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Small deviations in p-variation for
multidimensional Lévy processes

By

Thomas Simon

Abstract

Let Z be an R
d-valued Lévy process with strong finite p-variation

for some p < 2. We prove that the “decompensated” process Z̃ ob-
tained from Z by annihilating its generalized drift has a small deviations
property in p-variation. This property means that the null function be-
longs to the support of the law of Z̃ with respect to the p-variation dis-
tance. Thanks to the continuity results of T. J. Lyons/D. R. E. Williams
[19], [35], this allows us to prove a support theorem with respect to the
p-Skorohod distance for canonical SDE’s driven by Z without any as-
sumption on Z, improving the results of H. Kunita [15]. We also give a
criterion ensuring the small deviation property for Z itself, noticing that
the characterization under the uniform distance, which we had obtained
in [26], no more holds under the p-variation distance.

1. Introduction

In a series of celebrated papers [19] and [20], T. J. Lyons has built a general
theory of rough differential equations. One of the main interests of this theory is
the possibility to solve path-wise multidimensional stochastic equations whose
driving paths have finite p-variation only for some p > 1. In contrast to Itô’s
theory, the equations are solved through convergence of the Picard iteration
scheme, so that their solutions can be viewed as continuous functionals of the
driving signal, with respect to some p-variation distance. Lyons’ papers dealt
only with the continuous case, and recently D. R. E. Williams ([35], [36]) has
extended this theory to discontinuous stochastic equations, in particular when
the driving noise is a Lévy process. Williams considered equations with jumps
of Itô and Marcus type, but got continuity results only in the latter case. The
continuity problem for equations of Itô type seems namely quite difficult, even
in Dimension 1.

The purpose of this paper is to apply Lyons/Williams’ results to the proof
of a support theorem for S.D.E.’s of Marcus type driven by a multidimensional
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Lévy process. Namely, this continuity property allows us to reduce the difficult
part of this kind of theorem (the approximation of an element of the support
by the S.D.E. with positive probability) to a control on the driving path itself.
In [25] we had already used this idea when the underlying Lévy process is one-
dimensional. In this situation the continuity property holds with respect to
the local uniform norm, so that we could appeal to the small deviation results
for Lévy processes in uniform topology which we had obtained in [26]. Here
our driving Lévy process Z is multidimensional, and we restrict ourselves to
the case where it has finite p-variation for some p < 2. In particular we only
make use of the “little theorem” of Lyons/Williams, and no control on the area
process is involved.

However we make no other assumption on Z, so that our support theo-
rem covers a wide class of driving Lévy processes without Gaussian part, and
improves significantly the results of Kunita [15] on the subject. Our descrip-
tion of the support is also simpler, and more naturally related to the geometry
of the underlying Lévy measure ν, as in Tortrat’s famous article [34]: up to
finitely many jumps and some fixed drift, this support is made out of a family
of O.D.E.’s driven by functions with regular p-variation which are valued in
the subspace of R

d consisting in the completely asymptotic directions of ν—see
(2) below for details. Notice finally that thanks to the continuity property, we
obtain the support theorem in a stronger topology than the local Skorohod one,
taking into account the p-variation, and which we call the p-Skorohod topology.

The core of this article consists in the proof of the small deviations property
in p-variation norm for the “decompensated process” Z̃ obtained from Z after
annihilating its generalized drift. This generalized drift is just the sum of
the usual drift and of the projection of finite 1-variations of the compensator
in the Lévy-Khintchine formula—in particular the projection of Z̃ with finite
1-variations is the sum of its jumps. The small deviation property simply
means that the null function belongs to the support of Z̃ with respect to the
p-variation norm. In [26] we had already obtained this property for Z̃ under the
uniform norm. Here the proof is somewhat analogous, but much more delicate.
Roughly, denoting by L the above completely asymptotic subspace and by ΠL

the orthogonal projection operator onto L, we need to approximate Z̃ by some
“saw-function” whose slope is

vη
L = ΠL

(∫
η≤|z|≤1

z ν(dz)

)
for every small η along some subsequence. In other words, we must approximate
vη

L by a sum of the type
r∑

i=1

αη
i x

η
i ,

where r is a fixed integer, xη
1 , . . . , x

η
r ∈ Supp ν ∩ {|z| ≤ η}, and αη

1 , . . . , α
η
r are

minimizing integers verifying

αη
i |xη

i |p → 0
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for every i = 1, . . . , r, as η tends to 0 along the subsequence. The latter
convergence is crucial because of the p-variation norm, but it is quite hard to
obtain in full generality on the Lévy measure. We overcome the difficulties with
the help of elementary analysis and geometry which require a lot of care, and
where strict positivity (or strict convexity) plays a central rôle. A useful tool is
also Skorohod’s absolute continuity theorem for Lévy processes, which comes
rather unexpectedly since the involved transformations are far less tractable
than in the Cameron-Martin theorem.

In [26] a characterization of the small deviation property under the uniform
norm for general multidimensional Lévy processes was obtained, in terms of
interactions between the drift and the projection of finite 1-variations of the
Lévy measure. Simple examples show that this characterization no more holds
under the p-variation norm: there are Lévy processes with finite p-variation
which have small deviations under the uniform norm but not under the p-
variation norm. The characterization in the case p = 1 is easily proved to be
Z = Z̃, that is Z itself is the sum of its jumps. In the case p > 1 and when the
Lévy measure has infinite variations in every direction, we also prove that the
small deviation property in p-variation always holds for Z. In the general case
when p > 1 and the projection of Z with finite 1-variation is non trivial, we
give a criterion involving the strict convexity of the asymptotic cône generated
by Supp ν, a criterion which in some sense is optimal.

The organization of this article is as follows: in Section 2 we present the
framework and state the main result of this paper—the small deviation property
for Z̃, as well as its two corollaries—the criterion mentioned above and the
support theorem for Marcus equations driven by Z. In this section we also give
some examples, which might be helpful for the understanding of the proof of
the main theorem. The latter, which is unfortunately quite technical, is given
in Section 4. Before that, we give in Section 3 a few lemmas concerning some
deterministic functions—in particular the saw-functions which are of central
use in the proof of the main result—and their p-variation. In Section 5 we
prove the corollaries.

2. Notations and results

2.1. Lévy processes and their p-variation
We work on R

d endowed with |·| any Euclidean norm. Let p ≥ 1 and I
be an interval of R

+. A function f : R
+ → R

d is said to have finite (strong)
p-variation over I if

‖f‖I,p =

 sup
t0<···<tk∈I

k∑
j=1

|f(tj) − f(tj−1)|p
1/p

<∞.

If I = [0, T ] for some T ≥ 0 we will use the simpler notation ‖f‖T,p for ‖f‖[0,T ],p.
Notice that for every q ≥ p,

‖f0‖I,∞ ≤ ‖f‖I,q ≤ ‖f‖I,p,
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where we wrote f0(t) = f(t) − f(0) for every t ≥ 0 and ‖ · ‖I,∞ stands for the
uniform norm over I. Besides ‖ · ‖I,p is a Banach semi-norm which satisfies
in particular the triangle inequality. We denote by Wp the space of functions
having finite p-variation over every compact interval, factored by the set of
constant functions. The family of semi-norms

{‖ · ‖n,p, n ≥ 1}

makes Wp into a Banach space with a norm ‖ · ‖p defined in the usual way:

‖f‖p =
∑
n≥1

2−n(1 ∧ ‖f‖n,p)

for every f ∈ Wp. A function f : R
+ → R

d is said to have regular finite
p-variation over an interval I if

lim
ε→0

 sup
t0<···<tk∈I
|tj−tj−1|≤ε

k∑
j=1

|f(tj) − f(tj−1)|p
 = 0.

Notice that this notion is only of interest for p > 1, and that if f is continuous
with finite p-variation over I, then it has regular finite q-variation over I for
every q > p. Notice also that every function with regular finite p-variation is
necessarily continuous.

We now fix x ∈ R
d and denote by Wp(x) the space of functions having finite

p-variation over every compact interval and starting from x. In the following
we shall also work on R

m for some m 	= d, and we will still denote by Wp(x)
the space of functions having finite p-variation over every compact interval and
starting from x ∈ R

m.
It is well-known and easy to see that every member of Wp(x) has left and

right limits at every point of R
+. We denote by Dp(x) the subspace of Wp(x)

made out of càd-làg functions. We endow it with the following distance: if
f, g ∈ Dp(x)

dp(f, g) =
∑
n≥1

2−n(1 ∧ dn
p (f, g)),

where for every n ∈ N
∗ dn

p is defined by

dn
p (f, g) = inf

λ∈Λ

{
sup
s≤t

∣∣∣∣log
λt − λs

t− s

∣∣∣∣+ ‖knf(λ.) − kng(·)‖n+1,p

}
,

Λ designing the set of all continuous strictly increasing functions λ : R
+ → R

+

with λ0 = 0 and λt ↑ +∞ as t ↑ +∞, and kn being given by

kn(t) =


1 if t ≤ n,

n+ 1 − t if n < t ≤ n+ 1,
0 if t ≥ n+ 1.
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Such a λ will be called a change of time in the sequel. Making the same
considerations as in [12, pp. 293–294] and using the fact that ‖ · ‖n+1,p is a
semi-norm entails that dp is actually a distance on Wp(x), which dominates
the usual local Skorohod distance d: for every f, g ∈ Dp(x),

d(f, g) ≤ dp(f, g).

In the sequel dp will be called the p-Skorohod distance and the topology induced
by dp on Dp(x) the p-Skorohod topology.

Let {Zt, t ≥ 0} be an R
d-valued Lévy process starting from 0, without

Gaussian part. Its Lévy-Itô decomposition writes

Zt = αt+
∫ t

0

∫
|z|≤1

z µ̃(ds, dz) +
∫ t

0

∫
|z|>1

z µ(ds, dz),

where α ∈ R
d, ν is a positive Borel measure on R

d − {0} satisfying∫
Rd

|z|2
|z|2 + 1

ν(dz) <∞,

µ is the Poisson measure over R
+ × R

d with intensity ds ⊗ ν(dz), and µ̃ =
µ− ds⊗ ν is the compensated measure. Bretagnolle [4] obtained the following
characterization: for every 1 ≤ p < 2

Z ∈ Wp(0) a.s. ⇐⇒
∫
|z|≤1

|z|pν(dz) <∞

(notice that the equivalence is trivial for p = 1). In particular every stable
process has finite p-variation for some p < 2. Recall that on the contrary
Brownian Motion has infinite 2-variation, so that the above characterization
only makes sense for Lévy processes without Gaussian part.

In the case p > 1, Bretagnolle got actually a sharper result: the existence
of two universal constants cp and Cp depending only on p such that

cp

∫
|z|≤1

|z|pν(dz) ≤ E[‖Z‖p
1,p] ≤ Cp

∫
|z|≤1

|z|pν(dz)

if ν is concentrated on {|z| ≤ 1} and α = 0. Using the inequality |a+ b|p ≤
2p−1(|a|p + |b|p) for any a, b ∈ R

d entails easily that for every T > 0

21−pcpT

∫
|z|≤1

|z|pν(dz) ≤ E[‖Z‖p
T,p] ≤ 2p−1CpT

∫
|z|≤1

|z|pν(dz)

if ν is concentrated on {|z| ≤ 1} and α = 0. This latter estimate yields readily
the following approximation lemma—notice that the case p = 1 is trivial:

Lemma 1. Let [Eη, η > 0] be a family of subsets of R
d included, for

every η > 0, in the ball of radius η centered at the origin. Let Z ∈ Wp(0) be
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a Lévy process with drift α and Lévy measure ν. Let Zη be the Lévy process
with same drift and Lévy measure 1Ec

η
ν and set Z̃η = Z − Zη. Then for every

T > 0,
E[‖Z̃η‖T,p] −→ 0

as η ↓ 0.

The following u.c.p. lemma (also trivial in the case p = 1) is another im-
mediate application of Bretagnolle’s estimate, thanks to the Markov inequality:

Lemma 2. Let ν0 be a Lévy measure on R
d concentrated on {|z| ≤ 1},

and integrating |z|p. For every ε > 0, 0 < c < 1 and T > 0, there exists η0 > 0
such that for every η < η0 and every Lévy process Z ∈ Wp(0) with drift α = 0
and Lévy measure ν ≤ ν0,

P[‖Z̃η‖T,p < ε] > c

with the notations of Lemma 1, and where the notation ν ≤ ν0 means that
ν(A) ≤ ν0(A) for every measurable A ⊂ R

d.

2.2. Small deviations in p-variation norm for Lévy processes
As in [34] and [23] we introduce the following vector space

K =

{
x ∈ R

d

∣∣∣∣∣
∫
|z|≤1

|x ∗ z| ν(dz) <∞
}
,

where ∗ is the scalar product defining the chosen Euclidean norm on R
d. No-

tice that the vector space L = K⊥, which can be viewed as the completely
asymptotic direction of 1|z|≥ην(dz) as η ↓ 0, depends only on ν and not on the
choice of this Euclidean structure. In the following, every Lévy process with
the above Lévy-Itô decomposition will be said to have characteristics (α, ν),
and K will always implicitly stand for the orthogonal space of L with respect
to the chosen scalar product. We define the generalized drift of a Lévy process
Z with characteristics (α, ν) by

αν = α−
∫
|z|≤1

zK ν(dz),

where zK is the orthogonal projection of z onto K, so that the integral makes
sense. We finally introduce the decompensated process Z̃ associated with Z,
which is the Lévy process with characteristics (α− αν , ν). Equivalently

Z̃t =
∫ t

0

∫
|z|≤1

zK µ(ds, dz) +
∫ t

0

∫
|z|≤1

zL µ̃(ds, dz) +
∫ t

0

∫
|z|>1

z µ(ds, dz)

for every t > 0, where zL denotes the orthogonal projection of z onto L. The
main result of this paper is the following
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Theorem. Let Z ∈ Wp(0) be a Lévy process with characteristics (α, ν).
Its decompensated process Z̃ has the following small deviation property :

P[‖Z̃‖T,p < ε] > 0

for every ε > 0 and T > 0.

We now recall a few notations from [34], [23], and [26]: for every η > 0,
set Cη for the closed convex cône with vertex 0 generated by Sη = Supp ν ∩
{|z| ≤ η}, and

C =
⋂
η>0

Cη.

Let ΠK be the operator of orthogonal projection onto K,

AK =

(∫
|z|≤1

zK ν(dz)

)
−ΠK(C) and BK =

(∫
|z|≤1

zK ν(dz)

)
−
⋂
η>0

ΠK (Cη).

It follows from the main result of [26] that if Z ∈ Wp(0) is a Lévy process with
characteristics (α, ν), then the following equivalence holds:

α ∈ Π−1
K (BK) ⇐⇒ P[‖Z‖T,∞ < ε] > 0 for every ε > 0 and T > 0.

One could wonder if the same characterization holds under the p-variation
norm, i.e. if one could replace ∞ by p in the above right-hand side. However
this is not true, as shows the following example.

Example 3. Consider on R
2 = {(z1, z2)} endowed with the canonical

basis (e1, e2), the following measure

ν(dz) = 1{0<z1<|z2|r<cr}|z2|−2−q dz,

where q and r are such that 1 < (1 + q)/2 < r < q < r + 1 (notice that q can
take any value strictly greater than 1), and cr is the unique positive solution to
x2 + x2/r = 1. Then ν is a jumping measure concentrated on {|z| ≤ 1}, whose
asymptotic subspaces are K = Vect{e1} and L = Vect{e2}. Besides, with the
above notations, Π−1

K (AK) = Π−1
K (BK) = {z1 ≤ c} where we set

c =
1

2r − q − 1
.

Let Z be the Lévy process given by

Zt =
∫ t

0

∫
|z|≤1

z µ̃(ds, dz)

for every t > 0. With our notations, α = 0 ∈ Π−1
K (BK). On the other hand,

Z ∈ Wp(0) a.s. for every p > 1 + q − r (notice that 0 < q − r < 1). Set
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now p ∈ ]1 + q − r, r[ (notice that r > 1 + q − r) and let Z1 (resp. Z2) be the
projection of Z onto K (resp. onto L). For every 0 < ε < c/2,

{‖Z‖1,p < ε} ⊂
sup

t≤1
|∆Zt| < ε,

∑
t≤1

∆Z1
t > c/2


⊂
sup

t≤1
|∆Zt| < ε,

∑
t≤1

|∆Z2
t |r > c/2


⊂
∑

t≤1

|∆Zt|p > εp−rc/2

 ,

which proves that
P[‖Z‖1,p < ε] = 0

as soon as ε < (c/2)1/r, since obviously

‖Z‖1,p ≥
∑

t≤1

|∆Zt|p
1/p

a.s.

Nevertheless, our main result makes it possible to obtain the following criterion.
We say that a closed convex cône with vertex 0 in R

d is strictly convex if it
contains no half-plane.

Corollary A. Let Z ∈ Wp(0) be a Lévy process on R
d with character-

istics (α, ν). With the above notations,
(a) If K = R

d, then Z has small deviations in 1-variation if and only if
αν = 0.

(b) If L = R
d, then Z has small deviations in p-variation (p > 1).

(c) If L 	= R
d, α ∈ Π−1

K (AK) and C is strictly convex, then Z has small
deviations in p-variation (p > 1).

(d) If L 	= R
d and α /∈ Π−1

K (BK), then Z does not have small deviations
in p-variation (p > 1).

Remarks. (a) Even if C is strictly convex, the condition α ∈ Π−1
K (BK)

is not sufficient, as the following example easily shows. Consider

ν(dz) = 1{0<z1<zr
2<cr}z

−(2+q)
2 dz

on R
+ × R

+, with the notations of Example 3. Here,

Π−1
K (AK) =

{
z1 =

1
2(2r − q − 1)

}
and Π−1

K (BK) =
{
z1 ≤ 1

2(2r − q − 1)

}
.

The process Z defined as in Example 3 verifies of course α ∈ Π−1
K (BK), but

does not have small deviations in p-variation either.
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(b) If C is strictly convex, the condition α ∈ Π−1
K (AK) is sufficient but not

necessary, as shows the following example. Consider on R
+ × R

+

ν(dz) = ν1(dz) + ν2(dz),

where

ν1(dz) = 1{0<z1<zr
2<cr} dz and ν2(dz) =

∑
n≥1

nqδ(0,n−1)(dz).

Here 0 < q < 1 < r and cr is the unique positive solution to x2 + x2/r = 1.
Then ν is a jumping measure concentrated on {|z| ≤ 1}, whose asymptotic
subspaces are K = Vect{e1} and L = Vect{e2}. Besides

Π−1
K (AK) =

{
z1 =

1
2(2r + 1)

}
and Π−1

K (BK) =
{
z1 ≤ 1

2(2r + 1)

}
.

Let α ∈ R
2 with α1 < 1/(2(2r + 1)) and consider Z the Lévy process with

characteristics (α, ν). Clearly Z ∈ Wp(0) a.s. if p > q + 1. We briefly show
that Z has small deviations in p-variation norm, even though α /∈ Π−1

K (AK).
Set µi for the Poisson measure on R

+ × R
d with compensator ds ⊗ νi(dz),

i = 1, 2. Introduce the compound Poisson process

Z1
t =

∫ t

0

∫
|z|≤1

z µ1(ds, dz) =
∑
s≤t

∆Z1
s

for every t > 0, and let {Tn, Zn}n≥1 be the sequence of its successive jumping
times and sizes. Let T0 = 0 and Sn = Tn − Tn−1 for every n ≥ 1. Set finally

β =
1

2(2r + 1)
− α1.

Fix p > q + 1, ε, T > 0. We will show that

P[‖Z‖T,p < ε] > 0

in using the independence of Z1 and µ2. Take η > 0 such that 6cTηp−r < ε.
Consider Pη = (ηr, η) ∈ Supp ν1 and tη = ηr/cT . For every λ > 0 the event

Ωλ = {|Sn − tη| < λ, |Zn − Pη| < λ, ∀n = 1, . . . , (Ent[cT/ηr] + 1)}

has positive probability. On the other hand, it follows from Lemma 11 below
that

Ωλ ⊂ {‖Z1
η‖T,p < ε/2}

if λ is small enough, where we set

Z1
η(t) =

∑
s≤t

∆Z1
s − tc(e1 + η1−re2)
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for every t > 0. But by Corollary A,

P[‖Z2
η‖T,p < ε/2] > 0,

where we introduced the process

Z2
η(t) =

∫ t

0

∫
|z|≤1

z µ̃2(ds, dz) + t(η1−rc+ α2)e2

for every t > 0. Since Z = Z1
η+Z2

η for every η > 0, with Z1
η and Z2

η independent,
we finally get

P[‖Z‖T,p < ε] > 0

by the triangle inequality. We stress finally that the above “approximation
event” Ωλ will be introduced repeatedly during the proof of our main result, in
various forms.

We next give two more classical examples which fall into the scope of our
Theorem and Corollary A. Every concerned Lévy process shall be written in
its canonical form

Zt = αt+
∫ t

0

∫
|z|≤1

z µ̃(ds, dz) +
∫ t

0

∫
|z|>1

z µ(ds, dz),

and we shall discuss the shape of the jumping measure ν. We refer to Chapter
3 in [22] for an extensive account on these two examples.

Example 4 (Stable processes). The measure ν is given in the integral
form

ν(B) =
∫
Sd−1

λ(dξ)
∫ +∞

0

1B(rξ)
dr

r1+β

for every measurable set B ⊂ R
d, where 0 < β < 2 and λ is some finite positive

measure on Sd−1. We suppose that ν is non-degenerated, i.e. Suppλ is not
included in any hyper-plane of R

d. Hence, with the above notations, either
β < 1 and K = R

d, or 1 ≤ β < 2 and L = R
d. It is clear that Z ∈ Wp(0) if

and only if p > β. Corollary A reads
(a) If β < 1, then Z has small deviations in 1-variation norm if and only if

α =
1

1 − β

(∫
Sd−1

ξ λ(dξ)
)
,

i.e. if and only if Z is strictly stable (or the sum of its jumps).
(b) If β ≥ 1, then Z has small deviations in p-variation norm for every

p > β.
Besides, since here C = Cλ where Cλ is the convex cône generated by

Suppλ, one can improve (c) and (d) in Corollary A and show that if β < 1,
then Z has small deviations in p-variation norm (p > 1) if and only if

1
1 − β

(∫
Sd−1

ξ λ(dξ)
)
− α ∈ Cλ.
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Of course, much more can be said about stable processes. If α = 0 and λ
is a symmetric measure (the so-called symmetric β-stable case) then for every
γ > β, the γ-variation of Z over [0, 1] is given by

‖Z‖1,γ =

∑
t≤1

|∆Zt|γ
1/γ

if γ ≤ 1 (notice that this expression makes sense even if β < γ < 1), and
satisfies

‖Z‖1,γ ≥
∑

t≤1

|∆Zt|γ
1/γ

if γ > 1. Notice that the process

S : t �−→
∑
s≤t

|∆Zs|γ

is a (β/γ)-stable subordinator, whose Laplace transform is given by

E[exp−uS1] = exp−
[
cλΓ(1 − δ)

β
uδ

]
,

where we set δ = β/γ and

cλ =
∫
Sd−1

|ξ|γλ(dξ)

(see e.g. Example 24.12. in [22]). Hence, by De Bruijn’s Tauberian theorem
(see Theorem 4.12.9 in [2]), we get

− log P[S1 < ε] ∼ (1 − δ)
(
cλΓ(1 − δ)

γε

)δ/(1−δ)

as ε→ 0. This leads to

lim
ε→0

ε
γβ

γ−β log P[‖Z‖1,γ < ε] = −
(

(γ − β)(cλΓ(1 − β/γ))
β

γ−β

γ
γ

γ−β

)
= −Cβ,γ

if β < γ ≤ 1, and to

lim sup
ε→0

ε
γβ

γ−β log P[‖Z‖1,γ < ε] ≤ −
(

(γ − β)(cλΓ(1 − β/γ))
β

γ−β

γ
γ

γ−β

)
if γ > 1. This can be viewed as small ball probability estimates for symmetric
β-stable processes under the γ-variation norm, and can probably be extended
to more general symmetric Lévy processes without Gaussian part. In [28], we
prove that

lim
ε→0

−ε γβ
γ−β log P[‖Z‖1,γ < ε]
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exists and is finite for every γ > β. However we could not identify this limit as
yet, when γ > 1.

Remarks. (a) When γ tends to +∞, the constant Cβ,γ tends to 1
whereas heuristically, the above limit tends to

lim
ε→0

−εβ log P[‖Z‖1,ω < ε],

where ||Z||1,ω stands for the oscillation of Z over [0, 1] (see [5] Proposition 2.3.
p. 27). It follows from the classical result of Taylor [32] under the uniform norm
(see also [3] Proposition VIII.3) and standard sublinearity arguments that the
latter limit actually exists and belongs to ]0,+∞[ (but nothing is known about
its explicit value).

(b) For a linear Brownian motion W , it follows from the general result of
Stolz [29] that

0 < lim inf
ε→0

−ε 2p
p−2 log P[‖W‖1,p < ε] ≤ lim sup

ε→0
−ε 2p

p−2 log P[‖W‖1,p < ε] < +∞

for every p > 2. This speed of convergence is in accordance with the results
of Baldi and Roynette under the Hölder norms [1], and with our previous
computation for non-Gaussian symmetric stable processes. It follows from the
general results of [18] that the limit actually exists, but we were not able to
identify it as yet. As far as we know, the value of the small ball constant
for linear Brownian motion is still unknown under the Hölder norms (see the
introduction in [1]).

(c) We notice finally that in two celebrated papers [33] and [8], the exact
variation functions of Brownian motion and stable processes had been com-
puted.

Example 5 (Self-decomposable processes). The measure ν is given in
the integral form

ν(B) =
∫
Sd−1

λ(dξ)
∫ +∞

0

1B(rξ)kξ(r)
dr

r

for every measurable set B ⊂ R
d, where λ is some finite positive measure on

Sd−1, and kξ(r) is a non-negative function measurable in ξ and decreasing in
r.

These class of processes includes the above stable ones, but its range is
much wider. In particular it is possible that K and L together are non-
trivial: consider for example over R

3 = {(z1, z2, z3)} endowed with its canonical
Euclidean strcture,

λ(dθ, dφ) = 1{0≤θ,φ≤π/2}dθ dφ and kθ,φ(r) =
sinφ cos θ
rcos θ

1{r≤1},

where we used the spherical coordinates given by z1 = r sinφ, z2 = r cosφ sin θ
and z3 = r cosφ cos θ. Then, with the above notations, we get K = Vect{e1}, L
= Vect{e2, e3}, and

Π−1
K (AK) = Π−1

K (BK) = {z1 ≤ 1 + π/2}.



�

�

�

�

�

�

�

�

Small deviations in p-variation for multidimensional Lévy processes 535

The associated process Z has finite p-variation for every p > 1 and since C
is clearly strictly convex, Corollary A entails that Z has small deviations in
p-variation norm if

α1 ≤ 1 + π/2

(notice that here the reverse inclusion is actually true, since α1 > 1 + π/2
entails, with the above notation for Z1, that Z1

1 > α1 − (1 + π/2) a.s.).
In this example, we stress that even though DimL = 2, there is actually

just one asymptotic direction u ∈ L as far as our problem is concerned. Indeed,
if we set

vη
L = ΠL

(∫
η≤|z|≤1

z ν(dz)

)
,

then we see that vη
L = ρηu where u is the fixed unit vector

u =
2e2 + πe3√
π2 + 4

and where
0 < ρη ≤

∫
η≤|z|≤1

|z| ν(dz),

for every 0 < η < 1. This property, which is not at all a feature of self-
decomposable processes (think of kθ,φ(r) = r−11{θ=0,φ=0} + r−3/21{θ=0,φ=π/2}
on R

3), makes the proof of the Theorem somewhat simpler (see Subsection
4.3.1 below).

In any case, we notice that the self-decomposable case is not really relevant
to the generality of our result. The monotonicity condition on kξ(r) entails
namely that

C = C1 = Cη

for every η > 0, a feature which also simplifies significantly the proof of the
Theorem (see the first paragraph in Subsection 4.3.2 below). Actually we have
even more: for every x ∈ C, there exists x1, . . . , xd ∈ Supp ν and λ1, . . . , λd > 0
such that

x =
d∑

i=1

λixi

together with µxi ∈ Supp ν for every µ > 0 and i = 1, . . . , d. This latter
property makes the proof really easy. The following example, which revisits
Example 3, depicts a typical situation where our main result is more difficult
to obtain.

Example 6 (A pathological measure). Consider on R
+ ×R

+ ×R
+ en-

dowed with the canonical Euclidean structure, the following measure:

ν(dz) = 1{0<z1<zr
2<zrs

3 <1}z
−2−q
3 dz,

where r, s > 1 and s(r + 1) + s < q + 1 < s(r + 1) + 2 ∧ rs (notice that q can
take any value strictly greater than 2). Then ν is a jumping measure whose
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asymptotic subspaces are K = Vect{e1} and L = Vect{e2, e3}. In this example,
the first difficulty comes from the fact that

|vη
L|

|vη
3 |

→ 1,
|vη

3 |
|vη

2 |
→ +∞ and |vη

2 | → +∞

as η ↓ 0 (with the obvious notations for vη
2 and vη

3 ), so that here we must cope
with more than one asymptotic direction. The second difficulty comes from the
degenerescence of C = {z1 = z2 = 0, z3 ≥ 0}. In particular

Π⊥
3 (C) = {0} 	= {z1 ≥ 0, z2 ≥ 0} =

⋂
η>0

Π⊥
3 (Cη),

where Π⊥
3 stands for the operator of orthogonal projection onto Vect{e1, e2}.

This very pathological situation is the matter of Subsection 4.3.2, more partic-
ularly of its second paragraph.

2.3. Support theorem in p-Skorohod topology for Marcus equations
The principal motivation for our above small deviation result is to prove

a support theorem [30] for a class of stochastic integral equations driven by
Z, without any assumption on Z but the finiteness of its p-variation for some
1 ≤ p < 2. In this subsection, every index p will be implicitly supposed to
belong to [1, 2[. We consider on R

m

(1) Xt = x+
∫ t

0

f(Xs−) � dZs,

where x ∈ R
m and f : R

m → R
m ⊗ R

d is a function which is α-Lipschitz for
some p < α < 2: f is bounded with bounded derivatives ∂jf verifying

sup
x�=y

|∂jf(x) − ∂jf(y)|
|x− y|

α−1

< +∞.

for j = 1, . . . ,m. In (1), the integral is defined followingly:∫ t

0

f(Xs−) � dZs =
∫ t

0

f(Xs−)dZs +
∑
s≤t

g(Xs−,∆Zs),

where the first integral is a standard Itô integral and g : R
m × R

d → R
m is a

local Lipschitz function such that when (x, z) stays in a fixed compact set of
R

m × R
d

|g (x, z)| ≤ K|z|2
for some constant K, and such that in (1), each time t when Z jumps, Xt is
given by the integral in time 1 of the vector field x �→ f(x)∆Zt, starting from
Xt−.

Introduced by Marcus [25], these stochastic equations are fairly often stud-
ied in the literature (see e.g. [9], [16], [14], [10], [11], [36], [7]), even though they
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concern a specific class of integrand. Their main interest is that they share nice
flow properties, and this is not always the case for classical Itô equations with
jumps. Quoting Theorem 7.3.1 in [35] (which mostly follows from the main
result of [19]), we get the following result, which will be the central tool in
proving our support theorem:

Theorem 7 (T. J. Lyons and D. R. E. Williams). Equation (1) can be
solved path-wise, and has a unique solution. Besides, the map

Φ :
{

R
m ×Wp −→ Wp,

(x, Z) �−→ X,

is local Lipschitz, where X is the equivalence class of the unique solution to (1)
starting from x, and Wp is endowed with the p-variation norm.

Remarks. (a) The local Lipschitz property of Φ means: for every T >
0, for every compact set of R

m × Wp

(
[0, T ],Rd

)
with respect to the norm

| · | + ‖ · ‖T,p, there exists a constant K such that for every (x, u), (y, v) in this
compact set,

‖Φ(x, u) − Φ(y, v)‖T,p ≤ K(|x− y| + ‖u− v‖T,p).

(b) If Z is one-dimensional, then Φ : R
m ×D −→ D is actually continuous

with respect to the local uniform norm [7]. Of course, this is no more true
when Z is multidimensional and the vector fields defining f do not commute,
as it is easily seen by transferring Sussmann’s well-known counterexample (see
p. 40 in [31]) to pure jump processes.

We want to find the support of X solution of (1) in (Dp(x),dp). Recall
that by definition this set is made out of functions φ ∈ Dp(x) such that for
every n ∈ N

∗ and ε > 0
P[dn

p (X,φ) < ε] > 0.

As in [25] we set U for the set of sequences u = {up} = {tp, zp}, where {tp}
is an increasing sequence in (0,+∞) tending to +∞ and {zp} a sequence in
Supp ν − {0}. For every u ∈ U and every function φL : R

+ → L with regular
p-variation, we set

φL
t = φL(t) + tαν

for every t ≥ 0, and introduce the following piecewise differential equation:

(2) ψt = x+
∫ t

0

f(ψs)dφL
s +

∑
tp≤t

gf (ψtp−, zp),

where we wrote gf (x, z) = f(x)z + g(x, z) for every (x, z) ∈ R
m × R

d. Notice
that since (2) has finitely many jumps on every compact time interval, since φL

has regular p-variation, and since f is α-Lipschitz with α > p, the main result
of [19] states precisely that there exists a unique solution to (2), which belongs
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to Dp(x). Let S be the set of solutions to (2), u varying in U and φL in the
set of functions from R

+ to L with regular p-variation. Set S for the closure
of S in (Dp(x),dp). Using together our Theorem and Theorem 7 entails the
following

Corollary B. Let f be α-Lipschitz and X ∈ Dp(x) be the unique solu-
tion to (1). Then

SuppX = S.
Remarks. (a) The condition that f is α-Lipschitz entails in particular

that f is bounded, which is a bit annoying if one wishes to consider e.g. lin-
ear equations. In this Corollary we can actually get rid of the boundedness
assumption through a standard approximation argument, which we did not
include here for the sake of brevity.

(b) In [25] a support theorem was proved in the local Skorohod topology for
equation (1) without any assumption on Z and under weaker assumptions on f ,
provided the stochastic part of Z is one-dimensional. H. Kunita [15] had treated
the multidimensional case, but his description of the support is complicated,
and his results holds under stringent conditions on the Lévy measure.

(c) In both papers [15] and [25] the driving process was allowed to have a
Gaussian part. Here we cannot cope with this situation, since Theorem 7 no
more holds when the driving process has only finite p-variation for some p ≥ 2.
Notice that Lévy processes without Gaussian part may also have infinite p-
variation for every p < 2 —see Example 2.1 in [36]. In the Brownian case,
Ledoux, Qian and Zhang ([17]) got recently a new proof of Stroock-Varadhan’s
theorem with the help of Lyons’ continuity theorem ([20]) and a suitable control
in p-variation (2 < p < 3) on the driving Brownian path together with its Lévy
area process. The same kind of arguments combined with Williams’ adaptation
of Lyons’ theory to jump processes ([35], [36]) could actually be a successful
approach to prove the support theorem for Marcus equations in full generality
on the Lévy driving path. However this method promises to be highly technical.

(d) The unique solution to equation (2) is invariant under (1+α)-Lipschitz
changes of coordinates—see the final Remarks in [19]. On the other hand,
since the integral � is defined through exponentiation of vector fields, (1) is
also coordinate-free and may be studied on a nice manifold ([9], [14]). It is
essentially trivial that with an intrinsic definition for the function gf , Corollary
B also holds in this more general framework.

(e) Viewing R
m not as a manifold but as a vector space, classical Itô equa-

tions with jumps are more natural (and more general) objects than Marcus
equations. But even in dimension 1 continuity results are not known for such
equations, and seem actually quite difficult to prove. We refer however to a
recent survey of Dudley and Norvaǐsa [6] for results in this direction in the case
of the Doléans-Dade equation. In [27] a support theorem is obtained in full
generality on Z for 1-dimensional Itô equations, viewing the latter as pertur-
bations of Marcus equations and using a comparison’s lemma. This method no
more holds in the multidimensional case. See also [24] for partial results, under
heavy assumptions on the Lévy measure.
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(f) In the literature, there does not seem to exist controllability results
in p-variation for equation (2). However, considering supports for the local
Skorohod topology and using the classical results of [13] we can prove, as in
[25], that if L = R

d

{Lief (y) = R
m ∀y ∈ R

m} =⇒ {Cx ⊂ SuppX},

where Cx stands for the set of continuous functions R
+ → R

m starting from x
and with the obvious notation for Lief (y), and that

{Lief (y) = R
m ∀y ∈ R

m and Supp ν = R
d} =⇒ {SuppX = Dx},

where Dx stands for the set of càd-làg functions R
+ → R

m starting from x.

3. Some deterministic lemmas

In this section we gather some easy lemmas about p-variation which we
will use in proving the Theorem and the Corollaries. We begin with two fairly
trivial results:

Lemma 8. Let n ∈ N
∗, T > 0 and v0, . . . , vn ∈ R

d. Let f : [0, T ] → R
d

be the following step-function:

f(t) = vi if
Ti

n
≤ t <

T (i+ 1)
n

.

Then
‖f‖p

T,p ≤ n max
0≤i,j≤n

|vi − vj |p.

Proof. Straightforward.

Lemma 9. Let f : R
+ → R

d be a linear function: f(t) = ta for some
a ∈ R

d. Then for every T > 0,

‖f‖T,p = T |a| = ‖f‖T,∞.

Proof. Let 0 = t0 < t1 < · · · < tk = T be a partition of [0, T ]. Writing
sj = tj − tj−1 > 0 for j = 1, . . . , k, we get

k∑
j=1

|f(tj) − f(tj−1)|p = |a|p
 k∑

j=1

sp
j

 ≤ |a|p
 k∑

j=1

sj

p

= T p|a|p

since p ≥ 1. The above inequality is of course an equality when k = 1.

The following definition and lemma will be of constant use in proving the
Theorem. The lemma itself is a direct consequence of Lemma 9.
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Definition 10. Let n ∈ N
∗, T > 0 and v ∈ R

d. The following càd-làg
function from [0, T ] to R

d:

t �−→
(
nt

T
− k

)
v if

kT

n
≤ t <

(k + 1)T
n

is called a saw-function with parameters (n, T, v) and is denoted by Sawn,T
v .

Lemma 11. For every n ∈ N
∗, T > 0, v ∈ R

d and p ≥ 1 we have

‖Sawn,T
v ‖p

T,p = 2n|v|p.
Proof. Let 0 = t0 < t1 < · · · < tk = T be a partition of [0, T ]. Writing

q0 = 0 and

qj = sup
{
q ∈ {0, . . . , k}/tq < jT

n

}
for every j = 1, . . . , n+ 1, we get

k∑
i=1

|Sawn,T
v (ti) − Sawn,T

v (ti−1)|p

=
n∑

j=0

∑
qj+1≤q≤qj+1

|Sawn,T
v (tq) − Sawn,T

v (tq−1)|p

≤
n∑

j=1

|Sawn,T
v (tqj+1) − Sawn,T

v (tqj
)|p

+
n−1∑
j=0

∑
kj<q≤qj+1

|Sawn,T
v (tq) − Sawn,T

v (tq−1)|p

≤ n|v|p +
n−1∑
j=0

∑
kj<q≤qj+1

|Sawn,T
v (tq) − Sawn,T

v (tq−1)|p

≤ n|v|p + n|v|p = 2n|v|p,

where in the third line we wrote k0 = 0, kj = qj + 1 for 1 ≤ j ≤ n + 1, and
used the fact that qn + 1 = qn+1 = k, and where in the last inequality we used
Lemma 9.

Considering now the following partition of [0, T ]:

0 <
T − ρ

n
<
T

n
<

2T − ρ

n
<

2T
n

< · · · < T − ρ

n
< T,

and letting ρ tend to 0, it is easy to see that the above upper bound is actually
the lowest possible.

The next elementary lemma, whose statement is trivial if |a| = 0, will be
used in proving Corollary A.
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Lemma 12. Let φ be a càd-làg function R
+ → R

d with finite 1-variations
such that for every t > 0

φt = ta+
∑
s≤t

∆φs,

for some fixed vector a. Then for every T > 0

‖φ‖T,1 = T |a| +
∑
t≤T

|∆φt| .

Proof. Fix T > 0. Introduce

φn : t �→ ta+
∑
s≤t

∆φs1{|∆φs|≥1/n},

for every n ≥ 1. Since φn has finitely many discontinuities and reasoning as in
Lemma 11, it is clear that

‖φn‖T,1 = T |a| +
∑
t≤T

|∆φn
t | −→ T |a| +

∑
t≤T

|∆φt|

as n ↑ +∞. On the other hand,

‖φ− φn‖T,1 =
∑
t≤T

|∆φt|1{|∆φt|≤1/n} −→ 0

as n ↑ +∞, which completes the proof of the lemma.

The next approximation lemma will be used in proving Corollary B. It is
probably well-known in the literature on p-variation. Nevertheless we give a
proof in order to be more complete, even though this is quite tedious.

Lemma 13. Let φ : R
+ → R

d have regular finite p-variation. For every
ε > 0, T > 0, there exists n0 ∈ N such that for every n ≥ n0

‖φ− φn‖T,p < ε,

where φn is the polygonal approximation of φ over [0, T ] with step T/n.

Proof. Fix ε > 0 and T > 0. Since φ has regular paths, we can find
n0 ∈ N such that for every n ≥ n0,

sup
0=t0<···<tk=T
|tj−tj−1|≤T/n

k∑
j=1

|φ(tj) − φ(tj−1)|p < ε

23p+2
.

Let n ≥ n0. We first show that

sup
0=t0<···<tk=T
|tj−tj−1|<T/n

k∑
j=1

|φn(tj) − φn(tj−1)|p < ε

22p+1
.
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Let 0 = t0 < t1 < · · · < tk = T be a partition of [0, T ] such that |tj − tj−1| <
T/n for every j ≥ 0. Write q−0 = q+0 = 0 and set

q−j = sup{q ∈ {0, . . . , k}/tq < sj}, q+j = inf{q ∈ {0, . . . , k}/tq ≥ sj ∧ T}

with the notation sj = jT/n, for every j ≥ 0. Notice that q+n = k = q−r = q+r
for every r > n, and that

sj ≤ tq+
j
≤ tq−

j+1
< sj+1

for every j ≥ 0. We get, reasoning as in Lemma 1,

k∑
i=1

|φn(ti) − φn(ti−1)|p ≤
n−1∑
j=0

|φn(tq−
j+1

) − φn(tq+
j
)|p +

n∑
j=1

|φn(tq+
j
) − φn(tq−

j
)|p

≤
n−1∑
j=0

|φ(sj+1) − φ(sj)|p +
n∑

j=1

|φn(tq+
j
) − φn(tq−

j
)|p

≤ ε

23p+2
+

n∑
j=1

|φn(tq+
j
) − φn(tq−

j
)|p.

Writing sT
j = sj ∧ T for every j ≥ 0 and reasoning again as in Lemma 1, we

can control the second term of the right-hand side:

n∑
j=1

|φn(tq+
j
) − φn(tq−

j
)|p ≤

n∑
j=1

2p−1(|φn(tq+
j
) − φn(sj)|p + |φn(sj) − φn(tq−

j
)|p)

≤
n∑

j=1

2p−1(|φ(sT
j+1) − φ(sj)|p + |φ(sj) − φ(sj−1)|p)

≤ ε

22p+2
.

This yields finally

k∑
i=1

|φn(ti) − φn(ti−1)|p ≤ ε

23p+2
(1 + 2p) ≤ ε

22p+1

which is the desired result.
Let now 0 = t0 < t1 < · · · < tk = T be any partition of [0, T ]. Define q−j

and q+j as above, and

J = {j ≥ 0 such that tq+
j+1

> tq+
j

or j = n}.

Notice that again
sj ≤ tq+

j
≤ tq−

j+1
< sj+1
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if j ∈ J . Writing ψn = φ− φn for simplicity, we get

k∑
i=1

|ψn(ti) − ψn(ti−1)|p =
∑
j∈J

|ψn(tq+
j
) − ψn(tq−

j
)|p

+
∑
j∈J

 ∑
t
q
+
j
≤tq<tq+1≤t

q
−
j+1

|ψn(tq+1) − ψn(tq)|p
 .

On the one hand, for every j ∈ J and tq+
j
≤ tq < tq+1 ≤ tq−

j+1
,

|ψn(tq+1) − ψn(tq)|p ≤ 2p−1(|φn(tq+1) − φn(tq)|p + |φ(tq+1) − φ(tq)|p),

so that after summation,

∑
j∈J

 ∑
t
q
+
j
≤tq<tq+1≤t

q
−
j+1

|ψn(tq+1) − ψn(tq)|p
 ≤ 2p−1

(
ε

23p+2
+

ε

22p+1

)
≤ ε

2
.

On the other hand, after summation,∑
j∈J

|ψn(tq+
j
) − ψn(tq−

j
)|p

≤ 2p−1
∑
j∈J

(|ψn(tq+
j
) − ψn(sj)|p + |ψn(sT

j+1) − ψn(tq−
j+1

)|p)

≤ 4p−1
∑
j∈J

(|φ(tq+
j
) − φ(sj)|p + |φn(tq+

j
) − φn(sj)|p

+ |φ(sT
j+1) − φ(tq−

j+1
)|p + |φn(sT

j+1) − φn(tq−
j+1

)|p)

≤ 4p−1

(
2ε

23p+2
+

2ε
22p+1

)
≤ ε

2
.

Finally, we get
k∑

i=1

|ψn(ti) − ψn(ti−1)|p ≤ ε.

Remark. Francis Hirsch gave me the following counterexample when
φ is continuous and has finite p-variation but not regular paths, in the case
p = 1: let µ be a probability measure over [0, 1], singular with respect to
Lebesgue measure, and such that

φ(x) =
∫ x

0

µ(dy)
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is continuous (φ is a so-called Lebesgue function). φ has finite (but not regular
finite) 1-variation. For every n ≥ 1 we can write

φn(x) =
∫ x

0

µn(dy),

where µn is absolutely continuous with respect to Lebesgue measure. Hence
we get

‖φ− φn‖1,1 = ‖φ‖1,1 + ‖φn‖1,1 = 2.

4. Proof of the Theorem

We first make the general remark that, obviously, it suffices to consider
the situation where the jumps of Z are bounded by 1, so that in particular

Z̃t =
∫ t

0

∫
|z|≤1

z µ̃(ds, dz) + t

(∫
|z|≤1

zK ν(dz)

)

for every t > 0. We will separate the proof according to Dim L with increasing
order of difficulty. The arguments are somewhat similar to those of the Propo-
sition in [26], but here the situation is significantly more complicated because
of the p-variation norm.

4.1. DimL = 0
This case is obvious since we can take p = 1. In particular,

‖Z̃‖T,1 =
∑
t≤T

|∆Zt|,

and the Theorem follows readily from the fact that∫
|z|≤1

|z|ν(dz) <∞.

4.2. DimL = 1
Here the situation is more complicated since we must take p > 1. We fix

T and ε > 0 once and for all. We first set

vη =
∫

η≤|z|≤1

z ν(dz) and vη
L =

∫
η≤|z|≤1

zL ν(dz).

The asymptotic study of vη
L and its suitable approximation by elements of

Supp ν will be actually the central point in the whole proof.
Since DimL = 1, it clear that for every η and ρ > 0 there exists xη

ρ ∈
Supp ν such that

∣∣xη
ρ

∣∣ < η and

�(vη
L, x

η
ρ) ≤ ρ,
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where �(·, ·) stands for the Euclidean angle between two vectors. Choosing
η < ε/12T and ρ < η such that ρ |vη

L| < ε/12T , we get

|vη
L − αη

ρx
η
ρ| < ε/6T

for some minimizing integer αη
ρ. Besides, we can choose a neighborhood Vη

ρ of
xη

ρ, included in {|z| < η} and small enough, such that∣∣∣∣∣
∫
Vη

ρ

z ν(dz) − βη
ρx

η
ρ

∣∣∣∣∣ < ε/6T

for another minimizing integer βη
ρ . Setting

vη
ρ = vη

L +
∫
Vη

ρ

z ν(dz) and γη
ρ = αη

ρ + βη
ρ

yields

(3) |vη
ρ − γη

ρx
η
ρ| < ε/3T.

We now introduce the saw-function with parameters
(
γη

ρ , T,−xη
ρ

)
, which we

will write Sawη
ρ for the sake of simplicity. By Lemma 6,

‖Sawη
ρ‖p

T,p = 2γη
ρ |xη

ρ|p.
Hence, letting η tend to 0,

‖Sawη
ρ‖p

T,p ∼ 2|xη
ρ|p−1|vη

ρ |

≤ 2|xη
ρ|p−1

∫
Aη

ρ

|z|ν(dz),

where we wrote Aη
ρ = {z, 1 ≥ |z| ≥ |xη

ρ|/2}. But since∫
|z|≤1

|z|pν(dz) <∞,

in the above inequality the right-hand side tends to 0 as η tends to 0, and we
get

(4) lim
η↓0

‖Sawη
ρ‖T,p = 0.

We now come back to the proof of the Theorem. Set

Bη
ρ = {z, |z| ≤ η}∩(Vη

ρ )c and Z̃η
ρ (t) =

∫ t

0

∫
Bη

ρ

z µ̃(ds, dz)+t

(∫
Bη

ρ

zK ν(dz)

)
for every t ≥ 0. We obviously have

lim
η↓0

(∫
Bη

ρ

zK ν(dz)

)
= 0.
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Hence by Lemmas 1 and 9, and the triangle inequality for ‖ · ‖T,p, we see that

(5) lim
η↓0

‖Z̃η
ρ ‖T,p = 0 a.s.

We next consider the process Zη
ρ = Z̃ − Z̃η

ρ , which can be written

Zη
ρ (t) =

∫ t

0

∫
(Bη

ρ)c

z µ(ds, dz) − tvη
ρ

for every t > 0. Writing, for each k = 0, . . . , γη
ρ , sη

ρ(k) = kT/γη
ρ , we see that

for every t ∈ [0, T ],

Zη
ρ (t) − Sawη

ρ(t) = ψη
ρ(t) + φη

ρ(t),

where we introduced

ψη
ρ(t) =

∑
s≤t

∆Zη
ρ (s) −

∑
sη

ρ(k)≤t

xη
ρ and φη

ρ(t) = t(γη
ρx

η
ρ − vη

ρ).

By (3) and Lemma 9, we have

‖φη
ρ‖T,p < ε/3

if η was chosen small enough. Introduce {T η
ρ (k), Uη

ρ (k)}k≥1, the successive
jumping times and sizes of Zη

ρ . Since xη
ρ ∈ Supp ν and since Vη

ρ ⊂ (Bη
ρ)c, we

see that the event

{|T η
ρ (k) − sη

ρ(k)| < λ, |Uη
ρ (k) − xη

ρ| < λ, k = 1, . . . , γη
ρ}

has positive probability for every λ > 0. But if λ is small enough, then on the
latter event ψη

ρ is a step function on [0, T ] with 2γη
ρ jumps and such that

|ψη
ρ(t) − ψη

ρ(s)| < (1 + λ)|xη
ρ|

for every s 	= t ∈ [0, T ], so that according to Lemma 8

‖ψη
ρ‖T,p < ε/3

if η was chosen small enough. Putting everything together leads to

(6) P[‖Zη
ρ − Sawη

ρ‖T,p < 2ε/3] > 0

if η was chosen small enough. Using (4), (5), (6), the independence of Zη
ρ and

Z̃η
ρ and the triangle inequality for ‖ · ‖T,p, we finally get

P[‖Z̃‖T,p < ε] > 0,

which finishes the proof in the case DimL = 1.
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4.3. DimL = 2
We consider this particular situation in order to clarify the exposition - the

arguments are analogous in the case DimL > 2, but involve heavier notations.
The outline of the proof will be roughly the same as in the preceding subsection,
except that here the estimate (3) does not hold in general, so that we will need
more elements of Supp ν to approximate vη

L.
For each vector z ∈ R

d, we will write z = (x, y) according to the unique
decomposition z = x + y with x ∈ K and y ∈ L. Fix an orthonormal basis
of L. Thanks to the spatial homogeneity of Poisson measures, we first remark
that it suffices to consider the case where

(7) Supp ν ⊂ {(x, y), yi ≥ 0 ∀i = 1, 2}.

This choice of (strict) positivity will play a crucial rôle in the following. Notice,
first, that it entails

|vη
L| → +∞

as η ↓ 0. Choose a subsequence {η} along which

lim
η↓0

vη

|vη| = lim
η↓0

vη
L

|vη
L|

= u1 ∈ Sd−1.

Set L1 for the line generated by u1 and consider the orthogonal sum L = L1⊕L2.
Let vη

i be the projection of vη
L onto Li for i = 1, 2. Clearly we have

|vη
1 | → +∞ and

|vη
1 |

|vη
2 |

→ +∞

as η tends to 0 along the subsequence. We will consider two disjoint cases:

Case A. There exists a sub-subsequence {η} along which vη
2 → 0.

Case B. For every sub-subsequence {η}, lim infη↓0 |vη
2 | > 0 .

4.3.1. Case A
The situation is quite analogous to DimL = 1 though a bit more com-

plicated since here, as we said before, one cannot rely on inequality (3). One
should keep in mind the two-dimensional example where Supp ν ⊂ {z = (y1, y2),
y2 = |y1|} and where the restriction of ν on each half-line is the same measure.
In the following, each η will be implicitly chosen in the sub-subsequence.

Recall that Cη stands for the closed convex cone generated by Sη = Supp ν
∩ {z, |z| < η}, and

C =
⋂
η>0

Cη.

Notice that clearly u1 ∈ C. Besides, since

lim
η↓0

vη
1

|vη
1 |

= lim
η↓0

vη
L

|vη
L|

= u1,
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we see that vη
1 ∈ C for η small enough. In particular there exist some integer

r ≤ d and distinct xη
1 , . . . , x

η
r ∈ Sη such that

(8)

∣∣∣∣∣vη
1 −

r∑
i=1

αη
i x

η
i

∣∣∣∣∣ ≤ ε/4T

for minimizing integers αη
1 , . . . , α

η
r . Notice that by positivity, (7) yields obvi-

ously

(9) |αη
i x

η
i | ≤ |vη

1 |
for every i = 1, . . . , r. As before we can choose some disjoint neighborhoods Vη

i

of the xη
i , included in {|z| < η} and small enough, such that

(10)

∣∣∣∣∣
∫
Vη

i

z ν(dz) − βη
i x

η
i

∣∣∣∣∣ < ε/8(r + 1)T

for minimizing integers βη
i . We consider again

wη
i = αη

i x
η
i +

∫
Vη

i

z ν(dz), γη
i = αη

i + βη
i ,

and set Sawη
i for the saw-function with parameters (γη

i , T,−xη
i ). Using (9) and

reasoning exactly as in the case DimL = 1 entail

(11) lim
η↓0

‖Sawη
i ‖T,p = 0

for every i = 1, . . . , r. Writing

Bη
r = {z, |z| ≤ η} ∩ (Vη

1 ∪ · · · ∪ Vη
r )c and

Z̃η
r (t) =

∫ t

0

∫
Bη

r

z µ̃(ds, dz) + t

(∫
|z|≤η

zK ν(dz)

)

for every t ≥ 0, we get again, by Lemma 1,

(12) lim
η↓0

‖Z̃η
r ‖T,p = 0 a.s.

We finally consider the processes

Zη
i (t) =

∫ t

0

∫
Vη

i

z µ(ds, dz) − twη
i and Zη

r+1(t) =
∫ t

0

∫
η≤|z|≤1

z µ(ds, dz)

for every t > 0 and i = 1, . . . , r. Notice that the Zη
i ’s are mutually independent

and that one can rewrite

Z̃(t) = Z̃η
r (t) +

r+1∑
i=1

Zη
i (t) + t

(
r∑

i=1

αη
i x

η
i − vη

1

)
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for every t > 0. Using the inequality (10) and reasoning exactly as in the case
DimL = 1 yield

(13) P[‖Zη
i − Sawη

i ‖T,p < ε/4(r + 1)] > 0

for every i = 1, . . . , r. Moreover it is clear that

(14) P[‖Zη
r+1‖T,p < ε/4(r + 1)] > 0.

Using (12), (14), (13), (11), (8), independence arguments and the triangle
inequality, we finally get

P[‖Z̃‖T,p < ε] > 0,

which completes the proof of the theorem.

4.3.2. Case B
This case is the most complicated: here we need to cope with vη

2 , a vector
which does not belong to C in general. One should keep in mind Example 6.

From Case A it is clear that it suffices to prove the following: there exists
a fixed integer r and distinct xη

1 , . . . , x
η
r ∈ Sη such that if η is chosen small

enough along the subsequence

(15)

∣∣∣∣∣vη
L −

r∑
i=1

αη
i x

η
i

∣∣∣∣∣ ≤ ε/2T,

where αη
1 , . . . , α

η
r are minimizing integers verifying

(16) αη
i |xη

i |p → 0

for every i = 1, . . . , s, as η tends to 0. The estimate (15) would be enough
to obtain a small deviation property in uniform norm, as in [26]. But the
latter convergences (16) are crucial to obtain this property in p-variation norm,
because of Lemma 11. In general (16) is quite difficult to obtain together with
(15), since the length of the approximating vectors αη

i x
η
i is not controlled a

priori by that of vη
L, as η ↓ 0. Notice, however, that (16) follows readily as soon

as

(17) |αη
i x

η
i | ≤ c|vη

L|

for every i = 1, . . . , s and a constant c independent of η. The remainder of this
article will be devoted to the proof of (15) and (16), a proof which does not
require probability theory anymore, but some amount of elementary analysis
and geometry.

Take a sub-subsequence {η} along which

lim
η↓0

vη
2

|vη
2 |

= u2 ∈ Sd−1
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with vη
2 ∗ u2 > 0 for every η. Set z2 = z ∗ u2 and z+

2 = sup(0, z2) for every
z ∈ R

d. Clearly,

(18)
∫
|z|≤1

z+
2 1{|zK |<z2}ν(dz) = +∞.

Let Dη be the closed convex cône generated by Sη ∩ {0 < |zK | < z2} and

D =
⋂
η>0

Dη.

Set Π1 (resp. Π⊥
1 , Π2) for the operator of orthogonal projection onto L1 (resp.

L⊥
1 , L2). Because of (18) we see that for every η > 0,

Π⊥
1

(∫
ρ≤|z|≤η

z 1{0<|zK |<z2}ν(dz)

)
∣∣∣∣∣Π⊥

1

(∫
ρ≤|z|≤η

z 1{0<|zK |<z2}ν(dz)

)∣∣∣∣∣
−→ u2

as ρ tends to 0 along the sub-subsequence. Hence, u2 ∈ Π⊥
1 (Dη) for every

η > 0, and
vη
2 ∈

⋂
ρ>0

Π⊥
1 (Dρ)

for η small enough along the sub-subsequence. In particular there exist some
integer s ≤ d and distinct xη

1 , . . . , x
η
s ∈ Sη ∩ {0 < |zK | < z2} such that

(19)

∣∣∣∣∣vη
2 − Π⊥

1

(
s∑

i=1

βη
i x

η
i

)∣∣∣∣∣ ≤ ε/4T

for minimizing integers βη
1 , . . . , β

η
s . Besides, by positivity, it is clear that

|Π2(β
η
i x

η
i )| ≤ |vη

2 |
for every i = 1, . . . , s. Hence, by the triangle inequality,

(20) |Π⊥
1 (βη

i x
η
i ) = |ΠK(βη

i x
η
i )| + |Π2(β

η
i x

η
i )| ≤ 2|Π2(β

η
i x

η
i )| ≤ 2|vη

2 |
for every i = 1, . . . , s. We now separate the proof according to the degeneres-
cence of D with respect to L2.

The case when D is non-degenerated. We mean the case where

u2 ∈ Π⊥
1 (D).

Then there exists c independent of η such that u2 + cu1 ∈ D, and in (19)
xη

1 , . . . , x
η
s can be chosen such that

(21)

∣∣∣∣∣Π1

(
s∑

i=1

βη
i x

η
i

)∣∣∣∣∣ ≤ c|vη
2 |.
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Since, by positivity,

|Π1(β
η
i x

η
i )| ≤

∣∣∣∣∣Π1

(
s∑

i=1

βη
i x

η
i

)∣∣∣∣∣
for every i = 1, . . . , s, we get, by (20) and the triangle inequality,

(22) |βη
i x

η
i | ≤ (2 + c)|vη

2 | ≤ (2 + c)|vη
L|

for every i = 1, . . . , s. We now write

(23) vη
L =

(
s∑

i=1

βη
i x

η
i

)
+

(
vη
1 − Π1

(
s∑

i=1

βη
i x

η
i

))
+

(
vη
2 − Π⊥

1

(
s∑

i=1

βη
i x

η
i

))
and set

wη
1 = vη

1 − Π1

(
s∑

i=1

βη
i x

η
i

)
.

Using (21) and the fact that

lim
η↓0

|vη
1 |

|vη
2 |

= +∞,

we see that there exists η0 such that for every η < η0 along the sub-subsequence,

wη
1 ∗ u1 > 0 and |wη

1 | < |vη
1 |.

Hence, by Case A, for every η < η0 along the sub-subsequence, there exists an
integer r ≤ d and distinct xη

s+1, . . . , x
η
s+r ∈ Sη such that

(24)

∣∣∣∣∣wη
1 −

r∑
i=1

βη
s+ix

η
s+i

∣∣∣∣∣ ≤ ε/4T,

where βη
s+1, . . . , α

η
s+r are minimizing integers verifying

(25) |βη
s+ix

η
s+i| ≤ |wη

1 | ≤ |vη
L|.

Clearly together (19), (22), (23), (24), and (25) yield (15) and (17), which
completes the proof of the Theorem.

The case when D is degenerated. We mean the delicate situation
where

(26) u2 /∈ Π⊥
1 (D)

and where in particular (21) no more holds a priori. We denote by D̃ (resp. D̃η)
the intersection of D (resp. Dη) with L = L1 ⊕ L2. Set (z1, z2) for the coor-
dinates on L1 ⊕ L2 with respect to (u1, u2). Because of (26), D̃ is actually
reduced to the half-line {z1 ≥ 0, z2 = 0, zK = 0}. However, since

u2 ∈
⋂
η>0

Π⊥
1 (Dη),
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for every η > 0 the intersection of D̃η with the open quadrant {z1 > 0, z2 >
0, zK = 0} is non void. Set ∆η for the frontier of D̃η in {z1 > 0, z2 > 0, zK =
0}. ∆η is another half-line whose slope with respect to L1 decreases to 0 as η
decreases to 0. Set (zη

1 , z
η
2 ) = (η, zη

2 ) for the point of ∆η with u1-coordinate η
and consider the increasing convex function

h :
{

]0, 1] → R
+,

η �→ zη
2 .

The graph of h is located under a smooth curve with slope 0 at η = 0, but we
will see that h cannot grow too slowly in the neighborhood of 0:

Lemma 14. The function h : ]0, 1] → R
+ defined above satisfies∫

|z|≤1

h (|z|) ν(dz) = +∞.

Proof. Since h is positive increasing and since, because of (7), Supp ν ⊂
{z1 ≥ 0}, it suffices to prove that∫

|z|≤1

h(z1) ν(dz) = +∞.

Suppose first that d = 2, i.e. K = {0}. Then clearly, by definition of h,

Supp ν ∩ {|z| ≤ 1} ⊂ {z+
2 ≤ h(z1)}.

Hence ∫
|z|≤1

h(z1)ν(dz) ≥
∫
|z|≤1

z+
2 ν(dz) = +∞

and this completes the proof of the lemma.
The case d > 2, i.e. K 	= {0} is more subtle. First, by the Hahn-Banach

theorem, there exists a hyper-plane H containing the half-line {z1 ≥ 0, z2 =
0, zK = 0} and separating D from {z1 ≥ 0, z2 > 0, zK = 0}. Its unitary
normal vector n oriented in the direction of D verifies n1 = 0 and n2 < 0.
Besides, we can choose H such that n2 is the lowest possible, in the sense that
if m ∈ Sd−1 ∩ {z1 = 0} and if m2 < n2, then

D ∩ {m ∗ z < 0} 	= ∅.

Analogously, for every η > 0 we set Hη for the hyper-plane containing ∆η,
separating Dη from {z1 > 0, z2 > αηz1, zK = 0} (where αη = h(η)/η), and
such that if nη is its unitary normal vector oriented in the direction of Dη,
then nη

2 < 0 is the lowest possible. Clearly, we have nη → n and in particular
nη

2 → n2 as η ↓ 0. Hence there exists λ > 0 and η0 > 0 such that nη
2 < −λ for

every η < η0. A little Euclidean geometry shows then that if η < η0, then

Dη ∩ {z ∗ nK ≥ 0} ⊂ {λ(αηz1 − z2) + |zK | ≥ 0},
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whereas obviously

Dη ∩ {z ∗ nK ≤ 0} ⊂ {z2 ≤ αηz1}.
Hence, for every η < η0,

Dη ∩ {|zK | ≤ λz2/2} ⊂ {z2 ≤ 2αηz1} ⊂ {z2 ≤ 2h(z1)}
since η �→ αη is decreasing. In particular∫

|z|≤η0

z2 1{0<|zK |<λz2/2}ν(dz) ≤ 2
∫
|z|≤η0

h(z1)ν(dz).

But the left-hand side equals +∞ and we get∫
|z|≤1

h(z1)ν(dz) = +∞,

which completes the proof of the lemma.

Set now
L(ρ) =

h(ρ)
ρp

for every ρ ∈]0, 1]. Since ∫
|z|≤1

|z|pν(dz) < +∞,

Lemma 14 obviously entails that

lim sup
ρ↓0

L(ρ) = +∞.

In the following we will consider {ρη} a sequence in ]0, 1] with ρη ≤ η, where
{η} is the original sub-subsequence, and such that

L(ρη) = sup
ρη≤ρ≤1

L(ρ) ↑ +∞.

By construction of h, we see that for every η > 0 there exist some integer s ≤ d,
distinct xη

1 , . . . , x
η
s ∈ Sρη ∩ {0 < |zK | < z2} and minimizing integers βη

1 , . . . , β
η
s

such that

(27)

∣∣∣∣∣vη
2 − Π⊥

1

(
s∑

i=1

βη
i x

η
i

)∣∣∣∣∣ ≤ ε/8T

and

ρp−1
η L(ρη)

∣∣∣∣∣Π1

(
s∑

i=1

βη
i x

η
i

)∣∣∣∣∣∣∣∣∣∣Π⊥
1

(
s∑

i=1

βη
i x

η
i

)∣∣∣∣∣
−→ 1
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as η ↓ 0. In particular, for every i = 1, . . . , s

|Π1(β
η
i x

η
i )| ≤

∣∣∣∣∣Π1

(
s∑

i=1

βη
i x

η
i

)∣∣∣∣∣ ≤ 2ρ1−p
η |vη

2 |
L(ρη)

and remembering (20),

βη
i |xη

i |p ≤ ρp−1
η (|Π1(β

η
i x

η
i )| + |Π⊥

1 (βη
i x

η
i )|) ≤ 2

(
ρp−1

η |vη
2 | +

|vη
2 |

L(ρη)

)
as η ↓ 0. On the one hand, since ρη ≤ η,

lim
η↓0

ρp−1
η |vη

2 | = 0.

On the other hand

|vη
2 | ≤

∫
η≤|z|≤1

z+
2 ν(dz) ≤

∫
η≤|z|≤1

h(z1) ν(dz) ≤
∫

ρη≤|z|≤1

|z|pL(|z|)ν(dz).

But since L(ρη) = supρη≤ρ≤1 L(ρ) ↑ +∞, we have∫
ρη≤|z|≤1

|z|p
(
L(|z|)
L(ρη)

)
ν(dz) → 0

as η ↓ 0. This yields
|vη

2 |
L(ρη)

→ 0

and, putting everything together,

(28) βη
i |xη

i |p → 0

as η ↓ 0 along the sub-subsequence, for every i = 1, . . . , s.
The proof draws now to its final step. Suppose first that∣∣∣∣∣Π1

(
s∑

i=1

βη
i x

η
i

)∣∣∣∣∣ ≤ |vη
1 |

along a subsequence {η} of the original sub-subsequence. Then if we set

wη
1 = vη

1 − Π1

(
s∑

i=1

βη
i x

η
i

)
as before, this entails that

wη
1 ∗ u1 > 0 and |wη

1 | < |vη
1 |

along this subsequence. Thus, reasoning exactly as above, we can write

vη
L =

r+s∑
i=1

βη
i x

η
i +

(
wη

1 −
r∑

i=1

βη
s+ix

η
s+i

)
+

(
vη
2 − Π⊥

1

(
s∑

i=1

βη
i x

η
i

))
,
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where r ≤ d and xη
s+1, . . . , x

η
s+r (resp. βη

s+1, . . . , β
η
s+r) are elements of Sη

(resp. minimizing integers) such that (24) and (25) hold. Clearly together
(24), (25), (27), and (28) yield (15) and (16), which completes the proof of the
Theorem.

Suppose finally that

(29)

∣∣∣∣∣Π1

(
s∑

i=1

βη
i x

η
i

)∣∣∣∣∣ ≥ |vη
1 |

along the original subsequence. To treat this very last situation we will remove
some mass from Supp ν in the L+

1 -direction, digging some subset of Sη, and
use Lemma 2 together with Skorohod’s absolute continuity theorem - see e.g.
Theorem 33.1 in [22]. Actually, we will need less vectors than in the above
situation.

We first appeal to Lemma 2 with ν0 = ν and introduce η0 > 0 such that
for every η < η0, every subset Ξη of {|z| ≤ η} and every Lévy measure ν̄ ≤ ν,

P[‖ ˜̄Zη‖T,p < ε/2] > 1/2,

where µ̄ is the Poisson measure over R
+ × R

d with intensity ds ⊗ ν̄(dz), ˜̄µ =
µ̄− ds⊗ ν̄, and

˜̄Zη
t =

∫ t

0

∫
Ξη

z ˜̄µ(ds, dz) + t

∫
|z|≤η

zK ν(dz)

for every t > 0. Choose η < η0 in the subsequence, distinct xη
1 , . . . , x

η
s ∈

Sρη ∩ {0 < |zK | < z2}, and minimizing integers βη
1 , . . . , β

η
s such that (27) and

(28) hold. Set

λη = inf{|xη
1 |, . . . , |xη

s |}/2 and µη =

∣∣∣∣∣Π1

(
s∑

i=1

βη
i x

η
i

)∣∣∣∣∣− |vη
1 |.

We may rewrite (27) as

(30)

∣∣∣∣∣vη
L + µηu1 −

s∑
i=1

βη
i x

η
i

∣∣∣∣∣ < ε/8T.

Consider now the restriction of ν to {|z| ≤ λη}. Because of the degeneracy of
D, we see that for every ρ > 0,

(31)
∫
|z|≤λη

|z|1{|z|2≤(1+ρ2)z2
1} ν(dz) = +∞.

Take ρ such that ρµη < ε/8T . From (31), it is clear that we can find λρ ∈]0, λη[
and a positive measure ν̄ ≤ ν on {|z| ≤ 1}, with ν̄ equivalent to ν and ν̄ equal
to ν on {|z| ≤ λρ} ∪ {|z| ≥ λη}, such that

(32) |uη − µηu1| < ε/8T,
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where we set

uη =
∫

λρ≤|z|≤λη

z(ν − ν̄)(dz) =
∫
|z|≤1

z(ν − ν̄)(dz).

It follows from (30) and (32) that

(33)

∣∣∣∣∣vη
L + uη −

s∑
i=1

βη
i x

η
i

∣∣∣∣∣ < ε/4T.

Introduce the Lévy process Z̄ given by

Z̄t =
∫ t

0

∫
|z|≤1

zK µ̄(ds, dz) +
∫ t

0

∫
|z|≤1

zL ˜̄µ(ds, dz) − tuη

for every t > 0. Take Ξη = {|z| ≤ η} ∩ (Vη
1 ∪ · · · ∪ Vη

s )c, where the Vη
i ’s are

respective neighborhoods of the xη
i ’s in {λη ≤ |z| ≤ η} such that

P[‖Z̄η‖T,p < ε/2] > 0,

having set

Z̄η
t =

∫ t

0

∫
Ξc

η

z µ̄(ds, dz) − t

(
uη +

∫
Ξc

η

z ν̄(dz)

)
for every t > 0 (this is clearly possible because of (28), (33), and the reasoning
in Case A which led to (13) and (14)). Lemma 2 entails that

P[‖ ˜̄Zη‖T,p < ε/2] > 0,

so that since Z̄ = Z̄η + ˜̄Zη with Z̄η and ˜̄Zη independent, we finally get

P[‖Z̄‖T,p < ε] > 0

by the triangle inequality. But now by Skorohod’s absolute continuity theorem,
the law of Z̄ and Z̃ are equivalent for every η > 0. Hence

P[‖Z̃‖T,p < ε] > 0,

which completes the proof of the Theorem in the case DimL = 2.

4.4. DimL > 2
We briefly describe how this higher dimensional situation can be handled.

First, it is clear that we just need to prove (15) and (16) along some subsequence
{η} tending to 0. Again, we can make a choice of strict positivity and suppose
that Supp ν is included in a quadrant of R

d. Take an asymptotic direction
L1 = Vect{u1} and a corresponding subsequence {η}. In order to control
the projections of our approximating vectors and to preserve (16), we need to
refine our choice of positivity: consider the projection of Supp ν onto L⊥

1 , take
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an orthonormal basis of L⊥
1 and divide L⊥

1 accordingly into 2d−1 quadrants
Q1, . . . , Q2d−1 . Set

ν1,i = ν1{z⊥
1 ∈Qi} and vη

1,i =
∫

η≤|z|≤1

z⊥1 ν1,i(dz)

for i = 1, . . . , 2d−1. It is clear that

lim
η↓0

|vη
1 |

|vη
1,i|

= +∞

along the subsequence. Take a sub-subsequence along which either

lim
η↓0

vη
1,i

|vη
1,i|

= u2,i ∈ L⊥
1 , or lim inf

η↓0
|vη

1,i| = 0,

for every i = 1, . . . , 2d−1, and set L2,i = Vect{u2,i}.
Suppose first that DimL = 3. Because of our choice of strict positivity for

each ν1,i, we can reason as in the situation DimL = 2, Case A or B, and prove
that there exists a sub-subsequence {η}, xη

1,i, . . . , x
η
ri,i

∈ Supp ν1,i ∩ {|z| ≤ η},
βη

1,i, . . . , β
η
ri,i

minimizing integers such that for every i = 1, . . . , 2d−1∣∣∣∣∣∣vη
1,i + ρη

1,iu2,i − Π⊥
1

 ri∑
j=1

βη
j,ix

η
j,i


∣∣∣∣∣∣ < ε/2dT,

where ρη
i,1 ≥ 0 and

lim
η↓0

βη
j,i|xη

j,i|p = 0

for every j = 1, . . . , ri. Writing

vη
L = vη

1 +
2d−1∑
i=1

vη
1,i

and reasoning as in the end of Case B leads to

(34)

∣∣∣∣∣∣vη
L + ρηu1 +

2d−1∑
i=1

ρη
1,iu2,i −

r∑
i=1

βη
i x

η
i

∣∣∣∣∣∣ < ε/2T,

where ρη ≥ 0 and

(35) lim
η↓0

βη
i |xη

i |p = 0,

for some fixed integer r, xη
i , . . . , x

η
i ∈ Supp ν ∩ {|z| ≤ η}, and βη

i , . . . , β
η
r mini-

mizing integers. The approximation (34) is not exactly (15), but the (positive)
perturbing term

ρηu1 +
2d−1∑
i=1

ρη
1,iu2,i
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can be canceled as above by an absolutely continuous transformation of the
law of Z̃, after removing some mass from Supp ν1,i ∩ {|z| ≤ λη} for each i =
1, . . . , 2d−1, with λη = inf{|xη

i |}/2. This transformation leads to the small
deviation property for the original process Z̃.

When DimL gets higher, we need to refine again and again our decom-
position of Supp ν, dividing first each orthogonal of u2,i into 2d−2 quadrants
R1, . . . , R2d−2 and introducing

ν2,i,j = ν1{z⊥
1 ∈Qi,z⊥

2,i∈Rj} and vη
2,i,j =

∫
η≤|z|≤1

z⊥2,iν2,i,j(dz)

for i = 1, . . . , 2d−1, j = 1, . . . , 2d−2 . . . etc. Setting k = DimL and writing

vη
L = vη

1 +
2d−1∑
i=1

vη
2,i + · · · +

2d−1∑
i1=1

· · ·
2d−(k−2)∑
ik−2=1

vη
k−1,i1,...,ik−2


leads to an approximation of type (34) together with the control (35), which
finishes the proof of the Theorem.

5. Proof of the Corollaries

5.1. Small deviations around continuous curves
The following proposition shows that the small deviation property for Z̃

also holds around L-valued curves with finite regular p-variation. Of course,
this would be a direct consequence of the Theorem if one had some kind of
Cameron-Martin formula for Z̃ as for Brownian motion. But here Z̃ has no
Gaussian part and it is well-known, for example, that the law of Z̃u : t �→ Z̃t+tu
is not absolutely continuous (and even singular) with respect to the law of Z̃
if u 	= 0 —see again Theorem 33.1. in [22]. To prove this proposition we will
need Lemma 13 as well as a slight perturbation of the Poisson measure, which
replaces in some sense the density transformation.

Proposition 15. Let 1 ≤ p < 2 and Z be a Lévy process with finite
p-variation and parameters (α, ν). For every ε > 0, T > 0 and φL : R

+ → L
with finite regular p-variation over compact sets,

P[‖Z̃ − φL‖T,p < ε] > 0.

Proof. Clearly, we can suppose that φL(0) = 0 and that the jumps of Z
are bounded by 1. In particular

Z̃t =
∫ t

0

∫
|z|≤1

zµ̃(ds, dz) + t

∫
|z|≤1

zKν(dz)

for every t ≥ 0. Fix ε > 0, T > 0 and φL : R
+ → L with finite regular p-

variation over compact sets. By Lemma 13, there exists n0 ∈ N such that for
every n ≥ n0

‖φL − φn
L‖T,p <

ε

3
,
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where φn
L is the polygonal approximation of φL over [0, T ] with step T/n. Fix

n ≥ n0. Let v0 = 0 and v1, . . . , vn be the vectors of L defining φn
L:

φn
L(t) =

T

n
(v0 + · · · + vj) + (t− sj)vj+1 if sj ≤ t ≤ sj+1,

where again we set sj = jT/n. Set, for every j = 0, . . . , n and sj ≤ t ≤ sj+1,

Z̃j
t = Z̃t − Z̃sj

− (t− sj)vj+1

and

Y j
t =

∫ t

sj

∫
|z|≤1

zµ̃j(ds, dz) + (t− sj)
∫
|z|≤1

zKνj(dz),

where we wrote
νj(dz) = ν(dz) + 2|vj+1|δ vj+1

2|vj+1|
(dz)

for every j = 0, . . . , n (with the notation vj/|vj | = 0 if |vj | = 0), and where µ̃j

is the compensated measure of µj , the Poisson measure with intensity ds⊗ νj .
Notice that clearly,

Y j
t =

∫ t

sj

∫
|z|≤1

z µ̃j(ds, dz) + (t− sj)
∫
|z|≤1

zK ν(dz),

so that for every 0 < η < 1/2 and j = 0, . . . , n,

{‖Y j‖[sj ,sj+1],p < η} ⊂ {Y j
t = Z̃j

t ∀t ∈ [sj , sj+1]}.
In particular

{‖Y j‖[sj ,sj+1],p < η} = {‖Z̃j‖[sj ,sj+1],p < η}.
Now, by the Theorem,

P[‖Y j‖[sj ,sj+1],p < η] > 0

for every η > 0 and j = 0, . . . , n. Hence we get, by independence of the
increments of Z̃,

(36) P[‖Z̃j‖[sj ,sj+1],p < η for every j = 0, . . . , n] > 0

for every 0 < η < 1/2. Introduce now the following function:

φ̃n
L(t) = φn

L(t) +
j−1∑
k=0

Z̃k
sk+1

if sj ≤ t < sj+1,

for every j = 0, . . . , n. φ̃n
L is a discontinuous perturbation of φn

L such that
φ̃n

L −φn
L is a step-function and φ̃n

L(sj) = Z̃sj
for every j = 0, . . . , n. On the one

hand, reasoning as in Lemma 13, we can choose η sufficiently small such that

(37) {‖Z̃j‖[sj ,sj+1],p < η for every j = 0, . . . , n} ⊂
{
‖Z̃ − φ̃n

L‖T,p <
ε

3

}
.
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On the other hand, since according to Lemma 8

‖φn
L − φ̃n

L‖p
T,p ≤ np+1 max

0≤k≤n−1
|Z̃k

sk+1
|p,

we also have

(38) {‖Z̃j‖[sj ,sj+1],p < η for every j = 0, . . . , n} ⊂
{
‖φn

L − φ̃n
L‖T,p <

ε

3

}
for η small enough. Putting (36), (37), (38) together and using the triangle
inequality complete the proof of the Proposition.

5.2. Proof of Corollary A
(a) By the Theorem we just need to prove the reverse inclusion. Suppose

αν 	= 0. Since
Zt = αν +

∑
s≤t

∆Zs

for every t ≥ 0, we see by Lemma 12 that

P[‖Z‖1,1 < ε] = 0

as soon as ε < |αν |.
(b) This follows readily from Proposition 15.
(c) Fix ε, T > 0. Since α ∈ Π−1

K (AK), there exists αL ∈ L such that

β = αL − αν ∈ C.
Hence, for every η > 0, there exists xη

1 , . . . , x
η
d ∈ Supp ν ∩ {|z| ≤ η} and

αη
1 , . . . , α

η
d minimizing integers, such that

(39)

∣∣∣∣∣β −
d∑

i=1

αη
i x

η
i

∣∣∣∣∣ ≤ ε/4T.

Besides, since C is strictly convex, it is clear that there exists c > 0 independent
of η such that

(40) |αη
i x

η
i | ≤ c|β|

for every i = 1, . . . , d. Introduce now ρη = inf{|xη
i |, i = 1, . . . , d}/2, and

decompose Z into
Z = Z̃η + Zη

where we set

Z̃η
t =

∫ t

0

∫
|z|≤ρη

zKµ(ds, dz) +
∫ t

0

∫
|z|≤ρη

zLµ̃(ds, dz)

+ t

(
αL −

∫
ρη≤|z|≤1

zLν(dz)

)
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and
Z̃η

t =
∑
s≤t

∆Zs1{|∆Zs|>ρη} − tβ

for every t > 0. The Theorem and Proposition 15 yield readily

P[‖Z̃η‖T,p < ε/2] > 0.

Hence, by independence and the triangle inequality, it suffices to show that

P[‖Zη‖T,p < ε/2] > 0.

It is now clear that the latter can be done through (39), (40), and the same
approximation procedure which we used repeatedly during the proof of the
Theorem.

(d) This follows readily from the main Theorem in [26] and from the in-
equality

P[‖Zη‖T,p < ε] ≤ P[‖Zη‖T,∞ < ε]

for every T, ε > 0.

5.3. Proof of Corollary B
We first quote a lemma which is a direct consequence of Lyons’ continuity

theorem [19].

Lemma 16. Let {xi
t, 0 ≤ t ≤ T}i=1,2 be the solutions to the following

rough differential equations on R
m:

xi
t = xi +

∫ t

0

f(xi
s)dzs,

where z is a function with regular finite p-variation and f an α-Lipschitz vector
field with α > p. Then there exists a constant K (depending on T and f) such
that

‖x1 − x2‖T,p ≤ K|x1 − x2|.
We can now proceed to the proof of Corollary B, which will mimic that of

the Theorem in [25]. The first inclusion SuppX ⊂ S is an easy consequence of
the fact that for every n ≥ 1

lim
η→0

‖X −Xη‖n,p = 0,

where Xη is the solution to (1) with ν replaced by 1|z|≥ην(dz)—which follows
readily from Lemma 1 and Theorem 7, and of the usual routine which may be
found e.g. in [30].

The second inclusion S ⊂ SuppX will be a consequence of Theorem 7
and Proposition 15, as in [25]. Fix n ∈ N

∗, ε > 0, u ∈ U, and φL : R
+ → L

with regular p-variation. Let ψ be the solution of (2) given by u and φL. Let
Nn ∈ N

∗ be such that

t0 = 0 < t1 < · · · < tNn
≤ n+ 1 < tNn+1
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are the successive jumping times of ψ. Introduce

η = inf{|zi|, i = 1, . . . , Nn}/2 and Zη
t =

∫ t

0

∫
|z|≥η

zµ(ds, dz)

for every t ≥ 0. Set {Tq} for the sequence of Zη’s successive jumping times,
and ψ̃ for the solution of (2) where {tq} is replaced by {Tq}. For every ρ > 0,
the event {

sup
1≤q≤Nn+1

|Tq − tq| < ρ

}
has a positive probability. We now introduce λ, the only piecewise linear change
of time transforming tq into Tq for each q = 1, . . . , Nn, and whose right deriva-
tive takes its values in {1/2, 1, 2}. Thanks to the continuity of ψ (resp. of ψ̃)
on each ]ti, ti+1[ (resp. on each ]Ti, Ti+1[) and to a repeated use of Lemma 16,
it is easy to see that{

sup
1≤q≤Nn+1

|Tq − tq| < ρ

}
⊂ {‖ψ ◦ λ− ψ̃‖[0,n+1],p < ε/2}

for ρ > 0 small enough. Hence{
sup

1≤q≤Nn+1
|Tq − tq| < ρ

}
⊂ {dn

p (ψ, ψ̃) < ε/2}

for ρ > 0 small enough. On the other hand, Proposition 15 entails easily that

P[‖Z̃η − φL‖n+1,p < ρ] > 0

for every ρ > 0, where we set Z̃η = Z − Zη. Using now Theorem 7 and
reasoning exactly as in the proof of the Theorem of [25] (under the p-variation
norm) entail

P[‖X − ψ̃‖n+1,p < ε/2, dn
p (ψ, ψ̃) < ε/2] > 0,

which finishes the proof since obviously

{‖X − ψ̃‖n+1,p < ε/2, dn
p (ψ, ψ̃) < ε/2} ⊂ {dn

p (X,ψ) < ε}.
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F-91025 ÉVRY cedex
e-mail: simon@maths.univ-evry.fr



�

�

�

�

�

�

�

�

Small deviations in p-variation for multidimensional Lévy processes 563
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