A remark on the Alperin-Mckay conjecture

By

Masafumi Murai

Introduction

Let G be a finite group and p a prime. For an irreducible character χ of G, let ht χ be the height of χ (defined in terms of the p-block of G to which χ belongs). Let N be a normal subgroup of G. We define ht_N(χ), the N-height of χ , by

$$\operatorname{ht}_N(\chi) = \operatorname{ht} \chi - \operatorname{ht} \xi,$$

where ξ is an irreducible constituent of χ_N . Clearly $\operatorname{ht}_N(\chi)$ does not depend on the choice of ξ . In [M2] we have shown that it always holds that $\operatorname{ht}_N(\chi) \geq 0$. In the present paper we are concerned with the number of irreducible characters χ with $\operatorname{ht}_N(\chi) = 0$.

Let B be a block of G with defect group D. Let $k_0(B)$ be the number of irreducible characters in B of height 0. We recall the Alperin-McKay conjecture:

(AM) If \widetilde{B} is the Brauer correspondent of B in $N_G(D)$, then $k_0(B) = k_0(\widetilde{B})$.

Let

$$k_0(B, N) = |\{\chi \in \operatorname{Irr}(B); \operatorname{ht}_N(\chi) = 0\}|.$$

We consider the following analogue of (AM).

(*) If \widetilde{B} is the Brauer correspondent of B in $N_G(D)N$, then $k_0(B,N) = k_0(\widetilde{B},N)$.

For an integer $h \ge 0$, let

$$Irr_0(B, N, h) = \{ \chi \in Irr(B); ht_N(\chi) = 0, ht \chi = h \} \text{ and } k_0(B, N, h) = |Irr_0(B, N, h)|.$$

In Section 1 we prove the following theorem (Theorem 7).

Theorem. Let D be a defect group of B and let \widetilde{B} be the Brauer correspondent of B in $N_G(D)N$. We assume that (AM) is true for any block of any

Received July 13, 2001

central extension of any subgroup of G/N. Then $k_0(B, N, h) = k_0(\widetilde{B}, N, h)$ for any integer $h \ge 0$. In particular, $k_0(B, N) = k_0(\widetilde{B}, N)$.

Since $k_0(B, \{1\}) = k_0(B)$, if (*) holds for all G and N, then (AM) holds for all G. Theorem shows that the converse also holds. Thus (AM) and (*) are equivalent statements. Moreover, we can apply Theorem to reduce (to some extent) the conjecture (AM) itself. In particular, we obtain an alternative proof of part of Okuyama-Wajima's proof of (AM) for p-solvable groups, see Section 2. Recently Isaacs and Navarro [IN] proposed refinements of the McKay conjecture. The methods and results of the present paper could be adapted without much difficulty to one of their refinements, cf. Conjecture B of [IN]. The author is grateful to the referee for valuable suggestions.

1. Proof of Theorem

Let N be a normal subgroup of a group G. Let B be a block of G with defect group D. Let b be a block of N which is covered by B. Let $T_G(b)$ be the inertial group of b in G. We say that D is an *inertial defect group* of B over b if D is a defect group of the Fong-Reynolds correspondent of B over b in $T_G(b)$. For a subgroup H of G containing $N_G(D)$, there is a unique block \tilde{B} of H with defect group D such that $\tilde{B}^G = B$. We call \tilde{B} the Brauer correspondent of B in H.

Lemma 1. Let \widetilde{B} be the Brauer correspondent of B in $N_G(D)N$. The following are equivalent.

(i) B covers b.

(ii) D is an inertial defect group of B over b.

Proof. Put $T = T_G(b)$ and $H = N_G(D)N$.

(i) \Rightarrow (ii): Let β' be the Fong-Reynolds correspondent of \tilde{B} over b in $H \cap T$. We claim that D is a defect group of β' . Indeed, let Q be a defect group of β' . We have $Q = D^x$ for some $x \in H$. If we write x = yz with $y \in N_G(D)$ and $z \in N$, then $Q = D^z$. So the claim follows. Since $N_T(D) \leq H \cap T$, $\beta := {\beta'}^T$ is defined and has defect group D. Clearly

Since $N_T(D) \leq H \cap T$, $\beta := \beta'^I$ is defined and has defect group D. Clearly β covers b, and $\beta^G = (\beta'^T)^G = (\beta'^H)^G = \widetilde{B}^G = B$. So β is the Fong-Reynolds correspondent of B over b in T. Thus the result follows.

(ii) \Rightarrow (i): Let β be the Fong-Reynolds correspondent of B over b in T. So D is a defect group of β . Let $\tilde{\beta}$ be the Brauer correspondent of β in $H \cap T$. Clearly $\tilde{\beta}$ covers b. So $\tilde{\beta}$ is the Fong-Reynolds correspondent of a block B' of H over b in $H \cap T$. Then $B'^G = (\tilde{\beta}^H)^G = (\tilde{\beta}^T)^G = \beta^G = B$. Since B' has defect group D, we get $B' = \tilde{B}$. So \tilde{B} covers b. This completes the proof. \Box

Lemma 2. (i) If D is an inertial defect group of B over b, then D is a defect group of a unique block of DN covering b.

(ii) If b is G-invariant, then $N_G(DN) = N_G(D)N$.

Proof. (i) This is [M1, Lemma 2.2].

(ii) If b' is the block of DN as in (i), b' is $N_G(DN)$ -invariant. So the result follows from (i) and the Frattini argument.

For an irreducible character ξ in b, put

$$Irr(B|\xi) = \{ \chi \in Irr(B); (\chi_N, \xi)_N \neq 0 \}, Irr_0(B|\xi) = \{ \chi \in Irr(B|\xi); ht_N(\chi) = 0 \}, and k_0(B|\xi) = |Irr_0(B|\xi)|.$$

Let $T_G(\xi)$ be the inertial group of ξ in G.

Lemma 3. Let ξ be an irreducible character in b. Let D be a defect group of B with $D \leq T_G(\xi)$. The following are equivalent.

(i) D is an inertial defect group of B over b.

(ii) There is a block β of $T_G(\xi)$ with the following properties:

 β has defect group D, β covers b, and $\beta^G = B$.

Proof. (i) \Rightarrow (ii): Let $H = N_G(D)N$ and $T = T_G(\xi)$. Let \tilde{B} be the Brauer correspondent of B in H. By Lemma 1, \tilde{B} covers b. Take $\zeta \in \operatorname{Irr}(\tilde{B}|\xi)$ and let η be the Clifford correspondent of ζ over ξ in $H \cap T$. Let β' be the block of $H \cap T$ containing η . Then, since $\eta^H = \zeta$, we have $\beta'^H = \tilde{B}$. Since β' covers a unique block of DN covering b, there is a defect group Q of β' with $Q \geq D$ by Lemma 2. Since $\beta'^G = (\beta'^H)^G = \tilde{B}^G = B$, we have $Q \leq GD$. Thus Q = D. Then, since $N_T(D) \leq H \cap T$, $\beta := \beta'^T$ is defined and has defect group D. Clearly β covers b. Since $\beta^G = \beta'^G = B$, the result follows.

(ii) \Rightarrow (i): We see $\beta^{T_G(b)}$ is defined and $(\beta^{T_G(b)})^G = B$. So D is a defect group of $\beta^{T_G(b)}$, which is the Fong-Reynolds correspondent of B over b in $T_G(b)$. This completes the proof.

Lemma 4. Let ξ be an irreducible character in b. The following are equivalent.

(i) There is $\chi \in \operatorname{Irr}(B|\xi)$ such that $\operatorname{ht} \chi = \operatorname{ht} \xi$.

(ii) For an inertial defect group $D^x(x \in G)$ of B over b, ξ extends to D^xN .

Proof. This follows from [M2, Theorem 2.3].

We need the following.

Lemma 5. Let Z be a central subgroup of G. Let λ be a linear character of Z lying in a block of Z covered by B. Let \widetilde{B} be the Brauer correspondent of B in $N_G(D)$. Assume (AM) is true for any block of G/W with $1 \leq W \leq Z$. Then $k_0(B|\lambda) = k_0(\widetilde{B}|\lambda)$.

Proof. We argue by induction on |Z|. If Z is a p'-group, then, $k_0(B|\lambda) = k_0(B)$ and $k_0(\widetilde{B}|\lambda) = k_0(\widetilde{B})$. So the result follows. Thus we may assume |Z| is divisible by p. Assume $W := \text{Ker}(\lambda) \neq 1$. Let β and $\widetilde{\beta}$ be the blocks of G/W and $N_G(D)/W$ dominated by B and \widetilde{B} , respectively. Clearly DW/W

is a common defect group of β and $\widetilde{\beta}$, and $\widetilde{\beta}$ is the Brauer correspondent of β in $N_{G/W}(DW/W)$. We see that $k_0(B|\lambda) = k_0(\beta|\lambda)$ and $k_0(\widetilde{B}|\lambda) = k_0(\widetilde{\beta}|\lambda)$. Hence the result follows by induction. So we may assume that λ is faithful. Put $\lambda = \mu \times \nu$, where μ and ν are the *p*-part and *p'*-part of λ , respectively. Put $W = \text{Ker}(\mu^p \times \nu)$. Then |W| = p. Let β and $\widetilde{\beta}$ be the blocks of G/W and $N_G(D)/W$ dominated by B and \widetilde{B} , respectively. For any integer i, $\mu^{pi} \times \nu$ is regarded as a character of Z/W. Then, for the same reason as above, we have

$$k_0(\beta|\mu^{pi} \times \nu) = k_0(\widetilde{\beta}|\mu^{pi} \times \nu).$$

Clearly

$$k_0(B|\mu^{pi} \times \nu) = k_0(\beta|\mu^{pi} \times \nu)$$

and

$$k_0(B|\mu^{pi} \times \nu) = k_0(\beta|\mu^{pi} \times \nu).$$

So

$$k_0(B|\mu^{pi} \times \nu) = k_0(B|\mu^{pi} \times \nu)$$

for any integer *i*. Let $p^n (n \ge 1)$ be the order of a *p*-Sylow subgroup of *Z*. Then we have

$$k_0(B) = \sum_i k_0(B|\mu^{pi} \times \nu) + \sum_j k_0(B|\mu^j \times \nu),$$

where *i* runs through integers modulo p^{n-1} and *j* runs through *p'*-integers modulo p^n . Since all $\mu^j \times \nu$ are *p*-conjugate to λ , $k_0(B|\mu^j \times \nu) = k_0(B|\lambda)$ (for the definition of "*p*-conjugate", see [NT, p. 335]). Thus

$$k_0(B) = \sum_i k_0(B|\mu^{pi} \times \nu) + (p^n - p^{n-1})k_0(B|\lambda).$$

Similarly

$$k_0(\widetilde{B}) = \sum_i k_0(\widetilde{B}|\mu^{pi} \times \nu) + (p^n - p^{n-1})k_0(\widetilde{B}|\lambda).$$

Since $k_0(B) = k_0(\widetilde{B})$, we then get $k_0(B|\lambda) = k_0(\widetilde{B}|\lambda)$. This completes the proof.

Let ξ be an irreducible character in b. We choose a set of representatives $\{D^{x_i}; 1 \leq i \leq m\}(x_i \in G)$ of $T_G(\xi)$ -conjugacy classes of inertial defect groups $D^x(x \in G)$ of B over b with $D^x \leq T_G(\xi)$ (possibly m = 0).

Theorem 6. Let \widetilde{B} be the Brauer correspondent of B in $N_G(D)N$. We assume that (AM) is true for any block of any central extension of $T_G(\xi)/N$. Then

$$k_0(B|\xi) = \sum_{i=1}^m k_0(\widetilde{B}|\xi^{x_i^{-1}}).$$

Proof. The right hand side makes sense. Indeed, since the block \widetilde{B}^{x_i} of $N_G(D^{x_i})N$ covers b by Lemma 1, \widetilde{B} covers $b^{x_i^{-1}}$.

We first consider the case where m = 0. We must show $k_0(B|\xi) = 0$. If $k_0(B|\xi) > 0$, then, for some inertial defect group $D^x(x \in G)$ of B over b, ξ extends to $D^x N$ by Lemma 4. So $D^x \leq T_G(\xi)$, a contradiction. Hence $k_0(B|\xi) = 0$. In the following we assume m > 0.

We divide the proof into two cases :

Case I. ξ is *G*-invariant; Case II. The general case.

Case I. ξ is G-invariant.

In this case m = 1. We must show $k_0(B|\xi) = k_0(\widetilde{B}|\xi)$. There exists a (finite) central extension of G,

$$1 \xrightarrow{} Z \xrightarrow{} \widehat{G} \xrightarrow{f} G \xrightarrow{f} 1$$

with the following properties: $f^{-1}(N) = Z \times N_1$, for a normal subgroup N_1 of \widehat{G} ; ξ extends to \widehat{G} . (Here we identify N with N_1 via f.)

We fix an extension $\hat{\xi}$ of ξ to \hat{G} . Let \hat{B} be the inflation of B to \hat{G} . Since Z is central in \hat{G} , we may choose a defect group \hat{D} of \hat{B} so that $\hat{D}Z/Z = D$. Let λ be an irreducible constituent of $\hat{\xi}_Z$. We regard λ as a character of ZN/N in a natural way. For any $\chi \in \operatorname{Irr}_0(B|\xi)$, let $\hat{\chi}$ be the inflation of χ to \hat{G} . Let $\{B_j; 1 \leq j \leq s\}$ be the set of blocks of \hat{G}/N which are $\hat{\xi}$ -dominated by \hat{B} and have defect group $\hat{D}N/N$, cf. [M2] for " $\hat{\xi}$ -domination".

For each $\chi \in \operatorname{Irr}_0(B|\xi)$, there is a unique irreducible character $\theta(\chi)$ of \widehat{G}/N such that $\widehat{\chi} = \widehat{\xi} \otimes \theta(\chi)$. Then if B' is the block of \widehat{G}/N containing $\theta(\chi)$, we have

$$\operatorname{ht} \chi = \operatorname{ht} \xi + \operatorname{ht} \theta(\chi) + d(\widehat{B}) - d(b) - d(B').$$

Since a defect group of B' is contained in $\widehat{D}N/N$ ([M2, Corollary 1.5]), we see that ht $\theta(\chi) = 0$ and that $\widehat{D}N/N$ is a defect group of B'. So $B' = B_j$ for some j. Further, λ^{-1} is a constituent of $\theta(\chi)_{ZN/N}$. Thus $\theta(\chi) \in \operatorname{Irr}_0(B_j|\lambda^{-1})$.

Conversely, let b_1 be the block of $\hat{Z} = ZN/N$ containing λ^{-1} . Then B_j covers b_1 for any j. Indeed, let $\theta \in \operatorname{Irr}(B_j)$ and let μ be an irreducible constituent of θ_Z . Then, since $\hat{\xi} \otimes \theta \in \operatorname{Irr}(\hat{B})$ and \hat{B} covers the the principal block of Z, a *p*-complement of Z is contained in $\operatorname{Ker}(\lambda\mu)$. This shows B_j covers b_1 . For any j and any $\theta \in \operatorname{Irr}_0(B_j|\lambda^{-1})$ if we set $\zeta = \hat{\xi} \otimes \theta$, then $\zeta = \hat{\chi}$ for some $\chi \in \operatorname{Irr}_0(B|\xi)$ and then $\theta = \theta(\chi)$. Thus we get

(1) $k_0(B|\xi) = \sum_j k_0(B_j|\lambda^{-1}).$

Let $\widehat{H} = f^{-1}(N_G(D)N) \leq \widehat{G}$. Let β be the inflation of \widetilde{B} to \widehat{H} . We show $\widehat{H} = N_{-1}(\widehat{D})N_{-1}$

(2)
$$H = N_{\widehat{G}}(D)N.$$

(3) β has defect group \widehat{D} and is the Brauer correspondent of \widehat{B} in \widehat{H} .

To prove (2), since $f^{-1}(N_G(D)N) = f^{-1}(N_G(D))N$, it suffices to show $f^{-1}(N_G(D)) = N_{\widehat{G}}(\widehat{D})$. Clearly $f(N_{\widehat{G}}(\widehat{D})) \leq N_G(D)$. If $f(x) \in N_G(D)$ for

 $x \in \widehat{G}$, then $(\widehat{D}Z)^x = \widehat{D}Z$. Considering *p*-Sylow subgroups of both sides, we get $x \in N_{\widehat{G}}(\widehat{D})$ and the result follows.

We may choose a defect group Q of β such that QZ/Z = D. So $QZ = \widehat{D}Z$. Considering *p*-Sylow subgroups of both sides, we get $Q = \widehat{D}$. Since $\widetilde{B}^G = B$, we get $\beta^{\widehat{G}} = \widehat{B}$. So (3) follows.

Let $\{\beta_k; 1 \leq k \leq t\}$ be the set of blocks of \widehat{H}/N which are $\widehat{\xi}_{\widehat{H}}$ -dominated by β . Then the same argument as in the above shows

(1)'
$$k_0(B|\xi) = \sum_k k_0(\beta_k|\lambda^{-1})$$

Now, from the proof of Corollary 2.5 of [M3], (2) and (3) yield that s = t and, after renumbering, β_j is the Brauer correspondent of B_j in \widehat{H}/N for each $j \ (1 \leq j \leq s)$.

We have $N_{\widehat{G}/N}(\widehat{D}N/N) = \widehat{H}/N$ by (2) and Lemma 2. Since $(\widehat{G}/N)/(ZN/N) \cong G/N$, by assumption and Lemma 5, we get $k_0(B_j|\lambda^{-1}) = k_0(\beta_j|\lambda^{-1})$ for each j $(1 \leq j \leq s)$. Therefore, (1) and (1)' yield $k_0(B|\xi) = k_0(\widetilde{B}|\xi)$. This completes the proof of Case I.

Case II. The general case.

Put $T = T_G(\xi)$. For each $i \ (1 \leq i \leq m)$, let \mathcal{B}_i be the set of blocks β of T with the following properties:

 β has defect group D^{x_i}, β covers b, and $\beta^G = B$,

cf. Lemma 3. Let $\chi \in Irr(B|\xi)$ and let ζ be the Clifford correspondent of χ over ξ in T. We have

$$\operatorname{ht} \chi = \operatorname{ht} \zeta + d(B) - d(B'),$$

where B' is the block of T containing ζ . Since ht $\zeta \geq \operatorname{ht} \xi$ by [M2, Lemma 2. 2] and $B'^G = B$, we see that ht $\chi = \operatorname{ht} \xi$ if and only if ht $\zeta = \operatorname{ht} \xi$ and B' has a defect group of the form $D^x(x \in G)$. We note that D^x is then an inertial defect group of B over b by Lemma 3. Thus we get

(4)
$$k_0(B|\xi) = \sum_i \sum_{\beta \in \mathcal{B}_i} k_0(\beta|\xi).$$

Fix $i (1 \leq i \leq m)$. Put $D_i = D^{x_i}$ and $H_i = N_G(D_i)N$. Let \widetilde{B}_i be the Brauer correspondent of B in H_i . By Lemma 1, \widetilde{B}_i covers b. Further, from the structure of H_i , we see that D_i is an inertial defect group of \widetilde{B}_i over b. Clearly $D_i \leq H_i \cap T$. Let $\widetilde{\mathcal{B}}_i$ be the set of blocks β' of $H_i \cap T$ with the following properties:

 β' has defect group D_i , β' covers b, and $\beta'^{H_i} = \widetilde{B}_i$.

We see that any H_i -conjugate of D_i is $H_i \cap T$ -conjugate to D_i . So by the argument above, we get

(4)'
$$k_0(\widetilde{B}_i|\xi) = \sum_{\beta' \in \widetilde{B}_i} k_0(\beta'|\xi).$$

For each $\beta \in \mathcal{B}_i$, let $\widetilde{\beta}$ be the Brauer correspondent of β in $N_T(D_i)N =$

 $H_i \cap T$. We claim that the map sending β to $\widetilde{\beta}$ is a bijection from \mathcal{B}_i to $\widetilde{\mathcal{B}}_i$. Let $\beta \in \mathcal{B}_i$. Since $\widetilde{\beta}$ covers b, $\widetilde{\beta}^{H_i}$ is defined. We have $(\widetilde{\beta}^{H_i})_{\widetilde{\beta}}^G = (\widetilde{\beta}_{\widetilde{\beta}}^T)^G = (\widetilde{\beta}_{\widetilde{\beta}^T)^G = (\widetilde{\beta}$ $\beta^G = B$. This shows that $\widetilde{\beta}^{H_i}$ has defect group D_i , and we see $\widetilde{\beta}^{H_i} = \widetilde{B}'_i$. So $\widetilde{\beta} \in \widetilde{\mathcal{B}}_i.$

Conversely, let $\beta' \in \widetilde{\mathcal{B}}_i$. Then β' is the Brauer correspondent of a block β of T in $H_i \cap T$. Clearly β covers b. So β^G is defined and $\beta^G = (\beta'^T)^G = \widetilde{B}_i^G = B$. Thus we get $\beta \in \mathcal{B}_i$ and $\beta' = \tilde{\beta}$. The claim follows.

By Case I, we have $k_0(\beta|\xi) = k_0(\beta|\xi)$ for any *i* and any $\beta \in \mathcal{B}_i$. Thus we get

$$k_{0}(B|\xi) = \sum_{i} \sum_{\beta \in \mathcal{B}_{i}} k_{0}(\beta|\xi) \quad (\text{by } (4))$$
$$= \sum_{i} \sum_{\widetilde{\beta} \in \widetilde{\mathcal{B}}_{i}} k_{0}(\widetilde{\beta}|\xi)$$
$$= \sum_{i} k_{0}(\widetilde{B}_{i}|\xi) \quad (\text{by } (4)')$$
$$= \sum_{i} k_{0}(\widetilde{B}|\xi^{x_{i}^{-1}}) \quad (\text{since } \widetilde{B}_{i} = \widetilde{B}^{x_{i}} \text{ for each } i).$$

This completes the proof.

Let \widetilde{B} be the Brauer correspondent of B in $N_G(D)N$. We Theorem 7. assume that (AM) is true for any block of any central extension of any subgroup of G/N. Then $k_0(B, N, h) = k_0(\tilde{B}, N, h)$ for any integer $h \geq 0$. In particular, $k_0(B,N) = k_0(\tilde{B},N).$

Proof. Put

$$\operatorname{Irr}_0(N, B, h) = \{\xi \in \operatorname{Irr}(N); \operatorname{ht}_N(\chi) = 0 \text{ for some } \chi \in \operatorname{Irr}(B|\xi), \operatorname{ht} \xi = h\}$$

Let S be a set of of representatives of G-conjugacy classes of $Irr_0(N, B, h)$. So

(1)
$$k_0(B, N, h) = \sum_{\xi \in S} k_0(B|\xi)$$

by Clifford's theorem.

We claim $\operatorname{Irr}_0(N, \widetilde{B}, h) \subseteq \operatorname{Irr}_0(N, B, h)$. Indeed, let $\xi \in \operatorname{Irr}_0(N, \widetilde{B}, h)$. Let b be the block of N containing ξ . There is $\zeta \in \operatorname{Irr}(\widetilde{B}|\xi)$ such that $\operatorname{ht} \zeta = \operatorname{ht} \xi = h$. Then, since any defect group of \tilde{B} is of the form $D^n (n \in N)$, ξ extends to DNby Lemma 4. Since B covers b, D is an inertial defect group of B over b by Lemma 1. So, by Lemma 4 again, there is $\chi \in Irr(B|\xi)$ such that $ht \chi = ht \xi$. So $\xi \in \operatorname{Irr}_0(N, B, h)$, and the claim is proved.

Let $\mathcal{O}_G(\xi)$ be the set of G-conjugates of ξ . Since

$$\operatorname{Irr}_0(N, B, h) = \bigcup_{\xi \in S} \mathcal{O}_G(\xi) \quad \text{(disjoint)},$$

we get

(2)
$$\operatorname{Irr}_0(N, \widetilde{B}, h) = \bigcup_{\xi \in S} \operatorname{Irr}_0(N, \widetilde{B}, h) \cap \mathcal{O}_G(\xi)$$
 (disjoint).

Fix $\xi \in S$. Let b be the block of N containing ξ . We choose $\{D^{x_i}; 1 \leq i \leq m\}$ as in Theorem 6. We show

(3)
$$\operatorname{Irr}_{0}(N, \widetilde{B}, h) \cap \mathcal{O}_{G}(\xi) = \bigcup \mathcal{O}_{N_{G}(D)N}(\xi^{x_{i}^{-1}})$$
 (disjoint).

where *i* runs through those indices such that $\xi^{x_i^{-1}} \in \operatorname{Irr}_0(N, \widetilde{B}, h)$.

Assume that $\xi^{x_j^{-1}} = (\xi^{x_i^{-1}})^y$ for $y \in N_G(D)N$. Then $yx_j = x_it$ for some $t \in T_G(\xi)$. Write $y = zn, z \in N_G(D), n \in N$. Then $D^{x_it} = D^{nx_j} = D^{x_j(x_j^{-1}nx_j)}$. Since $x_j^{-1}nx_j \in N \leq T_G(\xi)$, we get i = j.

Next let $\eta \in \operatorname{Irr}_0(N, \widetilde{B}, h) \cap \mathcal{O}_G(\xi)$. Put $\eta = \xi^x, x \in G$. Since $\eta \in \operatorname{Irr}_0(N, \widetilde{B}, h)$, η is *D*-invariant by Lemma 4. So $D^{x^{-1}} \leq T_G(\xi)$. Further, \widetilde{B} covers b^x , so the block $\widetilde{B}^{x^{-1}}$ of $N_G(D^{x^{-1}})N$ covers *b*. Thus $D^{x^{-1}}$ is an inertial defect group of *B* over *b* by Lemma 1. Thus for some *i*, $D^{x^{-1}} = D^{x_i t}$, where $t \in T_G(\xi)$. Then $y := x_i tx \in N_G(D)$ and $\eta = \xi^{tx} = (\xi^{x_i^{-1}})^y$. Thus (3) is proved.

By Clifford's theorem and (3), the number of those $\zeta \in \operatorname{Irr}_0(\widetilde{B}, N, h)$ which lie over some *G*-conjugate of ξ equals $\sum_i k_0(\widetilde{B}|\xi^{x_i^{-1}})$. Since this equals $k_0(B|\xi)$ by Theorem 6, we obtain

$$k_0(\widetilde{B}, N, h) = \sum_{\xi \in S} k_0(B|\xi) \qquad (by (2))$$
$$= k_0(B, N, h) \qquad (by (1)).$$

This completes the proof.

Since (AM) is true for p-solvable groups ([D], [OW]), we obtain the following.

Corollary 8. Let \widetilde{B} be the Brauer correspondent of B in $N_G(D)N$. We assume G/N is p-solvable. Then $k_0(B, N, h) = k_0(\widetilde{B}, N, h)$ for any integer $h \ge 0$. In particular, $k_0(B, N) = k_0(\widetilde{B}, N)$.

2. Reduction of the conjecture (AM)

In this section we reduce the conjecture (AM) by using Theorem 7.

Let $F^*(G)$ be the generalized Fitting subgroup of G ([S, 6. 6. 10]); namely $F^*(G) = F(G)E(G)$, where F(G) is the Fitting subgroup of G and E(G) is the maximal semisimple normal subgroup of G.

Proposition 9. Let B be a block of G with defect group D. Suppose that (AM) is true for any block of any group H with |H : Z(H)| < |G : Z(G)|, but is not true for B. Then the following holds.

(i) For any non-central normal subgroup K of G, $G = N_G(D)K$.

(ii) For any normal subgroup K of G, B covers a G-invariant block of K. (iii) $G = N_G(D)F^*(G)$.

(We remark that if G is p-solvable, then it suffices to assume that (AM) is true only for any block of any p-solvable group H with |H:Z(H)| < |G:Z(G)|.)

Proof. Let B be the Brauer correspondent of B in $N_G(D)$. If G is abelian, (AM) is trivially true. So we assume G is non-abelian.

(i) Let K be a non-central normal subgroup of G. Put N = Z(G)K. Then, by assumption, (AM) is true for any block of any central extension of any subgroup of G/N. Thus by Theorem 7, $k_0(B, N, 0) = k_0(B_1, N, 0)$, where B_1 is the Brauer correspondent of B in $N_G(D)N$. We note that $k_0(B, N, 0) = k_0(B)$ and $k_0(B_1, N, 0) = k_0(B_1)$. Thus $k_0(B) = k_0(B_1)$. If $N_G(D)N < G$, then by assumption, $k_0(B_1) = k_0(\tilde{B})$. So $k_0(B) = k_0(\tilde{B})$, a contradiction. Thus we have $G = N_G(D)N = N_G(D)K$.

(ii) Let *b* be a block of *K* covered by *B*. The result is clear if $K \leq Z(G)$. So we assume *K* is non-central. Let $T = T_G(b)$. Let β be the Fong-Reynolds correspondent of *B* over *b* in *T*. We may assume *D* is a defect group of β . Since $G = N_G(D)K$ by (i), we have $DK \triangleleft G$. Let b_1 be a unique block of *DK* covering *b*. Then *D* is a defect group of b_1 by Lemma 2. Let \tilde{b}_1 be the Brauer correspondent of b_1 in $N_{DK}(D)$. Since β covers b_1 , there is a block $\tilde{\beta}$ of $N_T(D)$ such that $\tilde{\beta}$ covers \tilde{b}_1 and that $\tilde{\beta}^T = \beta$ by [HK]. Then $\tilde{\beta}$ has defect group *D*. So $\tilde{\beta}$ is the Brauer correspondent of β in $N_T(D)$.

Since $T = T_G(b_1)$, we have $N_T(D) = N_G(D) \cap T_G(\tilde{b}_1)$. So $\tilde{\beta}^{N_G(D)}$ is defined. Then $(\tilde{\beta}^{N_G(D)})^G = (\tilde{\beta}^T)^G = \beta^G = B$, and hence $\tilde{\beta}^{N_G(D)} = \tilde{B}$. Thus $\tilde{\beta}$ is the Fong-Reynolds correspondent of \tilde{B} over \tilde{b}_1 in $N_T(D)$. Thus $k_0(\tilde{\beta}) = k_0(\tilde{B})$. Also, $k_0(\beta) = k_0(B)$. If T < G, then, since $T \ge Z(G)$, we have $k_0(\beta) = k_0(\tilde{\beta})$ by assumption. So $k_0(B) = k_0(\tilde{B})$, a contradiction. Thus we have T = G. So b is G-invariant.

(iii) Since $C_G(F^*(G)) \leq F^*(G)$ ([S, 6. 6. 11]) and G is non-abelian, $F^*(G)$ is non-central. Thus $G = N_G(D)F^*(G)$ by (i).

Okuyama-Wajima's proof ([OW]) of the conjecture (AM) for *p*-solvable groups can be divided into two steps.

Step 1. To reduce the conjecture to the case of groups of p-length 1.

Step 2. To prove the conjecture for groups of p-length 1 by [OW, Theorem 2].

We give an alternative proof of Step 1 by using Proposition 9 (within the class of p-solvable groups).

Let G be a p-solvable group and let B be a p-block of G with defect group D. We argue by induction on |G : Z(G)|. Since G is p-solvable, E(G) is a p'-group. Thus by Proposition 9 (iii), we may assume $G = N_G(D)O_{p'}(G)$, since $O_p(G) \leq D$.

By Proposition 9 (ii) we may assume a block of $O_{p'}(G)$ covered by B is G-invariant. So D is a p-Sylow subgroup of G by Fong's theorem. Hence G has p-length 1.

Meiji-machi 2-27 Izumi Toki-shi Gifu 509-5146, Japan

References

- [D] E. C. Dade, A correspondence of characters, Proc. Symp. Pure Math. 37 (1980), 401–404.
- [HK] M. Harris and R. Knörr, Brauer correspondence for covering blocks of finite groups, Comm. Algebra 13 (1985), 1213–1218.
- [IN] I. M. Isaacs and G. Navarro, New refinements of the Mckay conjecture for arbitrary finite groups, Ann. of Math. 156 (2002), 333–344.
- [M1] M. Murai, Block induction, normal subgroups and characters of height zero, Osaka J. Math. 31 (1994), 9–25.
- [M2] _____, Normal subgroups and heights of characters, J. Math. Kyoto Univ. **36** (1996), 31–43.
- [M3] _____, Blocks of factor groups and heights of characters, Osaka J. Math. **35** (1998), 835–854.
- [NT] H. Nagao and Y. Tsushima, Representations of Finite Groups, Academic Press, New York, 1988.
- [OW] T. Okuyama and M. Wajima, Character correspondence for p-blocks of p-solvable groups, Osaka J. Math. 17 (1980), 801–806.
- [S] M. Suzuki, *Group Theory* II, Springer-Verlag, Berlin, 1986.