z./2) as the homology obtained from the cobar complex for

H*(G;Z/2) = A(y;; y € B), that is, Cotory ;.5,(Z/2,Z/2) = Z/2[y); y; € B] as
a bigraded algebra, where bideg [y;] = (1,deg y;) and B is the 2-simple system of
generators described in Lemma 4.4. Smce the element x..., has the lowest even
degree, it follows that the indecomposable element [y;] is a permanent cycle if
deg y; < deg Xeven- In particular [x;] is a permanent cycle. Using the Steenrod
operation on the Rothenberg-Steenrod spectral sequence, we see that [xy] and
[x%_,] survive to the E,-term because xy = Sqdcg*v-1-1ggdegxna=l. .. gydegxi=ly
and  x3 |, =Sq'xy. since Sqie%a[x3 ] = [SqlEN-1xy ] = [x4_,]=0 in
rsEy " (BG), it follows that Sg¥°e*v 1[x,_,] belongs to the filter rsF>H*(BG:Z/2)
which is given by the spectral sequence. Therefore we can write

Sl )= 3w+ Sl 1

in gsES " (BG), where [x] | x/'] is decomposable in rsEQ " (BG) : [x]| x| = [x]] - [x]'],
x;,x{" € B, and w; does not have a term consisting of decomposable elements, that
is, wj = >_[aj |ay] for some elements aj,ay; € B and [a |ay] is indecomposable
element in gsEj*(BG). Applying the squaring operatlon Sq' to the above
equality, we have

[xd_y [xh )] = SqgPeesiatx3 ] = Sq' Sqee i1 [xy_]

= Sq"w;+ D ((Sq'x] 1 x/] + [x7 | S x7).

We can regard the vector space RsEfo'* as the subspace of RsEz’*- Therefore, in
2, %
RSEZ )

ol xvo) =Y _((Sq'ay | ag] + [aj. | Sq'ay])
+Z([S‘]I"/|x + [x7 | Sq'x])).

The element [xy|x%_,] is decomposable meanwhile the element laj lag] i

indecomposable in gsE%*. Hence the property of the elements of B descrnbed in
Lemma 4.4 enables us to deduce that there exists the only element [x], | x//] which
coincides with the element [xy|x%_,] in RSE . Thus we can find the relation

(@5) Sgehafd = Y+ b 3+ 3 b
J I\{m}
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in gsEy". From Proposition 3.5, we have the commutative diagram:

rsF2H*(BGiZ/2) ——  gsEZ'(BG) —— psEF*(BG)

A

rsF2H*"Y(BLG;2/2) —— gsEX""'(BLG) —— gsE}""'(BLG).
Since P is compatible with the Steenrod operations, it follows that

9o (g™ % gy ) = (gl ).

Hence we have, form (4.5), the relation in RSEZZ’*:

(4.6) 0= (gz[XN] + gulaf] + Y gz[X/]) o) + (g2l )2+ W
T T

Here W has no term with [x% ] as factor and the sets J' and I’ are appropriate
subsets of J and I\{m} respectively. Notice that elements x,,a; and x are
different each other. Let k:XLG — BLG be the inclusion map. From the
naturality of the Rothenberg-Steenrod spectral sequence and the definitions of the
module derivations g» and 2, we have a commutative diagram:

RSE;’*(BG) _ FI*(G: Z/2)

92 MG‘V

ksEYT(BLG) —  REM(ELG) = H'(LG.Z/2)
J* j'l
rsEy*(BQG) —X—  psEN(ZQG) = H'(QG;Z/2).

Put o= goxn]+ 32, g2lay] + 32, g2[x)]. By virtue of Proposition 3.4(2), we
see j'oPD=0" and therefore k*j"(a) = 0" (xy + 32, aj + > g x;). Since o*:
Q°Y¥H*(G;Z/p) — P*"H*(QG;Z/p) is injective, it follows that j*(«) % 0.
Assume that 4d* = pr;. Then, as algebras,

RsE;’*(BLG) ERsE;'*(B.QG) ®RSE;’*(BG) EksE;'*(BQG) ® Z/2[[y,~]: Y € B].

We see that o is non zero in gsE> "(BLG)/(Z/2[[y,]; y; € B]) because j*(a) # 0.
Thus the relation (4.6) contradicts the algebra structure of rsE; " (BQG)®
Z/2[[y;]; y; € B]. This completes the proof.

§5. Some calculation of adjoint action of finite loop spaces

In order to reconstruct the target of a spectral sequence from the E.-term, we
need to solve extension problems which are awkward in general. Our proof of
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Theorem 1.6 which is describe below shows that extension problems which exist in
the first line of the Eilenberg-Moore spectral sequence {g,E"*(LX),d,} can be
simply solved by using the module derivation defined in Proposition 3.2.

Proof of Theorem 1.6. Let us consider the Eilenberg-Moore spectral sequence
{enEX*(LX).d,} converging to H*(LX:Z/2) for the fibration QX — LX 5 X by
the assumption, we have

EME**(LX) HH(H (X Z/2 Z/z[yh’yn]@/l(j;lvaj}n)

as a bigraded algebra, where bideg y, = (0,deg y;) and bideg y; = (—1,deg y;).
Note that the element y; corresponds to the elements [y; ® | — 1 ® y;] in the
Hochschild homology of H*(X;Z/2) obtained by the bar complex. Since the
indecomposable elements y; and y; are permanent cycles, it follows that Ey" =
Ey* ~ E;" as bigraded algebras. Here E}'? denotes the associated bigraded
vector space FPHPY(LX;Z/2)/FPt'HPTI(LX;Z/2). We must solve extension
problems to determine the algebra structure of H*(LX;Z/2). Lets:X — LX be
the section of p defined by s(a)(t) =a for ae X and te S'. We can choose a
representative element y; of j, so that s*(y)=0. Since y? = Sg¥e»~!5, in
H*(LX:;Z/2), it follows that Sgsg” 'y, = Sge& [y, @ 1 — 1 @ y,] = [Sqxer 1y,
®@1—1Q@S¢et” 'y] in E;*. By virtue of Proposition 3.2, we deduce y? =
DSGEE 'y + 0, where @ is a module derivation defined by y, — 7, and Q is
an appropriate element in FOH*(LX;Z/2). Since s*(y;) =0, we see that Q =
0. This completes the proof.

Proof of Theorem 1.7. We recall the algebra structure of H*(BG,;Z/2) over
the Steenrod algebra: H*(BGy;Z/2) = Z/2[y4, ys, y7) and Sq*y, = ye. Sq'ye =
y;. By the Adem relation Sg"Sq* —Sq7Sq + 8¢%Sq?, we see Sq*Sq*y =
Sq'Sq' ye + Sq°Sq*ye = y3 + Sq%Sq*Sq' y, = y7 #0. This fact yields Sq*y, #0
and hence Sq*y¢ = y4ys. Thus we have Sq°y, = Sq'Sq*ys = ysy,. From the
Adem relation Sg3S¢* = Sq’, it follows that Sg*y, = y,y;. The relation
Sq%Sq* = Sq° + Sq°Sq' enables us to conclude that Sg®y, = ycy;,. Applying
Theorem 1.6 to these results, we can get Theorem 1.7.

The following proposition is useful for finding the first non-trivial adjoint
action Ad* : H*(QG;Z/2) - H*(G:Z/2) ® H*(QG;Z/2).

Proposition 5.1. Suppose that

(1) H*(BLG;Z/2)=Z)2[x1,.... X)) ®Z/2[y\s-. ., )/ (P1s--\pm) for x<
N, where each p; is decomposable, degx, > 2, degy, =2, degp, = N and p, =
X1y, + other terms;

(2) j*(x1) is indecomposable in H*(G;Z/2);

(3) y, is the image by p* of an element in H*(BG;Z/2) which represents an
element in grs EL*(BG);

(4) Ad* = pr; for x <N —2.
Then Ad* # pr; on HN-2(QG:Z/2).
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Proof. Let {Ef*(BLG),d,} and {E}*(BQG),d,} be the Rothenberg-Steenrod
spectral sequences converging to H*(BLG;Z/p) and H*(BQG;Z/p) respectively.
Assume that Ad* = pr; on HV2(QG;Z/2). Then, since H*(LG;Z/2) =
H*(QG;Z/2) ® H*(G;Z/2) as a coalgebra for x <N —2, it follows that
Ey"(BLG) =~ E5"(BQG)E; " (BG) as a bigraded algebra for j <N -2+ (i—1),
where

EyY(BLG)= Y EY'(BQG)® E;(BG).

I+i=ij1+p=]

We show that the element x; represents an element which is non-zero in
E(}’*(BLG)/EOI’*(BLG)ﬂEzl‘*(BG). To see this, let us consider the spectral
sequence {E"*(BQG),d,}. By [6, Corollary §43-1], the homology H.(QG;Z/2)
is isomorphic to a tensor product of an exterior algebra and a polynomial algebra.
Therefore we can write

E;’*(B.QG) = CotorH.(QG;z/z)(Z/Z,Z/Z)
;A(a.,....as)®Z/2[b|,...,b,]

with elements «@; and b; in Ezl"(BQG). Since the spectral sequence
{E*(BQG),d,} has a differential Hopf algebra structure, it follows that inde-
composable elements in H*(BQG;Z/2) are represented by elements in E, " (BQG).
Thus, from the assumption (2), we see that x| represents an element in E(}’*(BLG)
and x; #0 in E)*(BLG)/E,"(BLG)NE,*(BG). The assumption (3) enables us
to conclude that y, represents an element in E,"*(BLG)N E,*(BG). Since EOZ'* is
regarded as a subspace of Ezz‘*, we can find the relation 0 = p; = x,y, + other
terms in E%’*(BLG). This relation contradicts the algebra structure of E5"(BLG).
We have Proposition 5.1.

In order to explain some calculation of the adjoint action of G, on 2G, due
to Kono and Kozima [7] and Hamanaka [11], we recall the following results on
algebra structure of the mod 2 cohomologies of the exceptional Lie group G, and
its loop group 2G,.

H*(Gy:Z/2) = 7/2[x3]/(x3) ® A(xs),
H*(QGy;Z)2) = Z./2[a3)/(a3) ® Iag, wio]-

By considering the Eilenberg-Moore spectral sequence {z E;*(2BG>).d,} we see
that, for the element x; in Theorem 1.7, j*(x3) is the indecomposable element x3 in
H3(QBG,:Z,/2) = H3(Gy;Z/2). Moreover the element y, in Theorem 1.7 is the
image by p* of the element which represents the element [x;] in RSE(:’*(BGZ). For
dimensional reasons, it follows that Ad* = pr3 for x < 8. We can write Ad*(ag)
=1®ag +ax§ ® ap, where ¢ =0 or 1. By virtue Proposition 5.1, we have

Theorem 5.2 ([7], [11]). Ad*(as) =1® as + x3 @ ax.
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The calculation of Ad*(ag) due to Kono and Kozima [7] depends on the fact
that the natural inclusion G, — E¢ is mod 2 totally non-homologous to zero. The
approach of Hamanaka for the calculation relies on some properties of inclusion
SO(3) — G, and of the 3-connected covers SO(3) and G,. Our assertion is that
Theorem 5.2 can be proved without using other groups than the Lie group Go.
Since the consideration on the homology rings H,.(Q2Gy;Z/2) and H,.(LG,;Z/2)
due to Hamanaka in [11] is algebraic except proof of Theorem 5.2, we can have
Theorem 1.8.

Let BDI(4) be the Dwyer-Wilkerson complex, whose mode 2 cohomology is
isomorphic as an algebra to Z/2[yg, ¥i2, V14, V15]. From the consideration con-
cerning the Steenrod operation on H*(BDI(4);:Z/2) in [8], we see that Sq’ys =
Y15:54" yi2 = Yspis, Sqy1s = yiayis and S¢'yis = yi4p\s in H*(BDI(4);Z/2).
Applying Theorem 1.6, we have Theorem 1.9.

We recall the algebra structure of the mod 2 cohomologies of QBDI(4) = G
and QG:

H*(G;Z/2) = Z/2[x7]/(x7) ® A(x11,x13),

H*(.QG; Z/2) = Z/2[a6]/(ag) ® F[(llo, a24,a2(,].

Our method of the proof of Theorem 5.2 also works for the case where G is the
space of based loops on BDI(4). To be exact, we see from Theorem 1.9 that
there exists a relation with degree 22 in H*(BLG;Z/2). Therefore, by Proposition
5.1, we can have

Theorem 5.3 ([8]). Ad*(yy(ai)) = 1 ® y,(ai0) + X2 ® ag.

As considered in the proof of Theorem 5.1, for any finite loop space G, an
influence of non-trivial adjoint action Ad*: H*(QG;Z/p) » H*(G;Z/2) ®
H*(Q2G;Z/2) appears in the second line of the E,-term of the Rothenberg-
Steenrod spectral sequence {zgE,; *(BLG),d,}. Combining this fact with an explicit
calculation of H*(BLG;Z/2), we may be able to determine the adjoint action,
which is no longer the first non-trivial one. In fact, for the case G = 2BDI(4), we
have

Theorem 5.4. Ad*(ay) = 1@ au+x2 ® alg and Ad*(ay) =1 ® axy + x? ®
2

ag.

Proof. Since Sq4y2(a|0) = ay4 and Sq*as = ayo, it follows from Theorem 5.5
that the first equality holds. For dimensional reasons, we can write Ad*(az) =
1 ® ax + ex13x7 ® ag + nx? @ a2, where ¢ and n are 0 or 1. Let ¢ be the cop-
roduct of H*(G;Z/2). Then, by [7, Proposition 2.4], (¢ ® 1) o Ad* = (1 ® Ad*)o
Ad*. This fact enables us to deduce that e = 0. By Theorem 1.9, we see that
(x3] - [ad) = [x3|a2) = 0 in gsEy°(BLG). It turns out that 7 # 0.

In general, we expect that the above method using module derivations paves
the way for algebraic calculation of the adjoint action Ad*: H*(QG;Z/p) —
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H*(G;Z/p) ® H*(QG;Z/p) for an appropriate finite loop space G and any prime
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