An exceptional example of twistor spaces of four-dimensional almost Hermitian manifolds

By
Yoshinari Inoue

Abstract

A four-dimensional non-integrable almost Hermitian manifold whose second twistor space is a complex manifold is given.

Introduction

It is known that the integrable twistor space of almost Hermitian manifolds defined by O'Brian and Rawnsley in [4] are very restrictive in higher dimensions. Namely, if the k-th twistor space of an n-dimensional almost Hermitian manifold X is integrable, X should be a Bochner-Kähler manifold, for general pair (n, k).

In the case $n=3$, the six-sphere with the well-known G_{2}-invariant nonintegrable almost complex structure gives an exceptional example. But, in the case $n=4$, the existence of an exceptional example is an open problem. Note that the proof of the non-existence theorem of four-dimensional non-integrable example in [4] has a mistake. (See [3] Theorem 1.4, for detail.)

In this paper, we give a four-dimensional non-integrable almost Hermitian manifold whose second twistor space is integrable. The base space is the product of the six-sphere S^{6} with the standard G_{2}-invariant non-integrable almost Hermitian structure and the hyperbolic plane \mathbb{H} with the standard Kähler structure. Since $S^{6} \times \mathbb{H}$ is conformally flat, there exists an immersion to S^{8} called the developing map. This is shown to be an embedding and the image is $S^{8} \backslash S^{1}$. In this paper, we first construct an almost complex structure on $S^{8} \backslash S^{1}$ and prove that its second twistor space is integrable. Then, by using that its automorphism group is isomorphic to $G_{2} \times \operatorname{PSL}(2, \mathbb{R})$, we conclude that the developing map is an isomorphism between almost complex manifolds.

1. Construction of an almost complex structure on $S^{8} \backslash S^{1}$

In this section, we construct an almost complex structure on the eightdimensional Euclidean space excluding a closed circle, which can be extended to a point at infinity.

[^0]Let $Z=\mathrm{SO}(8) / \mathrm{U}(4)$ be a parameter space of complex structures on the real vector space \mathbb{R}^{8} compatible with the standard orientation and the metric. The space Z is naturally embedded to $\mathbf{P}\left(\Delta^{+}\right)$as the space of projectivized pure spinors, where Δ^{+}is the positive half spin module.

We use notation given in [1], [2]. Let $\left(\theta_{I}\right)_{I \subset\{1,2,3,4\}}$ be a basis of the spin module Δ and Z^{I} be the corresponding homogeneous coordinate on $\mathbf{P}(\Delta)$. Hence ($Z^{\emptyset}, Z^{12}, Z^{13}, Z^{14}, Z^{23}, Z^{24}, Z^{34}, Z^{1234}$) is a system of homogeneous coordinates on $\mathbf{P}\left(\Delta^{+}\right)$. The space of projectivized pure spinors Z is defined by an equation

$$
\begin{equation*}
Z^{\emptyset} Z^{1234}-Z^{12} Z^{34}+Z^{13} Z^{24}-Z^{14} Z^{23}=0 \tag{1.1}
\end{equation*}
$$

Let $\left(x^{1}, \ldots, x^{8}\right)$ be the standard coordinates on the Euclidean space \mathbb{R}^{8}. For simplicity we introduce complex valued functions $\xi^{i}=x^{i}+\sqrt{-1} x^{4+i}, i=$ $1,2,3,4$. Note that these will not be holomorphic functions, since the almost complex structure we construct is not the standard one.

Now, we define an almost complex structure on $\mathbb{R}^{8} \backslash S^{1}$ by constructing a section to the trivial Z bundle. Put

$$
\begin{aligned}
& \alpha(\xi)=\theta_{\emptyset}+\sqrt{-1}\left(\bar{\xi}^{1} \theta_{23}-\bar{\xi}^{2} \theta_{13}+\bar{\xi}^{3} \theta_{12}+\xi^{4} \theta_{1234}\right) \\
& \beta(\xi)=\theta_{1234}+\sqrt{-1}\left(\xi^{1} \theta_{14}+\xi^{2} \theta_{24}+\xi^{3} \theta_{34}-\bar{\xi}^{4} \theta_{\emptyset}\right)
\end{aligned}
$$

By (1.1), the spinor of type $\mu \alpha(\xi)+\lambda \beta(\xi)$ is pure or zero if and only if

$$
\begin{equation*}
\sqrt{-1} \xi^{4} \mu^{2}+\left(1+\left|\xi^{1}\right|^{2}+\left|\xi^{2}\right|^{2}+\left|\xi^{3}\right|^{2}+\left|\xi^{4}\right|^{2}\right) \mu \lambda-\sqrt{-1} \bar{\xi}^{4} \lambda^{2}=0 \tag{1.2}
\end{equation*}
$$

Since its discriminant

$$
\left(1+\left|\xi^{1}\right|^{2}+\left|\xi^{2}\right|^{2}+\left|\xi^{3}\right|^{2}+\left|\xi^{4}\right|^{2}\right)^{2}-4\left|\xi^{4}\right|^{2}
$$

is a non-negative real number, we can distinguish two solutions $\gamma_{+}(\xi)$ and $\gamma_{-}(\xi)$, unique up to multiplication by non-vanishing scalar functions. Since the space spanned by $\alpha(\xi)$ and $\beta(\xi)$ is invariant by the anti-linear map inducing the standard involution on Z, these pure spinors define mutually conjugate almost complex structures if they do not vanish. The section $\gamma_{ \pm}(\xi)$ vanishes if and only if $\left(\xi^{i}\right)$ is a point of $S^{1}=\left\{\left(\xi^{i}\right)\left|\xi^{1}=\xi^{2}=\xi^{3}=0,\left|\xi^{4}\right|=1\right\}\right.$, where the subspace spanned by $\alpha(\xi)$ and $\beta(\xi)$ collapses to one-dimensional.

Now we have two almost complex structures on $\mathbb{R}^{8} \backslash S^{1}$ by the pure spinors $\gamma_{ \pm}(\xi)$. It is easy to verify that they can be smoothly extended to almost complex structures around the point at infinity.

Throughout this paper, we consider $S^{8} \backslash S^{1}$ as an almost Hermitian manifold by one of the above almost complex structures. Note that the choice of an almost complex structure is irrelevant, since there is an involution on $\mathbb{R}^{8} \backslash S^{1}$ which exchanges $\gamma_{+}(\xi)$ and $\gamma_{-}(\xi)$.

Let $S^{6}=\left\{(\xi) \in \mathbb{R}^{8} \mid \xi^{4}=0\right\} \cup\{\infty\}$. On this submanifold, $\alpha(\xi)$ is the pure spinor defining the standard non-integrable almost complex structures on S^{6}. Hence it is an almost complex submanifold of $S^{8} \backslash S^{1}$. Furthermore, we shall
show later that the almost complex manifold $S^{8} \backslash S^{1}$ is isomorphic to $S^{6} \times \mathbb{H}$, where \mathbb{H} is the hyperbolic plane with the standard Kähler structure.

2. Twistor space of $S^{8} \backslash S^{1}$

The almost complex structures on $S^{8} \backslash S^{1}$ constructed in the previous section gives an important example in twistor theory of almost Hermitian manifolds.

Let X be an n-dimensional almost Hermitian manifold. For an integer $k=1,2, \ldots, n-1$, let $Z_{k}(X)$ be the k-th twistor space of X defined in [4]. As in [3], $Z_{k}(X)$ can be considered as a submanifold of the total twistor space $Z(X) \cup$ $Z_{-}(X)$, where $Z_{-}(X)$ is the twistor space of X with the opposite orientation. In other words, $Z_{k}(X)$ is the subbundle of $Z(X) \cup Z_{-}(X)$ with fibers $Z_{k}=$ $\left(Z \cup Z_{-}\right) \cap \mathbf{P}\left(\Delta^{k}\right)$, where $\Delta=\oplus_{l=0}^{n} \Delta^{l}$ is the irreducible decomposition as $\mathrm{U}(n)$-modules. Assume that $Z_{k}(X)$ is an almost complex submanifold. Then

Theorem 2.1 ([4], [3]). If n is greater than 4 and $k=1,2, \ldots, n-1$, or (n, k) is $(4,1)$ or $(4,3)$, then $Z_{k}(X)$ is a complex manifold if and only if X is a Bochner-Kähler manifold.

The almost complex structure on $S^{8} \backslash S^{1}$ gives an exceptional example to the above theorem, that is, the almost complex structure of the second twistor space $Z_{2}\left(S^{8} \backslash S^{1}\right)$ is integrable.

Let Δ^{\prime} be the spin module of $\operatorname{SPIN}(10)$, and Z^{\prime} be the space of projectivized pure spinors in $\mathbf{P}\left(\Delta^{\prime+}\right)$. The twistor space of S^{8} can be identified with Z^{\prime}. We consider $Z\left(S^{8} \backslash S^{1}\right)$ as an open submanifold of Z^{\prime} and gives explicitly the defining equations of $Z_{2}\left(S^{8} \backslash S^{1}\right)$.

Let $\left(Z^{I}\right)_{I \subset\{0,1,2,3,4\}}$ be the system of homogeneous coordinates of $\mathbf{P}\left(\Delta^{\prime}\right)$. We have two systems of functions on $Z\left(\mathbb{R}^{8}\right)$, namely

$$
\left(\xi^{1}, \ldots, \xi^{4}, Z^{I} ; I \not \supset 0\right)
$$

and

$$
\left(Z^{0 I}, Z^{I} ; I \not \supset 0\right),
$$

where, strictly speaking, Z^{I} 's are sections to the hyperplane bundle. The transform between these two systems of functions is given as follows:

$$
Z^{0 I}=\sqrt{-1}\left(\sum_{a \in I} \xi^{a} Z^{a I}+\sum_{a \notin 0 I} \overline{\xi^{a}} Z^{a I}\right), \quad I \subset\{1,2,3,4\}
$$

where we use index notation in [2] (see [2] proof of Lemma 2.9 for detail).
Theorem 2.2. The second twistor space $Z_{2}\left(S^{8} \backslash S^{1}\right)$ of $S^{8} \backslash S^{1}$ is a complex submanifold of $Z\left(S^{8} \backslash S^{1}\right)$ defined by equations:

$$
\begin{aligned}
Z^{\emptyset}+Z^{0123} & =0 \\
Z^{1234}-Z^{04} & =0 .
\end{aligned}
$$

Proof. Since $\Delta^{+}=\Delta^{0} \oplus \Delta^{2} \oplus \Delta^{4}$ is orthogonal decomposition and $\Delta^{0} \oplus \Delta^{4}$ is spanned by $\alpha(\xi)$ and $\beta(\xi), \Delta^{2}$ is cut out by the equations:

$$
\begin{aligned}
& Z^{\emptyset}-\sqrt{-1}\left(\xi^{1} Z^{23}-\xi^{2} Z^{13}+\xi^{3} Z^{12}+\bar{\xi}^{4} Z^{1234}\right)=Z^{\emptyset}+Z^{0123}=0 \\
& Z^{1234}-\sqrt{-1}\left(\overline{\xi^{1}} Z^{14}+\bar{\xi}^{2} Z^{24}+\bar{\xi}^{3} Z^{34}-\xi^{4} Z^{\emptyset}\right)=Z^{1234}-Z^{04}=0
\end{aligned}
$$

Remark 1. The defining equations of $Z_{2}\left(S^{8} \backslash S^{1}\right)$ define a smooth subvariety of Z^{\prime}. Since equations above are equal on the fibers over S^{1}, the fiber over a point of S^{1} is a five-dimensional nonsingular complex hyperquadric.

3. Decomposition of $S^{8} \backslash S^{1}$

Let H be the conformal transformation group of $S^{8} \backslash S^{1}$. By Liouville's theorem, H is a subgroup of the conformal transformation group of S^{8}.

Let g be an element of H. Let H_{1} be the one-dimensional group of rotation around S^{1}. Fix a point ∞ on S^{1}. We can assume that S^{1} is the geodesic circle of S^{8}. Then $-\infty$: the antipodal point of ∞ is also a point of S^{1}. There is an element $g_{1} \in H_{1}$ such that $g_{1} g$ fixes ∞. By the stereographic projection, $S^{8} \backslash\{\infty\}$ can be identified with \mathbb{R}^{8}. Then the origin of \mathbb{R}^{8} corresponds to $-\infty$. Let L be the image of $S^{1} \backslash\{\infty\}$, which is a line through the origin of \mathbb{R}^{8}. Let H_{2} be the one-dimensional group of translation on \mathbb{R}^{8} along L, which is also a subgroup of H by Liouville's theorem. Then, there is an element $g_{2} \in H_{2}$ such that $g_{2} g_{1} g$ fixes ∞ and $-\infty$. Let H_{3} be the one-dimensional group of dilatation on \mathbb{R}^{8}. Let S^{6} be the unit sphere of the orthogonal complement of L. Let H_{4} be the subgroup of H whose elements fix points on S^{1} and act on S^{6} as isometries. Note that H_{4} is naturally identified with $\mathrm{O}(7)$. Let σ be the reflection with respect to the hyperplane through the origin whose normal vector is parallel to L. Then, there are elements $g_{3} \in H_{3}$ and $g_{4} \in H_{4}$ such that $g_{4} g_{3} g_{2} g_{1} g$ is either the identity or σ.

Thus we have shown that H is generated by $H_{i}, i=1,2,3,4$ and σ. More precisely, let K be the subgroup generated by H_{1}, H_{2}, H_{3} and σ. Since elements of K are commutative with elements of H_{4}, we have $H \simeq K \times H_{4}$.

Let us take a coordinate system on \mathbb{R}^{8} such that $L=\{(t, 0, \ldots, 0)\}$ and put

$$
S(t, r)=\left\{\left(-t, x_{1}, \ldots, x_{7}\right) \mid x_{1}^{2}+\cdots+x_{7}^{2}=r^{2}\right\}
$$

Since

$$
S^{8} \backslash S^{1}=\mathbb{R}^{8} \backslash L=\coprod_{t+\sqrt{-1} r \in \mathbb{H}} S(t, r)
$$

where \mathbb{H} is the upper-half plane, we can define a map

$$
\begin{aligned}
\alpha: \mathbb{R}^{8} \backslash L & \rightarrow \mathbb{H} \\
x & \mapsto t+\sqrt{-1} r \quad \text { such that } x \in S(t, r)
\end{aligned}
$$

Let β be the map defined by

$$
\begin{aligned}
\beta: \mathbb{R}^{8} \backslash L & \rightarrow S^{6} \\
\left(t, x_{1}, \ldots, x_{7}\right) & \mapsto \frac{1}{\sqrt{x_{1}^{2}+\cdots+x_{7}^{2}}}\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{7}
\end{array}\right)
\end{aligned}
$$

Then, they induce a diffeomorphism

$$
\begin{align*}
S^{8} \backslash S^{1}=\mathbb{R}^{8} \backslash L & \simeq \mathbb{H} \times S^{6} \\
x & \mapsto(\alpha(x), \beta(x)) \tag{3.1}
\end{align*}
$$

Thus we get a $K \times H_{4}$ action on $\mathbb{H} \times S^{6}$. Let g be a transform in K. We have $\beta(g(x))=\beta(x)$ for every point x of $S^{8} \backslash S^{1}$. For the \mathbb{H} component, there is an isomorphism g^{\prime} on \mathbb{H} such that $\alpha(g(x))=g^{\prime}(\alpha(x))$. In a similar way, let g be a transform in H_{4}. We have $\alpha(g(x))=\alpha(x)$ and $\beta(g(x))=g(\beta(x))$, where the action of g on S^{6} is the standard one as an element of $\mathrm{O}(7)$.

Hence we have shown that the $K \times H_{4}$ action on $\mathbb{H} \times S^{6}$ is induced by the action of K on \mathbb{H} and the action of H_{4} on S^{6}.

Let K_{0} be the subgroup of K generated by H_{1}, H_{2} and H_{3}. By the action on \mathbb{H}, K_{0} is naturally identified with $\operatorname{PSL}(2, \mathbb{R})$: the orientation preserving conformal automorphism group of \mathbb{H}. The action of σ on \mathbb{H} is the reflection with respect to the pure imaginary line.

Now we study the action of K on $S^{8} \backslash S^{1}$.
Lemma 3.1. $\quad K_{0}$ is the subgroup of K which preserves the almost complex structure on $S^{8} \backslash S^{1}$.

Proof. Since transformations in σK_{0} change orientation, it suffices to show that transformations in $H_{i}, i=1,2,3$ preserve the almost complex structure.

A complex structure on the real vector space \mathbb{R}^{8} decomposes the half spin module Δ^{+}into Δ^{0}, Δ^{2} and Δ^{4}. On the other hand, the subspace Δ^{2} determines the complex structure up to a conjugate pair. In fact, the orthogonal complement of Δ^{2} contains just two lines of pure spinors corresponding to the original complex structure and its conjugate. Furthermore, since Δ^{2} can be characterized as the minimal subspace of Δ containing lines in $Z_{2}=Z \cap P\left(\Delta^{2}\right)$, it suffices to show that elements of $H_{i}, i=1,2,3$ preserve the twistor space $Z_{2}\left(S^{8} \backslash S^{1}\right)$.

To compute the actions of H_{i} on $Z\left(S^{8}\right)$, we first give expressions as matrices in $\mathrm{O}(1,9)$.

Let $\left(x_{0}, x_{1}, \ldots, x_{8}\right)$ be the standard coordinate system of \mathbb{R}^{9}, and let

$$
A=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)
$$

be a matrix in $\mathrm{O}(1,9)$, where a_{11}, a_{12}, a_{21} and a_{22} are submatrices of size $(1,1)$, $(1,9),(9,1)$ and $(9,9)$, respectively. Then we define an action of A on S^{8} by

$$
x \mapsto \frac{1}{a_{11}+a_{12} x}\left(a_{21}+a_{22} x\right) .
$$

Let the circle S^{1} and the point at infinity ∞ be:

$$
\begin{aligned}
S^{1} & =\left\{\left(x_{0}, x_{1}, 0, \ldots, 0\right) \in S^{8}\right\} \\
\infty & =(1,0, \ldots, 0)
\end{aligned}
$$

Then the matrices corresponding to elements of $H_{i}, i=1,2,3$ are given by

$$
\begin{aligned}
& \left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos t & -\sin t & 0 \\
0 & \sin t & \cos t & 0 \\
0 & 0 & 0 & 1_{7}
\end{array}\right), \quad i=1, \\
& \frac{1}{2}\left(\begin{array}{cccc}
2+t^{2} & -t^{2} & 2 t & 0 \\
t^{2} & 2-t^{2} & 2 t & 0 \\
2 t & -2 t & 2 & 0 \\
0 & 0 & 0 & 2_{7}
\end{array}\right), \quad i=2, \\
& \left(\begin{array}{ccc}
\cosh t & \sinh t & 0 \\
\sinh t & \cosh t & 0 \\
0 & 0 & 1_{8}
\end{array}\right), \quad i=3 .
\end{aligned}
$$

Hence, by changing indices $(0 \rightarrow 4,1 \rightarrow 8)$ as chosen in previous sections, the infinitesimal transforms corresponding to the above one-parameter groups of transformations are given by the Clifford algebras:

$$
\frac{1}{2} f_{4} f_{8}, \quad-\frac{\sqrt{-1}}{2} f_{0} f_{8}-\frac{1}{2} f_{4} f_{8}, \quad-\frac{\sqrt{-1}}{2} f_{0} f_{4}
$$

where $\left(f_{0}, f_{0^{\prime}}, f_{1}, \ldots, f_{8}\right)$ is the basis of \mathbb{R}^{10}. Now it is easy to show that they preserve the space of defining equations: $\left\langle Z^{1234}-Z^{04}, Z^{\emptyset}+Z^{0123}\right\rangle$.

To summarize, we have:
Theorem 3.1. The diffeomorphism (3.1) is the almost complex conformal isomorphism. The automorphism group of $S^{8} \backslash S^{1}$ as an almost complex conformal manifold is $\operatorname{PSL}(2, \mathbb{R}) \times G_{2}$.

Proof. We first prove the second part of the theorem.
We have a $\operatorname{PSL}(2, \mathbb{R}) \times G_{2}$ action on $S^{8} \backslash S^{1}$ as a restriction of the $K \times H_{4}$ action. We have proved in Lemma 3.1 that a transform in $\operatorname{PSL}(2, \mathbb{R})$ preserves the almost complex structure on $S^{8} \backslash S^{1}$. A transform in G_{2} also preserve the almost complex structure because $Z^{123}-Z^{0}$ or $Z^{\emptyset}+Z^{0123}$ is the defining equation of $Z_{1}\left(S^{6}\right)$ or $Z_{2}\left(S^{6}\right)$, respectively, and adding the index 4 to the first equation is compatible with the action of G_{2}.

On the other hand, let g be a conformal transform on $S^{8} \backslash S^{1}$ which preserves the almost complex structure. There are $g_{1} \in K$ and $g_{2} \in H_{4}$ such that $g=g_{1} g_{2}$. If g_{1} is orientation preserving, that is, $g_{1} \in \operatorname{PSL}(2, \mathbb{R})$, it also preserves the almost complex structure by Lemma 3.1. Hence $g_{2}=g_{1}^{-1} g$ preserves the almost complex structure. Since it acts on the almost complex
submanifold S^{6}, we have $g_{2} \in G_{2}$. If g_{1} is orientation reversing, $g_{1} \sigma$ preserves the almost complex structure by Lemma 3.1. Hence $\sigma g_{2}=\left(g_{1} \sigma\right)^{-1} g$ preserves the almost complex structure. Since σ acts on S^{6} as identity, g_{2} should preserve the almost complex structure on S^{6}. This is impossible because g_{2} should be orientation reversing.

Now the first part of the theorem can be proved by calculating the differential map at a point, because of the equivariant property of the diffeomorphism.
Department of Mathematics
Graduate School of Science
Kyoto University
Kyoto 606-8502
Japan
e-mail: inoue@math.kyoto-u.ac.jp

References

[1] Y. Inoue, Twistor spaces of even dimensional Riemannian manifolds, J. Math. Kyoto Univ. 32-1 (1992), 101-134.
[2] , The inverse Penrose transform on Riemannian twistor spaces, J. Geom. Phys. 22 (1997), 59-76.
[3] , The Penrose transform on conformally Bochner-Kähler manifolds, preprint, dg-ga/9610010 (1996)
[4] N. R. O'Brian and J. H. Rawnsley, Twistor spaces, Ann. Global Anal. Geom. 3-1 (1985), 29-58.

[^0]: Received November 14, 2005
 Revised February 8, 2006

