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Plane wave decomposition of odd-dimensional
Brownian local times

By

Hideaki UEMURA

1. Introduction

The existence of multi-dimensional Brownian local times as generalized
Wiener functionals has been shown by Imkeller and Weisz [5]. They have given
adequate meaning to the following formal representation:

t
L(t,x) = J O+ (By)ds, (1.1)
0
where L(t,x) denotes the local time for r-dimensional Brownian motion {B,} and
J, the Dirac delta function at x e R".
On the other hand, it is well-known that Jy is decomposed as follows:

1 r(1/2)
(—an) 2 T(r/2)

where Jy in the left hand side is the r-dimensional Dirac delta function at 0 and
that in the right hand side 1-dimensional one, (5((;_1) denoting (r — 1)st derivative of
do. Moreover, S"~! denotes the unit sphere in R, o(dw) the uniform measure on
S with total measure 1 and (x,*)> the Euclidean inner product on R’". This
formula is called the plane wave decomposition of the J function. Since this
decomposition (1.2) is valid only in the case where r is odd, we restrict our
investigation to the case where r is odd.

The purpose of this paper is to represent the r-dimensional Brownian local
time by means of 1-dimensional ones; roughly speaking, (1.1) and (1.2) imply

1 raj2)

0(x) = |, d oot (12)

_ (r=1)
L(t,x) = Can V2 T(/2) Js'-‘ LV (¢, x,w)o(dw), (1.3)
where
LUV, x,0) = d'r__'l L‘”(z,é)‘ (1.4)
d¢ E=(xw)
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and L“(t,&) denotes the local time for the I-dimensional Brownian motion
{{w,B,>}. We exactly establish the above equality (1.3) in the sense of gener-
alized Wiener functionals.

Bass 1] has shown that every odd-dimensional Brownian additive functional
associated with the measure which has the density function is represented by means
of Brownian local times at hyperplanes under some conditions. This represen-
tation can also be obtained by the same argument which derives (1.3). It should
also be noticed that Yamada [8] has obtained representations of a considerably
wide class of continuous Brownian additive functionals of zero energy via
Brownian local times at hyperplanes in the sense of distributions.

Finally, the author would like to express his sincere thanks to Professor N.
Ikeda for his valuable suggestions.

2. Preliminaries and main theorem

We first introduce the multi-dimensional Brownian local time as a generalized
Wiener functional due to Imkeller and Weisz [5]. We begin with preparing some
notations.

Let (Wj,P) be the r-dimensional standard Wiener space: W] = {B, =
(B!,B?,....B!):[0,00) — R"; B, is continuous and By =0} and P is the stan-
dard Wiener measure. Let [,(f,) be the n-ple Wiener-Ito integal with the kernel
function f,;:

fo= it )P, 2
B e Y
L(f,) = > J [ fultitae oo ty) " aBl - B
JO

Jrojseein=1,2, .0 70

where f, belongs to L?([0,00)" — R"™"), and is symmetric in the variables (j,. 1),
(Jas12)s -+, (Jn» tn) (see, for instance, Nualart [6]). We denote the totality of such
functions by L2, ([0,00)" — R™). When n=0, I(f,) represents a con-

sym
stant. Now we define some classes of (generalized) Wiener functionals D*" and

D3 as follows:

Definition 2.1. Let se R. We set

D = {I(f) = (lo(fo). i (f)s- - Tu(fy). ) < € L2,,([0,00)" — R™),
n=12 .1}
and

s

D;‘:{ (1) e D D3, = D (1+m)'nllf]° < 00}~

n=0

where || f|| denotes the L?-norm of f.
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Remark 2.1. Taking the Wiener-1té decompsition into consideration, DY can
be identified with L?(P). Under this identification, D3 above coinsides with D, ;
in Tkeda and Watanabe [3] or D*2 in Nualart [6].

We also introduce other classes of (generalized) Wiener functionals. Let
yeR. We set || ]|, by

“f”(z}) - J h JIO )"((S| Vo Vo) A l)_7|f(s|, ~~~~~ S ,,)|2ds| oo dsy
Re el

for a function f e L*([0,00)";((si v -+ Vv s,) A 1)77ds;---ds,), where x v y and
X A y denote the maximum and the minimum of x and y, respectively.

Definition 2.2. Let yeR, ¢ >0 and peR. We set

"

2;" = {I(f) = (I(fo). L (/) - L(f)---): fre L}, ([0.00)" = R
((spv oo vs) Al)dsy---dsy),n=1.2,...}

and

o
c ser _ p 2
20 = {l(f) e DY DG ey = D "L+ RLIE < oo}.

n=0

Remark 2.2. (i) In the case where y <0, /,(f,) in the definition of 2} is
considered as a generalized Wiener functional satisfying <I,(f,), Ln(gm)d>w =
On.mn'{f,y» gny, for any g,, € Lf),m([O, w)” - R"™; ((s1 v === Vsy) A D)dsy - -dsy,),
where {(x,%»y, denotes the pairing of Wiener functionals and generalized ones,
(x,x), the L2([0,0)" — R"";ds; - - -ds,)-inner product and J, , Kronecker’s o.

(i) It is a matter of course that @§,‘"”) < L%*(P) holds when y >0 and

¢ > 1. Moreover, for y <0 and ¢ < 1, Q@;""’) can be identified with the dual space
of 9(_')(“_”).

We introduce the multi-dimensional Brownian local time given by Imkeller
and Weisz [5].

Lemma 2.1 ([5]). Let x(#0)eR" and t >0 be given. Then there exists
L(t.x) € D} such that

t
[ p,(e, By — x)ds — L(t,x) as ¢ — 0 in D
Jo

Jor all a <1 —r/2, where p,(s,x) denotes the r-dimensional Gaussian kernel:

1

oM /2s
(V2ns)"

piels.x) =

We call L(t.x) above the r-dimensional Brownian local time.
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Remark 2.3. Imkeller and Weisz [5] have proved the above theorem also for
the multi-parameter Wiener process.

Remark 2.4. In the above theorem, p,(¢, - — x) is used for a test function
converging to d,. This can be replaced by ¢((- — x)/¢)/e" where ¢ € C* and is of
compact support.

We next introduce the plane wave decomposition. For our purpose, the
inversion formula for the Radon transform is rather useful, which is equivalent to
the plane wave decomposition. Therefore we begin with an explanation of the
Radon transform together with notations (see, for instance, Helgason [2]).

Let f be a function on R’, which is integrable on each hyperplane in R". Let
weS™™" and &eR, where S! denotes the unit sphere in R’. The Radon
transform R[f] of f is defined by

Rf@& =]  feax
xwy=¢
where (*,x) denotes the Euclidean inner product on R" and dx the Lebesgue
measure on the hyperplane {x;<{x,w) =¢}. The dual Radon transform is also
defined as follows. Let ¢ be a locally integrable function on S"~' x R such that
9(®,&) = p(—w,—&). The dual Radon transform R[g] is

Rol(x) = | ol <o 0ot

o(dw) denoting the uniform measure on S’~' with total measure 1.

We now introduce the inversion formula for the Radon transform. Suppose
that r is odd. Let f be a Schwartz rapidly decreasing function on R". Then we
have the following inversion formula:

f= (_4n)l(r—l>/2 ?%; R[(:ér'_‘l' Rm)]

I B A CV5)) dr
(4 L(r/2) L <d§”' L}',w>=é Sdy > ‘ - <x»w>0(dw). (2.2)

We are now at the position to give our main theorem. For this purpose, we
prepare the following two propositions, which ensure the differentiability of L(z, x)
and the integrability of LU~ (¢, x,w) respectively, where

i(’_')(t, X, ) = L(’_')(t, X, ) — E[L(’_”(t, x, )]
and LUD(t, x, @) is defined in (1.4).

Proposition 2.1. Suppose reN and x #0. Then L(t,x) is k times differ-
entiable in Dg' with respect to x, where B, < —r/2 —k. Moreover the kth de-
rivative belongs to sz (By <1 —r/2—k).
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Proposition 2.2. Let r>2 be any positive integer. Let y <2—r and
py<1/2—r. Then LU"V(1,x, ) is o(dw)-integrable in 9;:/"‘”').
Our main theorem is as follows:
Theorem 2.1. Suppose that r is odd. Let L(t,x)eD3 (t>0,x (#0)eR’,

a < 1 —r/2) be the r-dimensional Brownian local time. Then the following equality
holds in D;:

1 ra/2)

L(1,x) = (—4m) D72 T'(r/2)

J L1, x, w)o(dw). (2.3)
Srfl

3. Proofs

In this section, we prove Propositions 2.1, 2.2 and Theorem 2.1.

To begin with, we state another representation of multiple Wiener-It6 inte-
grals. Let I,(f,) be the n-ple Wiener-It6 integral with kernel function f, as in
(2.1). Then, summing up again by every component of Brownian motion, we can
easily get another representation for 1,(f,):

I"(/n) = Z Ir;, Inl| (.f;ll,ng,...,n,)» (31)

ny+na+tn=n

where I denotes the m-ple Wiener-Ité integral with respect only to B/. More
. 1 1 . .
precisely, f, .. ., = f,,h,,zm,,r(t(] LW ) s determined by

r

1 S
n: 1y J2s s

nlng!-oon !

fn.,nz.‘...n,

when #{k:j, =i} =n; (i=1.2,....r)and ny +ny+---+n,=n. Thus f, .
belongs to L?*([0,00)" — R), which is symmetric with respect to
AP for all fixed j (j=1.....r). When f, e L2([0,00)" ((s1 v --- v 5,)
A D)77dsy -+ -ds,) (y <0), we can also get the same representation as (3.1) for
I,(f,); indeed, from Remark 2.2 (i), we can easily show that I,j'rml,,'l (7 —
can be considered as a generalized Wiener functional and that the equality (3.1)
holds in the sense of generalized Wiener functionals. Noting that the following
equality holds for any y e R:

02 mnl---mt 2
”./n“(y) = Z —_— ”.fn]ng‘,,,,n,”(y)'

]
A +ny+-4n.=n n.
When we express the r-dimensional Brownian local time L(z, x) by the fashion
above, i.e. in the form

o

Lit.x) =" > I L) (gumn)- (3.2)

n=0 ny+nr+--+n,=n

each gy, u,,..n 1S exactly obtained as follows:
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gm,ng,...,n,(x; Stye-ey Sn)
1 !
- l'll!l’l2!"‘"p!]sl vmvs,,( ) l:[ ”/( )p"(s x)
X 1[0,1](51) T 1|0,:](Sn)~ (33)
where x = (x1,x2,...,x,) and H,(x) denotes the Hermite polynomial:

H,(x) = (1)"‘/2(:ne-*‘/2) (n=0,1,2,..).

Remark 3.1. Although our representation (3.3) of gy, .. .., above seems to
be different from that in Imkeller and Weisz [5], it is completely the same. We
can easily obtain (3.3) by considering the H-derivatives of sufficient orders of
fo’ @(By)ds,p being a Schwartz rapidly decreasing function.

For the proof of Proposition 2.1, we introduce the following evaluation of
Hermite polynomials, which has been given in Imkeller, Perez-Abreu and Vives
[4]. Refer also to Szegd [7].

Lemma 3.1 (4], [7]). Let d€e[1/4,1/2]. Then there exists a constant C
independent of 0 such that

sup |H,,(x)e“sx2| < CVnln=(®3-D/12, (3.4)

Proof of Proposition 2.1. We prove only the case where r =1, as multi-
dimensional cases can be done by the same way. First we observe the case where
k=1. Set

NgE

LW(1,x) =) 1L(g(x)),

Il
o

n

where g/,(x) is a derivative of g,(x) with respect to x,g,(x) being as in (3.3). Then
the equality

L(z,x+h}1 “ LX) oy = Z I (JM j ’(z)dzdy)

holds. Therefore, to show that L(z, x) is differentiable in D}' with respect to x, it
is enough to verify

sup > (1+n)"nlllg/(2)lI; < oo
zeU(x)

for some neighborhood U(x) of x such that 0 is not included in its closure. In the
same way, it is sufficient to verify

sup Y (L+mPnlgV); <0 (£=2,...k+1) (3.5)
ze U(x)



Brownian local times 371

for the proof of the former part of Proposition 2.1. Now gi,”(z) is exactly

obtained as follows:

(/’(z):(_l)/ ’ N (5 (s, 2)ds 1o 1(s1) -~ Tro.q(8n)
n n! VoV oSy \/E ad \/E P (0.3 .37

Thus it holds that

‘ 2
llgs” ()13

N (,5)2 J; ds J() d"(g) " (ﬁ)/”w (%) Hyve (\%)m (s,2)p1(u.2).  (3.6)

Appealing to (3.4), for any &, € [1/2,1) there exists a constant C; independent of
o, such that

H,yr (\%) e_‘j'zz/z“'Hn+/ <\/iz_4> e~

Since 0 is not included in the closure of U(x), there exists a constant M such that

1 /+1 N 1 /+1 N
(7) e—(l—(§|):'/2s (\/_) e—(l—él):-/Zu
S u

Substituting these inequalities into (3.6), we can easily show that there exists a
constant C, such that

< Ci(n+¢)\(n+ )" @0/,

sup

sup  sup <M.

0<s,u<t zeU(x)

1 ; 1
() (2)]|2 ~ £\ ~(401-1)/6
6 G)E < Cop (4 0+ 0) —
Thus (3.5) holds if ff; < (40, — 1)/6 —¢. Let 0, — | we have the former part of
the claim.
In the proof above we also found that the & th derivative of L(z. x) is equal to
ZI,,(g,(,k)(x)), and it belongs to Df‘“. Therefore the proof is completed. [

We next prove Proposition 2.2.

Proof of Proposition 2.2. Let w= (w,w,,...,w,) €S ™", Then we can
expand LU D(,x,w) as a generalized functional of {B,} as follows:

o

L(r_l)(t’ X, (,()) = Z Z I"Iv“n"r(gnlw-w”r(w’x))

n=0 m+--+n,=n

where
gnl o ((U’ X781, ,S,,)
a);” ™ Jl ]\ ] (xw)
= . - Hn r—1\—F— , (X, ds
mlmd Ly vy \V/5 +r—1 75 (s, {x,w))

][Q,](S[)'-'1[0‘,](5‘,,). (37)
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Appealing to (3.4) for 5 = 1/2, we have

~ 2
”gm, oy (CO, x)”(m)

I 2
- N
= (nl!...;u!) [ J[o,;]"((sl Y v al)

! ntr—1 2
J(RC T R

1 n4r—11 n | ! :
<’ [ s""_’“dsj o202 gy
("1!“'"r'> va+r—1n—=yJ 0

for some constant C’, and moreover the last two integrals converge since
y; <2 —r. Therefore

1)
”L(r (t X, Cl))” O /e +1)

1 (n+r—1! n 2
—l+n”‘Jrl
lnz ( Z mb-vnd \n+r—1n—yn—r—2y +2

nyten=n 1

I/\

o
§ : /r|+|nr—5/2 < 0,

C; and Cj} being some constants. That is, L(’"”(r.x,w)e@;:/"”'“) for all
weS"™!. Noting that

() (o () (s
() el

we can easily show that LU= (z. x,w) is continuous in @('/’ ”) with respect to @
by the same calculation as above. Since S'' is compact this yields o(dw)-

integrability of LU~V(z, x, ) in @i,:/’ ") which completes the proof. O

Remark 3.2. Since the Riemann sum of ¢, , (w,x) converges to
Jsr1 Gy (@ X)a(dw) in L2(((s1 v -+ Vv 5,) A 1) sy - - ds,). we easily obtain
that

oD -\ ; . .
[RESUCRSEETEED S DU | I Ry

n=1 nm+-+n=n

Remark 3.3. Since [) py(s.&)ds e L*(dE), we know that ;™' [J p,(s.&)ds e
2', where d: = 0/0¢ and 2’ denotes the dual space of 2, the space of C*
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functions of compact support. Therefore [, E[L"~D (¢, x,w)]o(dw), which
equals to the inverse Radon transform of 62" Jo P1(s,&)ds, exists in 2.

We now prove the main theorem. We notice the following lemma concerned
to Hermite polynomials.

Lemma 3.2. Let o be an orthogonal matrix, whose first column is ' =
Newiy...,,). Let n=ny+---+n,. Then it holds that

J' - L (\/%) "Hn. <(ya\>/‘§').> --~H,,,((y"\’/;l)')p,(sa P)dys - - dy,

Proof. Let f be a Schwartz rapidly decreasing function on R. Set ¢(x) =
f({w,x>). Then it is easy to show that

EW0} - 37 (B)] = of -+ o L1 (<0, BY))

0; denoting 0/0x;. The left hand side above equals to

1 " X1 Xy
— ) Hy (=) H, [ =) p,(s.: Xy codx,
[ [ (G) i (G5) = 1 (oo e o
and the right hand side

o op | (55) () it snasn.

Therefore the assertion is easily obtained by the change of variables xw = y on the
left hand side. g

Proof of Theorem 2.1. All we have to do is to show that

1 ra/2)
(—4m)" V2 I(r/2)

G () = | nno o). (8)

9ny.my,...n,(x) and g, ., (w,x) being as in (3.3) and as in (3.7), respectively. For
weS"™!, let @ be an orthogonal matix whose first column is ‘. Appealing to
the change of variables y = x@, we have

SCCYRRAC M

- J...L’_I I1#, (Lyl\%’ﬂ) x py(5.&) [ o1 (s, y)dva -y,

J i=2

where wj; denotes the (j,i)-component of w. Note that >/, yw;+ éw; =
(j»a)“)j where y = (&, y5,...,¥,). Thus, applying Lemma 3.2 and the inversion
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formula for the Radon transform (2.2) to above, we obtain (3.8) in the case where
n=mn;+---+n >0. In the case where n = 0, let @ be a function in 2 such that
0 is not included in the closure of its support. Then we easily have

! 1 r(1/2) [ !
D(x J (s, x)dsdx = J d(x)R| 0 ]J s, ds]dx
Jqo 200 | pts-xrisi = — i o[ ecor|ar! | mis e
which ensures (3.8) for n = 0. Therefore the proof is completed. O

Remark 3.4. We can show that the following equality due to Bass [1],

r o | F(l/2) *
L S(By)ds = (—4n)("_l)/2 r(r/2) LH J_m

(gﬁkm>w¢DW¢w@um (39)

holds almost surely for any Schwartz rapidly decreasing function f on R’
(The constant in Theorem 4.6 of Bass [1] should be corrected to
(=)“"D2(27)7"1 12): indeed, by the proof of Proposition 2.2 we can easily
show that L®(z,£) is continuous in g;l/w’:) (2 < 1,py < —1/2) with respect to

(w. &), and that
ar—l .
(—._R[f]>(wyé)‘llL"'(hé)l

JS"' J'—cc‘ 0{' !

Therefore the right hand side of (3.9) exists in ,@ '/' ”) and, by Lemma 3.2,
kernel functions coincide with those of the left hand side of (3.9). On the other
hand, the left hand side of (3.9) belongs to L>(P). Thus the equality (3.9) holds in
L*(P), which leads us the assertion. We should mention that Bass [1] has shown
the equality (3.9) above under some mild assumption on f.

(0.1 /ropyydCa(d) < 0
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