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The modularity conjecture for rigid Calabi-Yau
threefolds over Q

By

Masa-Hiko SAITO and Noriko YUl

Abstract
We formulate the modularity conjecture for rigid Calabi-Yau three-
folds defined over the field Q of rational numbers. We establish the
modularity for the rigid Calabi-Yau threefold arising from the root lat-
tice As. Our proof is based on geometric analysis.

1. The L-series of Calabi-Yau threefolds

Let Q be the field of rational numbers, and let Q be its algebraic closure
with Galois group G := Gal(Q/Q). Let X be a smooth projective threefold
defined over Q or more generally over a number field.

Definition 1.1. X is a Calabi- Yau threefold if it satisfies the following
two conditions:

(a) HY(X,0x) = H*(X,0x) =0, and

(b) The canonical bundle is trivial, i.e., Kx ~ Ox.

The numerical invariants of Calabi-Yau threefolds

Let X be a Calabi-Yau threefold defined over Q, and let X = X xq Q.
The (i,7)-th Hodge number h*J(X) of X is defined by

h'(X) = dimgH’ (X, Q%).

The condition (a) implies that h'?(X) = h?%(X) = 0, and the condition
(b) that h3%(X) = h%3(X) = 1. The number h*!(X) represents the number of
deformations of complex structures on X, and h!(X) is the number of Hodge
(1,1)-cycles on X. By using Hodge symmetry and Serre duality, we obtain
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h?1(X) = h12?(X) and hM1(X) = h?2(X) and finaly the Hodge diamond can
be given as follows:

1
0 0
0 htt 0
1 h2,1 h1,2 1
0 h?:2 0
0 0
1

The n-th Betti number of X is also defined by
B, (X) = dimq,H} (X, Q) = dimcH" (X ® C, C)

where the cohomology groups are, respectively, the ¢-adic étale and singular
cohomology groups. The Hodge decomposition theorem

H'(X®C,C) = @H-j:nHj(X ® C, Q&@C)

ensures that B, (X) = >, ., h%3(X), and hence one can compute the Betti
numbers of Calabi-Yau threefolds:

Bo(X) =Bs(X) =1, Bi(X)=B5(X) =0,

By(X) = h'Y(X) = By(X) = h*%(X) and Bs(X) = 2(1+ h*1(X)).

Note also that the (topological) Euler characteristic is given by x(X) =
2(hH(X) — h21(X)).

Definition 1.2. A smooth projective Calabi-Yau threefold X over Q
(or over any field) is called rigid if h*!(X) = h12(X) = 0 so that B3(X) = 2.

Definition 1.3. Let X be a Calabi-Yau threefold defined over Q.
Assume that X has a suitable integral model. The L-series of X is defined
to be the L-series of the (semi-simplification of the) Galois representation on
Hg’t(X,Q[). That is,

L(X,s) := L(H3,(X,Qy), ).

Digression. Let X be a Calabi-Yau threefold defined over Q with a
suitable integral model. Let p be a good prime for X, that is, the reduction X
(mod p) defines a smooth projective variety over the prime field F,,. Let Frob,
denote the (geometric) Frobenius morphism of X at p. We consider the action
of Frob,, on the f-adic etale cohomology group H3, (X, Qy), and let t3(p) denote
the trace of the Frob, on H3 (X, Q). By the Lefschetz fixed point formula,
t3(p) can be determined by counting the number of F,-rational points on X:

ts(p) =1+ p® + (1 + p)ta(p) — #X(Fp).
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Here t2(p) = p Trace(p(Frob,)) where p is an Artin representation of dimension
hY1(X) so in particular its trace is an integer which is a sum of A**(X) roots of
unity. This implies that |t2(p)| < p ht1(X), and for a set of primes of positive
density, we get to(p) = ph'1(X). Define

P ,(T) := det(1 — Frob, T'| H3 (X, Qq)).

If X is arigid Calabi-Yau threefold, then Ps ,(T") is an integral polynomial
of degree deg(Ps ) = 2; it is of the form:

Psp(T) =1 —t3(p)T +p°T* € 1+ TZ[T)

where £3(p) is subject to the Riemann Hypothesis: [t3(p)| < 2p3/2. The L-series
L(HZ (X,Qy),s) is then given by

L(Hgt(Xa Qf)7 5) = (*) HP?),P(p_s)_l

where p runs over good primes, and (x) is the Euler factor corresponding to
bad primes.

2. The modularity conjecture for rigid Calabi-Yau threefolds over

Q

Let k > 1 be an integer. Let T be an arithmetic subgroup of SLs(Z) of
finite index. We denote by Si(T") the complex vector space of all cusp forms of

weight k with respect to I'. We now formulate the modularity conjecture for
rigid Calabi-Yau threefolds defined over Q.

Conjecture 2.1. The modularity conjecture: Any rigid Calabi-Yau
threefold X defined over Q is modular in the sense that its L-series of X
coincides with the Mellin transform of the L-series of a modular (cusp) form f
of weight 4 on I'o(N). Here N is a positive integer divisible by the primes of
bad reduction. More precisely, we have, up to a finite Euler factors,

L(X,s)=L(f,s) for f &Sy (To(N)).

Here are some justifications for formulating the modularity conjecture for
rigid Calabi-Yau threefolds over Q.

Remark 2.1.  The conjecture of Taniyama-Shimura-Weil that every el-
liptic curve over Q is modular, has been established by Wiles and his former
students in totality (see Breuil, Conrad, Diamond and Taylor [BCDT]). Not-
ing that elliptic curves are dimension one Calabi-Yau varieties, our modular-
ity Conjecture 2.1, may be regarded a dimension three generalization of the
Taniyama-Shimura-Weil conjecture to rigid Calabi-Yau threefolds over Q.
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Remark 2.2.  Livné [Li2] considered a rank 2 motive M over Q with
Hodge numbers h?*9(M) = h?P(M) = 1 where p > ¢, which respects an
orthogonal form up to similitudes. Livné showed how to express the L-series
of M in terms of Hecke characters.

The examples of rank 2 motives M considered by Livné arose from an
elliptic curve E over Q or from a singular K3 surface X, i.e., M = H'(E)®Q
or H%(X,Z)/Pic(X) ® Q. In the latter case, Shioda and Inose [SI] determined
the L-series of a singular K3 surface X (up to a finite numbers of Euler factors)
passing to some finite extension of Q:

L(X,s) = L(y7,s)L(471, 5)

where 17 is the Hecke character associated to an elliptic curve with complex
multiplication.

Remark 2.3. Fontaine and Mazur [FM] have conjectured that all
irreducible odd 2-dimensional Galois representations “coming from geometry”
should be modular, up to a Tate twist. Our modularity Conjecture 2.1, may
be regarded as a concrete realization of the Fontaine-Mazur conjecture. For a
recent progress on a conjecture of Fontaine-Mazur, the reader is referred to a
paper of Richard Taylor [T].

Remark 2.4. Let X be a projective variety of odd dimension m over Q
such that the m-th Betti number B,, = dim H™(X ® C,C) =2 and H™(X ®
C, C) has the Hodge decomposition of type (m,0) 4+ (0,m). Serre [Sr] has
formulated a modularity conjecture for the residual mod p 2-dimensional Galois
representation attached to X for all primes. In particular, our modularity
Conjecture 2.1 is a special case of the conjectural Theorem 6 of Serre [Sr] for
m = 3. Serre has informed us about this in his e-mail dated June 23, 2000. We
are thankful to him for pointing this out.

3. A rigid Calabi-Yau threefold arising from the root lattice As;

This example of a rigid Calabi-Yau threefold is constructed from the root
lattice A3 via a toric construction.

3.1. Toric construction. For the general backgrounds on toric varieties,
the reader is referred to Batyrev [Bat], Fulton [Fu] and Fulton and Harris [FH).

We consider a root system R of rank r. Let Lz be the root lattice gener-
ated by R, and let £ be its dual lattice. Let ¥ be the fan in £ ® Q. The
fan Y gives rise to a toric variety, which is denoted by X (¥z). Let Ar be
a polyhedron in Lz ® Q with vertices in R, and let L(Ax) denote the space
of Laurent polynomials with support in Ag. For each root r € R, assign a
monomial €”, and define a Laurent polynomial

XR = Z e € L(AR)

reER



The modularity conjecture for rigid Calabi- Yau threefolds 407
Then we have a rational function yz : X(Xr) — P!. For each \ € P!, define

X\ =xgr (\) C X(ZR).

There is a base locus B. Let B: Xg — X(Zg) be the blow up of the base
locus. Then we obtain a pencil of varieties

Xr = {(\x) € P x X(ZR)| xr(z) = A}

We are interested in root lattices R which give rise to Calabi-Yau threefolds
Xr.

3.2. The root lattice A3 and the construction of a Calabi-Yau three-
fold. Verrill [V] constructed a Calabi-Yau threefold associated to the root
lattice As. We will briefly describe Verrill’s construction. Let {E; |7 = 1,2, 3,4}
be the standard basis for R*. The root lattice As is a sublattice of R* of rank
3 generated by vy := F7 — Es, vy := Ey — E3, v3 := E3 — F, and the collection
of all roots is given by the set

To aroot F; — E;, we associate a monomial Xin_l by putting X; = ef. Then
the character of the adjoint representation is given by

Xa, = Xa Xo M+ X0 X+ XX XX XX XXt
+ X X7+ X X7+ XX+ XX+ X X0+ X Xg !
=X+ X+ X+ X)X+ XM XN XY -4

Let X(X4,) — P! denote the toric variety defined by ya, = A € PL. Tt is a
rational variety. Now we take a double cover of X (3 4,) by putting A = (t—1)2/¢
with ¢ € P!. Then a desingularization X of the double cover is a Calabi-Yau
threefold defined over Q whose generic fiber X is a K3 surface.

Lemma 3.1.  The numerical characters of X are given as follows:

=0, K0 =1, Bb'=50, x(X)=100

and hence X is a rigid Calabi-Yau threefold.

We can see from the defining equation of X that 2 and 3 are bad primes.
For this rigid Calabi-Yau threefold X over Q, we can establish the modularity
conjecture. We will give a proof of the following theorem in Section 6 below.
Verrill [V] also proved the theorem with totally different method (& la Livné
[Lil]) from ours.
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Theorem 3.1.  Let X be the rigid Calabi- Yau threefold constructed by
Verrill. Then L-series of X coincides, up to the Fuler factors corresponding
to primes 2 and 3, with the Mellin transform of a weight 4 newform on I'y(6).
That 1is,

L(X,s)=L(f,s) for feS4(Io(6)).

The cusp form f has the g-expansion of the form:

4. The self-products of elliptic modular surfaces

Let T be an arithmetic subgroup of SLy(Z) with no torsion elements and
let H be the upper half complex plane. Then we can define the modular curve
CP := H/T and its compactification Cr := H/T' = H/T' U {cusps of I'}. It is
known (cf. [D]) that the universal family of elliptic curves

o8y — CR=H/T

exists, and that its Néron model has the unique smooth minimal compactifica-
tion
fI:fF:SF —>CF=H/F
The fibration f :Sp — Cr is called the elliptic modular surface associated to
T.
Let us now recall some basic facts about elliptic modular surfaces, which
are relevant to our subsequent discussions. Consider the following diagram

SIQ — SF
L
e <4oor.
Making use of the invariant cycle theorem, we obtain an isomorphism of sheaves
R'f.Qs, ~ j.R'f)Qqp -
In fact, we have the natural map

(4'1) le*QSr "j*leSQSIQ

which is an isomorphim over C2 = Cr \ ¥ where ¥ = {py,... ,p,} is the set of
cusps of I'. Looking at the stalks at a cusp p;, the morphism

(4.2) (R f.Qsp)p: — (=R F)Qs0)p,

is surjective by local invariant cycle theorem (cf. e.g. [Proposition 15.12 [Z]]).
On the other hand, it is easy to see that both of the stalks in (4.2) are isomor-
phic to a one-dimensional Q-vector space. Hence the linear map (4.2) is an
isomorphism.
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Let V denote the natural representation of SL(Q), and let S*(V) be the
k-th symmetric tensor representation of V. Then it is known ([Z], Proposition
12.5) that for each k& > 0 there exists an isomorphism

(4.3) HY(T, S%(V)) =~ H"(Cr, j.(S*(R' f)Qsp))) for each k> 0.

Here H'(T',S*(V)) is the parabolic cohomology group associated to the
representation of I on S*¥(V). Let wg,/cp = Kg. ® f*(Kgrl) be the relative
canonical bundle of f, and we set

w = f*(wsr/cr)'

Then we see that w is an invertible sheaf on Cr.
Now we are ready to describe an isomorphism, the so-called Shimura iso-
morphism and its far-reaching consequences.

Proposition 4.1 ([Sh], [D], [Z]).  There exists a natural isomorphism
(the Shimura isomorphism)

(4.4) HO(Cr, Q¢, ® wh) = Spya(D)

and it gives rise to the following commutative diagram:

HY(T,S*(V)) ®q C ~ Sk12(T) @ Spio(T)
! !
H'(Cr, j.(S*(R'f{Cg))) =~ H°(Cr,Qf, @w®)® HY(Cr,Qf, @ wh)

The first vertical arrow is the isomorphism induced by (4.3).

With the Shimura isomorphism at our disposal, we may now characterize
rational elliptic modular surfaces.

Proposition 4.2.  The elliptic modular surface associated to T', f :
St — Cr s a rational elliptic surface, if and only if

Proof. From the formula for the canonical bundle of the elliptic fibration
f:Sr — Cr, we see that
(4.5) Koo = [*(Qh, & w).

The formula (4.5) combined with the Shimura isomorphism (4.4) then give rise
to the isomorphisms

(46) HO(CF,QICF) 252(1—‘), HO(SF,KSF) :HO(CF,Qlcr@Jw) 253(1—‘)

Suppose that St is a rational surface. Then Cr is also a rational curve, so
that dim S2(I') =0. We also have dim H°(Sr, Kg,.) = 0, and hence dim S3(T") =
0.
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Conversely, assume that dim Si(T') = 0 for & = 2,3. Then again the
Shimura isomorphism (4.4) implies that H°(Crp,Q¢, ) = 0. Hence Cp ~ P'.
Since f is not isotrivial, the formula for the canonical bundle asserts that we
may write w as w = Op1(a) and Kg. = f*(Op1(a—2)) with a suitable positive
integer a. Note that the positivity of a follows from the positivity of the direct
image of the relative canonical sheaf w = f.(wg; /¢y )-

Under this situation, dim S3(I") = dim H°(St, Kgs,.) = dim H°(P', Op:1(a
—2)) = 0 implies that a = 1. We also have the isomorphisms

[+0s. ~ Op1, R'f.0s. ~w” ~ Opi(—1).

Further the Leray spectral sequence shows that H'(Sp,Og,.) = 0. Moreover,
for every k > 0, Kér = f*(Op1(—k)) has no section. These facts finally imply
that Sr is a rational surface. O

Next, let us consider the self-fiber product of the elliptic modular surface
associated to I’
f2:foZSI21:SF XCFSF—>CF.

In general, S2 has singularities which arise from the critical points of the map
f +Sr — Cr. However, if f has only semistable fibers (that is, the singular
fibers are all reduced and have only nodal singularities), then the fiber product
S2 has only ordinary double points as its singularities.

Proposition 4.3.  Suppose that f : Sp — Cr_has only semistable
fibers. Then there exists a small projective resolution m : Sf. — SE. Moreover,
if we set h = f%om, then the canonical bundle of S3 can be written as

(4.7) Kga = (h)* (2%, ® w?).

Proof. The first assertion follows from Lemma 3.1 [Sch2]. Since 7 is a
small resolution, K g2 = 7 (Kgz). On the other hand, since S2 is a hypersurface

in Sp x Sr (i.e., it is the pull-back of the diagonal A : Cr — Cr x Cr), we can
derive from the adjunction formula that

KS{‘: = (KSFXSF + f_l(A(CF)))\f—l(A(CF))
= (/)" ((26.)% ®w? ® (95,)7)
= (P @ o).
This gives rise to the formula (4.7). O

Corollary 4.1 (cf. [Sok]).  Under the assumption of Proposition 4.3, we
have a canonical isomorphism

H°(SE, Kg2) ~ H°(Cr, ¢, ®w?) = Sy(T).

For the full cohomology group H?(S2,Q), the following fact holds (cf.
Section 1, [Schl]).
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Lemma 4.1 (Lemma 1.7, [Schl]).  The rational Hodge structure of
H3(5’1%,Q) is isomorphic to the direct sum of three copies of H*(Cr, Q)[—1]
and a piece of pure type (3,0),(0,3). In particular, if Cr is a rational curve,
then H*(S%,Q) is of pure type (3,0),(0,3).

Corollary 4.2.  Assume that Sp — Cr is a rational elliptic modular
surface associated to I' with only semistable singular fibers. Then any small
projective resolution S2 of the self-product S is a rigid Calabi-Yau threefold.

Proof. Since f : Sp — Cr is a rational surface, it is immediate that
Cr ~ Pl. Let h: 512‘ — P! be the natural fibration. We may write w as
w = Op1(1) using the formula (4.7). Then we see that

Kz = h*(Qp1 @ w?) = h*(Op1 (2 +2)) = Oga.

Recall from Lemma (4.1) that the rational Hodge structure H 3(52,Q) is of
pure type (3,0), (0,3). So it follows that H'(SZ, 9252) = Hl(@glg) = 0. We also
r

see (cf. [Schl]) that hl((’)gg) = hQ(Ogg) = 0. These facts then imply that S2
is a rigid Calabi-Yau threefold. 1

Remark 4.1.  There are in total six arithmetic subgroups I' C SLo(Z)
which give rise to rational elliptic modular surfaces with only semistable fibers.
The list of such groups coincides with the list of Beauville [B]. (Beauville
classified elliptic surfaces with exactly four semistable fibers (i.e., of type Iy, b >
1) over P1). In Table 1, groups I are listed in the first column, 4 singular fibers
of type I, b > 1 in the second column and h''! (resp. the Euler characteristic
x) of the corresponding Calabi-Yau threefolds 5’12 in the third (resp. fourth)
column. Note that the Euler characteristic X(S‘%) is exactly equal to 2h!-!. This
is because 5’% is rigid. Also note that for any group I' in Table 1, dim Sy (T") = 1.

This follows from the isomorphism S (T") ~ H3?(S2) ~ C.

Table 1:
r W52 | x(52)
'(3) I3 I3 I3 I3 36 72
ri(4)NIT(2) I, I, I, I 40 80
r'v(5) I; Is I I, 52 104
I'1(6) I Is I, I, 50 100
To(8)NTy(4) | Is L LI L 70 140
To(9)NTy@3) | Iy T LI L 84 168

Now we quote a theorem which is a special case of the fundamental result
due to Sato-Kuga-Shimura ([KS]; cf. [D]). We make use the argument of [D],
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where Deligne worked over the case when I' = T'(N) (full modular case). How-
ever his argument works for other cases like I' = T'1 (IV) as far as the universal
family of generalized elliptic curves exists.

Theorem 4.1.  Let T be an arithmetic subgroup of SLa(Z) listed in Ta-
ble 1, and let f : Sp — P! be the rational elliptic surface associated to T'. Let
2 512 — P! be the smooth rigid Calabi-Yau threefold arising from the self-
product SE. Then 5‘1% is modular, that is, the L-series of 5‘1% coincides with the
Mellin transform of a weight 4 newform of T up to finite Euler factors coming
from the bad primes:

L(S%,s) =L(f,s) for feSuT).

Remark 4.2.  The bad primes for 5’1% depends on the level of the discrete
group I'. For example, we can easily see that only 2 and 3 are the bad primes
for F1(6)

5. The geometry of Verrill’s Calabi-Yau threefold

In this section, we will look into the geometric structure of Verrill’s rigid
Calabi-Yau threefold X constructed in Section 3. Note that from now on all
varieties are defined over Q.

We denote by [z : y : z : w] the homogeneous coordinate of P? and by ¢
the inhomogeneous coordinate of P!. Then Verrill’s rigid Calabi-Yau threefold
X is a desingularization of the hypersurface in P3 x P1:

1 1 1 1 t—1)2
(5.1) {(x+y+z+w)(—+—+—+—>—( ) —4:0}cP3><P1.
r Yy 2z w t

It is easily seen that this equation is equivalent to the following equation:
(5.2)  F(z,y,z,w,t)=(x+y+z+w)-[(yz+ 2z + zy)w + zyz] - t
— (t+ 1) zyzw = 0.
The elliptic modular surface associated to I'(6)
Let us consider the hypersurface S in P! x P? defined by

(5.3) H(z,y,2,8) = (s+ Dryz — (x +y + 2)(yz + 2z + zy) = 0.
The hypersurface S has three singular points at

[s, [ 2y = 2]] = [oo, [1:0:0]], [00,[0:1: 0]}, [00,[0:0:1]].

Let _
TS — S

be the blowing up of these three points. Then it is easy to see that S is the
minimal resolution of S and f = p; om : S — P! induces the structure of the
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Table 2:

s 8 | —11] 0 | o0
singular fiber || Iy | I, | I3 | Ig

elliptic surface. Moreover the rational elliptic surface f : S — P! has only
four semistable singular fibers of types Iy, I3, I3, I (see Table 2):
By [B], f : S — P! is an integral model of the elliptic modular surface

f:Sr, 6 — H/T1(6) = P!
of F1(6)

Theorem 5.1.  Verrill’s Calabi-Yau threefold X defined in (5.1) is
birationally equivalent over Q to a crepant resolution 51%1(6) of the self-product
of the elliptic modular surface Sr, ). More precisely, there exists a birational

map defined over Q between X and 51%1(6).

Remark 5.1.  There are two fibrations, one is the fibration of X — P!
of K3 surfaces and the other is the fibration f* : SZ © — P! of abelian

surfaces. We will show below that these two fibrations are not equal. (However,
we do not know any relation (apart from being non-equal) between these two
fibrations.)

Proof of Theorem 5.1: Birational transformations. To prove Theorem 5.1,
we will construct a birational map over Q between the two varieties explicitly.
We define the birational map:

7:P? x P2 — P3 x P!
[x:y:z] x [T -W:U — [z:y:z:w]x(t)
by putting

r=z,y=y, 2=2t=T/U, w=W-(z+y+2)/U.
Pulling back the equation F(z,y, z,w,t) in (5.2) via w, we obtain the equation
F:=@+y+2)2(yz+ 2z + 2y)TW?

—(z+y+2) - [(x+y+2)(yz+az+zy) —ayz]TWU
+ayz(z +y+2)TU? — (v +y + 2)ayz[T? + U]W = 0.

Consider the hypersurface X” C P2 x P2 defined by F = 0. Of course, X" is
birationally equivalent to the original hypersurface X’ in (5.1). We have the
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following commutative diagram:

Xt L prp?
fil /D1
P2

Now recall the hypersurface S C P! x P? defined in (5.3). Considering
the birational map p = (p2)|s : S — P? and taking the pull-back morphism
f1 by u, we obtain the following commutative diagram:

v

P'xP?xP? o> X" L X/
1 p12 fil fil
P! x P2 > s A p?

Here we set X" := S xp2 X”'. Note that the natural induced map v : X" —
X" is a birational morphism. Now we see that X' is a complete intersection
defined by the equations

F =
H(z,y,z) = (s+1)(zyz)—(z+y+2)(yz+ 2z +ay) =0.

Now using the second equation, F = 0 can be transformed into the following
equation:

F:=(x+y+2)-(s+Dayz - TW?
+(@x+y+2)[(s+1)zyz — zyz]TWU
tayz(z +y+2)TU? — (x+y + 2)[T? + U?|ayzW
=(x+y+2)ryzx {(s+1)-TW? = sTWU + TU? — T*W — WU?}

Forgetting the factor (z 4+ y + z)zyz from F, we obtain the equation
G(T,W,U) = (s +1)- TW? + sTWU + TU? - T*W — WU? = 0.

Therefore we see that the subvariety X’ is isomorphic to the complete inter-
section in P! x P2 x P2 defined by the equations

G(T,W,U) = (s + )TW? + sTWU + TU? - T*W — WU? =0,
H(z,y,z) = (s + Dayz — (z +y + 2)(yz + 22 + zy) = 0.

Next, considering the the birational transformation of P? given by

T=2-(X+Y+2), W=-XY, U=Y(X+Y +2).
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Then the polynomial G(T, W, U) above can be transformed into the polynomial

GX,YV,Z)=(s+ 1)XYZ - (X+Y + 2)(YZ+ ZX + XY),

which is nothing but H(X,Y, Z). Hence the complete intersection X"’ C P! x
P2 x P? is isomorphic to the fiber product S xpi1 S — P! of the elliptic
surface f : S — P! defined by the equation H(z,y,2) = 0. Hence, X’
defined in (5.1) is birationally equivalent to the self-product S xp1 S of S.
Since the minimal resolution of S is isomorphic to the elliptic modular surface
St, (6); X is birationally equivalent to the self product 5%1(6). Observing that
the birational maps discussed above are all defined over Q, this completes the
proof of Theorem 5.1. O

6. Proof for the modularity of X (Theorem 3.1)

Since the birational map between Verrill’s example X and 5‘1%1 (6) con-
structed in Section 5 is defined over Q, we obtain the following Lemma.

Lemma 6.1.  The birational map constructed in Section 5 gives rise to
the following isomorphism compatible with the Galois action up to bad primes
2 and 3

HeBt(Xv Q) ~ Hgt(S’I%l(G), Qo).

Consequently, we have .
L(X,s) = L(S%l((;), s)

up to Euler factors at bad primes 2 and 3.

For a subgroup I' C SLo(Z), its projectivization I'/{£I5} will be denoted
by PT. By virtue of Theorems 4.1 and 5.1, Remark 4.2 and Lemma 6.1, the
proof of Theorem 3.1 (the modularity of Verrill’s Calabi-Yau threefold X) is
reduced to the proof of the following lemma.

Lemma 6.2.  The projective image of I'1(N) and To(N) are the same
in PSLo(Z) if and only if N is a divisor of 4 or a divisor of 6. In particular,
PT'1(6) = PTy(6) and so it follows that S4(PT'1(6)) ~ S4(PTo(6)).

a b

d
(mod N). The first assertion follows from the fact that the only positive integers
N for which ad = 1 (mod N) implies that a = d = +1 (mod N) are the
divisors of 4 and 6. O

Proof. Let be a matrix in T'o(N) or I'1(N). Then ad = 1

Remark 6.1.  Verrill [V] has an alternative proof of the modularity for
X. Her proof is along the lines of Livné’s paper [Lil]. It makes use of the
Serre criterion [Sr] and Faltings results [F] to prove equality of two L-series.
The main point was to show that finitely many Euler factors of two L-series
coincide.
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Remark 6.2. Our geometric proof of the modularity conjecture for X
guarantees that the 2-dimensional Galois representations associated to X and
that attached to the modular form are indeed isomorphic (i.e., have the same

semi-simplification). This provides a confirmation to the conjecture of Fontaine
and Mazur [FM].

We close this section by posing an open problem.

Problem 6.1. May one use the method of Wiles to establish the
modularity of X7 More concretely, find a single good prime £ and establish the
modularity for the residual mod ¢ Galois representation associated to the rigid
Calabi-Yau threefold X in question.

7. The intermediate Jacobians of rigid Calabi-Yau threefolds

In this section, we shall define the intermediate Jacobian for Calabi-Yau
threefolds, following the exposition of Bloch [BI].

Definition 7.1. Let X be a smooth projective Calabi-Yau threefold
defined over C. There is a Hodge filtration

H3(X,C)=F°>F'>F?>F*>(0)
where

Fl — H3,0 EBHQ,I EBHl,Q
F2 — H3,0 o) H2,1
F3 = H30,
This complex vector space also has a Z-structure defined by the image H?(X, Z)
— H3(X,C).
Now we recall some key properties of Hodge filtrations not only for H3 but
for more general cases. We write F for generic filtrations. We have

FleFr-i~H""Y(X,C), FnFr—i-T~pg- !
where H* ~ HJ(X, Q%) and r € {1,2,3}. From this, one can compute that
dimcF" = %dimcH”—l(X, C)
and
F" NImage(H* ~Y(X,Z) — H* (X, C)) = (0).
Therefore, the quotient

JN(X)=H""YX,C)/(F" + H" X, Z))
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is a compact complex torus, called the intermediate Jacobian. By the Poincaré
duality, we have

1;]27”—1(){7 C)/fr ~ :F4—T 1;]7—27"(){7 C)*
where * denotes C-linear dual. It then follows that
J(X)~ FYTH (X, C)*/Hy_9,(X, Z).

Digression. Now assume that X is rigid, and take r = 2 and F = F.
Then we have

Fl _ H3,0 :F2 _ F3
and
J*(X)~ H3(X,C)/(F*+ H*(X,Z)) ~ H**(X)*/H3(X, Z)

is a complex torus of dimension one. This means that there is an elliptic curve
E such that E(C) ~ J?(X). We will formulate the following question.

Question 7.1. s it true that a rigid Calabi-Yau threefold defined over
Q is modular if and only if the intermediate Jacobian is an elliptic curve defined
over Q7
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