A remark on the Alperin-Mckay conjecture

By
Masafumi Murai

Introduction

Let G be a finite group and p a prime. For an irreducible character χ of G, let ht χ be the height of χ (defined in terms of the p-block of G to which χ belongs). Let N be a normal subgroup of G. We define ht ${ }_{N}(\chi)$, the N-height of χ, by

$$
\mathrm{ht}_{N}(\chi)=\mathrm{ht} \chi-\mathrm{ht} \xi,
$$

where ξ is an irreducible constituent of χ_{N}. Clearly ht ${ }_{N}(\chi)$ does not depend on the choice of ξ. In [M2] we have shown that it always holds that $\mathrm{ht}_{N}(\chi) \geqq 0$. In the present paper we are concerned with the number of irreducible characters χ with ht ${ }_{N}(\chi)=0$.

Let B be a block of G with defect group D. Let $k_{0}(B)$ be the number of irreducible characters in B of height 0 . We recall the Alperin-McKay conjecture:
(AM) If \widetilde{B} is the Brauer correspondent of B in $N_{G}(D)$, then $k_{0}(B)=k_{0}(\widetilde{B})$.
Let

$$
k_{0}(B, N)=\left|\left\{\chi \in \operatorname{Irr}(B) ; \mathrm{ht}_{N}(\chi)=0\right\}\right| .
$$

We consider the following analogue of (AM).
$(*)$ If \widetilde{B} is the Brauer correspondent of B in $N_{G}(D) N$, then $k_{0}(B, N)=$ $k_{0}(\widetilde{B}, N)$.

For an integer $h \geqq 0$, let

$$
\begin{aligned}
& \operatorname{Irr}_{0}(B, N, h)=\left\{\chi \in \operatorname{Irr}(B) ; \operatorname{ht}_{N}(\chi)=0, \text { ht } \chi=h\right\} \text { and } \\
& k_{0}(B, N, h)=\left|\operatorname{Irr}_{0}(B, N, h)\right| .
\end{aligned}
$$

In Section 1 we prove the following theorem (Theorem 7).

Theorem. Let D be a defect group of B and let \widetilde{B} be the Brauer correspondent of B in $N_{G}(D) N$. We assume that (AM) is true for any block of any
central extension of any subgroup of G / N. Then $k_{0}(B, N, h)=k_{0}(\widetilde{B}, N, h)$ for any integer $h \geqq 0$. In particular, $k_{0}(B, N)=k_{0}(\widetilde{B}, N)$.

Since $k_{0}(B,\{1\})=k_{0}(B)$, if $(*)$ holds for all G and N, then (AM) holds for all G. Theorem shows that the converse also holds. Thus (AM) and (*) are equivalent statements. Moreover, we can apply Theorem to reduce (to some extent) the conjecture (AM) itself. In particular, we obtain an alternative proof of part of Okuyama-Wajima's proof of (AM) for p-solvable groups, see Section 2. Recently Isaacs and Navarro [IN] proposed refinements of the McKay conjecture. The methods and results of the present paper could be adapted without much difficulty to one of their refinements, cf. Conjecture B of [IN]. The author is grateful to the referee for valuable suggestions.

1. Proof of Theorem

Let N be a normal subgroup of a group G. Let B be a block of G with defect group D. Let b be a block of N which is covered by B. Let $T_{G}(b)$ be the inertial group of b in G. We say that D is an inertial defect group of B over b if D is a defect group of the Fong-Reynolds correspondent of B over b in $T_{G}(b)$. For a subgroup H of G containing $N_{G}(D)$, there is a unique block \widetilde{B} of H with defect group D such that $\widetilde{B}^{G}=B$. We call \widetilde{B} the Brauer correspondent of B in H.

Lemma 1. Let \widetilde{B} be the Brauer correspondent of B in $N_{G}(D) N$. The following are equivalent.
(i) \widetilde{B} covers b.
(ii) D is an inertial defect group of B over b.

Proof. Put $T=T_{G}(b)$ and $H=N_{G}(D) N$.
(i) \Rightarrow (ii): Let β^{\prime} be the Fong-Reynolds correspondent of \widetilde{B} over b in $H \cap T$. We claim that D is a defect group of β^{\prime}. Indeed, let Q be a defect group of β^{\prime}. We have $Q=D^{x}$ for some $x \in H$. If we write $x=y z$ with $y \in N_{G}(D)$ and $z \in N$, then $Q=D^{z}$. So the claim follows.

Since $N_{T}(D) \leqq H \cap T, \beta:=\beta^{\prime T}$ is defined and has defect group D. Clearly β covers b, and $\beta^{G}=\left(\beta^{\prime T}\right)^{G}=\left(\beta^{H}\right)^{G}=\widetilde{B}^{G}=B$. So β is the Fong-Reynolds correspondent of B over b in T. Thus the result follows.
(ii) \Rightarrow (i): Let β be the Fong-Reynolds correspondent of B over b in T. So D is a defect group of β. Let $\widetilde{\beta}$ be the Brauer correspondent of β in $H \cap T$. Clearly $\widetilde{\beta}$ covers b. So $\widetilde{\beta}$ is the Fong-Reynolds correspondent of a block B^{\prime} of H over b in $H \cap T$. Then $B^{\prime G}=\left(\widetilde{\beta}^{H}\right)^{G}=\left(\widetilde{\beta}^{T}\right)^{G}=\beta^{G}=B$. Since B^{\prime} has defect group D, we get $B^{\prime}=\widetilde{B}$. So \widetilde{B} covers b. This completes the proof.

Lemma 2. (i) If D is an inertial defect group of B over b, then D is a defect group of a unique block of $D N$ covering b.
(ii) If b is G-invariant, then $N_{G}(D N)=N_{G}(D) N$.

Proof. (i) This is [M1, Lemma 2.2].
(ii) If b^{\prime} is the block of $D N$ as in (i), b^{\prime} is $N_{G}(D N)$-invariant. So the result follows from (i) and the Frattini argument.

For an irreducible character ξ in b, put

$$
\begin{aligned}
& \operatorname{Irr}(B \mid \xi)=\left\{\chi \in \operatorname{Irr}(B) ;\left(\chi_{N}, \xi\right)_{N} \neq 0\right\} \\
& \operatorname{Irr}_{0}(B \mid \xi)=\left\{\chi \in \operatorname{Irr}(B \mid \xi) ; \operatorname{ht}_{N}(\chi)=0\right\}, \quad \text { and } \\
& k_{0}(B \mid \xi)=\left|\operatorname{Irr}_{0}(B \mid \xi)\right|
\end{aligned}
$$

Let $T_{G}(\xi)$ be the inertial group of ξ in G.
Lemma 3. Let ξ be an irreducible character in b. Let D be a defect group of B with $D \leqq T_{G}(\xi)$. The following are equivalent.
(i) D is an inertial defect group of B over b.
(ii) There is a block β of $T_{G}(\xi)$ with the following properties:
β has defect group D, β covers b, and $\beta^{G}=B$.
Proof. (i) \Rightarrow (ii): Let $H=N_{G}(D) N$ and $T=T_{G}(\xi)$. Let \widetilde{B} be the Brauer correspondent of B in H. By Lemma $1, \widetilde{B}$ covers b. Take $\zeta \in \operatorname{Irr}(\widetilde{B} \mid \xi)$ and let η be the Clifford correspondent of ζ over ξ in $H \cap T$. Let β^{\prime} be the block of $H \cap T$ containing η. Then, since $\eta^{H}=\zeta$, we have $\beta^{H}=\widetilde{B}$. Since β^{\prime} covers a unique block of $D N$ covering b, there is a defect group Q of β^{\prime} with $Q \geqq D$ by Lemma 2 . Since $\beta^{\prime G}=\left(\beta^{\prime H}\right)^{G}=\widetilde{B}^{G}=B$, we have $Q \leqq{ }_{G} D$. Thus $Q=D$. Then, since $N_{T}(D) \leqq H \cap T, \beta:=\beta^{T}$ is defined and has defect group D. Clearly β covers b. Since $\beta^{G}=\beta^{G}=B$, the result follows.
(ii) $\Rightarrow(\mathrm{i})$: We see $\beta^{T_{G}(b)}$ is defined and $\left(\beta^{T_{G}(b)}\right)^{G}=B$. So D is a defect group of $\beta^{T_{G}(b)}$, which is the Fong-Reynolds correspondent of B over b in $T_{G}(b)$. This completes the proof.

Lemma 4. Let ξ be an irreducible character in b. The following are equivalent.
(i) There is $\chi \in \operatorname{Irr}(B \mid \xi)$ such that ht $\chi=\mathrm{ht} \xi$.
(ii) For an inertial defect group $D^{x}(x \in G)$ of B over b, ξ extends to $D^{x} N$.

Proof. This follows from [M2, Theorem 2.3].
We need the following.
Lemma 5. Let Z be a central subgroup of G. Let λ be a linear character of Z lying in a block of Z covered by B. Let \widetilde{B} be the Brauer correspondent of B in $N_{G}(D)$. Assume $(A M)$ is true for any block of G / W with $1 \leqq W \leqq Z$. Then $k_{0}(B \mid \lambda)=k_{0}(\widetilde{B} \mid \lambda)$.

Proof. We argue by induction on $|Z|$. If Z is a p^{\prime}-group, then, $k_{0}(B \mid \lambda)=$ $k_{0}(B)$ and $k_{0}(\widetilde{B} \mid \lambda)=k_{0}(\widetilde{B})$. So the result follows. Thus we may assume $|Z|$ is divisible by p. Assume $W:=\operatorname{Ker}(\lambda) \neq 1$. Let β and $\widetilde{\beta}$ be the blocks of G / W and $N_{G}(D) / W$ dominated by B and \widetilde{B}, respectively. Clearly $D W / W$
is a common defect group of β and $\widetilde{\beta}$, and $\widetilde{\beta}$ is the Brauer correspondent of β in $N_{G / W}(D W / W)$. We see that $k_{0}(B \mid \lambda)=k_{0}(\beta \mid \lambda)$ and $k_{0}(\widetilde{B} \mid \lambda)=k_{0}(\widetilde{\beta} \mid \lambda)$. Hence the result follows by induction. So we may assume that λ is faithful. Put $\lambda=\mu \times \nu$, where μ and ν are the p-part and p^{\prime}-part of λ, respectively. Put $W=\operatorname{Ker}\left(\mu^{p} \times \nu\right)$. Then $|W|=p$. Let β and $\widetilde{\beta}$ be the blocks of G / W and $N_{G}(D) / W$ dominated by B and \widetilde{B}, respectively. For any integer $i, \mu^{p i} \times \nu$ is regarded as a character of Z / W. Then, for the same reason as above, we have

$$
k_{0}\left(\beta \mid \mu^{p i} \times \nu\right)=k_{0}\left(\widetilde{\beta} \mid \mu^{p i} \times \nu\right)
$$

Clearly

$$
k_{0}\left(B \mid \mu^{p i} \times \nu\right)=k_{0}\left(\beta \mid \mu^{p i} \times \nu\right)
$$

and

$$
k_{0}\left(\widetilde{B} \mid \mu^{p i} \times \nu\right)=k_{0}\left(\widetilde{\beta} \mid \mu^{p i} \times \nu\right)
$$

So

$$
k_{0}\left(B \mid \mu^{p i} \times \nu\right)=k_{0}\left(\widetilde{B} \mid \mu^{p i} \times \nu\right)
$$

for any integer i. Let $p^{n}(n \geqq 1)$ be the order of a p-Sylow subgroup of Z. Then we have

$$
k_{0}(B)=\sum_{i} k_{0}\left(B \mid \mu^{p i} \times \nu\right)+\sum_{j} k_{0}\left(B \mid \mu^{j} \times \nu\right)
$$

where i runs through integers modulo p^{n-1} and j runs through p^{\prime}-integers modulo p^{n}. Since all $\mu^{j} \times \nu$ are p-conjugate to $\lambda, k_{0}\left(B \mid \mu^{j} \times \nu\right)=k_{0}(B \mid \lambda)$ (for the definition of " p-conjugate", see [NT, p. 335]). Thus

$$
k_{0}(B)=\sum_{i} k_{0}\left(B \mid \mu^{p i} \times \nu\right)+\left(p^{n}-p^{n-1}\right) k_{0}(B \mid \lambda)
$$

Similarly

$$
k_{0}(\widetilde{B})=\sum_{i} k_{0}\left(\widetilde{B} \mid \mu^{p i} \times \nu\right)+\left(p^{n}-p^{n-1}\right) k_{0}(\widetilde{B} \mid \lambda)
$$

Since $k_{0}(B)=k_{0}(\widetilde{B})$, we then get $k_{0}(B \mid \lambda)=k_{0}(\widetilde{B} \mid \lambda)$.
This completes the proof.
Let ξ be an irreducible character in b. We choose a set of representatives $\left\{D^{x_{i}} ; 1 \leqq i \leqq m\right\}\left(x_{i} \in G\right)$ of $T_{G}(\xi)$-conjugacy classes of inertial defect groups $D^{x}(x \in G)$ of B over b with $D^{x} \leqq T_{G}(\xi)$ (possibly $m=0$).

Theorem 6. Let \widetilde{B} be the Brauer correspondent of B in $N_{G}(D) N$. We assume that (AM) is true for any block of any central extension of $T_{G}(\xi) / N$. Then

$$
k_{0}(B \mid \xi)=\sum_{i=1}^{m} k_{0}\left(\widetilde{B} \mid \xi^{x_{i}^{-1}}\right)
$$

Proof. The right hand side makes sense. Indeed, since the block $\widetilde{B}^{x_{i}}$ of $N_{G}\left(D^{x_{i}}\right) N$ covers b by Lemma 1, \widetilde{B} covers $b^{x_{i}-1}$.

We first consider the case where $m=0$. We must show $k_{0}(B \mid \xi)=0$. If $k_{0}(B \mid \xi)>0$, then, for some inertial defect group $D^{x}(x \in G)$ of B over b, ξ extends to $D^{x} N$ by Lemma 4. So $D^{x} \leqq T_{G}(\xi)$, a contradiction. Hence $k_{0}(B \mid \xi)=0$. In the following we assume $m>0$.

We divide the proof into two cases :
Case I. ξ is G-invariant; \quad Case II. The general case.
Case I. $\quad \xi$ is G-invariant.
In this case $m=1$. We must show $k_{0}(B \mid \xi)=k_{0}(\widetilde{B} \mid \xi)$. There exists a (finite) central extension of G,

$$
1 \longrightarrow Z \longrightarrow \widehat{G} \xrightarrow{f} G \longrightarrow 1
$$

with the following properties: $f^{-1}(N)=Z \times N_{1}$, for a normal subgroup N_{1} of $\widehat{G} ; \xi$ extends to \widehat{G}. (Here we identify N with N_{1} via f.)

We fix an extension $\widehat{\xi}$ of ξ to \widehat{G}. Let \widehat{B} be the inflation of B to \widehat{G}. Since Z is central in \widehat{G}, we may choose a defect group \widehat{D} of \widehat{B} so that $\widehat{D} Z / Z=D$. Let λ be an irreducible constituent of $\widehat{\xi}_{Z}$. We regard λ as a character of $Z N / N$ in a natural way. For any $\chi \in \operatorname{Irr}_{0}(B \mid \xi)$, let $\widehat{\chi}$ be the inflation of χ to \widehat{G}. Let $\left\{B_{j} ; 1 \leqq j \leqq s\right\}$ be the set of blocks of \widehat{G} / N which are $\widehat{\xi}$-dominated by \widehat{B} and have defect group $\widehat{D} N / N$, cf. [M2] for " $\widehat{\xi}$-domination".

For each $\chi \in \operatorname{Irr}_{0}(B \mid \xi)$, there is a unique irreducible character $\theta(\chi)$ of \widehat{G} / N such that $\widehat{\chi}=\widehat{\xi} \otimes \theta(\chi)$. Then if B^{\prime} is the block of \widehat{G} / N containing $\theta(\chi)$, we have

$$
\mathrm{ht} \chi=\mathrm{ht} \xi+\mathrm{ht} \theta(\chi)+d(\widehat{B})-d(b)-d\left(B^{\prime}\right) .
$$

Since a defect group of B^{\prime} is contained in $\widehat{D} N / N([$ M2, Corollary 1.5]), we see that ht $\theta(\chi)=0$ and that $\widehat{D} N / N$ is a defect group of B^{\prime}. So $B^{\prime}=B_{j}$ for some j. Further, λ^{-1} is a constituent of $\theta(\chi)_{Z N / N}$. Thus $\theta(\chi) \in \operatorname{Irr}_{0}\left(B_{j} \mid \lambda^{-1}\right)$.

Conversely, let b_{1} be the block of $Z=Z N / N$ containing λ^{-1}. Then B_{j} covers b_{1} for any j. Indeed, let $\theta \in \operatorname{Irr}\left(B_{j}\right)$ and let μ be an irreducible constituent of θ_{Z}. Then, since $\widehat{\xi} \otimes \theta \in \operatorname{Irr}(\widehat{B})$ and \widehat{B} covers the the principal block of Z, a p-complement of Z is contained in $\operatorname{Ker}(\lambda \mu)$. This shows B_{j} covers b_{1}. For any j and any $\theta \in \operatorname{Irr}_{0}\left(B_{j} \mid \lambda^{-1}\right)$ if we set $\zeta=\widehat{\xi} \otimes \theta$, then $\zeta=\widehat{\chi}$ for some $\chi \in \operatorname{Irr}_{0}(B \mid \xi)$ and then $\theta=\theta(\chi)$. Thus we get

$$
\begin{equation*}
k_{0}(B \mid \xi)=\sum_{j} k_{0}\left(B_{j} \mid \lambda^{-1}\right) \tag{1}
\end{equation*}
$$

Let $\widehat{H}=f^{-1}\left(N_{G}(D) N\right) \leqq \widehat{G}$. Let β be the inflation of \widetilde{B} to \widehat{H}. We show

$$
\begin{equation*}
\widehat{H}=N_{\widehat{G}}(\widehat{D}) N \tag{2}
\end{equation*}
$$

(3) β has defect group \widehat{D} and is the Brauer correspondent of \widehat{B} in \widehat{H}.

To prove (2), since $f^{-1}\left(N_{G}(D) N\right)=f^{-1}\left(N_{G}(D)\right) N$, it suffices to show $f^{-1}\left(N_{G}(D)\right)=N_{\widehat{G}}(\widehat{D})$. Clearly $f\left(N_{\widehat{G}}(\widehat{D})\right) \leqq N_{G}(D)$. If $f(x) \in N_{G}(D)$ for
$x \in \widehat{G}$, then $(\widehat{D} Z)^{x}=\widehat{D} Z$. Considering p-Sylow subgroups of both sides, we get $x \in N_{\widehat{G}}(\widehat{D})$ and the result follows.

We may choose a defect group Q of β such that $Q Z / Z=D$. So $Q Z=\widehat{D} Z$. Considering p-Sylow subgroups of both sides, we get $Q=\widehat{D}$. Since $\widetilde{B}^{G}=B$, we get $\beta^{\widehat{G}}=\widehat{B}$. So (3) follows.

Let $\left\{\beta_{k} ; 1 \leqq k \leqq t\right\}$ be the set of blocks of \widehat{H} / N which are $\widehat{\xi}_{\widehat{H}}$-dominated by β. Then the same argument as in the above shows
$(1)^{\prime} \quad k_{0}(\widetilde{B} \mid \xi)=\sum_{k} k_{0}\left(\beta_{k} \mid \lambda^{-1}\right)$.
Now, from the proof of Corollary 2.5 of [M3], (2) and (3) yield that $s=t$ and, after renumbering, β_{j} is the Brauer correspondent of B_{j} in \widehat{H} / N for each $j(1 \leqq j \leqq s)$.

We have $N_{\widehat{G} / N}(\widehat{D} N / N)=\widehat{H} / N$ by (2) and Lemma 2. Since $(\widehat{G} / N) /(Z N /$ $N) \cong G / N$, by assumption and Lemma 5 , we get $k_{0}\left(B_{j} \mid \lambda^{-1}\right)=k_{0}\left(\beta_{j} \mid \lambda^{-1}\right)$ for each $j(1 \leqq j \leqq s)$. Therefore, (1) and (1)' yield $k_{0}(B \mid \xi)=k_{0}(\widetilde{B} \mid \xi)$. This completes the proof of Case I.

Case II. The general case.

Put $T=T_{G}(\xi)$. For each $i(1 \leqq i \leqq m)$, let \mathcal{B}_{i} be the set of blocks β of T with the following properties:
β has defect group $D^{x_{i}}, \beta$ covers b, and $\beta^{G}=B$,
cf. Lemma 3. Let $\chi \in \operatorname{Irr}(B \mid \xi)$ and let ζ be the Clifford correspondent of χ over ξ in T. We have

$$
\text { ht } \chi=\mathrm{ht} \zeta+d(B)-d\left(B^{\prime}\right)
$$

where B^{\prime} is the block of T containing ζ. Since ht $\zeta \geqq$ ht ξ by [M2, Lemma 2. 2] and $B^{\prime G}=B$, we see that ht $\chi=\mathrm{ht} \xi$ if and only if $\mathrm{ht} \zeta=\mathrm{ht} \xi$ and B^{\prime} has a defect group of the form $D^{x}(x \in G)$. We note that D^{x} is then an inertial defect group of B over b by Lemma 3 . Thus we get

$$
\begin{equation*}
k_{0}(B \mid \xi)=\sum_{i} \sum_{\beta \in \mathcal{B}_{i}} k_{0}(\beta \mid \xi) . \tag{4}
\end{equation*}
$$

Fix $i(1 \leqq i \leqq m)$. Put $D_{i}=D^{x_{i}}$ and $H_{i}=N_{G}\left(D_{i}\right) N$. Let \widetilde{B}_{i} be the Brauer correspondent of B in H_{i}. By Lemma $1, \widetilde{B}_{i}$ covers b. Further, from the structure of H_{i}, we see that D_{i} is an inertial defect group of \widetilde{B}_{i} over b. Clearly $D_{i} \leqq H_{i} \cap T$. Let $\widetilde{\mathcal{B}}_{i}$ be the set of blocks β^{\prime} of $H_{i} \cap T$ with the following properties:

$$
\beta^{\prime} \text { has defect group } D_{i}, \beta^{\prime} \text { covers } b \text {, and } \beta^{\prime H_{i}}=\widetilde{B}_{i} \text {. }
$$

We see that any H_{i}-conjugate of D_{i} is $H_{i} \cap T$-conjugate to D_{i}. So by the argument above, we get

$$
\begin{equation*}
k_{0}\left(\widetilde{B}_{i} \mid \xi\right)=\sum_{\beta^{\prime} \in \widetilde{\mathcal{B}}_{i}} k_{0}\left(\beta^{\prime} \mid \xi\right) \tag{4}
\end{equation*}
$$

For each $\beta \in \mathcal{B}_{i}$, let $\widetilde{\beta}$ be the Brauer correspondent of β in $N_{T}\left(D_{i}\right) N=$
$H_{i} \cap T$. We claim that the map sending β to $\widetilde{\beta}$ is a bijection from \mathcal{B}_{i} to $\widetilde{\mathcal{B}_{i}}$.
Let $\beta \in \mathcal{B}_{i}$. Since $\widetilde{\beta}$ covers $b, \widetilde{\beta}^{H_{i}}$ is defined. We have $\left(\widetilde{\beta}^{H_{i}}\right)^{G}=\left(\widetilde{\beta}^{T}\right)^{G}=$ $\widetilde{\beta}^{G}=B$. This shows that $\widetilde{\beta}^{H_{i}}$ has defect group D_{i}, and we see $\widetilde{\beta}^{H_{i}}=\widetilde{B}_{i}$. So $\widetilde{\beta} \in \widetilde{\mathcal{B}}_{i}$.

Conversely, let $\beta^{\prime} \in \widetilde{\mathcal{B}}_{i}$. Then β^{\prime} is the Brauer correspondent of a block β of T in $H_{i} \cap T$. Clearly β covers b. So β^{G} is defined and $\beta^{G}=\left(\beta^{T}\right)^{G}=\widetilde{B}_{i}{ }^{G}=B$. Thus we get $\beta \in \mathcal{B}_{i}$ and $\beta^{\prime}=\widetilde{\beta}$. The claim follows.

By Case I, we have $k_{0}(\beta \mid \xi)=k_{0}(\widetilde{\beta} \mid \xi)$ for any i and any $\beta \in \mathcal{B}_{i}$. Thus we get

$$
\begin{aligned}
k_{0}(B \mid \xi) & =\sum_{i} \sum_{\beta \in \mathcal{B}_{i}} k_{0}(\beta \mid \xi) \quad(\text { by }(4)) \\
& =\sum_{i} \sum_{\widetilde{\beta} \in \widetilde{\mathcal{B}}_{i}} k_{0}(\widetilde{\beta} \mid \xi) \\
& =\sum_{i} k_{0}\left(\widetilde{B}_{i} \mid \xi\right) \quad\left(\text { by }(4)^{\prime}\right) \\
& =\sum_{i} k_{0}\left(\widetilde{B} \mid \xi^{x_{i}-1}\right) \quad\left(\text { since } \widetilde{B}_{i}=\widetilde{B}^{x_{i}} \text { for each } i\right) .
\end{aligned}
$$

This completes the proof.

Theorem 7. Let \widetilde{B} be the Brauer correspondent of B in $N_{G}(D) N$. We assume that (AM) is true for any block of any central extension of any subgroup of G / N. Then $k_{0}(B, N, h)=k_{0}(\widetilde{B}, N, h)$ for any integer $h \geqq 0$. In particular, $k_{0}(B, N)=k_{0}(\widetilde{B}, N)$.

Proof. Put

$$
\operatorname{Irr}_{0}(N, B, h)=\left\{\xi \in \operatorname{Irr}(N) ; \operatorname{ht}_{N}(\chi)=0 \text { for some } \chi \in \operatorname{Irr}(B \mid \xi), \text { ht } \xi=h\right\}
$$

Let S be a set of of representatives of G-conjugacy classes of $\operatorname{Irr}_{0}(N, B, h)$. So

$$
\begin{equation*}
k_{0}(B, N, h)=\sum_{\xi \in S} k_{0}(B \mid \xi) \tag{1}
\end{equation*}
$$

by Clifford's theorem.
We claim $\operatorname{Irr}_{0}(N, \widetilde{B}, h) \subseteq \operatorname{Irr}_{0}(N, B, h)$. Indeed, let $\xi \in \operatorname{Irr}_{0}(N, \widetilde{B}, h)$. Let b be the block of N containing ξ. There is $\zeta \in \operatorname{Irr}(\widetilde{B} \mid \xi)$ such that $\mathrm{ht} \zeta=\mathrm{ht} \xi=h$. Then, since any defect group of \widetilde{B} is of the form $D^{n}(n \in N), \xi$ extends to $D N$ by Lemma 4. Since \widetilde{B} covers b, D is an inertial defect group of B over b by Lemma 1. So, by Lemma 4 again, there is $\chi \in \operatorname{Irr}(B \mid \xi)$ such that ht $\chi=\mathrm{ht} \xi$. So $\xi \in \operatorname{Irr}_{0}(N, B, h)$, and the claim is proved.

Let $\mathcal{O}_{G}(\xi)$ be the set of G-conjugates of ξ. Since

$$
\operatorname{Irr}_{0}(N, B, h)=\bigcup_{\xi \in S} \mathcal{O}_{G}(\xi) \quad \text { (disjoint) }
$$

we get

$$
\begin{equation*}
\operatorname{Irr}_{0}(N, \widetilde{B}, h)=\bigcup_{\xi \in S} \operatorname{Irr}_{0}(N, \widetilde{B}, h) \cap \mathcal{O}_{G}(\xi) \quad \text { (disjoint) } \tag{2}
\end{equation*}
$$

Fix $\xi \in S$. Let b be the block of N containing ξ. We choose $\left\{D^{x_{i}} ; 1 \leqq i \leqq\right.$ $m\}$ as in Theorem 6. We show

$$
\begin{equation*}
\operatorname{Irr}_{0}(N, \widetilde{B}, h) \cap \mathcal{O}_{G}(\xi)=\bigcup \mathcal{O}_{N_{G}(D) N}\left(\xi^{x_{i}^{-1}}\right) \quad \text { (disjoint) } \tag{3}
\end{equation*}
$$

where i runs through those indices such that $\xi^{x_{i}{ }^{-1}} \in \operatorname{Irr}_{0}(N, \widetilde{B}, h)$.
Assume that $\xi^{x_{j}^{-1}}=\left(\xi^{x_{i}^{-1}}\right)^{y}$ for $y \in N_{G}(D) N$. Then $y x_{j}=x_{i} t$ for some $t \in T_{G}(\xi)$. Write $y=z n, z \in N_{G}(D), n \in N$. Then $D^{x_{i} t}=D^{n x_{j}}=$ $D^{x_{j}\left(x_{j}^{-1} n x_{j}\right)}$. Since $x_{j}^{-1} n x_{j} \in N \leqq T_{G}(\xi)$, we get $i=j$.

Next let $\eta \in \operatorname{Irr}_{0}(N, \widetilde{B}, h) \cap \mathcal{O}_{G}(\xi)$. Put $\eta=\xi^{x}, x \in G$. Since $\eta \in$ $\operatorname{Irr}_{0}(N, \widetilde{B}, h), \eta$ is D-invariant by Lemma 4. So $D^{x^{-1}} \leqq T_{G}(\xi)$. Further, \widetilde{B} covers b^{x}, so the block $\widetilde{B}^{x^{-1}}$ of $N_{G}\left(D^{x^{-1}}\right) N$ covers b. Thus $D^{x^{-1}}$ is an inertial defect group of B over b by Lemma 1. Thus for some $i, D^{x^{-1}}=D^{x_{i} t}$, where $t \in T_{G}(\xi)$. Then $y:=x_{i} t x \in N_{G}(D)$ and $\eta=\xi^{t x}=\left(\xi^{x_{i}^{-1}}\right)^{y}$. Thus (3) is proved.

By Clifford's theorem and (3), the number of those $\zeta \in \operatorname{Irr}_{0}(\widetilde{B}, N, h)$ which lie over some G-conjugate of ξ equals $\sum_{i} k_{0}\left(\widetilde{B} \mid \xi^{x_{i}^{-1}}\right)$. Since this equals $k_{0}(B \mid \xi)$ by Theorem 6 , we obtain

$$
\begin{aligned}
k_{0}(\widetilde{B}, N, h) & =\sum_{\xi \in S} k_{0}(B \mid \xi) \quad(\text { by }(2)) \\
& =k_{0}(B, N, h) \quad(\text { by }(1)) .
\end{aligned}
$$

This completes the proof.
Since (AM) is true for p-solvable groups ([D], [OW]), we obtain the following.

Corollary 8. Let \widetilde{B} be the Brauer correspondent of B in $N_{G}(D) N$. We assume G / N is p-solvable. Then $k_{0}(B, N, h)=k_{0}(\widetilde{B}, N, h)$ for any integer $h \geqq 0$. In particular, $k_{0}(B, N)=k_{0}(\widetilde{B}, N)$.

2. Reduction of the conjecture (AM)

In this section we reduce the conjecture (AM) by using Theorem 7.
Let $F^{*}(G)$ be the generalized Fitting subgroup of G ([S, 6. 6. 10]); namely $F^{*}(G)=F(G) E(G)$, where $F(G)$ is the Fitting subgroup of G and $E(G)$ is the maximal semisimple normal subgroup of G.

Proposition 9. Let B be a block of G with defect group D. Suppose that (AM) is true for any block of any group H with $|H: Z(H)|<|G: Z(G)|$, but is not true for B. Then the following holds.
(i) For any non-central normal subgroup K of $G, G=N_{G}(D) K$.
(ii) For any normal subgroup K of G, B covers a G-invariant block of K.
(iii) $G=N_{G}(D) F^{*}(G)$.
(We remark that if G is p-solvable, then it suffices to assume that $(A M)$ is true only for any block of any p-solvable group H with $|H: Z(H)|<|G: Z(G)|$.)

Proof. Let \widetilde{B} be the Brauer correspondent of B in $N_{G}(D)$. If G is abelian, (AM) is trivially true. So we assume G is non-abelian.
(i) Let K be a non-central normal subgroup of G. Put $N=Z(G) K$. Then, by assumption, (AM) is true for any block of any central extension of any subgroup of G / N. Thus by Theorem $7, k_{0}(B, N, 0)=k_{0}\left(B_{1}, N, 0\right)$, where B_{1} is the Brauer correspondent of B in $N_{G}(D) N$. We note that $k_{0}(B, N, 0)=k_{0}(B)$ and $k_{0}\left(B_{1}, N, 0\right)=k_{0}\left(B_{1}\right)$. Thus $k_{0}(B)=k_{0}\left(B_{1}\right)$. If $N_{G}(D) N<G$, then by assumption, $k_{0}\left(B_{1}\right)=k_{0}(\widetilde{B})$. So $k_{0}(B)=k_{0}(\widetilde{B})$, a contradiction. Thus we have $G=N_{G}(D) N=N_{G}(D) K$.
(ii) Let b be a block of K covered by B. The result is clear if $K \leqq Z(G)$. So we assume K is non-central. Let $T=T_{G}(b)$. Let β be the Fong-Reynolds correspondent of B over b in T. We may assume D is a defect group of β. Since $G=N_{G}(D) K$ by (i), we have $D K \triangleleft G$. Let b_{1} be a unique block of $D K$ covering b. Then D is a defect group of b_{1} by Lemma 2. Let \widetilde{b}_{1} be the Brauer correspondent of b_{1} in $N_{D K}(D)$. Since β covers b_{1}, there is a block $\widetilde{\beta}$ of $N_{T}(D)$ such that $\widetilde{\beta}$ covers \widetilde{b}_{1} and that $\widetilde{\beta}^{T}=\beta$ by $[\mathrm{HK}]$. Then $\widetilde{\beta}$ has defect group D. So $\widetilde{\beta}$ is the Brauer correspondent of β in $N_{T}(D)$.

Since $T=T_{G}\left(b_{1}\right)$, we have $N_{T}(D)=N_{G}(D) \cap T_{G}\left(\widetilde{b}_{1}\right)$. So $\widetilde{\beta}^{N_{G}(D)}$ is defined. Then $\left(\widetilde{\beta}^{N_{G}(D)}\right)^{G}=\left(\widetilde{\beta}^{T}\right)^{G}=\beta^{G}=B$, and hence $\widetilde{\beta}^{N_{G}(D)}=\widetilde{B}$. Thus $\widetilde{\beta}$ is the Fong-Reynolds correspondent of \widetilde{B} over \widetilde{b}_{1} in $N_{T}(D)$. Thus $k_{0}(\widetilde{\beta})=k_{0}(\widetilde{B})$. Also, $k_{0}(\beta)=k_{0}(B)$. If $T<G$, then, since $T \geqq Z(G)$, we have $k_{0}(\beta)=k_{0}(\widetilde{\beta})$ by assumption. So $k_{0}(B)=k_{0}(\widetilde{B})$, a contradiction. Thus we have $T=G$. So b is G-invariant.
(iii) Since $C_{G}\left(F^{*}(G)\right) \leqq F^{*}(G)\left([\mathrm{S}, 6.6\right.$. 11] $)$ and G is non-abelian, $F^{*}(G)$ is non-central. Thus $G=N_{G}(D) F^{*}(G)$ by (i).

Okuyama-Wajima's proof ([OW]) of the conjecture (AM) for p-solvable groups can be divided into two steps.

Step 1. To reduce the conjecture to the case of groups of p-length 1.
Step 2. To prove the conjecture for groups of p-length 1 by [OW, Theorem 2].

We give an alternative proof of Step 1 by using Proposition 9 (within the class of p-solvable groups).

Let G be a p-solvable group and let B be a p-block of G with defect group D. We argue by induction on $|G: Z(G)|$. Since G is p-solvable, $E(G)$ is a p^{\prime} group. Thus by Proposition 9 (iii), we may assume $G=N_{G}(D) O_{p^{\prime}}(G)$, since $O_{p}(G) \leqq D$.

By Proposition 9 (ii) we may assume a block of $O_{p^{\prime}}(G)$ covered by B is G-invariant. So D is a p-Sylow subgroup of G by Fong's theorem. Hence G has p-length 1.

Meiji-machi 2-27
Izumi Toki-shi
Gifu 509-5146, Japan

References

[D] E. C. Dade, A correspondence of characters, Proc. Symp. Pure Math. 37 (1980), 401-404.
[HK] M. Harris and R. Knörr, Brauer correspondence for covering blocks of finite groups, Comm. Algebra 13 (1985), 1213-1218.
[IN] I. M. Isaacs and G. Navarro, New refinements of the Mckay conjecture for arbitrary finite groups, Ann. of Math. 156 (2002), 333-344.
[M1] M. Murai, Block induction, normal subgroups and characters of height zero, Osaka J. Math. 31 (1994), 9-25.
[M2] , Normal subgroups and heights of characters, J. Math. Kyoto Univ. 36 (1996), 31-43.
[M3] , Blocks of factor groups and heights of characters, Osaka J. Math. 35 (1998), 835-854.
[NT] H. Nagao and Y. Tsushima, Representations of Finite Groups, Academic Press, New York, 1988.
[OW] T. Okuyama and M. Wajima, Character correspondence for p-blocks of p-solvable groups, Osaka J. Math. 17 (1980), 801-806.
[S] M. Suzuki, Group Theory II, Springer-Verlag, Berlin, 1986.

