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On the existence of weak solutions to the steady
compressible Navier-Stokes equations when the

density is not square integrable

By

Sébastien Novo and Antonin Novotný

Abstract

We consider the steady compressible Navier-Stokes equations in the
isentropic regime in a bounded domain of R

3. We show that the renor-
malized continuity equation holds even if the density is not square inte-
grable. We use this result to prove existence of weak solutions under the
sole hypothesis γ > 3/2 for the adiabatic constant.

1. Introduction

In this paper, we investigate the existence of renormalized finite energy
weak solutions to the Navier-Stokes system of equations describing the flow of
an isentropic compressible fluid in a bounded domain Ω ⊂ R

3. This system
reads

−µ1∆u − (µ1 + µ2)∇div u + div(ρu ⊗ u) + ∇ργ = ρf + g in Ω,(1.1)
div(ρu) = 0 in Ω.(1.2)

Here the unknown functions are ρ(x), u(x) = (u1(x), u2(x), u3(x)), x ∈ Ω and
they respectively represent the density and the velocity of the fluid. The term
ρf + g, with f(x) = (f1(x), f2(x), f3(x)) and g(x) = (g1(x), g2(x), g3(x)) two
given vectors fields on Ω, corresponds to the external forces. The viscosity
coefficients µ1 and µ2 are constants, such that

µ1 > 0,
2
3
µ1 + µ2 ≥ 0(1.3)

and the adiabatic constant γ satisfies

γ >
3
2

if curlf = 0 or γ >
5
3

if curl f �= 0.(1.4)

The equations (1.1), (1.2) are complemented by the no-slip boundary conditions

u = 0 on ∂Ω(1.5)
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532 Sébastien Novo and Antonin Novotný

and the additional condition ∫
Ω

ρ dx = M(1.6)

where M is a given positive constant which represents the total mass of the
fluid in the volume Ω.

We also observe that for any sufficiently smooth solution (ρ, u),

div(b(ρ)u) + {ρb′(ρ) − b(ρ)} div u = 0(1.7)

holds with any function b ∈ C1([0, +∞)).
First, we explain what we mean by renormalized finite energy weak solution

to the problem (1.1), (1.2), (1.5), (1.6).
Consider functions

b ∈ C0([0, +∞)) ∩ C1((0, +∞)), ∃λ0 < 1, |b′(t)| ≤ ct−λ0 , ∀t ∈ (0, 1](1.8)

with growth conditions at infinity

|b′(t)| ≤ ctλ1 , |tb′(t) − b(t)| ≤ ctλ2 , ∀t ≥ 1 where λ1λ2 ∈ R,(1.9)

c denoting a positive constant. Let 3/2 ≤ p < +∞. A couple (ρ, u) is called
a renormalized finite energy weak solution to the problem (1.1), (1.2), (1.5),
(1.6) if and only if

(i) ρ ∈ Lp(Ω), ρ ≥ 0 a.e. in Ω and satisfies (1.6), u ∈ [W 1,2
0 (Ω)]3;

(ii) equation (1.1) holds in [D′(Ω)]3;
(iii) equation (1.2) holds in D′(R3) provided (ρ, u) is extended by zero out-

side Ω;
(iv) equation (1.7) is satisfied in D′(R3) provided (ρ, u) is extended by zero

outside Ω, for any function b belonging to the class (1.8), (1.9) with

−1 < λ1 <
p

2
− 1, 0 < λ2 � p

2
(1.10)

(v) it satisfies∫
Ω

{µ1|∇u|2 + (µ1 + µ2)(div u)2} dx ≤
∫

Ω

(ρf · u + g · u) dx.(1.11)

Now, we can state our main result.

Theorem 1.1. Let Ω ⊂ R
3 be a bounded domain of class C2,ν , ν > 0

and M > 0. Suppose that f ∈ [L∞(Ω)]3, g ∈ [L∞(Ω)]3, µ1 and µ2 satisfy
(1.3) and γ satisfies (1.4). Then there exists a renormalized finite energy weak
solution (ρ, u) to the problem (1.1), (1.2), (1.5), (1.6) satisfying ρ ∈ Ls(γ)(Ω)
where

s(t) =

{
3(t − 1) if t < 3,

2t if t ≥ 3.
(1.12)
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Theorem 1.1 generalizes a similar result of Lions [5] where the adiabatic
coefficient satisfies the restriction

γ >
5
3
.(1.13)

In virtue of (1.13) and similar estimates to those presented in Section 4, ρ is
bounded in L2(Ω). This in turn implies that (ρ, u) satisfies the renormalized
continuity equation (1.7) in the sense of Di-Perna and Lions [2] with suitable b.
This is one of the main arguments of the Lions proof. It is not available under
the sole hypothesis γ > 3/2.

In [3], E. Feireisl proved compactness of solutions to the nonsteady isen-
tropic Navier-Stokes equations under the hypothesis γ > 3/2. By using cut-off
operators Tk similar to those introduced in Section 5, he showed that

sup
k>0

lim sup
n→+∞

‖Tk(ρn) − Tk(ρ)‖0,γ+1 ≤ C.(1.14)

Here, {ρn}n∈N∗ is a sequence of densities corresponding to solutions of non-
steady isentropic Navier-Stokes equations an ρ its weak limit. This estimate is
crucial in his proof.

The main goal of this paper is to show that the estimate (1.14) holds also
in the steady case. Once it is established, we prove that, with suitable b, the
renormalized continuity equation is verified. We also show how to use this fact
to prove the existence result.

Let us conclude this section by recalling some notations used throughout
the paper. By a domain Ω ⊂ R

3, we mean a connected open set of R
3. As usual,

D(Ω) denotes the space of indefinitely differentiable functions with compact
support in Ω and D′(Ω) its dual, the space of distributions on Ω; Lp(Ω) resp.
Lp

loc(Ω), 1 ≤ p ≤ +∞, the Lebesgue spaces of Lp-integrable functions resp.
the space of locally Lp-integrable functions; W 1,p(Ω), 1 ≤ p ≤ +∞, are the
Sobolev spaces; W 1,p

0 (Ω), 1 ≤ p ≤ +∞, is the subspace of functions of W 1,p(Ω)
with zero traces on ∂Ω and W−1,p′

(Ω), 1 ≤ p < +∞, its dual. Finally, the
characteristic function of a set A will always be denoted by 1A.

2. Some results about the continuity equation

Continuity equation enjoys some properties which will be important in the
sequel. We recall them in the present section.

First statement deals with the extension outside Ω of the continuity equa-
tion.

Lemma 2.1. Let Ω ⊂ R
3 be a bounded Lipschitz domain, ρ ∈ Lp(Ω),

p ≥ 2, u ∈ [W 1,2
0 (Ω)]3 and f ∈ L1(Ω). Assume that

div(ρu) = f in D′(Ω).(2.1)

Then, extending ρ, u and f by zero outside Ω and denoting again by ρ, u and
f the new functions, we have

div(ρu) = f in D′(R3).(2.2)
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Proof. We have to show

−
∫

R3
ρu · ∇ϕ dx =

∫
R3

fϕ dx, ∀ϕ ∈ D(R3)(2.3)

provided ρ, u and f are extended by zero outside Ω. To this end, consider the
sequence of functions

Φn ∈ D(Ω), n ∈ N
∗, 0 ≤ Φn ≤ 1,

Φn(x) = 1, x ∈
{

y ∈ Ω, dist(y, ∂Ω) ≥ 2
n

}
,

Φn(x) = 0, x ∈
{

y ∈ Ω, dist(y, ∂Ω) ≤ 1
n

}
,

|∇Φn(x)| ≤ 2n, ∀x ∈ Ω.

(2.4)

Clearly

Φn → 1 pointwise in Ω as n → ∞,(2.5)

supp∇Φn ⊂
{

x ∈ Ω,
1
n
≤ dist(x, ∂Ω) ≤ 2

n

}
, |supp∇Φn| → 0 as n → ∞.

(2.6)

In virtue of (2.1),

−
∫

R3
ρu · ∇ϕΦn dx =

∫
R3

fϕΦn dx +
∫

R3
ρu · ∇Φnϕ dx, ∀ϕ ∈ D(R3).(2.7)

Due to (2.4), (2.5) and the Lebesgue theorem, the first two integrals of this
identity tend respectively to − ∫

R3 ρu ·∇ϕ dx and
∫

R3 fϕ dx. The third integral
is bounded by

C sup
x∈R3

|ϕ(x)| ‖ρ‖0,2,supp∇Φn

∥∥∥∥ u

dist(x, ∂Ω)

∥∥∥∥
0,2,Ω

.

In accordance with (2.6) and due to the summability of ρ, ‖ρ‖0,2,supp∇Φn
→ 0

as n → ∞ and since u ∈ [W 1,2
0 (Ω)]3, by Hardy’s inequality, u/dist(x, ∂Ω) ∈

[L2(Ω)]3. Hence (2.7) as n → ∞ yields (2.3). Proof of Lemma 2.1 is thus
complete.

Next result is a consequence of the theory of renormalized solutions to the
transport equation by Di-Perna and Lions [2].

Lemma 2.2. Let p ≥ 2, let λ1, λ2 such that

−1 < λ1 ≤ p

2
− 1 and 0 < λ2 ≤ p

2
.(2.8)

Assume that ρ ∈ Lp
loc(R

3), ρ ≥ 0 a.e. in R
3, u ∈ [W 1,2

loc (R3)]3, and f ∈ Lq′
loc(R

3),
1 ≤ q ≤ p/λ1 if λ1 > 0, 1 < q < +∞ if λ1 ≤ 0, satisfy eqation (2.2). Then

div(b(ρ)u) + {ρb′(ρ) − b(ρ)} div u = fb′(ρ) in D′(R3),(2.9)
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for any function b ∈ C1([0, +∞)) satisfying (1.9) with (2.8). Moreover, if
f ≡ 0, the assumptions on b can be relaxed to (1.8), (1.9) and (2.8).

Proof. First, we deal with the case b ∈ C1([0, +∞)) and λ1 > 0. Regu-
larizing (2.2) by usual mollifier Sε, 0 < ε < 1, we get

div(Sε(ρ)u) = rε + Sε(f) a.e. in R
3,(2.10)

where rε = div(Sε(ρ)u)−div(Sε(ρu)). Due to the generalized Friedrichs lemma
(see [2, Lemma II.1]), rε → 0 in Lr

loc(R
3), 1/r = 1/p + 1/2 as ε → 0+.

We multiply equation (2.10) by b′(Sε(ρ)) to obtain

div(b(Sε(ρ))u) + {Sε(ρ)b′(Sε(ρ)) − b(Sε(ρ))} div u

= b′(Sε(ρ))rε + b′(Sε(ρ))Sε(f) a.e. in R
3.

(2.11)

Now, we pass to the limit ε → 0+. Clearly, Sε(ρ) → ρ in Lp
loc(R

3) and
Sε(f) → f in Lq′

loc(R
3) and as a consequence a.e. in R

3. Thanks to the growth
conditions (1.9), (2.9), Vitali’s theorem gives b(Sε(ρ)) → b(ρ), {Sε(ρ)b′(Sε(ρ))
−b(Sε(ρ))} → {ρb′(ρ) − b(ρ)} and b′(Sε(ρ)) ⇀ b′(ρ) respectively in
L

6/5
loc (R3), L2

loc(R
3) and Lq

loc(R
3). For any bounded measurable set ω ⊂ R

3,∫
ω

b′(Sε(ρ))rε dx is bounded by C‖b′(Sε(ρ))‖0,r′,ω‖rε‖0,r,ω and therefore tends
to zero. Equation (2.11) thus yields (2.8).

Next, we consider the case f ≡ 0, b satisfying (1.8), (1.9), (2.9) with λ1 > 0.
For 0 < h < 1, we put bh( · ) = b( · +h) and apply to it the first part of the
proof to get

div(bh(ρ)u) + {ρb′h(ρ) − bh(ρ)} div u = 0 in D′(R3).(2.12)

It is clear that, as h → 0+, bh(t) → b(t), ∀t ≥ 0, and that, due to (1.8),
tb′h(t) − bh(t) → tb′(t) − b(t), ∀t ≥ 0. Moreover, for any fixed R ≥ 1

max
[0,R]

|bh(t)| ≤ max
[0,2R]

|b(t)|

and thanks again to (1.8)

max
[0,R]

|tb′h(t) − bh(t)| ≤ max
[0,2R]

|tb′(t) − b(t)| + ch1−λ0 + h max
[1,2R]

|b′(t)|.

Finally, for any bounded measurable ω ⊂ R
3, we have

‖bh(ρ)1{ρ≥R}‖0, 6
5 ,ω ≤ cR(λ1+1)− 5

6 p‖ρ‖
5p
6

0,p,ω,

‖{ρb′h(ρ) − bh(ρ)}1{ρ≥R}‖0,2,ω ≤ c(Rλ1− p
2 + Rλ2− p

2 )‖ρ‖
p
2
0,p,ω.

So, we can write∫
R3

bh(ρ)u · ∇ϕ dx =
∫

R3
bh(ρ)1{ρ≤R}u · ∇ϕ dx

+
∫

R3
bh(ρ)1{ρ>R}u · ∇ϕ dx, ϕ ∈ D(R3).



�

�

�

�

�

�

�

�
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Due to the Lebesgue theorem, the first integral tends to
∫

R3 b(ρ)1{ρ≤R}u·∇ϕ dx
as h → 0+. The second integral tends to zero as R → +∞ because it is bounded
by cR(λ1+1)−5p/6‖ρ‖5p/6

0,p ‖u‖0,6‖∇ϕ‖0,∞. The analysis of the convergence of the
other term is similar. Lemma 2.2 is thus proved.

Now, for k > 0, we put

bk(t) =

{
b(t) if t ∈ [0, k],
b(k) if t ∈ (k, +∞)

(2.13)

where b ∈ C1([0, +∞)). Then bk ∈ C1([0, k) ∪ (k, +∞)), limt→k− b′k(t) = b′(k)
and limt→k+ b′k(t) = 0. If b′(k) = 0, then bk ∈ C1([0, +∞)) and the composite
mapping b′k ◦ ρ is well defined a.e. in R

3. If b′(k) �= 0, we have to define b′k ◦ ρ
and we do it e.g. as follows

b′k ◦ ρ(x) =

{
b′k(ρ(x)) if x ∈ {ρ �= k},
0 if x ∈ {ρ = k}.(2.14)

With this definition in mind, Lemma 2.2 yields the following statement
which we need in the sequel.

Corollary 2.1. Let ρ ∈ Lp
loc(R

3), p ≥ 2, ρ ≥ 0 a.e. in R
3, u ∈

[W 1,2
loc (R3)]3 and f ∈ L1

loc(R
3) satisfy equation (2.2). Then

div(bk(ρ)u) + {ρb′k(ρ) − bk(ρ)} div u = fb′k(ρ) in D′(R3), ∀k > 0
(2.15)

with any function bk satisfying (2.13) where b ∈ C1([0, +∞)). Moreover, if
f ≡ 0, the assumptions on b can be relaxed to (1.8).

Proof. First, we claim that

k div u = f a.e. in {ρ = k}, ∀k > 0.(2.16)

Indeed, take b ∈ D(R) such that suppb ⊂ R
+, b(t) = t in ((3/4)k, (5/4)k)

and put b+
k,ε = Sε/2(bk+ε), b−k,ε = Sε/2(bk−ε) where Sε/2 is one dimensional

regularizing operator. We have as ε → 0+

b+
k,ε(t) → bk(t), ∀t ∈ R

+, (b+
k,ε)

′(t) → b′k(t), ∀t �= k, (b+
k,ε)

′(k) → 1,

b−k,ε(t) → bk(t), ∀t ∈ R
+, (b−k,ε)

′(t) → b′k(t), ∀t �= k, (b−k,ε)
′(k) → 0.

Lemma 2.2 applied to equation (2.2) yields

div(b±k,ε(ρ)u) + {ρ(b±k,ε)
′(ρ) − b±k,ε(ρ)} div u = f(b±k,ε)

′(ρ) in D′(R3).

Therefore, as ε → 0+,

div(bk(ρ)u) + {ρb′k(ρ)1{ρ 	=k} + k1{ρ=k} − bk(ρ)} div u

= {b′k(ρ)1{ρ 	=k} + 1{ρ=k}}f in D′(R3)
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and

div(bk(ρ)u) + {ρb′k(ρ)1{ρ 	=k} − bk(ρ)} div u = b′k(ρ)1{ρ 	=k}f in D′(R3).

Subtracting the last two equations yields (2.16).
Now, let us consider the case b ∈ C1([0, +∞)). We denote the extension

of b by b(0) in (−∞, 0) again by b. Lemma 2.2 applied to Sε(bk) where Sε,
0 < ε < 1, is one dimensional regularization, yields

div(Sε(bk)(ρ)u) + {ρSε(bk)′(ρ) − Sε(bk)(ρ)} div u = Sε(bk)′(ρ)f in D′(R3).
(2.17)

As ε → 0+,

Sε(bk)(t) → bk(t), ∀t ∈ [0, +∞), Sε(bk)′(t) → b′k(t), ∀t ∈ [0, k) ∪ (k, +∞).

In accordance with (2.16) therefore

Sε(bk)(ρ) → bk(ρ) a.e. in R
3,

Sε(bk)′(ρ) → b′k(ρ) a.e. in {ρ �= k},
ρSε(bk)′(ρ) div u = Sε(bk)′(ρ)f a.e. in {ρ = k}.

Moreover, the particular form of functions bk implies that Sε(bk) and Sε(bk)′

are uniformly bounded with respect to ε. We pass to the limit ε → 0+ in (2.17)
by using the Lebesgue theorem and we get (2.15).

The case f ≡ 0 and b satisfying (1.8) can be treated by following the lines
of proof of Lemma 2.2 starting by (2.12).

3. Approximation

The proof of Theorem 1.1 will be carried out by means of the following
approximation.

− µ1∆uδ − (µ1 + µ2)∇div uδ + div(ρδuδ ⊗ uδ)

+ ∇{ργ
δ + δρβ

δ } = ρδf + g in Ω,
(3.1)

div(ρδuδ) = 0 in Ω,(3.2)
uδ = 0 on ∂Ω,(3.3) ∫

Ω

ρδ dx = M(3.4)

where

β = max(γ, 3), δ ∈ (0, 1).(3.5)

Similar approximation was used in the nonsteady case in paper [4].
Existence of finite energy weak solutions to the system (3.1) through (3.4)

is guaranteed by the following theorem of P. L. Lions, see [5], Theorem 6.7,
p. 114 and Section 6.10, p. 158–162.
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Theorem 3.1. Let Ω ⊂ R
3 be a bounded domain of class C2,ν , ν > 0,

f ∈ [L∞(Ω)]3, g ∈ [L∞(Ω)]3, µ1 and µ2 satisfy (1.3), β > 5/3 and M > 0.
Assume that p ∈ C1([0, +∞)) is a strictly increasing function such that

∃C1, C2 > 0, C1t
β ≤ p(t) ≤ C2t

β, ∀t ∈ [1, +∞).(3.6)

Then there exists a couple (ρ, u), ρ ∈ Ls(β)(Ω), where s(·) is defined in (1.12),
ρ ≥ 0 a.e. in Ω,

∫
Ω

ρ dx = M , u ∈ [W 1,2
0 (Ω)]3 satisfying

−µ1∆u − (µ1 + µ2)∇div u + div(ρu ⊗ u) +∇p(ρ) = ρf + g in [D′(Ω)]3,
(3.7)

div(ρu) = 0 in D′(Ω).(3.8)

Moreover (ρ, u) verifies the inequality∫
Ω

{µ1|∇u|2 + (µ1 + µ2)(div u)2} dx ≤
∫

Ω

(ρf · u + g · u) dx.(3.9)

Such a couple (ρ, u) is called a finite energy weak solution to the system (3.7)
and (3.8).

Remark 1. The reader easily verifies by density argument that equa-
tion (3.7) holds with any test function ϕ ∈ [W 1,2

0 (Ω)]3.

Due to Theorem 3.1 complemented by Lemmas 2.1 and 2.2, for any δ ∈
(0, 1), there exists a finite energy weak solution (ρδ, uδ) to the system (3.1)
through (3.5) such that ρδ ∈ L2β(Ω) and, provided ρδ and uδ are extended by
zero outside Ω, it holds

div(ρδuδ) = 0 in D′(R3)(3.10)

and

div(b(ρδ)uδ) + {ρδb
′(ρδ) − b(ρδ)} div uδ = 0 in D′(R3)(3.11)

with any b satisfying (1.8), (1.9) and (2.9) with p = 2β.
In the following sections, we shall prove that there exists a weakly conver-

gent subsequence of {(ρδ, uδ)}δ∈(0,1) such that its weak limit is a renormalized
finite energy weak solution to the original problem (1.1), (1.2), (1.5), (1.6).
From now, we shall suppose without loss of generality that the sequence (ρδ, uδ)
is defined on the whole space R

3.

4. Estimates independent of δ

We shall start by the problem

div v = f, v|∂Ω = 0.(4.1)

The following result is due to Bogovskĭı [1].
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Lemma 4.1. Let Ω ⊂ R
3 be a bounded Lipschitz domain. Then there

exists a linear operator B = (B1,B2,B3) : {f ∈ Lp(Ω),
∫
Ω

f dx = 0} →
[W 1,p

0 (Ω)]3, for any 1 < p < ∞, satisfying

div B(f) = f a.e. in Ω, ‖∇B(f)‖0,p ≤ C(Ω, p)‖f‖0,p.(4.2)

From (3.9), it follows

‖∇uδ‖0,2 ≤ C{1 + ‖ρδ‖0, 6
5
1{γ> 5

3}}.(4.3)

Put pδ = ργ
δ + δρβ

δ and consider ϕ = B(pθ
δ − (1/|Ω|) ∫

Ω
pθ

δ dy) as test function
in equation (3.1). Due to Remark 1, it is an admissible test function provided
2 ≤ 2/θ, i.e. provided θ ≤ 1. We get∫

Ω

p1+θ
δ dx =

1
|Ω|

∫
Ω

pθ
δ dy

∫
Ω

pδ dx −
∫

Ω

(ρδf · ϕ + g · ϕ) dx

+
∫

Ω

{µ1∇uδ : ∇ϕ + (µ1 + µ2) div uδ div ϕ} dx(4.4)

−
∫

Ω

ρδuδ ⊗ uδ : ∇ϕ dx.

For the first term at the right side of (4.4) it holds by Hölder’s inequality and
interpolation

1
|Ω|

∫
Ω

pθ
δ dy

∫
Ω

pδ dx ≤ |Ω|− θ
1+θ {‖ρδ‖ηγ

0,1‖ρδ‖(1−η)γ
0,(1+θ)γ

+ δ‖ρδ‖eηβ
0,1‖ρδ‖(1−eη)β

0,(1+θ)β}‖pδ‖θ
0,(1+θ)

≤ C{‖ρδ‖(1−η)γ
0,(1+θ)γ + δ‖ρδ‖(1−eη)β

0,(1+θ)β}‖pδ‖θ
0,(1+θ)

where

0 < η =
θ

(1 + θ)γ − 1
< 1 and 0 < η̃ =

θ

(1 + θ)β − 1
< 1.

By Hölder’s and Sobolev’s inequalities and then by Lemma 4.1, the second term
can be estimated as follows∫

Ω

ρδf · ϕ dx ≤ ‖ρδ‖0,(1+θ)γ‖f‖0, 6γ(1+θ)
5γ(1+θ)−6

‖ϕ‖0,6 provided (1 + θ) >
6
5γ

≤ C‖ρδ‖0,(1+θ)γ‖∇ϕ‖0,2

≤ C‖ρδ‖0,(1+θ)γ‖pδ‖θ
0,2θ provided θ ≤ 1

≤ C‖ρδ‖0,(1+θ)γ‖pδ‖θ
0,(1+θ) provided 2θ ≤ (1 + θ) i.e. θ ≤ 1

and ∫
Ω

g · ϕ dx ≤ ‖g‖0, 6
5
‖ϕ‖0,6 ≤ C‖∇ϕ‖0,2

≤ C‖pδ‖θ
0,2θ ≤ C‖pδ‖θ

0,(1+θ) provided θ ≤ 1.
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In virtue of the Schwarz inequality, (4.3), Lemma 4.1 and interpolation, the
third integral is estimated by∫

Ω

{µ1∇uδ : ∇ϕ + (µ1 + µ2) div uδ div ϕ} dx

≤ C‖∇uδ‖0,2‖∇ϕ‖0,2

≤ C{1 + ‖ρδ‖0, 6
5
1{γ> 5

3}}‖pδ‖θ
0,(1+θ) provided θ ≤ 1

≤ C{1 + ‖ρδ‖η
0,1‖ρδ‖(1−η)

0,(1+θ)γ1{γ> 5
3}}‖pδ‖θ

0,(1+θ)

≤ C{1 + ‖ρδ‖(1−η)
0,(1+θ)γ1{γ> 5

3}}‖pδ‖θ
0,(1+θ)

where

0 < η =
5γ(1 + θ) − 6
6γ(1 + θ) − 6

< 1.

Last, but not least, again by Hölder’s inequality, (4.3), Lemma 4.1 and inter-
polation∫

Ω

ρδuδ ⊗ uδ : ∇ϕ dx

≤ ‖ρδ‖0,(1+θ)γ‖uδ‖2
0,6‖∇ϕ‖

0, 3γ(1+θ)
2γ(1+θ)−3

provided (1 + θ) >
3
2γ

≤ C‖ρδ‖0,(1+θ)γ{1 + ‖ρδ‖2η
0,1‖ρδ‖2(1−η)

0,(1+θ)γ1{γ> 5
3 }}‖pδ‖θ

0, 3γθ(1+θ)
2γ(1+θ)−3

≤ C‖ρδ‖0,(1+θ)γ{1 + ‖ρδ‖2(1−η)
0,(1+θ)γ1{γ> 5

3}}‖pδ‖θ
0,(1+θ)

provided

3γθ(1 + θ)
2γ(1 + θ) − 3

≤ (1 + θ) ⇔ θ ≤ 2γ − 3
γ

.

Putting these estimates into (4.4) we obtain

‖pδ‖0,(1+θ) ≤ C{(1 + δ‖ρδ‖(1−eη)β
0,(1+θ)β + ‖ρδ‖(1−η)γ

0,(1+θ)γ + ‖ρδ‖0,(1+θ)γ)

+ (‖ρδ‖(1−η)
0,(1+θ)γ + ‖ρδ‖2(1−η)+1

0,(1+θ)γ )1{γ> 5
3 }}.

In particular,

‖ρδ‖γ
0,(1+θ)γ + δ‖ρδ‖β

0,(1+θ)β

≤ C{(1 + δ‖ρδ‖(1−eη)β
0,(1+θ)β + ‖ρδ‖(1−η)γ

0,(1+θ)γ + ‖ρδ‖0,(1+θ)γ)

+ (‖ρδ‖(1−η)
0,(1+θ)γ + ‖ρδ‖2(1−η)+1

0,(1+θ)γ )1{γ> 5
3}}.

From the last estimate, by means of the Young inequality, we get

‖ρδ‖γ
0,(1+θ)γ + δ‖ρδ‖β

0,(1+θ)β ≤ C
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where C is a constant independent of δ. Summing up the conditions on θ, it is
not difficult to check that the optimal θ = (2γ − 3)/γ if 3/2 < γ < 3 and θ = 1
if γ ≥ 3.

Let us conclude this part by summarizing the properties of the sequence
(ρδ, uδ).

Lemma 4.2. Let (ρδ, uδ) be a finite energy weak solution to the problem
(3.1) through (3.4) from Theorem 3.1. Then

‖ρδ‖0,s(γ) ≤ C,(4.5)

δ
1
β ‖ρδ‖0,

s(γ)
γ β

≤ C,(4.6)

where s(·) is defined in (1.12) and

‖∇uδ‖0,2 ≤ C.(4.7)

Lemma 4.2 implies directly the following statement.

Lemma 4.3. There exist functions ρ, ργ, u and a subsequence of {(ρδ,
uδ)}δ∈(0,1) such that

ρδ ⇀ ρ in Ls(γ)(R3), ργ
δ ⇀ ργ in L

s(γ)
γ (R3), ρ = 0 in R

3 \ Ω,(4.8)

δρβ
δ → 0 in L1(R3),(4.9)

uδ ⇀ u in [W 1,2(R3)]3, uδ → u in [Lp(R3)]3, 2 ≤ p < 6,

u = 0 in R
3 \ Ω,(4.10)

ρδuδ ⇀ ρu in [L
6s(γ)

s(γ)+6 (R3)]3, ρδuδ ⊗ uδ ⇀ ρu ⊗ u in [L
3s(γ)

s(γ)+3 (R3)]3×3.

(4.11)

It holds

−µ1∆u − (µ1 + µ2)∇div u + div(ρu ⊗ u) + ∇ργ = ρf + g in [D′(Ω)]3,
(4.12)

div(ρu) = 0 in D′(R3)(4.13)

and the inequality (3.9) is verified.

Remark 2. By density argument one can easy seen that equation (4.12)
holds for any test function ϕ ∈ [W 1,(s(γ)/γ)′

0 (Ω)]3.

5. Functions Tk and their basic properties

For k > 0, we define

Tk(t) =

{
t if t ∈ [0, k],
k if t > k.

(5.1)
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It is easy to check that

esssup
t∈[0,s]

|tT ′
k(t) − Tk(t)| ≤ Tk(s)1{s≥k}, ∀s ≥ 0.(5.2)

Next, due to the inequalities aγ − bγ ≥ (a − b)γ , |Tk(a) − Tk(b)| ≤ |a − b|,
∀0 ≤ b ≤ a < +∞,

|Tk(t) − Tk(s)|γ+1 ≤ (tγ − sγ)(Tk(t) − Tk(s)), ∀s, t ≥ 0.(5.3)

Thanks to the inequality |{ρδ ≥ k}| ≤ (1/k)
∫
Ω

ρδ1{ρδ≥k} dx ≤ (1/k)
∫
Ω

ρδ dx ≤
M/k, we get

‖ρδ1{ρδ≥k}‖0,p ≤
(

M

k

) 1
p− 1

s(γ)

‖ρδ‖0,s(γ), ∀1 ≤ p < s(γ).(5.4)

Denote Tk(ρ) ∈ L∞(Ω) the weak-star limit of the sequence {Tk(ρδ)}δ∈(0,1). In
accordance with the estimates

‖Tk(ρ) − ρ‖0,p ≤ lim inf
δ→0+

‖Tk(ρδ) − ρδ‖0,p

≤ 2 lim inf
δ→0+

‖ρδ1{ρδ≥k}‖0,p ≤ Ck
1

s(γ)− 1
p , ∀1 ≤ p < s(γ),

it holds

Tk(ρ) → ρ in Lp(Ω), ∀1 ≤ p < s(γ) as k → +∞.(5.5)

Similarly,

Tk(ρ) → ρ in Lp(Ω), ∀1 ≤ p < s(γ) as k → +∞.(5.6)

6. Effective pressure

We begin by recalling some facts useful in the sequel. In this section, we
are using Einstein summation convention over repeated indexes.

We introduce the operators

Ai : S(R3) → S(R3), i = 1, 2, 3, Ai(f)(x) = F−1

[
iξi

|ξ|2F(f)(ξ)
]

(x)(6.1)

where F denotes the Fourier transform and F−1 its inverse. The Marcinkiewicz
theorem about multipliers yields

‖∇Ai(f)‖0,p,R3 ≤ C(p)‖f‖0,p,R3 , 1 < p < ∞, i = 1, 2, 3(6.2)

and, moreover, due to the Sobolev embeddings

‖Ai(f)‖0,p∗,R3 ≤ C(p)‖f‖0,p,R3 , p∗ =
3p

3 − p
, 1 < p < 3, i = 1, 2, 3.(6.3)
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Next, we denote

Rij = ∂iAj , i, j = 1, 2, 3(6.4)

and observe that

Rij = Rji, ∀i, j = 1, 2, 3, Rii(f) = f(6.5)

and, due to Parseval equality,

∫
R3

Rij(f)g dx =
∫

R3
fRij(g) dx, ∀f ∈ Lp(R3), ∀g ∈ Lp′

(R3), ∀i, j = 1, 2, 3.

(6.6)

Let us emphasize that, in virtue of (6.2), the closure of the operator Rij ,
∀i, j = 1, 2, 3, denoted again Rij , is a strongly continuous linear operator from
Lp(R3) into Lp(R3), 1 < p < ∞.

Next, we recall two results related to the div-curl lemma. The proof of the
first one can be found in Yi [6] and that of the second one in Feireisl [3].

Lemma 6.1. Let 1 < p1, p2, q1, q2 ≤ ∞. Suppose that

fn ⇀ f in [Lp1(Ω)]3, gn ⇀ g in [Lp2(Ω)]3

and

div fn → div f in W−1,q1(Ω), curl gn → curl g in [W−1,q2(Ω)]3.

Then

fn · gn ⇀ f · g in Lr(Ω),
1
r

=
1
p1

+
1
p2

< 1.

Lemma 6.2. Let 1 < p < ∞. Suppose that

fn ⇀ f in Lp(R3), gn ⇀ g in Lq(R3),
1
p

+
1
q

=
1
r

< 1.

Then

fnRij(gn) − gnRij(fn) ⇀ fRij(g) − gRij(f) in Lr(R3), ∀i, j = 1, 2, 3.

Now, we are in position to prove the following lemma.

Lemma 6.3. For any k > 0, it holds

ργTk(ρ) − ργTk(ρ) = (2µ1 + µ2){Tk(ρ) div u − Tk(ρ) div u} a.e. in Ω(6.7)

where ργTk(ρ) and Tk(ρ) div u are the weak limits of {ργ
δ Tk(ρδ)}δ and

{Tk(ρδ) div uδ}δ respectively in Ls(γ)/γ(Ω) and L2(Ω).
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Proof. Thanks to the properties of functions Tk and of the operators
A, A(Tk(ρδ)) ∈ [W 1,p(R3)]3, ∀1 < p < ∞. According to Remark 1, the
function ϕ = A(Tk(ρδ))η, where η ∈ D′(Ω), is an admissible test function for
equation (3.1). Using conveniently (6.5), (6.6), after a long but straightforward
computation, we arrive at

∫
Ω

{ργ
δ − (2µ1 + µ2) div uδ}Tk(ρδ)η dx + δ

∫
Ω

ρβ
δ Tk(ρδ)η dx

= −
∫

Ω

(ργ
δ + δρβ

δ )Ai(Tk(ρδ))∂iη dx + (µ1 + µ2)
∫

Ω

Ai(Tk(ρδ))∂iη div uδ dx

+ µ1

∫
Ω

∂ju
i
δAi(Tk(ρδ))∂jη dx − µ1

∫
Ω

ui
δRij(Tk(ρδ))∂jη dx

+ µ1

∫
Ω

ui
δTk(ρδ)∂iη dx −

∫
Ω

ρδu
i
δu

j
δAi(Tk(ρδ))∂jη dx

−
∫

Ω

(ρδf
i + gi)Ai(Tk(ρδ))η dx +

∫
Ω

uj
δ{Tk(ρδ)Rij(ρδu

i
δη)

−Rij(Tk(ρδ))ρδu
i
δη} dx −

∫
Ω

ρδu
i
δRij(u

j
δTk(ρδ))η dx.

(6.8)

Now, the aim is to pass to the limit δ → 0+. Firstly, the following conver-
gences are direct consequences of Lemma 4.2 and properties of functions Tk

and operators A:

{ργ
δ − (2µ1 + µ2) div uδ}Tk(ρδ) ⇀ ργTk(ρ)

− (2µ1 + µ2)Tk(ρ) div u in L
s(γ)

γ (R3),

(6.9)

δ

∫
Ω

ρβ
δ Tk(ρδ)η dx → 0, δ

∫
Ω

ρβ
δAi(Tk(ρδ))∂iη dx → 0,(6.10)

uδTk(ρδ) ⇀ uTk(ρ) in [L6(R3)]3.(6.11)

Next, in virtue of (4.11), (6.11) and of the weak convergence of Tk(ρδ) to Tk(ρ)
in Lp(R3), ∀1 < p < ∞, we have

Rij(Tk(ρδ)) ⇀ Rij(Tk(ρ)) in Lp(R3), ∀1 < p < ∞,(6.12)

Rij(ηρδu
i
δ) ⇀ Rij(ηρui) in L

6s(γ)
s(γ)+6 (R3)(6.13)

and

Rij(u
j
δTk(ρδ)) ⇀ Rij(ujTk(ρ)) in L6(R3).(6.14)

From (6.12), we easily deduce that

Ai(Tk(ρδ)) ⇀ Ai(Tk(ρ)) in W 1,p(R3), ∀3
2

< p < +∞,(6.15)
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which, thanks to the compact embedding W 1,3(Ω) ⊂⊂ Lq(Ω), 1 ≤ q < ∞,
yields

Ai(Tk(ρδ)) → Ai(Tk(ρ)) in Lq(Ω), ∀1 ≤ q < ∞.(6.16)

Using Lemma 6.1 with fδ = ρδuδ and gδ = ∇Aj(u
j
δTk(ρδ)), on condition

6s(γ)/(5s(γ) − 6) < 6 i.e. γ > 3/2, we get∫
Ω

ρδu
i
δRij(u

j
δTk(ρδ))η dx →

∫
Ω

ρuiRij(ujTk(ρ))η dx.(6.17)

From Lemma 6.2 with fδ = Tk(ρδ) and gδ = ρδu
i
δη, we deduce that

Tk(ρδ)Rij(ρδu
i
δη) − ρδu

i
δηRij(Tk(ρδ)) ⇀ Tk(ρ)Rij(ρuiη) − ρuiηRij(Tk(ρ))

in Lr(R3), 1 < r <
6s(γ)

s(γ) + 6
.

(6.18)

On condition 6s(γ)/(s(γ)+6) > 6/5 i.e. γ > 3/2 and in accordance with (4.10)

(6.19)
∫

Ω

uj
δ{Tk(ρδ)Rij(ρδu

i
δη) −Rij(Tk(ρδ))ρδu

i
δη} dx

→
∫

Ω

uj{Tk(ρ)Rij(ρuiη) −Rij(Tk(ρ))ρuiη} dx.

We are now in position to pass to the limit in the identity (6.8). We get∫
Ω

{ργTk(ρ) − (2µ1 + µ2)Tk(ρ) div u}η dx

= −
∫

Ω

ργAi(Tk(ρ))∂iη dx + (µ1 + µ2)
∫

Ω

Ai(Tk(ρ))∂iη div u dx

+ µ1

∫
Ω

∂ju
iAi(Tk(ρ))∂jη dx − µ1

∫
Ω

uiRij(Tk(ρ))∂jη dx

+ µ1

∫
Ω

uiTk(ρ)∂iη dx −
∫

Ω

ρuiujAi(Tk(ρ))∂jη dx

−
∫

Ω

(ρf i + gi)Ai(Tk(ρ))η dx +
∫

Ω

uj{Tk(ρ)Rij(ρuiη)

−Rij(Tk(ρ))ρuiη} dx −
∫

Ω

ρuiRij(ujTk(ρ))η dx.

(6.20)

In accordance with Remark 2, we use in (4.12) the test function ϕ =
A(Tk(ρ))η with η ∈ D(Ω). After a long but straightforward computation, we
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arrive at ∫
Ω

{ργ − (2µ1 + µ2) div u}Tk(ρ)η dx

= −
∫

Ω

ργAi(Tk(ρ))∂iη dx + (µ1 + µ2)
∫

Ω

Ai(Tk(ρ))∂iη div u dx

+ µ1

∫
Ω

∂ju
iAi(Tk(ρ))∂jη dx − µ1

∫
Ω

uiRij(Tk(ρ))∂jη dx

+ µ1

∫
Ω

uiTk(ρ)∂iη dx −
∫

Ω

ρuiujAi(Tk(ρ))∂jη dx

−
∫

Ω

(ρf i + gi)Ai(Tk(ρ))η dx +
∫

Ω

uj{Tk(ρ)Rij(ρuiη)

−Rij(Tk(ρ))ρuiη} dx −
∫

Ω

ρuiRij(ujTk(ρ))η dx.

(6.21)

Subtracting (6.20) and (6.21) yields the statement of Lemma 6.3.

7. Boundedness of oscillations

The main result of this section reads:

Lemma 7.1. It holds

sup
k>0

lim sup
δ→0+

‖Tk(ρδ) − Tk(ρ)‖0,γ+1 ≤ C.(7.1)

Proof.∫
Ω

ργTk(ρ) − ργTk(ρ) dx = lim
δ→0+

∫
Ω

(ργ
δ − ργ)(Tk(ρδ)

− Tk(ρ)) dx +
∫

Ω

(ργ − ργ)(Tk(ρ) − Tk(ρ)) dx.

Since t �→ tγ , t ≥ 0, is convex and t �→ Tk(t), t ≥ 0, is concave, the second term
at the right hand side is nonnegative. Due to (5.3) and Lemma 6.3, we obtain

(7.2) lim sup
δ→0+

∫
Ω

|Tk(ρδ) − Tk(ρ)|γ+1 dx

≤ (2µ1 + µ2)
∫

Ω

(Tk(ρ) div u − Tk(ρ) div u) dx.

In virtue of (4.7), the right side is bounded by

lim
δ→0+

∫
Ω

div uδ(Tk(ρδ) − Tk(ρ)) dx

= lim sup
δ→0+

∫
Ω

div uδ{(Tk(ρδ) − Tk(ρ)) + (Tk(ρ) − Tk(ρ))} dx

≤ C lim sup
δ→0+

‖ div uδ‖0,2‖Tk(ρδ) − Tk(ρ)‖0,2

≤ C lim sup
δ→0+

‖Tk(ρδ) − Tk(ρ)‖0,γ+1.
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This inequality together with (7.2) yields the result.

8. Renormalized solutions of the weak limits

Theorem 8.1. Let b satisfies (1.8) through (1.10) with p = s(γ). Then

div(b(ρ)u) + {ρb′(ρ) − b(ρ)} div u = 0 in D′(R3).(8.1)

Proof. First, we assume that b ∈ C1([0, +∞)). By Corollary 2.1 with
b(t) = t

div(Tk(ρδ)uδ) + {ρδT
′
k(ρδ) − Tk(ρδ)} div uδ = 0 in D′(R3), ∀k > 0.

Since {ρδT
′
k(ρδ) − Tk(ρδ)} div uδ is uniformly bounded in L2(R3) with respect

to δ, we get as δ → 0+

div(Tk(ρ)u) = −{ρT ′
k(ρ) − Tk(ρ)} div u in D′(R3).

Applying Corollary 2.1 to the above equation with bR corresponding to arbi-
trary b ∈ C1([0, +∞)), one obtains

(8.2) div(bR(Tk(ρ))u) + {Tk(ρ)b′R(Tk(ρ)) − bR(Tk(ρ))} div u

= −{ρT ′
k(ρ) − Tk(ρ)} div u b′R(Tk(ρ)) in D′(R3), ∀R > 0, ∀k > 0.

When k → +∞, (5.5) and the Lebesgue theorem yield the convergence in
D′(R3) of the left side of (8.2) to div(bR(ρ)u) + {ρb′R(ρ) − bR(ρ)} div u. The
L1(Ω)-norm of the right side can be estimated by

max
s∈[0,R]

|b′(s)|
∫

ΩR

|{ρT ′
k(ρ) − Tk(ρ)} div u| dx

where ΩR = {x ∈ Ω, Tk(ρ)(x) ≤ R}. It holds

‖{ρT ′
k(ρ) − Tk(ρ)} div u‖0,1,ΩR

≤ lim inf
δ→0+

‖{ρδT
′
k(ρδ) − Tk(ρδ)} div uδ‖0,1,ΩR

.

By Hölder’s inequality and (5.2), the second term of the right hand side of the
last inequality is bounded by

C‖Tk(ρδ)1{ρδ≥k}‖0,2,ΩR
‖ div uδ‖0,2,ΩR

≤ C‖Tk(ρδ)1{ρδ≥k}‖
γ−1
2γ

0,1,ΩR
‖Tk(ρδ)1{ρδ≥k}‖

γ+1
2γ

0,γ+1,ΩR

where we have used (4.7) and the interpolation of L2 between L1 and Lγ+1.
Since Tk(ρδ) ≤ ρδ, it follows from (5.4) with p = 1, that

lim sup
δ→0+

‖Tk(ρδ)1{ρδ>k}‖0,1,ΩR
→ 0
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as k → +∞. Further thanks to Lemma 7.1, ∀k > 0,

lim sup
δ→0+

‖Tk(ρδ)1{ρδ>k}‖0,γ+1,ΩR

≤ lim sup
δ→0+

‖Tk(ρδ) − Tk(ρ)‖0,γ+1,Ω + ‖Tk(ρ)‖0,γ+1,ΩR

≤ C + R|Ω| 1
γ+1 .

Due to these facts {ρT ′
k(ρ) − Tk(ρ)} div u → 0 as k → +∞. We pass to the

limit k → +∞ in (8.2) to obtain

div(bR(ρ)u) + {ρb′R(ρ) − bR(ρ)} div u = 0 in D′(R3).(8.3)

Now, the aim is to send R → +∞. Due to (1.9), we have

‖bR(ρ)1{ρ≥R}‖0, 6
5
≤ cR(λ1+1)− 5

6 s(γ)‖ρ‖
5s(γ)

6
0,s(γ)

‖{ρ(bR)′(ρ) − bR(ρ)}1{ρ≥R}‖0,2 ≤ cRλ2− s(γ)
2 ‖ρ‖

s(γ)
2

0,s(γ).

The term
∫

R3 bR(ρ)u ·∇ϕ dx, ϕ ∈ D(R3), can be written as the sum of
∫

R3 b(ρ)
1{ρ≤R}u · ∇ϕ dx and

∫
R3 bR(ρ)1{ρ>R}u · ∇ϕ dx. The first integral converges

to
∫

R3 b(ρ)u · ∇ϕ dx while the second one tends to zero as R → +∞ because
it is bounded by cR(λ1+1)−(5s(γ)/6)‖ρ‖5s(γ)/6

0,s(γ) ‖u‖0,6‖∇ϕ‖0,∞. The analysis of
the convergence of the other term is similar and conclude the proof in the case
b ∈ C1([0, +∞)).

In the case b satisfying (1.8), one copies word by word the reasoning of the
proof of Lemma 2.2 starting from (2.12).

9. Strong convergence of the density

For k > 0, let

Lk(t) =

{
t ln t if t ∈ [0, k],
t ln k + t − k if t > k.

(9.1)

We observe that Lk satisfies (1.8), (1.9) with λ1 = 0 and λ2 = 1 and that
tL′

k(t)−Lk(t) = Tk(t). Moreover Lk can be written as Lk(t) = Sk(t)+(lnk+1)t
with Sk satisfying (1.8) through (1.10). In virtue of (3.11)

div(Lk(ρδ)uδ) + Tk(ρδ) div uδ = 0 in D′(R3).(9.2)

Integrating this identity over Ω and sending δ → 0+, one obtains∫
Ω

Tk(ρ) div u dx = 0.(9.3)

Thanks to Theorem 8.1, we also have

div(Lk(ρ)u) + Tk(ρ) div u = 0 in D′(R3),(9.4)
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therefore ∫
Ω

Tk(ρ) div u dx = 0.(9.5)

Inserting (9.3) and (9.5) in (7.2), we get

lim sup
δ→0+

∫
Ω

|Tk(ρδ) − Tk(ρ)|γ+1 dx ≤ ‖Tk(ρ) − Tk(ρ)‖0,2‖ div u‖0,2

≤ C‖Tk(ρ) − Tk(ρ)‖
γ−1
2γ

0,1 ‖Tk(ρ) − Tk(ρ)‖
γ+1
2γ

0,γ+1

which, in accordance with (5.5), (5.6) and (7.1), yields

lim
k→+∞

lim sup
δ→0+

‖Tk(ρδ) − Tk(ρ)‖0,γ+1 = 0.(9.6)

As

‖ρδ − ρ‖0,1 ≤ ‖ρδ − Tk(ρδ)‖0,1 + ‖Tk(ρδ) − Tk(ρ)‖0,1 + ‖Tk(ρ) − ρ‖0,1,

(5.4), (5.6) and (9.6) imply strong convergence of a subsequence of {ρδ}δ∈(0,1)

in L1(Ω) and as a consequence in Lp(Ω), ∀1 ≤ p < s(γ). Therefore ργ = ργ .
Theorem 1.1 is thus proved.
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