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The cohomology of BO(n) with twisted integer coefficients
By

Martin CADEK

Abstract

Let H* (BO(n),Z") be the graded cohomology group of the classifying space BO(n) with
twisted integer coefficients. Then H*(BO(n);Z) ® H*(BO(n);Z') has a structure of a
Z®Z, graded ring. In the paper this ring is described in terms of generators and
relations. It extends the results on the integer cohomology ring H*(BO(n);Z) derived in
[B] and [F].

1. Introduction

The cohomology rings of the classifying spaces for the groups O(n) and SO(n)
with Z, and Z[1/2] coefficients have been known for a long time, see [MS]. In
1960, E. Thomas found the group structure of H*(BO(n)) with integer and Z;n»
coefficients [T]. The integer cohomology ring is much more complicated so that it
lasted till the year 1982 than its structure was written down in terms of generators
and relations independently by E. H. Brown [B] and M. Feshbach [F]. In a
similar way the cohomology rings of BO(n) and BSO(n) with Z, coefficients have
been described in [CV].

Sometimes it is necessary to use cohomology classes of BO(n) with a non-
trivial system of local integer coefficients. Since m;(BO(n)) = Z, we have only
two possible nonequivalent systems of local integer coefficients—the trivial one,
denoted by Z and the nontrivial, which we will call twisted and denote by Z'.

The purpose of this note is to describe all the cohomology classes with twisted
integer coefficients and relations among them. However, since the cup product of
two such classes is a class with trivial integer coefficients, it is advantageous to
consider cohomology classes with trivial and twisted integer coefficients together as
a Z ® Z,-graded ring

h*(BO(n)) = H*(BO(n): Z) ® H*(BO(n); Z").

We will determine this ring via its generators and relations.
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2. Preliminaries and main results

We will use the definition of a system of local coefficients and singular
cohomology groups with local coefficients from [Sp], exercises F in Chapter I and J
in Chapter V. There one can also find the theorem on the existence of the Thom
class with local integer coefficients and a version of the Thom isomorphism suitable
for our purposes.

Let n be a positive integer and let & = (E, X,p) be an n-dimensional vector
bundle over a connected CW-complex X. Denote E the total space without the
zero section, FE, the fiber over xe X and i,: Ex — E the inclusion. Then
{H,(E\,Ex)} form a system of local integer coefficients over X and we will
denote it by {Z:}. An element e H"(E,E;p*{Z;}) such that iite H"(Ex, E,;
H,(Ex, E,)) corresponds to the identity in Hom (H,(Ex, E,), H,(Ex, E,)) for every
x € X is called the Thom class of the vector bundle &.

Proposition. Let &= (E,X,p) be an n-dimensional vector bundle over a
connected CW-complex X and let {G} be a system of local coefficients over X.
Then there is just one Thom class t € H"(E, E; p*{Z¢}) and the homomorphism

@, : H"(X;{G}) — H™"(E.E: p'{G} ® p'{Z¢}) : ®:(u) = p* () U
is an isomorphism.

Let j: (E,$) — (E,E) be the inclusion. The class e € H"(X;{Z;}) such that
p*(e) = j*(1) is called the Euler class of the vector bundle £ Using the Thom
isomorhism and the long exact sequence for the couple (E, E) with coefficients {G}
we get the long exact Gysin sequence with local coefficients:

HO\(E; p{GY) 5 HT"(X:{G} @ {Z¢}) = HY(X;{G}) 2> HY(E; p*{G})

Let y, = (E,, BO(n),p) be the universal vector bundle over the classifying
space BO(n) with the Euler class e,. In this case the system of local coefficients
{Z,} is equivalent to the system of twisted coefficients Z' and further, Z® Z' =
Z' W 7'®Z'=17. Since E, is homotopically equivalent to BO(n), the sphere
bundle SE, is homotopically equivalent to BO(n — 1) for n > 2 and the inclusion
SE, — E, corresponds to inclusion i : BO(n — 1) — BO(n), the application of the
Gysin sequence to this case both for trivial and twisted coefficients yields the
following exact sequence which plays crucial role in our next considerations.

() —hTY(BOM — 1)) 25 h97"(BO(n)) 2% h9(BO(n)) - h9(BO(n — 1)) —
This exact sequence can also be applied to the case n =1 if we take BO(0) as
SE, = §®.

- The letters w; and p; will stand for the i-th Stiefel-Whitney class and the i-th
Pontrjagin class of the universal vector bundle y,. The mapping p: H*(X,Z) —
H*(X,Z,) or p: H*(X,Z') - H*(X,Z,) is induced from the reduction mod
2. The Bockstein homomorphism associated with the exact sequence 0 — Z —
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Z — Z, — 0 will be denoted J: H'(BO(n);Z;) — H™™'(BO(n);Z) in the case of
trivial integer coefficients and o : H(BO(n); Z;) — H™*'(BO(n); Z") in the case of
twisted integer coefficients. In the case of twisted coefficients the long exact
sequenced induced from the short exact sequence above has the form

()  — HIUX:Z') 25 HI(X 2 L HY(X: Zy) - HY (X 2') —.
For the symmetric difference of two sets I and J we will use the symbol
AL, J)=1UJ)-(INJ).
Next in the ring A*(BO(n)) we denote

Wozl, W]ZHWZ,', W¢:1

iel

Pi :HP,'» Py =1,

iel

where I is a finite subset of integers.
Using this notation our main result reads as

Theorem 1. The cohomology ring
1*(BO(n)) = H*(BO(n); Z) ® H*(BO(n); Z")
is the polynomial ring over Z. generated by the elements
pi. owr, owr, ol, e,

where 1 <i<(n—1)/2 and I ranges over all finite nonempty subsets of
{IeN;1 <1< (n—1)/2} modulo the ideal generated by the following relations in
which J can be empty.

(l) 25"’] =0

(2) 20'W1 =0

(3) 201 =0

(4) 5W]5W_/ = Z514’2,'5%’/_1(1_{,*},])p(,_{,-})nJ
iel

(5) owrowy = Z5"’21"7”'41(1—{:‘},J)P(l—{i})nj
iel

(6) awjowy; = owowy + alowsinpuny)

(7 ey = OW,_| if nis odd.

Theorem 2. The cohomology ring
h*(BO) = H*(BO;Z) ® H*(BO;Z")
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is the polynomial ring over Z generated by the elements
pi, Owr, owr, ol

where i is a positive integer and 1 ranges over all finite nonempty subsets of positive
integers modulo the ideal generated by the relations (1)—(6).

3. Proofs

Let X be a path connected topological space. Let a system of local coef-
ficients {Z} over X be determined by the element we H'(X;Z;). The coho-
mology groups with such local coefficients will be denoted H*(X;Z,). In BO(n)
the nontrivial system of local coefficients is given by the first Stiefel-Whitney class
wi.

Lemma 1. In H'(BO(1);Z'") the Euler class e, is different from zero,
h*(BO(1)) = Zlei]/2er>
and e; = agl,p(al) = w.

Proof. From [W, VL. 3. 2] we know that H(BO(1);Z') = 0. Since S“ is
contractible, the Gysin sequence yields the short exact sequence

0— H(S*;Z) =~ Z 2 HY(BO(1);Z) ~ 2 2% H'(BO(1);Z') — 0

and isomorphisms

H*(BO(1):2") 24 H*'(BO(1);Z), H*(BO(1);Z) 2% H**'(BO(1);Z")

for all k > 1. We know that H2(BO(1);Z) = Z,, consequently H'(BO(1);Z') =
Z, with the generator ¢, and 2e; = 0. Hence

h*(BO(1)) = Zle1]/<2e:>.

From the long exact sequence () for BO(1) we get that o: H°(BO(1);Zy) —
H'(BO(1);Z") is a monomorhism. Hence a1 =¢; and p(al) = wy.

Notice that we have just proved Theorem 1 for n=1.

Lemma 2. Let o: H'(X;Z,) — H™*'(X;Z,) be the Bockstein homomorphism.
Then

pox = wx + Sq'x

for all xe H(X;Z,).

Proof. Using a universal example ¢ : K(Z,i) x K(Zy,1) — K(Z3,i+ 1) for
po, we get

po(i;i®1) = 9" (1i1) =aSq'; @ 1 + by @ 1 + ¢(1 @ 1),
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where 1 is a fundamental class in H*(K(Z,k);Z;) and a,b,ce {0,1}. Hence
also

pox = aSq' x + bwx + cw'*!.

Since po0 = 0 for every w, we get immediately that ¢ = 0. The choice w = 0 gives
o =0 and consequently a = 1.

Next choose X = BO(1),w = w;,x=w'e H'(BO(1);Z,). If i is even then,
from Lemma 1 and (**) we obtain that o : H'(BO(1);Z;) — H™™'(BO(1);Z") is
an isomorphism. Hence

bwit! = Sg' (w]) + bwiw = p(ow]) = p(ef™') = wi*,

which yields b= 1. If i is odd, then o: H'(BO(1);Z;) — H*'(BO(1);Z") is
zero. Consequently,

(1 +b)wit! = Sg' (wi) + bwiw! = pa(wi) =0,
which again implies b = 1.

Lemma 3. Let {Z} be a system of local integer coefficients over X. Suppose
that every torsion element of H*(X;{Z}) has order 2. Then the reduction
p:H (X;{Z}) —» H*(X;Z,) restricted on the torsion subgroup of H*(X;{Z}) is an
injection.

Proof follows immediately from the long exact sequence (*x).

Lemma 4. In H*(BO(n);Z,) the following relations hold

pOwdw,) = ZSqlw2iSqlWA(I—{i},J)pP(I—{i})ﬂJ

iel

pOwiows) = Sq waipaw sy 1PPu_(iyyn s

iel
plowiowy) = Sq'wiSq'wy + palpaw i ppin
where I and J are arbitrary subsets of {leN;1 <1< (n—1)/2}.

Proof. The first formula was proved in [B] and [F]. Using this formula and
the fact that w2, = pp,, we can easily prove the second one:

p(owrows) = Sq'wi(Sq'wy +wiws) = Sq'wiSq'wy + Sq'wy - wiwy

= Z Sq'w2iSq' wau—(iynPPU-(iyy g

iel

+ Z Sq' W2iWa(1-{iyHPP(1-{iy)nsW1

iel

= Z Sq' W2iPOW 4(1-{i} )PP (1-{i}) NJ

iel
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The following computation yields the third formula:
plowiowy) = (Sq'w; + wlwl)(Sq' wy + wiwy)
= SqlwlSq'wJ + wy (w,Sqle + wJSqlw/) + wlzwle
= Sq'w;Sq'wy 4+ wiSq' (wiwy) + wlzwA(,J)ppmj
= Sq'wiSq'ws +wiSq' (Wau.0)PPras + WiWaunPPIAs
= Sq'wiSq'wy +w, {S‘]IWA(I,J) +wiwauntPPing

= Sq'wi1Sq'wy + polpow s 1pping

Proof of Theorem 1. We will prove Theorem 1 by induction on »n using the
description of the ring H*(BO(n);Z) in [B] and [F].
Denote

*%n = Z[Z,‘, X1, V1,) ¢y un]

where I ranges over all nonempty subsets of integers | <i<(n—1)/2. Let
0, : R, — h*(BO(n)) be such a homomorphism that

0u(zi) = piv Ou(xp) = 0wy, O,(y1) =owr, Ou(ys) =al, 0,(u,) =e,

and let #, be the ideal in %, generated by relations (1)—(7) where p;,dw;,ow;, ol
and e, are replaced by z;,x;,y;,ys and u,, respectively.

The ring &, can also be considered as a Z, graded ring %, = .@2 @ ,%’,',, where
x; and z; have graduation 0 and y; and u, have graduation 1.

We will show by induction on n that 6,(#,) =0 and that the induced
homomorphism 0, : #,/.#, — h*(BO(n)) is an isomorphism.

For n =1 the proof has been carried out in Lemma 1.

Suppose that Theorem 1 holds for n—1 and n is even. In this case
Rn|In = (Ru-1/In=1)un). Let j:R,_1 — R, be the inclusion. By the inductive
hypothesis 6,_; = i*0,j is an epimorphism, hence i* : h*(BO(n)) — h*(BO(n — 1))
is also an epimorphism and from (%) we get a short exact sequence

(8) 0— h""(BO(n)) 2% h9(BO(n)) —— h*(BO(n — 1)) — 0
That is why the induction on ¢ yields that 0, : #, — h*(BO(n)) is an epimorphism.
We will show that all the torsion elements of /*(BO(n)) are of order
2. Denote Torh*(BO(n)) the subgroup of its torsion elements. The inductive
hypothesis implies that Z[p|, p,, ..., p,_1)/2] is a subring of h*(BO(n)). The short
exact sequence (8) yields that the multiplication by e, is injective. Hence
Z[p\.py.-- Pu—ty2-€n) is also a subring of h*(BO(n)). Since 6, is an epi-
morphism, we get a direct sum decomposition of &'(BO(n)) as a group

h*(BO(n)) = Z[pl’pZ‘ e ,p(,,_l)/z.e,,] @ TOI‘II*(BO(n)).
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Since 20 = 20 = 0, all the torsion elements are of order 2. Using Lemma 4 we
obtain p0,(#,) =0. Now Lemma 3 ensures that 0,(#,) = 0.

Induction on ¢ and in (8) and 5-lemma yield that 0, : #,/.%, — h*(BO(n)) is
an isomorphism.

Moreover, we will show that p,, = e in h*(BO(n)) if n is even. Consider
the inclusion k:SO(n)— O(n). It induces the ring homomorphism k*:
h*(BO(n)) — H*(BSO(n);Z). The classes k*w; k'p; and k'e, are the Stiefel-
Whitney, Pontrjagin and Euler classes of the universal oriented vector bundle over
BSO(n), respectively. From the knowledge of h*(BO(n)) and H*(BSO(n);Z) we
can conclude that k* restricted on the free part of H*(BO(n);Z) is a mono-
morphism and that k*(p,/, — e2) =0. Hence, p,), = e;.

Now, suppose that Theorem 1 holds for » — 1 and n is odd. Let ¢, be the
Thom class of y,. Then pt, is the Thom class with Z, coefficients and hence
pe, = w,. According to Lemma 2,

POWn_| = WiWy_| + Sqlwn—l = Wy = péy,
and consequently,
9) e, = ow,_| +2v

where ve H"(BO(n);Z"). We will show that 20 =0. 2n is not a multiple of 4
hence H?'(BO(n);Z) contains only elements od order two. Particullary, 2ve, =
0. From the long exact sequence (x), we get that 20 = 4"s where se
H*-'(BO(n—1);Z'). From the inductive hypothesis we know that all elements
in H”~'(BO(n — 1);Z") are of order 2. consequently 25 = 0. That is why 4v =
A4*(2s5) =0 and also 2e, = 20w,_; +4v=0.

All elements of H"(BO(n — 1):Z') are of order 2 as well. Hence 2i"v =0,
and using again the exact sequence (x), we have 2v = me, for some meZ.
Substituting to (9) we obtain (1 —m)e, = ow,_;. Since

p((1 —m)e,) = powy_| = Sq'w,,-l + WiWwy— = w, #0,

m has to be of the form 2/ and, consequently, 2v = 2/e, = 0. So, we have proved
that

(10) ey = OWp_1.

To prove that 6, : #, — h'(BO(n)) is an epimorphism we will show that
imi*0, =ker4* =imi*. We get

imi*0, = Z[p,..... Pin-3)y2-€n_t] @ Tor " (BO(n — 1))

from the following computations which use the knowledge of /i*(BO(n — 1)) and
Lemma 3.

i"Ou(x;) =0wy, i"O,(p;) =ow; if (n—=1)/2¢1
i*0,(x;) =0wrep—1. i"0,(y;) =owresmy if (n—1)/2€el
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"Onzi = piv "OnZ(u-1)j2 = Pacryy2 = €r-
i*Opu, =i"e, =i*(1Ue,) =0.

So all the elements of h?(BO(n — 1)) for ¢ < n — 2 are simultaneously in imi*6,
and imi* = ker4*. Further,

WY (BO(n — 1)) = {me,_:me Z} ® (imi*0,Nh""' (BO(n — 1))).

Since e, #0 and 2e,=0, from (x) we get the existence of an element
veh" '(BO(n— 1)) such that 4*v=2. Consequently, 47¢,_; = +2. So every
element of A*(BO(n—1)) has the form v=v;+ ve,-), wWhere v,v5€
imi*6d,. Now,

A*(U| + l)ze,,_l) =wndre,_, = +2v,.

Hence v e ker4™ if and only if 2v, =0, which implies ker 4* = imi*0,,.

Now, we can show that 0, : #, — h*(BO(n)) is an epimorphism by induction
on q. Let ve h?(BO(n)) be arbitrary. There is v; € #, such that i*(v — 0,v;) =
0. Then the exact sequence (*) implies the existence of vy € h47"(BO(n)) such that
me, =v—0,0;. By the inductive hypothesis, vy = 0,03 for  some
v3 € A,. Consequently, v = 0,v; + v2e, = 0,(v) + v3uy).

We have already proved that

"(Z[pyy- - P32 Punyyd)) = ZIP1-- s Plaesyjas €noi]
is a subring of A*(BO(n — 1)), hence
h*(BO(n)) = Z[p,, p,, - .- »P(n—l)/z] @® Tor h*(BO(n)).

So every torsion element of #*(BO(n)) is of order 2. Applying Lemma 3, Lemma
4 and (10), we obtain 6,(#,) = 0.

It remains to prove that 0, : #,/.%, — h*(BO(n)) is injective. Since 6, is an
epimorphism, A*(BO(n)) as a Z graded group is a direct sum

h*(BO(n)) = Z[py. py. ... Pu-1)2) ® Tor H*(BO(n); Z) & Tor H*(BO(n); Z").

The inverse images of these subgroups in the homomorphism 6, give the group
R/ Sy as a direct sum

R In =212\, 22, .. . Z(u-1yy2) ® Tor* (R S0) @ Tor (Ru/ I ).

From the description of H*(BO(n):Z) in [B] and [F] we know that 0, is a group
isomorphism onto H*(BO(n);Z) when restricted on

Z[Z],Zz, e .Z(,,_l)/g] &) TOFO(.@,,/fn).

Due to Lemma 3, it suffices to show that p0, restricted on Tor'(R,/.#,) is a
group monomorphism into H*(BO(n):Z,).
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Consider the following slight modification of the Stiefel-Whitney classes
U = Wi, U2 = Wi, Uil = Woigl T WIW2;

We have Sq'v; = v}, Sq'vai1 =0 if i>1, Sq'vy =vyyy if i< (n—1)/2. The
monomials [[/, vF form a basis of H*(BO(n);Z;). For ¢#1<{l.2,...,
(n —1)/2} put vy = wy.

We will show that Tor!(#,/.#,) has the following generators

(n—-1)/2 (n-1)/2
vi II =" 11 gy 1#¢
i=1 i=1
(n=1)/2 (n=1)/2
y;1+l Z;n,- xf,}

The successive use of relation (6) for products yg y;, relation (4) for products xgx;
and relation (5) for products xxy, or xxy, decomposes any monomial in
Tor'(#,/#,) into a sum of the monomials described above.

The group homomorphism pf, maps these generators of Tor'(%,/.#,) into
elements

(n—-1)/2 (n—1)/2
o} H ”Zni H ”§;+1(0101+Sq101), I#¢
i=1 =

i=1

(n—1)/2 (n—1)/2

2/+1 2m; ki
vy H Uy H V2ir1
i=1 i=1

We will prove that these elements are linearly independent in H*(BO(n);Z;). All
the elements of the second kind are monomials containing an odd power of v; and
even powers of all vy;. Every element of the first kind is a sum of monomials
from which just one contains an odd power of v;. This monomial

(n=1)/2 (n-1)/2

21+1 2m; ki
Uy H Uy H Vyip1VI
i=1 i=1

is uniquely determined by the numbers /,m; k; and by the nonempty set I and
contains odd powers of vy; for every ieI. So any sum of some elements of the
both kinds is different from zero.

This completes the proof that 6, is an isomorphism.

Proof of Theorem 2. The standard inclusions O(n) < O(m)— O yield the
fibrations

Vinm—n— BO(n) 22 BO(m). V — BO(n) -2 BO

where V' is the inductive limit of the Stiefel manifolds ¥V, ,,—, for m — co.
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Since V,, ,y—n and V are (n — 1)-connected, the local coefficient Serre spectral
sequence (see [S]) implies that

pyH'(BO:Z') — H'(BO(n);Z'), p}:H'(BO:Z) — H'(BO(n):Z)
and also p,, are isomorphisms for i/ <n. Hence

h*(BO) = lim h*(BO(n)),

n—oC

which completes the proof of Theorem 2.
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