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An analogue of Hardy’s theorem for the
Heckman-Opdam transform
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Abstract

A theorem of Hardy asserts that a function on the real line and
its Fourier transform cannot both be very small. We generalize Hardy’s
theorem for the Heckman-Opdam transform associated with hypergeo-
metric functions.

Introduction

Hardy’s theorem on Fourier transform [3] asserts that f and its Fourier
transform f̂ cannot both be very small. More precisely, let p and q be positive
constants and assume that f is a function on the real line satisfying |f(x)| ≤
Ce−p|x|2 and |f̂(λ)| ≤ Ce−q|x|2 for some positive constant C. Then (i) f = 0
if pq > 1/4; (ii) f = Ae−px2

for some constant A if pq = 1/4; (iii) there are
infinitely many f if pq < 1/4.

Theory of Fourier analysis on the real line has been generalized to the
setting of harmonic analysis on Lie groups and homogeneous spaces. In [7],
[8], [9] and [2], generalizations of part (i) of Hardy’s result to Lie groups were
studied. Sitaram and Sundari [8] proved an analogue of Hardy’s theorem for the
Harish-Chandra transform for spherical functions on a Riemannian symmetric
space of the non-compact type.

On the other hand, Heckman and Opdam generalized the theory of spher-
ical functions to the theory of hypergeometric functions associated with root
systems. Namely, in the case of rank one symmetric spaces, spherical func-
tions can be expressed by the Gauss hypergeometric function F (a, b, c; z) with
a = (λ + kα/2 + 2kα)/2, b = (−λ + kα/2 + 2kα)/2, c = kα/2 + kα + 1/2, where
2kα/2 ∈ Z≥0 and 2kα ∈ Z>0 are multiplicities of restricted roots and λ ∈ C

is the spectral parameter, whereas the theory of Heckman and Opdam in the
rank one case covers arbitrary values of kα/2 and kα. Opdam [5] generalized the
inversion formula and the Plancherel theorem of the Harish-Chandra transform
to the case of arbitrary nonnegative multiplicities.
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In this paper we establish an analogue of Hardy’s theorem for the Heckman-
Opdam transform associated with the multivariate hypergeometric functions.
The strategy of Sitaram and Sundari [8] and machinery of Heckman and Opdam
[4, Part I] [5], [6] are enough to work out.

We are grateful to the referee, whose suggestions improved the presentation
of the paper.

1. The Heckman-Opdam transform

Let a be a Euclidean vector space of dimension n with inner product (·, ·).
We use the same notation for the corresponding inner product on the dual
space a∗. Let h = a ⊗R C be the complexification. Define A = exp a and
e = exp 0 ∈ A.

Let R ⊂ a∗ be a root system. For α ∈ a∗, let Xα ∈ a be the element
determined by (Xα, X) = α(X) for all X ∈ a. For α ∈ R, define

α∨ =
2Xα

(Xα, Xα)
.

We put R∨ = {α∨ ; α ∈ R}. Let Q = Q(R) = ZR and Q∨ = Q(R∨) be the
root lattice and the coroot lattice respectively. Let P = HomZ(Q∨, Z) be the
weight lattice. Let W be the Weyl group of R. Choose and fix a positive
system R+ ⊂ R. Let a+ ⊂ a be the corresponding positive Weyl chamber and
A+ = exp a+.

A real multiplicity function k is a map R → R, denoted by α �→ kα and
satisfying kα = kβ if α and β are in the same W -orbit. We set

ρ(k) =
1
2

∑
α∈R+

kαα ∈ h∗ .

Let {ξ1, . . . , ξn} be an orthonormal basis of a. We define

L(k) =
n∑

j=1

∂2
ξj

+
∑

α∈R+

kα
1 + e−α

1 − e−α
∂α .

Notice that L(0) =
∑n

j=1 ∂2
ξj

is the Laplacian on a, which is independent of
the choice of orthonormal basis. In a series of papers, Heckman and Opdam
proved:

Theorem 1.1 ([4] Part I, [6]). (1) There is a commutative algebra D(k)
of W -invariant differential operators such that

(a) L(k) ∈ D(k),
(b) There is an algebra isomorphism γ : D(k) → S(h)W , where S(h)W

is the set of W -invariant elements in the symmetric algebra S(h),
(c) γ(L(k))(λ) = (λ, λ) − (ρ(k), ρ(k)).

(2) Assume c̃(ρ(k), k) �= 0, where

c̃(λ, k) =
∏

α∈R+

Γ(λ(α∨))
Γ(λ(α∨) + kα)

.
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Then there is a unique function F (λ, k; ·) on A such that
(a) DF (λ, k; ·) = γ(D)(λ)F (λ, k; ·) for all D ∈ D(k),
(b) F (λ, k; ·) is W -invariant and analytic at e,
(c) F (λ, k; e) = 1.

Remark 1.2. (1) F (λ, k; ·) is called the Heckman-Opdam hypergeomet-
ric function.

(2) If kα ≥ 0 for any α ∈ R, then c̃(ρ(k), k) �= 0.
(3) If 2kα (α ∈ R) are root multiplicities of the restricted root system

of a Riemannian symmetric space G/K of the non-compact type, then the
Heckman-Opdam hypergeometric function is the radial part of the spherical
function on G/K.

Let da denote the Lebesgue measure on A normalized by vol(A/ exp(Q∨))
= 1 and dλ denote the Lebesgue measure on

√−1a normalized by vol(
√−1a/√−1P ) = 1. For f ∈ C∞

c (A)W and λ ∈ h∗, define

F(f)(λ) =
∫

A

f(a)F (−λ, k; a)δk(a)da,(1.1)

where

δk(expX) =
∏

α∈R+

∣∣∣eα(X)/2 − e−α(X)/2
∣∣∣2kα

for X ∈ a. Notice that δk is W -invariant. We call F the Heckman-Opdam
transform. It coincides with the Harish-Chandra transform for spherical func-
tions if 2kα correspond to the root multiplicities of a Riemannian symmetric
space. The inversion formula and the Plancherel theorem for F was proved in
this case by Harish-Chandra. For general case, Opdam proved:

Theorem 1.3 ([5], [6]). Assume kα ≥ 0 for any α ∈ R.
(1) Let f ∈ Cc(A)W . Then we have

f(a) =
∫
√−1a∗

F(f)(λ)F (λ, k; a)σ′(λ)dλ,

where

σ′(λ) =
∏

α∈R+

Γ(λ(α∨) + kα)Γ(−λ(α∨) + kα)
Γ(λ(α∨))Γ(−λ(α∨))

.

(2) The Heckman-Opdam transform extends to a unitary isometry

F : L2(A, δk(a)da) → L2(
√−1a∗, σ′(λ)dλ).

2. An analogue of Hardy’s theorem

We now state and prove an analogue of Hardy’s theorem for the Heckman-
Opdam transform.
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Theorem 2.1. Assume kα ≥ 0 for all α ∈ R. Let p and q be positive
constants. Suppose f is a W -invariant measurable function on A satisfying

|f(expX)| ≤ C exp(−p(X, X)), X ∈ a(2.1)

and

|F(f)(
√−1λ)| ≤ C exp(−q(λ, λ)), λ ∈ a∗,(2.2)

where C is a positive constant. If pq > 1/4, then f = 0 almost everywhere.

The proof follows closely that of Sitaram and Sundari [8], where an ana-
logue of Hardy’s theorem was proved for group case, i.e. the case of the Harish-
Chandra transform on a Riemannian symmetric space.

Let || · || denote the Euclidean norm on h. We claim that

|F(f)(λ)| ≤ C0 exp
(

1
4p′

‖λ‖2

)
for all λ ∈ h∗,(2.3)

for some positive constants C0 and p′ such that 0 < p′ < p and p′q > 1/4.
To show (2.3), we express F(f) as the Cherednik-Opdam transform ([1],

[5], [6]):

F(f)(λ) =
∫

A

f(a)G(−w0λ, k; w0a)δk(a)da,(2.4)

where G(λ, k; ·) is a simultaneous eigenfunction of the Dunkl-Cherednik opera-
tors and w0 is the longest element of W . The function G(λ, k; ·) is holomorphic
in λ ∈ h and in z = expX on a tubular neighbourhood of A. We have by [5,
Proposition 6.1]

|G(λ, k; expX)| ≤ |W |1/2emaxw Re(wλ(X)), X ∈ a,(2.5)

where |W | denotes the order of W . Since f is W -invariant, we can rewrite (2.4)
as

F(f)(λ) =
∑

w∈W

∫
A+

f(a)G(−w0λ, k; w0wa)δk(a)da .(2.6)

Moreover we have an estimate of δk,

δk(expX) ≤ C1e
C′||X||(2.7)

for some positive constants C1 and C ′. It follows from (2.1), (2.5), (2.7) and
holomorphy of G(λ, k; ·) in λ ∈ h that F(f)(λ) defines an entire function on
λ ∈ h. By (2.6), (2.1), (2.5) and (2.7), we have

|F(f)(λ)| ≤ C2

∫
a+

exp(−p(X, X) + (X, Xµ) + C ′||H||)dX
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for some positive constant C2, where µ ∈ Re Wλ such that Xµ ∈ a+ and dX is
the Lebesgue measure on a corresponding to da on A. Since

exp(−p(X, X) + C ′||H||) ≤ C3 exp(−p′(X, X))

for positive constants C3 and p′ such that 0 < p′ < p and p′q > 1/4. Thus we
have

|F(f)(λ)| ≤ C3

∫
a+

exp(−p′(X, X) + (X, Xµ))dX

≤ C3 exp
(

1
4p′

(Xµ, Xµ)
)∫

a

exp(−p′(X, X))dX

≤ C0 exp
(

1
4p′

||λ||2
)

for some positive constant C0. This proves (2.3).
On the other hand, since p′q > 1/4, it follows from (2.2) that

|F(f)(
√−1λ)| ≤ C exp

(
− 1

4p′
||λ||2

)
for all λ ∈ a∗.(2.8)

Since F(f) satisfies the estimates (2.3) and (2.8), it follows from [8, Lemma 2.1]
that

F(f)(λ) = A exp
(
− 1

4p′
(λ, λ)

)
(2.9)

for some constant A. Equations (2.2) and (2.9) imply A = 0, since p′q > 1/4.
Hence f = 0 almost everywhere by Theorem 1.3 (2). The proof of Theorem 2.1
is finished.

Remark 2.2. By [4, Part III], Theorem 2.1 gives an analogue of Hardy’s
theorem for K-invariant functions on certain semisimple symmetric spaces
G/H.
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