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The k-Buchsbaum property for some
polynomial ideals

By

Henrik BRESINSKY and Lé Tuan Hoa*

Introduction

In order to define the topic of the title, we always assume that R is a
standard graded ring over a field k£ and m is the maximal homogeneous ideal.
k-Buchsbaum graded modules M over R can be defined as having their local
cohomology modules H: (M), 0 < i < d, annihilated by m*, where d + 1 is the
Krull-dimension of M. (For undefined terminology see [E].) They are natural
generalizations of Cohen-Macaulay modules, which have H{ (M) =0, 0 <i <
d. A more workable definition for k-Buchsbaum ideals a C Klzo,...,z,] =:
R,11, where a is a homogeneous ideal (§(z;) := degree(z;) =1, 0 < i < r),
is given below. An algorithm to test if such an ideal is perfect (i.e. R,y1/a
is Cohen-Macaulay) or Buchsbaum (i.e. R,11/a and R,4+1/(a, Fy, ..., F;), 0 <
i < d, are 1-Buchsbaum for any system of parameters (s.0.p.) {Fp,...,Fu})
was given in [BV1] and [BV2]. Thus both of these papers deal with a fixed
k € {0,1} and do not address the question of an upper bound k, if a is to be
k-Buchsbaum for some k. The purpose of the present paper is to investigate
this question without explicit computation of Ext-modules or local cohomology
modules. We obtain an algorithm for certain binomial ideals. Although in [BH]
it was shown, that no conclusive information about the k-Buchsbaum property
of a can be obtained from in(a) (the ideal of initial terms), our algorithm is
based on the Grobner bases calculations.

1. Homogeneous k-Buchsbaum ideals

We assume R,11 := Klxg,...,z,], K an infinite field, a C R,11 a homoge-
neous ideal (with respect to the standard grading), dim(a) = Krull-dim(R,11/a)
= d+ 1, without loss of generality {xo,..., 24} a s.0.p. for a since K is infinite
(i.e. the images {Zo, ..., %4} form a s.o.p. in R,41/a).
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Definition 1.1.  Let {yo,...,yq} be any s.o.p. for a. For a m-primary
ideal q, {yo,--.,ya} is said to be a g-weak sequence for a, if a : yo C a :

q, (aayOa"'ayi—l):yi g (aay07"',yi—l) - q, Oglgd

Definition 1.2. For k£ > 0 a is said to be k-Buchsbaum if every s.o.p.
{yo,...,ya} € m?* for a is an m*-weak sequence for a.

It is clear from the definition and the theorem below, that if a is k-
Buchsbaum then it is &’-Buchsbaum for all &' > k, and a is a generalized
Cohen-Macaulay ideal (i.e. all local cohomology modules H: (R,11/a), i < d,
are of finite length) iff a is k-Buchsbaum for k£ > 0.

Theorem 1.3 ([FV]).  The following are equivalent:
(i) a is k-Buchsbaum.

(ii) For every s.o.p. {vo,---,ya} C m% fora, {yo,...,ya} is an mF-weak
sequence for a.
(iii) For a s.o.p. {yo,...,ya} € m?* for a, {yo,...,ya} is an mF-weak

sequence for a.
(iv) m*HL (R.11/a) =0, 0 <i<d, H.(R,y1/a) the i-th local cohomology
module of R,y1/a with respect to m.

Proof.  See [FV]. O
Theorem 1.4.  Assume a is as before, {xg,...,xq} a s.0.p. for a. Let
i = (Jo,---,ja) be an arbitrary, but fired vector of non-negative integers, 0 <

1 < d. The following are equivalent:
(i) a is k-Buchsbaum.

a2k 2htji— 2t 2t 2+ ji
(i) (a,zg®to, a2ty s 2R O (qaF 0 2Ty sk 0 <
Sd,frall%EN
2k+ 2k+j;— 2k+ 2k+ji— k+1
(iti) (@, 2270 a7y sk = (e O Ty T = (a,
x%kﬂo,...,x?ﬁwl 1) :mk = (a, x%kﬂo,...,x?ﬁ—fﬁ_l) cmhtl 0 < <d.

Proof. (i) iff (ii) by Theorem 1.3, (iii) implies (ii) is immediate.
(i) = (iii). For short, let A = (a, z2" 7, ... x?kJ{]l Y.

Let Kk = 0. Then A :m C A :z;, =2A (by (ii)) C A : m. Hence
A=A:z; =2A:m.

Assume k£ > 1. Theanmng fgi’l:xfﬂgi’l:x?kgﬁ:
m¥ (by (ii)). Hence 2 : mF = A : 2% = 2 : 25T D 9 : m¥*!, which implies
2:mk =9 :mhtl, O

Definition 1.5. Let b and ¢ beidealsin R.41, S = {z1,...,25} C Ry41
and for t > 1, St = {zf,... 2}, (b,S?) is said to stablhze with respect to ¢, if
there exist positive integers 7' and k such that (b, S?) : ¢& = (b, S*) : ¢*+1 for

all t > T. For such a pair (T, k), we also will say that (b7 St) : c“ stabilizes at
(T, k) (here t and u are integer variables).

Clearly, if (b, S?) : ¢ stabilizes at (T, k), then it stabilizes at (17", k') for
any 7" > T and k' > k. Moreover, in this case we have

(b, S") : ¢ = (b,8") : ¢™ := U2, (b,SY) : ¢,
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forall t > T and u > k.

Theorem 1.6.  Assume b C R,11 is a homogeneous ideal and {xo, ...,
xq} a s.o.p. forb. If b is k-Buchsbaum for some k, then for T > 2k

a) (b,2d,...,xl ) ak = (b,2f,...,2T ) :aF 0 <i<d

b) (b,z8, ..., 2l )2k C(b,2l,... .2l )2k, 0<il<d.

a’) (b,xéo, ... ,x;_l) »aif stabilizes at (T, k) for all parts of all permuta-
tions (joa'”ajd) Of(O,...,d), OSZSCL

b)) (bl . ah ) ah C (bl ... 2k ) xf for all parts of all

permutations (jo,...,ja) of (0,...,d), 0 <41 <d, and for allt > T.
Conversely, if a) and b) (or a’) and b’)) hold for some T > 2k € N, then
b is v-Buchsbaum, where 7y is the least integer such that m” C (zf, ... %) +b.

Proof. Note that for all permutations (jo, ..., ja) of (0,...,d), zj,, ..., 2,
is again a s.o.p for b. Hence, the necessity of a) and a’) follows from Theorem
1.4 (iii), then the necessity of b) and b’) from a) and a’), respectively, and from
Theorem 1.3 (ii). Clearly a’) and b’) imply a) and b). Assume therefore a) and
b). Let

q= (x’g,...,xlj) and b(i—1,T):= (b,xg,...,x?_l).
Since T > 2k, ', ..., 2% C ¢ For all 0 < i < d we have:
b(i—1,7):x (i—1,T):aF (by a))

T _
;=
Cb(i—1,T):af, 0<1<d (by b)).

Hence b(i —1,T) : 2l = b(i — 1,T) : q. This means {xJ,..., 21 |} is a q-weak
sequence. By Proposition 13 in the Appendix of [SV], qH{ (R.1+1/b) =0, 0 <
i < d. Let v be an integer such that m” C q+b. Then m"H{ (R,11/b) =
0, 0 <i < d. By Theorem 1.3 (iv), b is y-Buchsbaum. O

Example 1.7. Let b = (22 — xgx2, 2372 — 202, T3 — To22). A s.0.p. for
b is {xg,z3}. Let > be the reverse lexicographical term order with o > x; >
x3 > x9. A Grébner basis calculation gives {a2 —x¢12, 2372 —To%a, T3—ToT2} as
the reduced Grobner basis of b and {23 — xox2, 2372 — T0T2, ¥5 — ToTe, ¥5, w20}
as the reduced Grobner basis of (b, z4). Hence

(b,l‘é) rxg = (x%x%xg) # (b,xé) : xlg
for all ¢ > k. Thus (b, z%) does not stabilize with respect to .

In this paper the reduced Grébner basis always means a minimal Grébner
basis {g1,...,9s} such that all in(g1),...,in(gs) are terms and no term of g; is
divisible by in(g;), j # 1.

Example 1.8. Let b = (z1,2%,23) N (22,23) C Ry = K|[zo, 71,72, 73].
A s.o.p. for b is {xg,z1} since b = (7129, 7173, 73, 72). b is not k-Buchsbaum
for any k, since b has a nontrivial embedded component ([SV, Lemma I1.2.2]).
b:zg="b:23="band (b,z}): z; = (w2, 23,25) = (b,z!) : 2, thus b stabilizes
with respect to zo and (b, zf) with respect to 1. However one condidtion in
b) is not satisfied: (b,x}) : 2% C (b, zb) : 2§ for all k > 0.
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Remark 1.9. If b is 1-dimensional, then a) in Theorem 1.6 is vacuously
true and b) readily obtained algorithmically. Thus in the sequel dim b > 2.

2. Stabilization of binomial ideals

Definition 2.1. A monomial in R, is a polynomial m = cxy® - - - 227,
¢ # 0. A term is a monomial with ¢ = 1. The set of terms in R,4+1 is denoted
by Tr+1~

Definition 2.2.  For m; = ¢ciz(°" - - 207, mg = cog® - - - 2272, c1c0 #
0, g.c.d.(mq,ma) = xgo coexdr s 6 = min{ag, ), 0<i <7

Definition 2.3.  Anideal 0 # b C R, (for us) is a binomial ideal if:

(i) b is generated by binomials and monomials,

(ii) If b is a binomial generator of b, assume b = m; — ma, My a term, mo
a monomial,

(iii) b is homogeneous with respect to some nonnegative grading,

(iv) For an admissible term order >, we assume m; > (1/co)ma, ¢o €
K\ {0}, and we will write in(b) = m1. BU M is the reduced Grobner basis of
b, where B consists of binomials and M consists of terms.

(v) The variables zg, ..., z4 form a s.o.p. for b.

Note. We also use {X,Y} and {X,u,v,...} to denote the sets X UY
and X U {u,v,...}, respectively.

Definition 2.4. Assume > is a term order, b = m; — mo a binomial,
my > (1/co)ma, my,m € Trrq1. Let my = q1d, m = ¢d, d = g.c.d.(mq,m).
s(b,m) = gmg is the successor polynomial of b and m. (By abuse of notation,
we sometimes identify s(b,m) and (1/c2)s(b,m) € Ty41).

Note that the s-polynomial formation above is only a particular case of
the s-polynomial formation of an arbitrary pair of polynomials in Buchberger’s
algorithm, defined as s(f1, fo) = mafi — mq fa, where mq = in(f1)/m, mo =
in(fz)/m and m = g.c.d(in(f1),in(f2)). We will use this remark in the proof
of Lemma 2.10.

Definition 2.5. Assume m is a monomial, b = m; — ms a binomial,
mq € Tr41 such that my | m, i.e. m = gmy. gmg = M is said to be a reduction
of mmodb and m is said to reduce to mmodb. We write

b~
m—m
For a sequence of reductions
bi  ~ b b~
m_l)m1_2> _n}mT“ {bla abn}CB7

we write
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and say m, is a reduction of mmod B and m reduces to m,. Monomials
not reducible mod b (respectively not reducible for any b € B) are said to be
irreducible modb (respectively irreducible mod B). If, in addition, they are not
divisible by a monomial of M, they are said to be irreducible mod BU M. We
write irr. mod b (respectively irr. mod B and irr. mod BU M).

Lemma 2.6.  Fiz a term order on R,.+1 and a variable y € {xo, ...,z }.
Let b be a binomial ideal with the reduced Grébner basis B U M with
A= 1y, 00

Then, for an arbitrary integer T > A, the reduced Grébner basis of the ideal
a(r) = (b,y") has the form

{BUM,G(1)},
where G(1) C Try1 \ M.

Proof. Note that a(7) = (BU M,y"). Since BU M is a Grobner basis
(of b) and 7 > A, all new elements in Buchberger’s algorithm, applied to
{B, M,y"} are monomials of degree at least 7. Hence, no term of b € B and
no monomial of M is divisible by a new monomial. Since B U M is already
the reduced Grébner basis, the set G(7) of all new terms together with B U M
forms the reduced Grébner basis of a(7). Clearly G(7) N M = (). O

Using the notation G(7), 7 > A, we will give a criterion for the stabiliza-
tion of ideals of the type a(7) with respect to an ideal generated by a certain
single variable.

Lemma 2.7.  Assume > is a term order, b, BUM as specified. Fiz an
integer to > A and let G(ty) denote the corresponding set of terms given by the
previous lemma. Then

(1) m € G(to) implies 5(m) > 6(b) for allb e BU M.

(2) m € G(to) implies m = y' or 6,(m) < to (6,(m) denotes the degree of
miny).

(3) Let

Ay =, max {6,(in(b)}-
Assume if m € G(to), then §,(m) > A,. Then fort >0, G(to+1t) =y'G(to).

(4) Assume the monomial m € (BU M,y%), b =mq —ms € B, in(b) =
my, Oy(m) > 0,(my1). Let t > 0. Then y'm is irr. mod B U M implies
s(b,ytm) — 0 mod{B,y'G(to)}.

Proof. (1) follows from the proof of Lemma 2.6.

(2) Asin (1), for any term m obtained in the Buchberger algorithm, start-
ing with {BU M, y'}, §(m) > §(y*0). Therefore if y* is irr. mod BU M, then
y'o € G(to) and the conclusion in (2) follows. If y% is not irr. mod B U M,
then any term m, such that y' | m, is not irr. mod B U M, thus m & G(t).
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(3) Let m € G(to). Write m = y%(™m. For b € B, let

b=mi —mg, in(b) =my = My mo=qd, my = qid, d = g.c.d(m,my).

Then

s(b,m) = gy®r M= my D

such that there exists m* € G(to) U M with the property m* | m. We have

s(b,y'm) = qy’r M=oty Byt
If m* € M, s(b,y*m) reduces to 0 w.r.t. BUM (in the Buchberger algorithm).
If m* € G(to), then y'm* | y'm, y'm* € y'G(ty), and s(b,y'm) reduces to 0
w.r.t. BUM,y'G(tg). Thus {B U M,y'G(ty)} is a Grobner basis, which is
reduced since each y'm € y*G(t) is clearly irr. mod BUM (from the conditions
m € G(ty) and d,(m) > A,).
(4) The conclusion in (4) follows immediately from the proof in (3). O

Definition 2.8.  Assume b, BU M, tq, G(to) are as before. m € G(t)
is said to be absolutely irreducible (a. irr.) mod B U M if y*m is irr. mod B U M
for all t > 0. m € G(tp) is said to be stable if y'm € G(to+1t), t > 0.

From now on in this section (unless otherwise specified), > is the reverse
lexicographical term order (rev. lex.) with y > z the smallest linear terms,

{z,y} C{xo,...,zr}. dz(m) denotes the degree of a monomial m in x.
Lemma 2.9.  For m a monomial and an element b € B, §,(s(b,m)) >
3z (m).

Proof. Let b = m; — mg. Since my = in(b) (see Definition 2.3) with
respect to the term order rev. lex., always d,(mo) > 0,(mq). Let m; =
qd, m = qd, d = g.c.d(my,m). Then gm; = ¢ym and 6,(ma) > d,(m1)
imply 0, (s(b,m)) = d.(gmz) > d(gm1) = d.(q1m) > d.(m). O

Lemma 2.10.  If there is N € N such that §,(m) < N for all m €
G(t) and for allt > T > A, then 6,(m) > A, for all m € G(to) and to >
max{7T, A,(N +1)}.

Proof. Assume to > max{T, A, (N +1)}. Let m € G(to). Then there is
a sequence of reductions:

no =y, n1 = s(bo,n0),...,np = s(bp_1,np-1) =m; by,...,b, € B.
We first show that for all ¢ > 0 in this sequence we have:
(1) Oy(ni) /Ay + 65(n;) > N + 1.

Induction on i. The case i = 0 is trivial. Assume 6,(n;)/A, + dz(n;) > N +1
and ¢ < p. Let b; = m; — my (see Definition 2.3).
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If 0, (m1) < 0y(m2), then dy(ni41) > dy(n;). By Lemma 2.9 and induction
we have

Oy (nit1)/Ay + 0a(nip1) = 0y(ni) /Ay + 62(ni) 2 N + 1.

If §,(m1) > ,(m2), then since y > x, we have 6,(m1) < 6;(m2). Analyz-
ing the proof of Lemma 2.9 we even have 0,(n;11) > 0,(n;) + 1. Moreover if
n; = dn}, d =g.c.d(n;,my), then

6, (nis1) > 8, (nf) = 8,(n;) — 6,(d) = 5,(n;) — A,
Hence
Oy (nit1) /Ay + 0a(nit1) = 6y(ni) /Ay =14 62(ni) +1 2 N + 1.
The induction is completed.

Now, by assumption, d,(m) < N for all m € G(ty). Hence, by (1), 6,(m)
A,

v

Theorem 2.11.  Consider the following conditions:

(i) For allm € G(t) and for allt > T > A, §,(m) < N € N.

(i) For all m € G(t) and for all t >ty > A, m is stable.
Then (i) implies (ii) for to = max{T, Ay(N + 1)}; and (ii) implies (i) for
T=ty+ A, and N = max{d,(m); m € G(to)}.

Proof. (i) = (i). Let T = to + A, and m € G(ty). Then y?vm €
(BUM,G(T)). By hypothesis y'y2vm = y't2vm € G(t+ A, +to) = G(T +1).
In particular y*y“vm is irr. mod B U M. Hence, by Lemma 2.7 (4) elements
ytySvm, m € G(tg) and B U M form a Grébner basis of (B U M,yT*?), i.e.
G(T +t) = y!T2vG(to) for all t > 0. From this G(T +t) = y*G(T), t > 0,
which implies (i).

(i) = (ii) Let t > t¢ := max{T, Ay(N + 1)}. In the proof of Lemma
2.10 we have shown that for all m € G(to), d,(m) > A,. By Lemma 2.7 (3),

G(t +to) = y*G(to)) which implies (ii). O
Lemma 2.12. Let M = (my,...,ms) C R,11 be a monomial ideal,
m; € Trpr, 1<i<s, x€{xg,...,z.}. Then

M b = (my/g.c.d(my,z),...,m./ g c.d(msg, z")).
In particular for k > max{0,(m;); 1 <i < s},
Mz = (my /2% mg %= (Me)) = (M m),

and k = max{d,(m;) 1 < i < s} is minimal such that M : ¥ = M : zF+1,
Here (M|y=1) mean the variable x is replaced by 1 in all monomials of M.

Proof. This is immediate by [KR, Satz 5’]. O
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Definition 2.13.  Assume b, BUM, ty, G(to) are as specified before. If
for some a(tg) = (b, y*) with reduced Grébner basis { BUM, G(to)}, a(to+t) =
(b, y"o**) has reduced Grobner basis {BUM, y'G(to)} (i.e. G(t+to) = y'G(to))
for all t > 0, then we say that the Buchberger algorithm stabilizes for a(t) at
to.-

The Buchberger algorithm stabilizes at ¢y only if every m € G(tg) is stable,
and it stabilizes at any ¢, > to.

Theorem 2.14.  Let tg,t* > A and
k> Ay = ben}lg%}ﬁ/f{éx(m(b)}.

Consider the following conditions:
(i) a(t) stabilizes at (to, k) with respect to x, i.e. a(to+1t): ¥ = a(tg+1):
2**L for all t > 0.
(ii) dz(m) <k € N for all m € G(t) and all t > to.
(iii) The Buchberger algorithm stabilizes for a(t) at t*.
Then
a) (1) is equivalent to (ii).
b) (ii) implies (iii) for t* = max{to, Ay(k+1)}.
c) (iil) implies (ii) for to = t* + Ay and k = max{d,(m); m € G(t*)}.
Moreover if 6,(m) > A, for all m € G(t*) we may take to = t*.

Proof. b) and c) follow from Theorem 2.11. If already J,(m) > A, for
all m € G(t*), then 6,(m) > d,(m1) for all b = my —mg € B. Hence, from the
proof of (ii) = (i) of Theorem 2.11, every m € G(t*) is stable.

We show a). For an ideal ¢ let ¢ : 2°° := U,>1¢ : ™. We always have ¢ :
xF C ¢ : 2. Recall that the term order under consideration is rev. lex. and z is
the smallest term. By Proposition 15.12 and its application in Exercise 15.41 a.
in [E], a(to+t) : 2% = a(to+t) : 2> iff in(a(to+t)) : 2 = in(a(to+t)) : 2°°. Since
in(a(to+t)) is minimally generated by {in(b); b € B} UM U G(to+t), by Lemma
2.12 in(a(ty + 1)) : 2% = in(a(to + 1)) : 2> iff k > max{d,(in(b)), 6.(m); b €
B, m € M UG(t*)}. By hypothesis k > A, = maxpepunm {9 (in(d))}. Hence
(i) iff (ii). |

Below is a criterion for the stabilization of the Buchberger algorithm:

Proposition 2.15.  If the Buchberger algorithm stabilizes at ty then for
allm € G(to+A4y), 6y(m) > A,. Conversely, if §,(m) > A, for allm € G(to),
then the Buchberger algorithm stabilizes at t.

Proof. = is immediate from the formula G(to + A,) = y2vG(to).
<. Assume if m € G(ty), then d,(m) > A,. Then, as before by Lemma
2.10 (3), G(to +t) = y*'G(to). O

Remark 2.16.  Assume b : y = b. Then one can show that the Buch-
berger algorithm does not stabilize at any tg iff for every t > A there exists
m € G(t) which is not divisible by y. Thus, the stability conditions of the
above proposition can be weakened in this case.
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We collect the preceding into:

Algorithm A. Tetty=A andn=0.
(i) Calculation of G(tg +nA,) from B and y2vG(tg + (n — 1)A,).
(ii) If 6,(m) > A, for all m € G(to + ndy): stop;

Otherwise increase n by one and repeat (i).

Thus if Algorithm A stops at the n-th step, the Buchberger algorithm
stabilizes at A + nA,, and by Theorem 2.14, a(t) stabilizes at (A + nA,, k),
where

k= max{A;, d;(m);m € G(A+nl,)}.

From the proof of Theorem 2.14 we also get that this is the smallest possible
value of k for the stabilization of a(t).

In the last section we will determine the number of steps needed to decide
if Algorithm A stops at some n, or will never stop.

3. The k-Buchsbaum property for some binomial ideals

Assume b is as before. In this section we will relate the stabilization of
ideals a;(t) := (b, ") with respect to xk, 0 <i+#j <d, to the k-Buchsbaum
property of b.

Lemma 3.1.  Assume M is a set of monomials and M a generating set
for the ideal of all monomials in (b, M). For a monomial m € R,41 we have

(b,M):m=(b+(M)):m=b:m+ (M):m.

Proof. (b+ (M)) : m Db : m+ (M) : m follows trivially. Let v €

(b +(M)) :m. Write v = vy + -+ +vs +v] + -+ v, st > 0, such that

muy,...,mus & b+ (M) and muvy, ..., mv; € b+(M). Since (M) is the ideal of

all monomials in (b, M), mvi,...,mv; € (M), which yields vy,...,v; € (M) :
m. On the other hand, by Proposition 1.10 in [ES], mvi + - - -4+ muv, € b, which

implies v; +---4+vs € b:m. Thus v € b : m + (M) : m, as required. O
Proposition 3.2.  For b a binomial ideal as defined, (b,z ,..., 2% ):

x’; stabilizes at (T, k) for all parts of permutations (so,...,sq) of (0,...,d),

0<i<d iﬁ(b,:ﬁ;) : xfl stabilizes at (T, k) for eachl,j such that 0 < j #1 <d.

Proof. The implication = is trivial by taking ¢+ = 1, so = j, s1 = [.
We show the converse. W.lLo.g. one may assume (so,...,8q4) = (0,...,d).
Let (M;(t)), 0 < j < i—1, be the ideal of all monomials in (b,z%). Then

Z;;}J(J\;lj t) = (U;;%)A;lj (t)) is the ideal of all monomials in (b, zf,...,z¢_;)
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([ES, Corollary 1.6 (b)]). Therefore

i—1
(b,ab, ... at ) ok = b,Z(./\;lj(t)) L ki
j=0
L -
=b:ah 4 Z(Mﬂ(t)) s ki (by Lemma 3.1)
=0
o :
=b:ah 4 Z(Mﬂ(t) sk (by [KR, Satz 5])
=0

=) (b4 (M;(1) : 2¥)  (by Lemma 3.1)

=> ((b,2%) s b)),
=0

Since (b, z%) : z¥ stabilizes at (T, k) for each j, 0 < j <i— 1, from the above

7

equality it follows that (b,zf,..., 2! ;) : 2™ stabilizes at (T, k). O

3

Recall that b(i — 1,7) := (b,zl,... 2 |). The following result clarifies
the relationship between the stabilization considered in the previous section
and being [-Buchsbaum for [ > 0.

Theorem 3.3.  Assume that the ideal a;(t) := (b, z%) stabilizes at (T, k)
with respect to x; for all 0 < i # j < d and for some T > 2k. Then b is [-
Buchsbaum for 1 > 0 if and only if the following conditions are satisfied:

b(i —1,T):af Cb(i—1L,T):af  forall 0<i+j<d

In this case b is already y-Buchsbaum, where 7y is the least integer such that
m? C (z§,...,2%) +b.

Proof. <. By the stabilization and Proposition 3.2, b(i — 1,7) : z¥ =
b(i —1,T) : " 1. We also have

b: a:f = (ﬂtZT(b,mé)) : a:f = ﬂtZT((b,mé) : xf)

= N7 ((b, 2h) « 2 th) (by stabilization)

yvg) g
= (Nexr(b,ah) - b Th = b o T,

Thus b(i — 1,T) : ¥ = b(i — 1,T7) : 2 holds for all 0 < i < d (where
b(—1,T) := b), i.e. the condition a) of Theorem 1.6 is satisfied. b(i — 1,7 :



The k-Buchsbaum property for some polynomial ideals 709

xf Cb(i—1,T) : 2k for all 0 < i # j < d is exactly b) in Theorem 1.6. Hence
b is v-Buchsbaum with v as above.

=. Assume b is [-Buchsbaum. We may assume that [ > k. and 2] > T.
Then for all 0 < i # j < d we have

21

b(i —1,20) : aF =b(i —1,20) : 27 (by stabilization)
Cb(i—1,20):m"  (by Theorem 1.3 (ii))
Ch(i—1,2):al, 0<j<d
Cb(i—1,20):af, 0<j<d  (by stabilization).

As shown in the proof of Theorem 1.6, this implies that (zf, ..., z%)HE (R,41/b)
=0, 0 < i < d. Again by Proposition 13 in the Appendix of [SV], we get
b(i —1,T): 2y Cb(i—1,T): a (since T > 2k). O

To formulate the following result we need some more notation. For all
4,7, 0<j <i,{B;j UM,;,G;;(t)}, Gi;(t) C Try1, is a reduced Grébner basis
of a;(t) = (b, z%) with respect to rev. lex. and z; > z; as smalles linear terms,
for t > max{d(b); b € B;; UM,;} as specified in Lemma 2.6. (Note: the order
depends on ¢ and j, so Grobner bases also depend on ¢ and j.) Under an
additional assumption, the condition in the previous theorem can be checked
as follows:

Proposition 3.4.  Let b be a binomial ideal such that b : x; = b for all
0 <i <d. Assume that the ideal a;(t) := (b, 2%) stabilizes at (T k) with respect
to x; for all 0 < i # j < d for some T, k. For a fired h, 0 < h # i <d, the
following are equivalent:

(1) b(i—1,T):aF Cb(i —1,T) : xf.

(ii) Gij(T)]z,=1 C (b(i — 1,T) : aF), 0 < j < i—1. Here Gij(T)|z;=1
means the variable x; is replaced by 1 in all monomials of G;(T).

Proof. We start by proving

Claim.  M(T)|p=1 C b —1,T) : 2k, 0<j <i—1iff Gij(T)|p,=1 C
b(i—1,T): xf, 0 <j <i—1, where M;(T) denotes the ideal generated by all
monomials in (b, xJT)

=. This follows since G;;(7T) is contained in M, (t).

<. Let m € M;(T). If 6,,(m) = 0, then

Mmlg,—1 =m € (b,z]) Cb(i—1,T)Cb(i —1,T): ap,

(since j < i —1). Assume d,,(m) > 0, and m>4 m, m irr. mod B;;. Then
there exists m € G;;(T) UM;; such that m|m (since m € a;(T) and {B;; UM,;,
Gi;(t)} is a reduced Grébner basis of this ideal). By Lemma 2.9, d5,(m) <
0z, (m). If m = gm, then

6z, (m) 8o, ()

wi:1)] =m-meE (Bij) Cb.

Mm|g,=1) — qlei=1)(m
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Since b : x; = b, we have

S0, (170) =8, (m)
m|9€i:1 -z '

[(qlei=1)(M]z;=1)] € b.
If xf”(m)(m\zizl) = m € M;; C b, then again m|,,—1 € b C b(i — 1,T).
Otherwise m € G;;(T), and by induction assumption z¥ (m,,—1) € b(i —1,T).
Therefore, in both cases, 2% (m/|,,—1) € b(i — 1,T), as required.

Proof of Proposition 3.4. Since Z;;%) M;(T) is the ideal of all monomials
inb(i —1,T) and b : x; = b, we have:

(2) b(i—1,T):2¥ Cb(i —1,T): zf
iff
b(i —1,T) D aj(b(i — 1,T) : a7)
[/ i1
- Jfﬁ b, MJ(T) mf
L j=0
[ i—1
=af |b+ Z(MJ(T) sl (by Lemma 3.1 and [KR, Satz 5])
7=0
iff
(3) eh(M(T):2F) Co(i —1,T)  for all0<j<i—1

(since x¥b € b(i — 1,T)). By stabilization, we may also replace M, (T) : z¥ in

'/ 2

(3) by M;(T) : 23° = M;(T)|z,~1. Hence, by the initial claim, (2) is equivalent

?

to Gij(T)|z=1 Cb(i —1,T) 2k forall 0 < j <i—1. O
4. Local cohomology and stabilization

The rest of this paper is devoted to the termination of Algorithm A. For
short we also use R to denote R,;. For a homogeneous ideal ¢ C R, denote

max{t; [Hy(R/c)le # 0} if Hi(R/e) #0,

a;(R/c) = {_Oo it H(Rfc) =0,

where [-]; denotes the t-th graded part. As usual, dimc=d+1 > 2 and ¢ # 0.

Lemma 4.1.  There exist zg,...,2q4 € [R]1 such that apzg + - + @gqzq
is a parameter element for ¢ for all (ap, ..., aq) € K41\ {(0,...,0)}.

Proof. The vector space [R]; = Kxzg @ --- @ Ka, has dimension r + 1 >
d+1. Let py,...,ps be all highest dimension associated prime ideals of R/c.
Then p; N[R]1,...,psN[R]; are proper linear subspaces of [R]; of dimension at



The k-Buchsbaum property for some polynomial ideals 711

most 7 — d. Since K is infinite, one can find a subspace H C [R]; of dimension
d+ 1 such that HNp; =--- = HNp, = 0. Any basis zg,...,2q of H will
satisfy the conclusion of the lemma. O

A special case (when d = 1) of the following result is Proposition 2.8 in
[M], which was proved by a different method.

Proposition 4.2.  Assume that R/c is a generalized Cohen-Macaulay
ideal of dimension d+1>2 andn < 0. Then

dimg [Hy (R/¢)]n—1 < max{0, dimg [H (R/c)], — d}.
Proof. Choose a 8.0.p. zp,...,2q4 € [R]1 of R/c as in Lemma 4.1. Let
(ag,...,aq) € KN\ {(0,...,0)} and 2 = agzo + -+ + agzg. Then z is a

parameter element for ¢, and by Definition 1.2, dimg (0 :g/ 2) < co. Since
[H2(R/(c,2))]n = 0 for n < 0, from the exact sequence

0— R/(c:2)(—=1) 2 R/c — R/(¢c,2z) — 0,
we get an injective map
0 — [Ho(R/)]n—1 = [Hy(R/O)ln
for all n <0 and all 2. By [Brl, Lemma 3.1], we get

dimg [Hp (R/¢)]n—1 < max{0,dimg [H} (R/¢)], — d}.

Corollary 4.3. Under the assumptions of Proposition 4.2,

dim [ (R/9)]o

[HA(R/)]n=0  for alln<— ;

We would like to mention that Brodmann already gave in [Br2], Theorem
5.6 a priori lower bound for the vanishing of [H} (R/c)], in negative degrees.
His bound, which works under a much weaker assumption, is worse than the
above bound.

Lemma 4.4.  Let a be an arbitrary integer such that
a > max{ag(R/c),a1(R/c)} + 1,

and z € [R]y be a parameter element of R/c such that dimg (0 /. 2) < oc.
Then

dimg[HL (R/c)]o = dimg [(‘27"”0} .



712 Henrik Bresinsky and Lé Tudn Hoa

Proof. Note that [HO(R/¢)]a = [HY(R/c)]o = 0. Hence, from the exact
sequence
0— R/(c:2)(—a) = R/c — R/(¢,z) — 0,

we get an isomorphism
[Ha(R/ (¢, 2)]a = [Hy(R/0)]o.
By definition

(¢, 2): moo] ’

A e
which completes the proof. O
Recall that the Castelnuovo-Mumford regularity of R/c is the number
reg(R/¢) = max{a;(R/c)+ i 0<i<d+1}.

This invariant can be computed using a minimal free resolution of R/c, thus via
a Grobner basis calculation (see [E, Chapter 20]). For the next theorem, the
initial ideal is taken with respect to a rev. lex. term order with xg the smallest
linear term. For an integer a, let 3(a) be the smallest integer such that

a 1 im T
) 2 G B o) + g (0o < 2D)) ),

Theorem 4.5. Let b be a binomial ideal as in Section 2. Assume that
b is a generalized Cohen-Macaulay ideal. Let

k = B(reg(R/b) + 1) 4+ 2reg(R/b).

Then

(i) a;(t) = (b, %) stabilizes at (1,k) w.r.t. x; for all 0 <i# j <d, and

(ii) b is a k-Buchsbaum ideal.

The same conclusions remain true for k' = p((r+1)(D — 1) + 1) +2(r +
1)(D —1), where D is the mazimal degree of a reduced Grébner base of b (w.r.1.
any term order).

Proof. For short, let a; = a;(R/b), i = 0,1. Then ag < reg(R/b) and
a1 +1 < reg(R/b). By [HT, Corollary 1.3], we also have reg(R/b) < (r +
1)(D —1). On the other hand, let a > 1 be any integer. Since b is a generalized
Cohen-Macaulay ideal, dimg (0 :g/p #7) < o0, and (b, z¢) : m* = (b, z¢) : 25°.
Recall that xq is the smallest term. By [E, Proposition 15.12], we have

im (b,2) : m™> — dim [(b,2%) : 2
d K{ (b,%) } YD) ]
g (n(o) :a af)
= A | ), 49) ]
. (i0(6) r,—1)
= A | o) T 2 ((0) g l“‘f))]a'
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Hence by Lemma 4.4,
1.
B(reg(R/b) + 1) = B((r+1)(D —1) +1) > yi dim g [Hy (R/6)]o.

In particular &’ > k and we only have to show (i) and (ii) for k.
By Lemma 4.3 we get [HL(R/b)], =0 for all n < —G(reg(R/b) + 1). By
definition of ay, [HL(R/b)], =0 for all n > a1 + 1. Hence

(4) mﬁ(reg(R/b)'i‘l)-i-al-&-lH;(R/b) —0.
Since [HY(R/b)], = 0 for all n <0,
(5) m®H2(R/b) = 0.

Let £ > 1 and 0 < j < d. From the exact sequence

t

0 — R/(b:at) 5 R/b — R/(b,at) — 0,
we get an exact sequence
(6) Hy(R/b) — Hy(R/(b,2%)) — Hy(R/0).

Since B(reg(R/b)+1)+a1+1+ag <k, (4), (5) and (6) imply m*HJ (R/(b, x}))
= 0. Therefore

(7) (b,2%) cmP = (b,2%) : m*.

Note that (b, 5”3) is also a generalized Cohen-Macaulay ideal. By Definition 1.2
and (7) for any 0 < i # j < d the following holds:

(8)  (b,a}): m* C (b,zf) : zh C (b,2%) : 2° C (b,2}) : m™ C (b,2}) :mk.

Hence (b, %) : zf = (b,z%) : 2°, i.e. a;(t) = (b, %) stabilizes at (1,%). Thus
(i) is proven.
Finally let t = 2k. In the proof of Proposition 3.2 we have shown that

i—1 1

b(i —1,t) : zt :Z(b,x§) cxp C ) (b,af) sk
=0 =0

-
|

By (8) we can conclude that m*(b(i — 1,¢) : 2f) C b(i — 1,¢) for all 0 < i < d.
Using Theorem 1.3, we then get (ii). O

Note that in the above theorem all parameters can be computed via
Grobner bases. Under an additional assumption we get the following nice
result.

Theorem 4.6.  Let b be as in the above theorem. Moreover assume that
it is reduced. Then
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; (i) a;(t) = (b, 2%) stabilizes at (1,reg(R/b)) w.r.t. x; for all0 < i # j < d,
an
(ii) b is a reg(R/b)-Buchsbaum ideal.

Proof. b reduced implies H)(R/b) = 0. Moreover, by [HSV, Lemma
1 (ii) (a)], [HL(R/b)], =0 for all n < 0 and n > reg(R/b)) > a1 + 1. Thus

m™s(F/OV F L (R/b) = 0.
The exact sequence (6) even gives an injection:
0— HY(R/(b,2%)) — Hy (R/b).
From this
(b, %) : meel/0) = (b 2%) : m>,

and we can repeat the last part of the above proof. O

In spite of this theorem, it would be nice to have a similar result for
arbitrary generalized Cohen-Macaulay homogeneous ideals.
Now we can state the main two theorems of this paper.

Theorem 4.7.  If Algorithm A applied to any a;(t), 0 < j < d, does
not stop after B(reg(R/b) + 1) + 2reg(R/b) +1 (or B((r+1)(D—1)+ 1)+ 2(r
+1)(D —1) + 1) steps, then b is not a I-Buchsbaum ideal for any l. Moreover,
if b is reduced, only reg(R/b) + 1 (or 2(r + 1)(D — 1) + 1) steps are required.

Proof. Fix anindex j, 0 < j < d. For simplicity we use the same notation
as in Section 2 for a;(t), namely a(t) = a;(¢). If b is a [-Buchsbaum ideal for
some [, then by Theorem 4.5, a,;(t) stabilizes at (1, k), where

k = B(reg(R/b) + 1) + 2reg(R/b).

By Theorems 2.14 and Lemma 2.10, &, (m) > A, for allm € G(A+A,(k+1)).
Thus Algorithm A must stop not later than the (k + 1)-st step.
Similarly, using Theorems 4.5 and 4.6, one can get other statements. [l

This theorem together with Theorem 3.3 implies

Theorem 4.8.  Assume b be as in Section 2. There exists an algorithm
to determine if b is {-Buchsbaum for some £. In this case the algorithm also
gives the smallest value of such .

Following Algorithm A we have to do many Grébner bases calculation, if
a; does not stabilize for some j. One can avoid it by using the following result.
However here also the calculations could become too large.

Proposition 4.9.  Assume the notation of Theorem 4.5. Let e denote
the multiplicity of R/b. Then b is a generalized Cohen-Macaulay ideal iff

(9) K(R/(ba xéka st axgk)) - Z(R/(bv x(Z)ka s 7x?lk)) = (Qk)d+1(2d+1 - 1)6'
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Proof. If (9) holds, then x2k,... 2% is a so-called standard s.o.p. of
R/b, and thus b is generalized Cohen-Macaulay (see Theorem and Definition
17 in the Appendix of [SV]). Conversely, if b is generalized Cohen-Macaulay,
by Theorem 4.5 it is k-Buchsbaum. From Proposition 13 and Theorem and
Definition 17 in the Appendix of [SV] it follows that 2%, ... 22F is a standard
s.0.p., and therefore (9) is satisfied. O

Example 4.10. a) Theorem 4.8 is applicable to all simplicial semi-
groups. For this assume the prime ideal p C R = K]lxy,...,z,] has generic
zero as follows:

— 4+@00 ,,  +@0d
ZEQ—tO td

e Ty = A0 S = 4070 G
such that
(i) r > d,

(i) Y gaij =D, 0<i<r,

(iii) There are exactly d + 1 variables of the form z;, =t2, 0 < h < d.
Then by [CLO] a generating set for p is algorithmically defined, thus p satisfies
the conditions of Theorem 4.8. However in this case the theoretical part of
Theorem 4.6 is not new, because we already know from the proof of Lemma
4.11 in [TH] that the local cohomology modules H: (R/p) = 0 for all i # 1,d+1
iff R/p is a generalized Cohen-Macaulay ideal, and H}(R/p) may have only
positive degrees. Moreover one can derive from the proof of Lemma 4.11 in
[TH] a simple combinatorial characterization for R/p to be a generalized Cohen-
Macaulay ideal. Note that for this class of ideals there is a good bound on the
Castelnuovo-Mumford regularity. Namely it was recently shown in [HS] that

reg(R/p) < dim(R/p)(degree(R/p) — codim(R/p) — 2) + 3.

On the other hand if we modify p slightly by adding some monomials or
binomials not containing variables specialized in (iii) above, then one cannot
apply the theory of affine semigroup rings, but Theorem 4.8 remains valid.
In this case it is not clear how the Castelnuovo-Mumford regularity could be
bounded.

b) Example 1.7 is an example of the following binomial ideals: b =
(B), B a binomial generating set. Assume V; = {z;,,...,%; } and Vo =
{%jysrse- sy} are disjoint sets of variables and B decomposes into two
disjoint sets of 1Binomials B and By such that:

1. By ={b; b= x?:'” —m,,, 1 <h <k, xj|m,, for some j, k+1<
t <r+ 1} is the set of binomials with a pure power term.

2.be By =B\ B; implies z;, /b, k+1<t<r+1.

3. Let <;, be the term order rev. lex. with z;, <;, x;,, 1 < h <
k, k+1 <1 <r+1, and z;, as smallest linear term. For every such
<y, and by = mq — mio, by = mo; — Moy in B either in(bl) and
in(by) are relatively prime or their g.c.d. d divides mi2 and maq,
thus by 2. d is a term in K[z, ..., 24, ).
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Then 1. implies V; is a s.o.p. for b, 3. implies B is a Grobner basis since
s-polynomials reduce to 0 and therefore by 2. b:z;, =b, k+1 <t <r+1.
So Proposition 3.4 could be applied.
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