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Logarithmic sheaves attached to arrangements
of hyperplanes
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Igor V. Dolgachev∗

1. Introduction

Any divisor D on a nonsingular variety X defines a sheaf of logarithmic
differential forms Ω1

X(log D). Its equivalent definitions and many useful prop-
erties are discussed in a fundamental paper of K. Saito [Sa]. This sheaf is
locally free when D is a strictly normal crossing divisor, and in this situation
it is a part of the logarithmic De Rham complex used by P. Deligne to define
the mixed Hodge structure on the cohomology of the complement X \ D. In
the theory of hyperplane arrangements this sheaf arises when D is a central
arrangement of hyperplanes in C

n+1. In exceptional situations this sheaf could
be free (a free arrangement), for example, when n = 2 or the arrangement
is a complex reflection arrangement. Many geometric properties of the vector
bundle Ω1

X(log D) were studied in the case when D is a generic arrangement
of hyperplanes in P

n [DK1]. Among these properties is a Torelli type theo-
rem which asserts that two arrangements with isomorphic vector bundles of
logarithmic 1-forms coincide unless they osculate a normal rational curve. In
this paper we introduce and study a certain subsheaf Ω̃1

X(log D) of Ω1
X(log D).

This sheaf contains as a subsheaf (and coincides with it in the case when the
divisor D is the union of normal irreducible divisors) the sheaf of logarithmic
differentials considered earlier in [CHKS]. Its double dual is isomorphic to
Ω1

X(log D). The sheaf Ω̃1
X(log D) is locally free only if the divisor D is locally

formally isomorphic to a strictly normal crossing divisor. This disadvantage is
compensated by some good properties of this sheaf which Ω1

X(log D) does not
posses in general. For example, one has always a residue exact sequence

0 → Ω1
X → Ω̃1

X(log D) → ν∗OD′ → 0,

where ν : D′ → D is a resolution of singularities of D. Also, in the case when
D is an arrangement of m hyperplanes in P

n, the sheaf Ω̃1
Pn(log D) admits a

simple projective resolution

0 → OPn(−1)m−n−1 → Om−1
Pn → Ω̃1

Pn(log D) → 0.
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In particular, its Chern polynomial does not depend on the combinatorics of
the arrangement. This allows us to introduce the notion of a stable (resp.
semi-stable, unstable) arrangement and define a map from the space of semi-
stable arrangements to the moduli space of coherent torsion-free sheaves on
P

n with fixed Chern numbers. All generic arrangements are semi-stable (and
stable when m ≥ n + 2), and the Torelli Theorem mentioned above shows that
the variety of semi-stable arrangements admits a birational morphism onto
a subvariety of the moduli space of sheaves. We extend the Torelli theorem
proving the injectivity on the set of semi-stable arrangements which contain a
generic arrangement not osculating a normal rational curve and conjecture that
the same is true for all semi-stable arrangements whose dual configurations of
points in P̌

n does not lie on the set of nonsingular points of a stable normal
rational curve. We check the conjecture in the case of ≤ 6 lines in the plane.

I am grateful to Fabrizio Catanese, Rob Lazarsfeld, Mircea Mustaţă, Gior-
gio Ottaviani and Sergey Yuzvinsky for valuable remarks. I thank the referee
for many helpful comments.

2. The sheaf of logarithmic 1-forms

Let X be a nonsingular n-dimensional algebraic variety over a field k of
characteristic 0 and D be an effective reduced Cartier divisor on X. Let ΘX/k

be the tangent sheaf on X defined by ΘX/k(U) = Derk(OX(U)), the OX(U)-
module of k-derivation of the coordinate ring OX(U). Let φU = 0 be a local
equation of D on U . Define a submodule of ΘX/k(U)

ΘX/k(log φU ) = {∂ ∈ Derk(OX(U)) : ∂(φU ) ∈ (φU )}.

Since ∂(aφU ) = ∂(a)φU + a∂(φU ), this definition does not depend on a choice
of a local equation. Since φU = gUV φV in U ∩ V and ∂(φU ) = ∂(gUV )φV +
gUV ∂(φV ) we see that the modules ΘX/k(U) can be glued together to define a
subsheaf ΘX/k(log D) of ΘX/k and an exact sequence

(2.1) 0 → ΘX/k(log D) → ΘX/k → JD(D) → 0,

where JD is an ideal sheaf on OD generated in each OD(U) by ∂(φU ), ∂ ∈
Derk(OX(U)). In other words,

JD = Jacobian(D) · OD,

where Jacobian(D) is the Jacobian ideal sheaf in OX generated in each OX(U)
by φU and ∂(φU ), ∂ ∈ Derk(OX(U)) (see [La, p. 181]). We set

Ω1
X/k(log D) := ΘX/k(log D)∗ = HomX(ΘX/k(log D),OX)

and call it the sheaf of logarithmic 1-forms of D. Since ΘX/k is locally free,
dualizing (2.1), we get an exact sequence

(2.2) 0 → Ω1
X/k → Ω1

X/k(log D) α→ Ext1X(JD(D),OX) → 0.
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It follows from (2.1) that depth ΘX/k(log D)x ≥ 2 for any closed point x.
Thus the sheaf ΘX/k(log D) is reflexive, hence

ΘX/k(log D)∗∗ ∼= Ω1
X/k(log D)∗ ∼= ΘX/k(log D).

Let Ds be the closed subscheme of D defined by the sheaf of ideals JD so
that ODs = OD/JD. It is supported on the singular locus of D.

Consider the exact sequence

0 → JD(D) → OD(D) → ODs(D) → 0.

Applying the functor HomX(?,OX) we get an exact sequence

0 → Ext1X(OD(D),OX) → Ext1X(JD(D),OX) → Ext2X(ODs(D),OX) → 0.

Let ωZ denote the dualizing sheaf of a projective Cohen-Macaulay algebraic
variety Z, the canonical sheaf OZ(KZ) if Z is nonsingular. By the Duality
Theory,

Ext1X(OD, ωX) ∼= ωD
∼= ωX ⊗OX

OD(D).

Therefore,

(2.3) Ext1X(OD,OX) ∼= Ext1X(OD, ωX) ⊗OX
ω−1

X
∼= OD(D).

This proves the following:

Proposition 2.1. The sheaf Ext1X(JD(D),OX) from the exact
sequence (2.2) fits in the following exact sequence

0 → OD → Ext1X(JD(D),OX) → Ext2X(ODs(D),OX) → 0.

It is known (see [Ei, Proposition 18.4 and Theorem 18.7]) that, for any
coherent sheaf F on X supported on a closed subset of codimension c,

(2.4) ExtqX(F ,OX) = 0, q < c.

Corollary 2.1. Assume that codimXDs ≥ 3. Then

Ext1X(JD(D),OX) ∼= OD,

and we have an exact sequence

0 → Ω1
X/k → Ω1

X/k(log D) → OD → 0.

Now let us recall the definition of the adjoint ideal sheaf adj(D) of D
(see [La, p. 179]). Let µ : X ′ → X be a birational morphism such that the
proper inverse transform D′ of D is nonsingular (a log resolution of D). Write
µ∗(D) = D′ + F for some divisor F on X ′ supported on the exceptional locus
of µ. We have

adj(D) = µ∗(OX′(KX′/X − F )),

where KX′/X = KX′ − µ∗(KX) is the relative canonical divisor of µ.
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Lemma 2.1. Let

cD = adj(D) · OD.

Then
(i) JD ⊂ cD;
(ii) if ν : D′ → D is a resolution of singularities of D, then

cD ⊗ ωD = ν∗ωD′ ;

(iii) if ν : D′ → D is the normalization morphism with smooth D′, then cD

is the conductor ideal sheaf, i.e. the annihilator sheaf of ν∗OD′/OD;
(iv) adj(D) = OX if and only if D is normal and has at most rational

singularities.

Proof. See [La, pp. 179–181].

Proposition 2.2. Let ν : D′ → D be a resolution of singularities of
D. The sheaf Ext1X(JD(D),OX) from exact sequence (2.2) fits in the following
exact sequence

(2.5) 0 → ν∗OD′ → Ext1X(JD(D),OX)
φ→ Ext2X((cD/JD)(D),OX).

The map φ is surjective if Riν∗OD′ = 0, i > 0.

Proof. It follows from part (ii) of Lemma 2.1 that cD restricts to OD on
the nonsingular locus of D, and so the sheaf JD. This implies that cD/JD is
supported on the closed subset of codimension ≥ 2 in X. By (2.4),

Ext1X(cD/JD,OX) = 0.

This gives an exact sequence

0 → Ext1X(cD(D),OX) → Ext1X(JD(D),OX)

→ Ext2X((cD/JD)(D),OX) → Ext2X(cD(D),OX).
(2.6)

By the adjunction formula, ωD = ωX⊗OX
OD(D). Applying part (ii) of Lemma

2.1, we get

cD(D) = ν∗ωD′ ⊗ ω−1
X .

Hence

(2.7) ExtiX(cD(D),OX) = ExtiX(ν∗ωD′ , ωX).

Since ν∗ωD′ does not depend on a choice of a resolution of singularities we may
assume that ν comes from a log resolution µ : X ′ → X of D, i.e. D′ is the
proper inverse transform µ−1(D) of D and ν = µ|D′. We have

Ext1X′(ωD′ , ωX′) ∼= OD′ , ExtiX′(ωD′ , ωX′) = 0, i 	= 1.
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Applying Grauert-Riemenschneider’s vanishing theorem

ν∗ωD′ ∼= ωD, Rqν∗ωD′ = 0, q > 0,

and the Duality Theorem for projective morphisms [Ha, Theorem 11.1], we
obtain an isomorphism

Ext1X(ν∗ωD′ , ωX) ∼= ν∗OD′ , ExtiX(ν∗ωD′ , ωX) = Ri−1ν∗OD′ , i ≥ 2.

Now the assertion follows from (2.7) and exact sequence (2.6).

Note that the condition Riν∗OD′ = 0, i > 0 is satisfied in one of the
following cases

• D is a normal variety with rational singularities;
• D has smooth normalization.

Definition 2.1. Use (2.5) to identify ν∗OD′ with a subsheaf of
Ext1X(JD(D),OX) and set

Ω̃1
X/k(log D) = α−1(ν∗OD′),

where α is defined in (2.2).

By definition, we have an exact sequence

(2.8) 0 → Ω1
X/k → Ω̃1

X/k(log D) res−→ ν∗OD′ → 0.

We call this sequence the residue exact sequence. The reason for this name will
be explained in the following example.

Also we have an exact sequence

(2.9) 0 → Ω̃1
X/k(log D) → Ω1

X/k(log D)
φ→ Ext2X((cD/JD)(D),OX),

where the map φ is surjective if Riν∗OD′ = 0 for i > 0.
Since Ext2X((cD/JD)(D),OX) is supported at a closed subset of codimen-

sion ≥ 2, we have

Ω̃1
X/k(log D)∗∗ ∼= Ω1

X/k(log D)∗∗ = Ω1
X/k(log D).

Proposition 2.3. Suppose (cD/JD)x = {0} for any point x ∈ D with
dimOD,x = 1. Then

(2.10) Ω̃1
X/k(log D) ∼= Ω1

X/k(log D).

The converse is true if Riν∗OD′ = 0, i > 0, for some resolution of singularities
ν : D′ → D.

Proof. If the condition is satisfied, the sheaf cD/JD is supported on a
closed subset of D of codimension ≥ 3. By (2.4), Ext2X((cD/JD)(D),OX) = 0
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and the first assertion follows from exact sequence (2.9). The same exact se-
quence implies that Ext2X((cD/JD)(D),OX) = 0 if (2.10) holds and Riν∗OD′ =
0, i > 0. Passing to stalks at points x ∈ D of codimension 1, we use that
Ext2A(M, A) = 0 for a module M over a regular local ring of dimension 2 sup-
ported on the closed point implies M = 0. This easily follows from the fact
that Ext2A(A/m, A) 	= 0, where A/m is the residue field of A. This proves the
second assertion.

Definition 2.2. A divisor D on X is called a normal crossing divisor at
a point x ∈ D if OD,x is formally (or étale) isomorphic to the quotient of OX,x

by an ideal generated by t1 . . . tk, where t1, . . . , tk is a subset of the set of local
parameters in OX,x. We say that D is a normal crossing divisor in codimension
≤ k if D is a normal crossing divisor at any point x with dimOX,x ≤ k. A
normal crossing divisor is a divisor which is normal crossing at each point.

It is clear from the definition that a normal crossing divisor in codimension
≤ 1 is just a reduced divisor. A normal crossing divisor in codimension ≤ 2 is
a divisor which is, in codimension ≤ 2, formally isomorphic to the product of
an affine space and an ordinary double point.

Corollary 2.2. Suppose D is a normal crossing divisor in codimension
≤ 2. Then

Ω̃1
X/k(log D) ∼= Ω1

X/k(log D).

The converse is true if Riν∗OD′ = 0, i > 0, and for any point x ∈ D of
codimension 1 the formal neighborhood of the pair (D, X) at x is given by the
equation ua − vb = 0, where u, v are local parameters of OX,x.

Proof. If D is a normal crossing divisor in codimension ≤ 2 then a local
computation shows that condition (ii) in Proposition 2.3 is satisfied. To prove
the converse we may assume that X is two-dimensional with local parameters
u, v at a point x and D is given by local equation f(u, v) = ua − vb = 0 at x.
Then

length OD,x/JD,x = length OX,x/(f ′
u, f ′

v, f) = length OX,x/(ua−1, vb−1)
= (a − 1)(b − 1).

Now we use a well-known Jung-Milnor formula from the theory of curve singu-
larities (see an algebraic proof in [Ri])

(2.11) µ = 2δ − r + 1.

Here

µ = length OX,x/(f ′
u, f ′

v), δ = length OD,x/cD,x

and r is the number of local branches of D at x. Write a = md, b = nd, where
(m, n) = 1. Then

ua − vb = (um)d − (vn)d =
d∏

i=1

(um − εivn),



Logarithmic sheaves attached to arrangements of hyperplanes 41

where ε is a primitive dth root of unity. It follows that d = r is the number of
branches. By Proposition 2.3, δ = µ, hence by (2.11), we get

(a − 1)(b − 1) = (md − 1)(nd − 1) = d − 1.

This can happen only if d = m = n = 1 or m = n = 1, d = 2. In the first case
D is nonsingular at x. In the second case, D is a normal crossing at x.

Remark 1. It follows from a result of Zariski [Za] that the singularities
f = ua − vb = 0 are characterized by the condition that f ∈ (f ′

u, f ′
v), or

equivalently, length OD,x/JD,x = length OX,x/(f ′
u, f ′

v).

Definition 2.3. Let Y be a nonsingular subvariety of a nonsingular
variety X and D be a reduced divisor on X. We say that Y intersects D
transversally if T orX

1 (OY ,OD) = 0 and for any resolution of singularities f :
D′ → D the morphism D′ ×X Y → D ×X Y = Y ∩ D is a resolution of
singularities.

Proposition 2.4. Let Y be a nonsingular subvariety of X with the sheaf
of ideals I. Assume that Y intersects transversally D. There is an exact
sequence

0 → I/I2 → Ω̃1
X/k(log D) ⊗OX

OY → Ω̃1
Y/k(log D ∩ Y ) → 0.

Proof. We have a standard exact sequence

(2.12) 0 → I/I2 → Ω1
X/k ⊗OX

OY → Ω1
Y/k → 0.

Consider the residue exact sequence for (X, D) and tensor it with OY . Using
the condition T orX

1 (OY ,OD) = 0, we get an exact sequence

0 → Ω1
X/k ⊗OX

OY → Ω̃1
X/k(log D) ⊗OX

OY → ν∗OD′ ⊗OX
OY → 0.

Now consider the following commutative diagram

0 0 0 0
x
?
?

x
?
?

x
?
?

x
?
?

0 −→ P −→ i∗(ν∗OD′) −→ π∗O(D∩Y )′ −→ Q −→ 0
x
?
?

x
?
?

x
?
?

x
?
?

0 −→ R −→ i∗Ω̃1
X/k(log D) −→ Ω̃1

Y (log Y ∩ D) −→ S −→ 0
x
?
?

x
?
?

x
?
?

x
?
?

0 −→ I/I2 −→ i∗Ω1
X/k −→ Ω1

Y/k −→ 0 −→ 0
x
?
?

x
?
?

x
?
?

x
?
?

0 0 0 0

Here i : Y ↪→ X is the inclusion morphism, and π : (D ∩ Y )′ → D ∩ Y
is a resolution of singularities which we can choose to be a composition of a
resolution of singularities of D′×X Y and the projection D′×X Y → D×X Y =
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D∩Y . The middle horizontal exact sequence is obtained by dualizing a natural
homomorphism

ΘY/k(log D ∩ Y ) → ΘX/k(log D) ⊗OX
OY .

In the row above it, we have a natural morphism of sheaves

α : ν∗OD′ ⊗OX
OY → ν∗O(D∩Y )′

which is the composition of an isomorphism ν∗OD′ ⊗OX
OY → ν∗OD′×XY

and a natural morphism ν∗O(D′×XY ) → π∗O(D∩Y )′ . By the transversality
assumption, D′ ×X Y ∼= (D ∩ Y )′, hence α is an isomorphism. This implies
that P = Q = 0 and the assertion follows.

Example 2.1. In the case when D is a strictly normal crossing divisor,
i.e. the union of smooth divisors Di, i = 1, . . . , m, which intersect transversally
at each point, the sheaf Ω1

X/k(log D) and its exterior powers Ωr
X/k(log D) are

well-known tools for defining the mixed Hodge structure on the complement
X\D. The sheaf Ω1

X/k(log D) is isomorphic to a subsheaf of the sheaf of rational
differentials with poles on Di of order at most one. If zi = 0, i = 1, . . . , s, is
a local equation of Di at a point x in the intersection D1 ∩ . . . ∩ Ds, then
Ω1

X/k(log D) is locally free at x and is generated in an open neighborhood of
x by meromorphic differential forms d log z1, . . . , d log zs, dzs+1, . . . , dzn. Let
εi : Di → X be the closed embedding. The map of sheaves

res : Ω̃1
X/k(log D) → ν∗OD′ ∼=

s⊕
i=1

εi∗ODi

is given by the residue map

res

(
s∑

i=1

aid log zi +
n∑

s+1

bidzi

)
= (a1 + (z1), . . . , as + (zs), 0, . . . , 0).

Since a normal crossing divisor is locally formally isomorphic to a simple normal
crossing divisor, it follows that the sheaf Ω1

Pn(log D) is locally free if D is a
normal crossing divisor.

3. The logarithmic sheaf of a hyperplane arrangement

This is a special case of the construction from the previous section. First
we assume that X is the projective space P

n over k and D is a hypersurface
V (f), where f is a homogeneous element of degree m in the polynomial algebra
S = k[T0, . . . , Tn]. Let

Ω1
S/k = SdT0 + · · · + SdTn

∼= S(−1)n+1

and

DerS/k = S ∂
∂T0

+ · · · + S ∂
∂Tn

∼= S(1)n+1
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be the graded S-module of differentials and the graded S-module of derivations,
dual to each other. Recall that S(a)i = Sa+i. Let E =

∑n
i=0 Ti

∂
∂Ti

be the Euler
derivation. It defines a homomorphism of E : Ω1

S/k → S of graded modules.
Let Ω̄S/k be its kernel. The corresponding sheaf on Pn is the sheaf Ω1

Pn of
regular differential 1-forms. Its dual is the tangent sheaf ΘPn associated to the
cokernel of the homomorphism S → DerS/k, a 
→ aE. Let

DerS/k(log f) = {∂ ∈ DerS/k : ∂(f) ∈ (f)}.

Obviously, E ∈ DerS/k(log f). For any ∂ ∈ DerS/k(log f), there exists a unique
p ∈ S such that ∂(f) − pE(f) = 0. Thus

DerS/k(log f) = SE ⊕ Der0S/k,

where Der0S/k is the kernel of the map DerS/k → S(m), ∂ 
→ ∂(f). Clearly,

D̃er
0

S/k
∼= ΘPn(log V (f)),

where˜denotes the sheaf associated to a graded S-module. Since f ∈ Jf , the
ideal sheaf J̃f on Pn can be considered as an ideal sheaf in V (f) and it coincides
with JV (f) defined in the previous section.

From now on we will consider the case when f = f1 · · · fm is the product
of distinct linear forms. The divisor A = V (f) is called an arrangement of
hyperplanes. We set

Ω1(A) := Ω1
Pn(logA), Ω̃1(A) := Ω̃1

Pn(logA).

It is customary in the theory of hyperplane arrangements to grade Ω1
S/k and

its dual by assigning the grade zero to each dTi and ∂
∂Ti

. So their sheaf of
logarithmic differentials is equal to Ω1(A)(1).

Let Li = V (fi), i = 1, . . . , m, so that A = L1∪. . .∪Lm. The normalization
A′ of A is isomorphic to the disjoint union of the Li’s. Thus it is smooth and
the normalization morphism ν : A′ → A can be taken for a resolution of
singularities of A. We have

(3.1) ν∗OA′ =
m⊕

i=1

εi∗OLi
,

where εi : Li ↪→ Pn is the inclusion morphism. Since ωLi
= OLi

(−n), we have

ν∗ωA′ = ν∗ν∗OPn(−n) = (ν∗OA′)(−n) =
m⊕

i=1

εi∗OLi
(−n).

Thus

cA(A) = ν∗ωA′ ⊗ ω−1
Pn =

(
m⊕

i=1

εi∗OLi
(−n)

)
⊗OPn(n + 1) =

m⊕
i=1

εi∗OLi
(1).
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Since the normalization morphism is finite we have

Riν∗OA′ = 0, i > 0.

The following exact sequences are just exact sequences (2.8) and (2.9)
rewritten in our special situation.

0 → Ω1
Pn → Ω̃1(A) res−→

m⊕
i=1

εi∗OLi
→ 0,(3.2)

0 → Ω̃1(A) → Ω1(A) → Ext2
Pn((cA/JA)(m),OPn) → 0.(3.3)

Theorem 3.1. Assume m ≥ n+2. The sheaf Ω̃1(A) admits a projective
resolution

0 → OPn(−1)m−n−1 → Om−1
Pn → Ω̃1(A) → 0.

Proof. Let

i : P
n → P

m−1, (t0, . . . , tn) 
→ (f1, . . . , fm).

It is a closed embedding with the image a linear subspace of dimension n. Let
z0, . . . , zm−1 be projective coordinates in Pm−1 and B be the arrangement of
the coordinate hyperplanes. Obviously, i∗(B) = A. We apply Proposition 2.4.
Formula (3.1) allows us to check the transversality condition. Thus we have an
exact sequence

0 → I/I2 → i∗Ω1
Pm−1(log V (z)) → Ω̃1(A) → 0.

The ideal sheaf I of i(Pn) in P
m−1 is associated to a free k[z0, . . . , zm−1]-module

generated by the subspace of linear polynomials spanned by m − 1 − n linear
independent linear relations between the functions f1, . . . , fm. Thus

I/I2 ∼= Om−n−1
Pn (−1).

It is easy to check that

Ω1
Pm−1(B) ∼= Om−1

Pm−1

(see [DK1, Proposition 2.10]).

Recall that an arrangement A is called a generic arrangement if it is a
simple normal crossing divisor.

Proposition 3.1. The following assertions are equivalent
(i) Ω̃1(A) is locally free;
(ii) A is a generic arrangement.

Proof. It follows from Example 2.1 that (ii) implies (i). Assume (i) holds.
Applying the residue exact sequence (3.2), we find that the sheaf ν∗OA′ is
locally generated by n elements. Suppose A is not a normal crossing divisor.
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Then there exists a closed point x ∈ P
n such that there are s > n hyperplanes

Li passing through x. Without loss of generality we may assume that x =
(1, 0, . . . , 0) and the hyperplanes are given by linear equations g1, . . . , gm in
inhomogeneous coordinates z1, . . . , zn. By (3.1)

(ν∗OA′)x
∼=

s⊕
i=1

(k[z1, . . . , zs]/(gi))(z1,...,zn).

We have a surjection On
X,x → (ν∗OA′)x. After tensoring with

k[z1, . . . , zn](z1,...,zn)/(z1, . . . , zn), we get a surjection of vector spaces kn → ks.
This contradiction proves the assertion.

Proposition 3.2. The following assertions are equivalent
(i) Ω̃1(A) ∼= Ω1(A);
(ii) A is a normal crossing divisor in codimension ≤ 2.

Proof. This follows from Corollary 2.2 since, locally in codimension 2, the
divisor D can be written by equation ua − va = 0, where a is the number of
hyperplanes in the arrangement A intersecting along a codimension 2 subspace.

Corollary 3.1. Suppose A is a normal crossing divisor in codimension
≤ 2. The following properties are equivalent

(i) Ω1(A) is locally free;
(ii) A is a generic arrangement.

Remark 2. Recall that an arrangement A is called free if the S-module
DerS/k(log V (f)) is free. Also A is called locally free if the sheaf Ω1(A) is
locally free. Of course, a free divisor is locally free but the converse is not true
in general. If n = 1 any divisor is free but already in dimension 2 any reduced
divisor is locally free but not necessary free. The assertion from Corollary 3.1
follows from [Zi] or [Yu], where it is proven that a free arrangement which is
normal crossing in codimension ≤ 2 is a Boolean arrangement (i.e. consists
of n + 1 linear independent hyperplanes). For any X from the lattice of the
arrangement one considers the arrangement AX of hyperplanes which contain
X. It is known that an arrangement is locally free if and only if each AX is
free. The arrangement A is normal crossing if and only if each AX is Boolean.
Another simple proof of this fact follows easily from [MS], where the Chern
polynomial of Ω1(A) is computed for a locally free arrangement (see (4.5)).

4. Stability of Steiner sheaves

A coherent torsion-free sheaf F on P
n with a projective resolution

0 → OPn(d)a → OPn(d + 1)b → F → 0, 0 < a < b,

is called a Steiner sheaf (see [DK1]).
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Assume m ≥ n+2. It follows from Theorem 3.1 that the sheaf F = Ω̃1(A)
is a Steiner sheaf with the projective resolution

(4.1) 0 → OPn(−1)m−n−1 → Om−1
Pn → F → 0.

Let P
n = P(V ) = V \ {0}/k∗ for some vector space V ,

U = H0(P(V ),F ⊗ Ω1
P(V )(1)), W = H0(P(V ),F).

One identifies U with H0(Pn,Om−n−1
Pn ) by tensoring (4.1) with Ω1

P(V )(1) and
using the natural isomorphism H1(Pn, Ω1

Pn) ∼= k. Also one identifies W with
H0(Pn,Om−1

Pn ). The map of sheaves OPn(−1)m−n−1 → Om−1
Pn is defined by an

injective linear map

t : V → Hom(U, W ).

Conversely, one can reconstruct F from such a map as the differential d−1,0 in
the Beilinson spectral sequence (see [OSS]).

In our situation when F = Ω̃1(A), the proof of Theorem 3.1 shows that U
is isomorphic the subspace of km which consists of relations between fi’s, W is
isomorphic to the subspace of km equal to the kernel of the map (a1, . . . , am) →∑

ai. The linear map t is defined by the formula

(4.2) t(v)((a1, . . . , am)) =
(
a1f1(v), . . . , amfm(v)

)
(cf. [DK1]). We will refer to tA := t as the defining tensor of Ω̃1(A). It could
be considered as an element of the space U∗ ⊗ V ∗ ⊗ W and hence defines a
divisor of multi-degree (1, 1, 1) on P(U)×P(V )×P(W ∗). We say that tA is non-
degenerate, if the divisor is a nonsingular subvariety. The following proposition
follows easily from the definition.

Proposition 4.1. Ω̃1(A) is locally free if and only if the tensor tA is
non-degenerate.

Let F be a torsion-free sheaf on P
n. We identify its Chern classes with

integers. It follows from (4.1) that the Steiner sheaf Ω̃1(A) has the Chern
polynomial

(4.3) ct(Ω̃1(A)) = 1/(1 − t)m−1−n = (1 + t + · · · + tn)m−1−n mod (tn+1).

Twisting (4.1) by OPn(1), we also get

(4.4) ct(Ω̃1(A)(1)) = (1 + t)m−1 mod (tn+1) =
n∑

i=0

ci(Ω1(A))ti(1 + t)n−i,

where the last equality uses a well-known relationship between the Chern poly-
nomial of a sheaf and its Serre’s twist. On the other hand, if Ω1(A) is locally
free, its Chern classes can be derived from [MS], Corollary 4.3:

(4.5) PA(t) = (1 + t)ct(Ω̃1(A)(1)),
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where PA(t) is the Poincaré polynomial of the arrangement

PA(t) =
∑
x∈L

µ(x)(−t)rank(x).

Here L is the lattice of the arrangement, i.e. the partial ordered, by inclusion,
set of non-empty subsets

LI = Li1 ∩ . . . ∩ Lis
, I = {i1, . . . , is},

µ : L → Z is the Möebius function of L defined by

µ(L∅) = 1, µ(LI) = −
∑

LI⊂LJ

µ(LJ ),

and rank(LI) = codimLI .
For a generic arrangement, we have PA(t) = (1 + t)m and formulas (4.4)

and (4.5) agree.
Note that the Poincaré polynomial ΠA(t) of the corresponding central

arrangement of affine hyperplanes in kn+1 is related to ours PA(t) via the
formula

ΠA(t) = PA(t) − PA(−1)(−t)n+1.

Example 4.1. Assume n = 2. Let P be the set of singular points of
A (i.e. elements of L of rank 2). We have µ(x) = s(x) − 1, where s(x) is the
number of lines through the point x. Then

PA(t) = 1 + mt +
∑
x∈P

(s(x) − 1)t2.

Using (4.5), we get

c1(Ω1(A)) = m − 3,

c2(Ω1(A)) =
∑
x∈P

(s(x) − 1) − 2m + 3.(4.6)

It follows from (3.3) that

c1(Ω̃1(A)) = c1(Ω1(A))

and

(4.7) c2(Ω1(A)/Ω̃1(A)) = c2(Ω1(A)) − c2(Ω̃1(A)) =
∑
x∈P

(s(x) − 1) −
(

m

2

)
.

The second Chern class of a sheaf T concentrated at a finite set of points is
equal to −h0(T ). Also, applying Theorem 3.1, we get

(4.8) h0(Ω̃1(A)) = m − 1, h1(Ω̃1(A)) = 0.

Now (3.3) gives

(4.9) h0(Ω1(A)) = m − 1 −
∑
x∈P

(s(x) − 1) +
(
m
2

)
, h1(Ω1(A)) = 0.
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The rank F is the rank of the vector bundle obtained by restriction to
some open subset of P

n. Recall that F is called semi-stable (resp. stable) if for
any proper subscheaf F ′ ⊂ F ,

hF ′(t)
rank F ′ ≤

hF (t)
rank F ,

(
resp.

hF ′(t)
rank F ′ <

hF (t)
rank F

)
,

where hF(t) = χ(Pn,F(t)) is the Hilbert polynomial of F(t) and the inequality
means the inequality between the values of the polynomials for t >> 0.

Comparing the coefficients at tn−1, we see that stability (resp. semi-
stability) implies slope-stability µ(F ′) < µ(F) (resp.µ(F ′) ≤ µ(F)), where
µ(F) = c1(F)

rank F is the slope of F . The slope-stability implies stability but slope-
semi-stability does not imply semi-stability. In the case n = 2 and F is of rank
r with Chern classes c1 and c2, we have

hF (t)
r

=
1
2
t2 + (µ(F) + 3)t +

3
2
µ(F) +

1
2r

(c2
1 − 2c2) + 1.

This shows that µ(F) = µ(F ′) implies stability (resp. semi-stability) only if
∆(F) < ∆(F ′) (resp. ≤), where

∆(F) =
1
r

(
c2 −

r − 1
2r

c2
1

)
=

1
2r

(2c2 − c2
1) +

1
2
µ(F)2

is the discriminant of F .
It is known that there is a coarse moduli space MPn(r; ct) of torsion-free

semi-stable sheaves of rank r on P
n with fixed Chern polynomial ct ([Ma]). It

is a projective variety. If n = r = 2, we have

(4.10) dimMP2(2; c1, c2) = 4c2 − c2
1 − 3,

if the open subset of the moduli space representing stable sheaves is not empty.
If any semi-stable sheaf is stable (e.g., if (c1, r) = 1)), then MPn(r; ct) is a fine
moduli space.

Proposition 4.2. Assume n > 1. Any Steiner vector bundle E on Pn

defined by an exact sequence

0 → OPn(−1)m−n−1 → Om−1
Pn → E → 0

is a stable bundle of rank n with the Chern polynomial ct = (1 − t)n−m+1.

Proof. It is enough to show that E is slope-stable. This was proven in
[BS].

It follows from [DK1], Corollary 3.3, that Steiner bundles (twisted by
OPn(1)) form an open subset Sn,m in an irreducible component of the mod-
uli space MPn(n; (1 + t)m−1). If n = 2,

dimS2,m = m(m − 4).
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The logarithmic bundles Ω1(A) of generic arrangements on P
2 depend on nm

parameters. One proves that the map from the variety of general arrangements
of m hyperplanes to the moduli space of vector bundles on P

n is a birational
morphism for m ≥ n + 2. This was proved first in [DK1] for m ≥ 2n + 3 and
improved later in [Va]. Thus for n = 2, only in the case m = 6 we get the
equality of the dimensions.

Now let us consider the problem of stability of Steiner sheaves F on P
n =

P(V ), not necessarily locally free. We assume that

rank F = n,

hence F is given by an exact sequence

0 → OPn(−1) ⊗ U → OPn ⊗ W → F → 0,

where U ∼= H0(Pn,F⊗ΩPn(1)), W ∼= H0(Pn,F) and the sheaf F is determined
by a tensor t : V → Hom(U, W ). We fix vector spaces U and W of dimensions
m − 1 − n and m − 1, respectively and consider the triples (F , a, b), where F
is a Steiner sheaf and a, b are isomorphisms from above. Each such triple (a
Steiner triple) is represented by a tensor t defining a point in P(U∗ ⊗ V ∗ ⊗
W ). The condition of non-degeneracy is defined by a non-vanishing of the
hyperdeterminant. Recall from [GKZ] that the dual variety of P

n1
k ⊗ · · · ⊗ P

ns

k ,
embedded by Segre, is a hypersurface if and only if ni ≤

∑
j �=i nj for any i. A

tensor t ∈ V1 ⊗ · · · ⊗ Vs, where P
ni = P(Vi), defines a hyperplane section of

the Segre variety. So, it is singular if only if the hyperdeterminant (which is
an element of ⊗s

i=1V
∗
i ) vanishes at t. In our case n1 + 1 = dim U = m − 1 −

n, n2 +1 = dim V = n+1, n3 +1 = dim W = m−1, so n1 = n2 +n3−2n, n2 =
n1 + n3 + 2(m − n − 2), n3 = n1 + n2. Thus the hyperdeterminant exists if
m ≥ n + 2.

Let

Xm,n = P(U∗ ⊗ V ∗ ⊗ W )//SL(U) × SL(W ).

We can also view Xm,n as the GIT-quotient of the Grassmannian of m−1−n-
subspaces in V ∗ ⊗ W :

Xm,n = G(m − 1 − n, V ∗ ⊗ W )//SL(W ).

The following result describes the set of semi-stable points in the Grass-
mannian G(m − 1 − n, V ∗ ⊗ W ) with respect to the action of SL(W ) ([Ka],
[Ca]).

Proposition 4.3. A subspace E ∈ G(m−1−n, V ∗⊗W ) is semi-stable
(resp. stable) if and only if for each proper linear subspace W ′ ⊂ W we have

dimE ∩ (W ′ ⊗ V ∗)
dimW ′ ≤ dim E

dimW
(resp. <)

Corollary 4.1. Let (F , a, b) be a Steiner triple with the defining tensor
t ∈ U∗⊗V ∗⊗W . Assume that F is slope stable (resp. slope semi-stable). Then
the tensor t, considered as a point in G(m − 1 − n, V ∗ ⊗ W ) is stable (resp.
semi-stable).
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Proof. Let E ⊂ V ∗ ∩ W considered as the image of U under the map
t : U → V ∗ ⊗ W defined by t. Let U ′ = t−1(E ∩ W ′) ⊂ U . It gives an exact
sequence of sheaves

0 → OPn ⊗ U ′ → OPn(1) ⊗ W ′ → F ′ → 0.

It is clear that F ′(−1) is a subsheaf of the Steiner sheaf F with

µ(F ′(−1)) =
dim U ′

dimW ′ − dim U ′ .

Since F is slope stable (resp. slope semi-stable), we have

dimU ′

dim W ′ − dimU ′ ≤ µ(F) =
dimU

dimW − dim U
(resp. <).

It is easy to see that this is equivalent to the condition of semi-stability (sta-
bility) from the previous proposition.

Remark 3. The validity of the converse of the assertion in the previous
corollary is unknown. It is true in the case when m = n + 3 and n is odd (see
[Ca]).

Corollary 4.2. Let A be an arrangement of m hyperplanes in P
n and

L be its lattice. For any x ∈ L let s(x) denote the number of hyperplanes
containing x and let r(x) = rank(x). Assume that there exists x ∈ L such that

s(x) >
m − 1

n
(r(x) − 1) + 1.

Then the Steiner log-sheaf Ω̃1(A) is unstable (i.e. not semi-stable). If the
equality holds, Ω̃1(A) is not stable.

Proof. Assume such x = LI with r(x) = r exists. Without loss of gener-
ality we may assume that the hyperplanes containing LI are the hyperplanes
Li = V (fi), i = 1, . . . , s and f1, . . . , fr are linearly independent. This implies
that, for any i = r+1, . . . , s, we can write fi =

∑r
j=1 aijfj . The corresponding

relations span a subspace U ′ of U of dimension s − r. By definition of the
defining tensor of A, it maps U ′ to the subspace V ∗⊗W ′ of V ∗⊗W ⊂ V ∗⊗km

generated by

(ar+11f1, . . . , ar+1rfr,−fr+1, 0, . . . , 0), . . . ,
(as1f1, . . . , asrfr, 0, . . . , 0,−fs, 0, . . . , 0).

Thus, in the notation of Proposition 4.3, we have dimW ′ = s−1 and dim U ′ =
s − r = dim E ∩ W ⊗ V ∗ and

dim E ∩ (W ′ ⊗ V ∗)
dimW ′ − dimE

dimW

=
s − r

s − 1
− m − 1 − n

m − 1
=

sn − n − (m − 1)(r − 1)
(m − 1)(s − 1)

.

By assumption, the last number is positive, hence t is unstable. By Corollary
4.2, the sheaf Ω̃1(A) is unstable.
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Proposition 4.4. The sheaf Ω̃1(A) is slope stable (resp. slope semi-
stable) if and only if the sheaf Ω1(A) is slope-stable (resp. slope semi-stable).

Proof. More generally, let

0 → F → G → K → 0

be an exact sequence of sheaves with rank K = 0. Since c1(K) = 0 and rank F =
rank G, we have

µ(F) = µ(G).

Let F ′ be a subsheaf of F with µ(F ′) > µ(F), then F ′ is a subsheaf of G with
µ(F ′) > G. Thus G is unstable if F is. Conversely, if G′ is a subsheaf of G
with µ(G′) > µ(G), we take F ′ to be the kernel of the projection to K. Since
c1(K) = 0, we have µ(F ′) = µ(G′) > µ(G) = µ(F). Hence F is unstable if G is.
This shows that slope semi-stability of F is equivalent to slope semi-stability of
G. A similar proof, with replacing strict inequalities with non strict inequalities
proves that slope stability of F is equivalent to slope stability of G. We apply
this to our situation using exact sequence (3.3).

Definition 4.1. An arrangement of hyperplanes A is called stable (resp.
semi-stable, resp. unstable) if the sheaf Ω̃1(A), or, equivalently, the sheaf Ω1(A)
is stable (resp. semi-stable, resp. unstable).

Example 4.2. Let A be a free arrangement. In this case the module
of differentials Ω1

S/k(log f) is free, hence isomorphic to a direct sum of modules
of type S(ai). This shows that

(4.11) Ω1(A) ∼=
n⊕

i=1

OPn(ai).

Its slope is equal to (a1 + · · · + an)/n. Let us assume that a1 ≤ · · · ≤ an.
Then the inequality an ≥ (a1 + · · ·+an)/n shows that µ(OPn(an)) ≥ µ(Ω1(A))
with equality only in the case a1 = · · · = an. Hence Ω1(A) is unstable unless
a1 = · · · = an in which case it is semi-stable.

Example 4.3. Take n = 2. The only interesting r is r = 2, i.e. x is
a point in P

2. We get that s(x) > m−1
2 + 1 implies unstability. For example,

if m = 6, we need 4 lines passing through x. One should compare it with
an inductive sufficient condition for slope stability and slope semi-stability of
the bundle Ω1(A) from [Sch, Theorem 4.5]. Note that the condition s(x) ≤ 3
for any x with rank(x) = 2 is not sufficient for semi-stability. The reflection
arrangement of type A3 (its dual set of points in P̌2 is the set of vertices
of a complete quadrilateral) is free. By (4.6), ct(Ω1(A))) = 1 + 3t + 2t2 =
(1 + t)(1 + 2t), hence a1 = 1, a2 = 2 in (4.11). This shows that Ω1(A) is
unstable. This also can be proved without appealing to the freeness of the
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arrangement. It is known ([OSS, p. 168]) that a vector bundle E on P
2 is

unstable if

8∆(E) = 4c2(E) − c1(E) < 0.

By (4.6), this is equivalent to the inequality

(4.12) 4
∑
x∈P

(s(x) − 1) − (m − 1)(m + 3) < 0.

In the case of A3-arrangement, the left-hand-side is equal to 44 − 45 < 0, so
the sheaf Ω1(A) is unstable.

Recall that for any arrangement A in P
n = P(V ) there is the associated

arrangement Aas (defined only up to projective equivalence) in Pm−n−2 = P(U)
(see [DK1]). The corresponding sheaf Ω̃1(Aas) is the Steiner sheaf defined by
the same tensor t ∈ U∗ ⊗ V ∗ ⊗ W with the role of U and V exchanged.

For any arrangement one defines the subset D(A) of the set of subsets of
{1, . . . , m} of cardinality n + 1 which consists of subsets (i0, . . . , in) such that
V (fi0)∩ . . .∩V (fin

) 	= ∅. In terms of the matrix of coordinates of the functions
fi, this is just the set of vanishing minors of maximal order. It follows from
[DO], Lemma 1, p. 37, that the map I 
→ {1, . . . , m} \ I is a bijection between
the sets D(A) and D(Aas). In particular, A is generic if and only if Aas is
generic.

Conjecture. Ω̃1(A) is stable if and only if Ω̃1(A)as is stable.

5. Unstable hyperplanes

Let Arn,m be the variety of arrangements of m ≥ n + 2 hyperplanes in
P

n. This is just an open Zariski subset of (P̌n)m/Sm or, equivalently, a locally
closed subset of the projective space of polynomials of degree m which con-
sists of products of m distinct linear polynomials. We denote by Arssn,m (resp.
Arsn,m) the subset of semi-stable (resp. stable) arrangements. Let Sn,m be
a connected component of the Maruyama moduli space MPn(n, (1− t)n−m+1)
which contains Steiner vector bundles defined by exact sequence (4.1). We have
a map

(5.1) log : Arssn,m → Sn,m, A 
→ Ω̃1(A).

We have already mentioned that this map is injective on the subset of generic
arrangements which do not osculate a normal rational curve of degree n (i.e.
the corresponding points in the dual projective space do not lie on such a
curve)([DK1], [Va]). The generic arrangements osculating a normal rational
curve are blown down to the locus of Schwarzenberger bundles.

The main idea of Valles’s proof is to reconstruct the hyperplanes from the
arrangement as unstable hyperplanes of the sheaf Ω̃1(A).
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Definition 5.1. Let F be a Steiner sheaf of rank n on P
n. A hyperplane

L is called an unstable hyperplane of F if

Hn−1(L,F(−n)|L) 	= {0}.

We denote by W (F) the set of unstable hyperplanes of F .

Here F|L is the scheme-theoretical restriction, i.e.

F|L = i∗F = F ⊗OPn OL,

where i : L ↪→ P
n is the inclusion map.

Proposition 5.1. Let L be a hyperplane from a hyperplane arrange-
ment A. Then L is an unstable hyperplane of the sheaf Ω̃1(A).

Proof. Without loss of generality we may assume that L = L1. We use
the residue exact sequence (3.2). Tensoring it with OL we obtain an exact
sequence

(5.2) 0 → T orP
n

1 (OL,OL) α→ Ω1
Pn |L → Ω̃1(A)|L → OL ⊕

m⊕
i=2

OLt∩L → 0.

Consider the exact sequence

0 → OPn(−1) → OPn → OL → 0

corresponding to the inclusion of the ideal sheaf of L in OPn . Tensoring it with
OL, we get an exact sequence

0 → T orP
n

1 (OL,OL) → OL(−1) → OL → OL → 0.

This shows that T orP
n

1 (OL,OL) ∼= OL(−1). Using (2.12), it is easy to identify
the cokernel of the map α with Ω1

L. Thus we get an exact sequence

0 → Ω1
L → Ω̃1(A)|L → ε1∗

(
OL ⊕

m⊕
t=2

OLt∩L

)
→ 0.

Twisting by OL(−n) and applying cohomology, we get a surjection

Hn−1(L, Ω̃1(A)(−n)|L) → Hn−1

(
L,OL(−n) ⊕

m⊕
i=2

OLi∩L(−n)

)
=

Hn−1(L,OL(−n)) = k.

This proves the assertion.

Lemma 5.1. Let A′ be the arrangement obtained from an arrangement
A of m ≥ n + 3 hyperplanes by deleting a hyperplane L. There exists an exact
sequence

0 → Ω̃1(A′) → Ω̃1(A) → OL → 0.
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Proof. The assertion probably follows from the residue exact sequence
without the assumption on m, but this requires the verification that res−1(OL)
is isomorphic to Ω̃1(A′), so we prefer to give a simpler proof. We use that
Ω̃1(A) and Ω̃1(A′) are Steiner sheaves. We have a commutative diagram

0 0 0� � �
0 −→ OPn(−1) −→ OPn −→ OL −→ 0� � �
0 −→ OPn(−1)m−n−1 −→ Om−1

Pn −→ Ω̃1(A) −→ 0� � �
0 −→ OPn(−1)m−n−2 −→ Om−2

Pn −→ Ω̃1(A′) −→ 0� � �
0 0 0

Here the top horizontal sequence is the exact sequence of the definition of the
sheaf OL. The first two vertical exact sequences are obtained from compos-
ing the defining tensor tA : V → Hom(U, W ) of A with the restriction map
Hom(U, W ) → Hom(U ′, W ′), where tA′ : V → Hom(U ′, W ′) is the defining
tensor of A′. The right vertical sequence is the needed exact sequence.

Proposition 5.2. Let A′ be the arrangement obtained from an arrange-
ment A by deleting a hyperplane L. Then W (Ω̃1(A)) ⊂ W (Ω̃1(A′)) ∪ {L}.

Proof. It is enough to show that any L′ ∈ W (Ω̃1(A)) \ {L} belongs
to W (Ω̃1(A′)). Tensoring the exact sequence from the previous Lemma by
OL′(−n) we get an exact sequence

0 → Ω̃1(A′)(−n)|L′ → Ω̃1(A)(−n)|L′ → OL′∩L(−n) → 0.

Taking cohomology, we get a surjection

Hn−1(L′, Ω̃1(A′)(−n)|L′) → Hn−1(L′, Ω̃1(A)(−n)|L′).

This shows that L′ ∈ W (Ω̃1(A′)) if L′ ∈ W (Ω̃1(A)).

In the case of general arrangements this result is Proposition 2.1 from [Va]
and Theorem 3.13 from [AO] (where the inclusion is taken in scheme-theoretical
sense, see below).

Corollary 5.1. Assume A = A′ + L, where A′ is an arrangement such
that W (Ω̃1(A′)) consists of m − 1 unstable hyperplanes. Then

W (Ω̃1(A)) = W (Ω̃1(A′)) ∪ {L}.

Proof. W (Ω̃1(A′)) consists of hyperplanes from A′. Thus W (Ω̃1(A′)) ∪
{L} ⊂ W (Ω̃1(A)). By Proposition 5.2, we have the opposite inclusion.

The set W (F) of unstable hyperplanes of a Steiner sheaf F has a natural
structure of a closed subscheme of the dual projective space P̌

n (see [AO]). In
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fact, one can construct a closed subscheme of S̃n,m ⊂ Sn,m × P̌
n such that the

projection

p : S̃n,m → Sn,m

has fibres isomorphic to the varieties W (F) under the projection to the second
factor. The image of p1 is a proper closed subvariety. Let

p′ : Ãr
ss

n,m → Arssn,m

be the pull-back of the map p with respect to the map log : Arssn,m → Sn,m. We
know that over an open subset of generic arrangements which do not osculate a
normal rational curve, the map p′ is an unramified cover of degree m. Over the
locus of generic arrangements osculating a normal rational curve the fibres are
isomorphic to P

1
k. It follows that there exists an open Zariski subset U ⊂ Arss

n,m

containing generic arrangements not osculating a normal rational curve such
that, for any F ∈ U , the scheme W (F) is a reduced 0-dimensional and consists
of m points.

Definition 5.2. An arrangement A of m hyperplanes is called a Torelli
arrangement if W (Ω̃1(A)) consists of m hyperplanes of A.

Theorem 5.1. Let U be the subset of Arssn,m which consists of Torelli
arrangements. Then U is an open subset of Arssn,m and the map log : U → Sn,m

is injective.

Examples of Torelli arrangements are generic arrangements of m ≥ n + 2
which do not osculate a normal rational curve in P

n [Va]. It follows from
Proposition 5.1 that any arrangement which contains a Torelli arrangement is
a Torelli arrangement. In particular any arrangement which contains a generic
arrangement A′ with at least n+2 hyperplanes not osculating a normal rational
curve is a Torelli arrangement.

Conjecture. A semi-stable arrangement of m ≥ n + 2 hyperplanes in
P

n is a Torelli arrangement unless the corresponding points in P̌n lie on a stable
normal rational curve of degree n.

Recall that a stable normal rational curve in P
n is a connected reduced

curve of arithmetic genus 0 and degree n in P
n. It is the union of smooth ratio-

nal curves C1, . . . , Cs of degrees d1, . . . , ds satisfying the following conditions
(i) n = d1 + · · · + ds;
(ii) each curve Ci spans a subspace 〈Ci〉 = P(Vi) of P

n = P(V ) of dimension
di;

(iii) V = V1 + · · · + Vs.

6. Line arrangements

Here we assume n = 2. Recall that a line L is called a jumping line of a
rank 2 vector bundle E on P

2 if the splitting type of the restriction of E to L is
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different from the splitting type of the restriction of E to a general line in the
plane. This means that

E|L 	∼=
{
OL(a) ⊕OL(a) if c1(E) = 2a,

OL(a) ⊕OL(a − 1) if c1(E) = 2a − 1.

Equivalently, H1(E(−a − 1)|L) 	= 0 if c1(E) = 2a and H1(E(−a)|L) 	= 0 if
c1(E) = 2a − 1. It is easy to see that H1(E(−2)|L) = 0 implies H1(E(−2 −
s)|L) = 0 for any s ≥ 0. In [DK1] an unstable line of Ω1(A) for a generic
arrangement A was called a super-jumping line. Note that the notions of an
unstable line of Ω1(A) and a jumping line of Ω1(A) coincide only if m = 5 or
6. The exact sequence (3.3) shows that any unstable line of Ω̃1(A) not passing
through its singular locus is a jumping line of Ω1(A).

Let MP2(2; c1, c2) be the moduli space of semi-stable sheaves of rank 2 on
P

2 with fixed Chern classes c1, c2. If there exists a stable vector bundle with
these Chern classes (e.g. if (c1, c2) = 1) then it is an irreducible variety of di-
mension 4c2 − c2

1 − 3 ([Ma], [Ba], [Hu]). Consider its boundary ∂MP2(2; c1, c2)
formed by sheaves which are not locally free. For any sheaf F from the bound-
ary, the double dual sheaf F∗∗ is a semi-stable vector bundle with the same
c1 and c2(F∗∗) = c2 − δ for some δ ≥ 0. Let MP2(2; c1, c2)δ be the subset
of MP2(2; c1, c2) which parametrizes isomorphism classes of such sheaves (or,
more precisely, the corresponding S-equivalence classes if the sheaves are not
stable but semi-stable). Since all bundles with c2

1 − 4c2 > 0 are known to be
unstable (see [OSS, p. 168]),

MP2(2; c1, c2)δ = ∅, δ > 4c2 − c2
1.

Note that

∂MP2(2; c1, c2) = ∪δ>0MP2(2; c1, c2)δ.

Let

0 → F → F∗∗ → T → 0,

be the canonical exact sequence corresponding to the natural inclusion F ⊂
F∗∗. The sheaf T is concentrated at the set of singular points of F . Let δx be
the length of the OP2,x-module Tx. Let

Z(F) =
∑
x∈P2

δxx ∈ Symδ(P2)

be the corresponding point of the symmetric product of the plane. The set-
theoretical union

MP2(2; c1, c2)U =
∐
δ≥0

MP2(2; c1, c2 − δ)0 × Symδ(P2)

has a structure of a projective algebraic variety and is called the Uhlenbeck
compactification of the moduli space of semi-stable vector bundles MP2(c1, c2)0

(see [Li]). The natural map

MP2(2; c1, c2) → MP2(2; c1, c2)U , F 
→ (F∗∗, Z(F))
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is a morphism of algebraic varieties. Its fibre over a point Z =
∑

δxx is iso-
morphic to the product of punctual quotient schemes Quot(2δx) parametrizing
quotient sheaves of O2

P2 concentrated at x and of length δx. It is an irreducible
variety of dimension 2δx − 1. There is an open subset of MP2(2; c1, c2)U corre-
sponding to points Z =

∑
x δxx such that δx ≤ 1. The pre-image of this set in

MP2(2; c1, c2)δ is an open subset of dimension equal to dimMP2(2; c1, c2 − δ).
It projection to MP2(2; c1, c2 − δ)0 has fibres of dimension 3δ.

Now let us specialize to our situation. Consider exact sequence (3.3)

0 → Ω̃1(A) → Ω1(A) → T → 0,

where T = Ext2
P2(cA/JA,OP2). The stalks of cA and JA are easy to compute

using the Jung-Milnor formula from the proof of Corollary 2.2. We have

length(cA/JA)x =
(
s(x)−1

2

)
.

Since Ext2
P2(k,OP2) ∼= k, this gives

(6.1) length Tx =
(
s(x)−1

2

)
.

We know from (4.6) that

h0(T ) =
∑
x∈P

length Tx =
(
m
2

)
−
∑
x∈P

(s(x) − 1).

This gives a well-known combinatorial formula

(6.2)
(
m
2

)
−
∑
x∈P

(s(x) − 1) =
∑
x∈P

(
s(x)−1

2

)
.

We set

δx(A) :=
(
s(x)−1

2

)
, δ(A) :=

∑
x∈P

δx(A).

Note that δ(A) = 0 if and only if A is a generic arrangement. It follows from
(4.6), that the numbers d and δ determine the Chern polynomial of Ω1(A).
Recall that the moduli space of Steiner sheaves S2,m is equal to the moduli
space MP2(2; c1, c2), where c1 = m−3, c2 =

(
m−2

2

)
. Let Sδ

2,m = MP2(2; c1, c2)δ.
Let Arss2,m(δ) be the set of semi-stable arrangements with fixed δ(A) = δ. The
restriction of the map (5.1) to Arss2,m(δ) defines a map

logδ : Arss2,m(δ) → Sδ
2,m.

One can rewrite the condition of unstability from (4.12) in the form

(6.3) Arss2,m(δ) = ∅, δ >
(m − 3)(m − 1)

5
.
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We also know from above that

codimS2,m
(Sδ

2,m) = δ.

Also taking the double dual defines a morphism

uδ : Sδ
2,m → MP2(2; m − 3,

(
m−2

2

)
− δ).

The composition

uδ ◦ logδ : Arss2,m(δ) → MP2(2; m − 3,
(
m−2

2

)
− δ)

is just the map A 
→ Ω1(A). It is easy to see that Arss2,m(1) is irreducible
and of codimension 1 in Arss2,m. However, Arss2,m(2) consists of two irreducible
components, each of codimension 2. I do not know neither the number of
irreducible component of Arss2,m(δ) not their codimension for arbitrary m and
δ.

Remark 4. It follows from Schenk’s inductive criterion of semi-stability
[Sch] that all arrangements with δ(A) = 1 are stable for m ≥ 6.

Example 6.1. Let m = 4. Here only generic arrangements are stable.
The moduli space MP2(2; 1, 1) ∼= MP2(2;−1, 1) consists of one point, repre-
senting the sheaf Ω1

P2(2). Thus

Ω̃1(A) = Ω1(A) ∼= Ω1
P2(2) ∼= ΘP2(−1).

The exact sequence

0 → OL(−1) → Ω1
P2 |L → ΩL → 0

shows that

H1(L, Ω1(A)(−2)|L) ∼= H1(L, Ω1
P2 |L) ∼= H1(L, Ω1

L) ∼= k.

Thus any line is an unstable line of Ω1(A).

Example 6.2. Let m = 5. The moduli space S2,5 = MP2(2; 2, 3) ∼=
MP2(2; 0, 2) is a 5-dimensional variety. Its open subset S0

2,5 representing vector
bundles is isomorphic to an open subset U of P

5. If we identify the latter
with the space of curves of degree 2 in the dual plane, then U is equal to
the set of nonsingular conics and the isomorphism is defined by assigning to a
vector bundle E its set of jumping lines (see [Ba]). The variety MP2(2; 2, 2) ∼=
MP2(2; 0, 1) is 2-dimensional. A sheaf F from MP2(2; 2, 2) is determined by an
extension

0 → OP2 → F → IA(2) → 0,

where IA is the ideal sheaf of a 0-dimensional closed subscheme in the plane
with h0(OA) = 2. It shows that h0(F(−1)) 	= 0, hence F contains a subsheaf
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OP2(1) of slope 1. Since µ(F) = 1, this shows that MP2(2; 2, 2) represents
the S-equivalence classes of semi-stable but not stable sheaves. Each such
class consists of vector bundles represented uniquely (up to isomorphism) by
an extension

(6.4) 0 → OP2(1) → E → Ix(1) → 0

for some point x. The only non-locally free semi-stable sheaf in this class is the
sheaf OP2(1) ⊕ Ix(1), where x is a point.

The variety MP2(2; 2, 1) ∼= MP2(2; 0, 0) is a one-point set. It represents
the S-equivalence class of the sheaf OP2(1)2.

Thus for a generic arrangement A of 5 lines we have Ω̃1(A) ∼= Ω1(A) is
the Schwarzenberger vector bundle with the curve of jumping lines equal to
the unique nonsingular conic in the dual plane containing the five lines of the
arrangement. The map Arss2,5(0) → MP2(2; 2, 3)0 = U is a surjective map with
5-dimensional fibres.

The set Arss2,5(1) consists of arrangement with one triple point. All these
arrangements are semi-stable but not stable. The sheaf Ω1(A) belongs to
MP2(2; 2, 2) and is S-equivalent to the sheaf OP2(1)⊕Ix(1), where x is a point.
Observe that the two lines, say L1, L2 of A not passing through the triple point
are jumping lines of Ω̃1(A) and hence of Ω1(A). The set of unstable lines of a
sheaf given by an extension (6.4) is equal to the set of lines passing through x.
This shows that x = L1 ∩ L2.

Thus all arrangements with the same point of intersection of two lines
L0 and L1 not passing through the triple point have bundle Ω1(A) given by
extension (6.4), where x = L0 ∩ L1. The sheaf Ω̃1(A) determines Ω1(A) as
its double dual, and determines the triple point y, as its singular point. So it
determines a reducible conic in the dual plane, union of the line dual to the
triple point and the line dual to the point L0 ∩ L1. All arrangements defining
the same conic have the same S-equivalence class of the sheaf Ω̃1(A). It is
represented by the sheaf Ix(1)⊕ Iy(1). Since Ext1

P2(Ix(1), Iy(1)) ∼= k if x 	= y,
we obtain that there is a unique nontrivial extension class of an extension

0 → Ix(1) → F → Iy(1) → 0,

where x 	= y. Since Ω1(A) = Ω̃1(A)∗∗ 	∼= OP2(1)2, we conclude that that Ω̃1(A)
is given by a unique non-trivial extension

0 → Ix(1) → Ω̃1(A) → Iy(1) → 0,

where x is the triple point and y is the intersection point of two lines not passing
through x. Tensoring by OL(−2) and using that, for any point z 	∈ L, we have
an exact sequence

(6.5) 0 → T orP
2

1 (Oz,OL) → Iz ⊗O
P2

OL → OL(−1) → 0,

we see that W (Ω̃1(A)) consists of lines through x or y. It is the union of two
lines in the dual plane.
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Finally Arss2,5(2) consists of arrangements with 2 triple points. The dual
set of points lies on the union of two lines, three points on each line, one is the
intersection point. The sheaf Ω1(A) is S-equivalent to the sheaf OP2(1)2 (in
fact, it is isomorphic to this sheaf). It has no jumping lines. The sheaf Ω̃1(A)
is S-equivalent to the sheaf Ix(1) ⊕ Iy(1), where x, y are the triple points. As
in the previous case we obtain that Ω̃1(A) is given by a unique non-trivial
extension

0 → Ix(1) → Ω̃1(A) → Iy(1) → 0,

where x, y are the triple points of A. The variety W (Ω̃1(A)) is the union of
two lines, dual to the points x, y. So, we see that all semi-stable arrangements
of 5 lines are not Torelli arrangements. Of course they always lie on a conic.

Example 6.3. Let m = 6. In the case when A is a generic arrange-
ments the vector bundle Ω1(A) was extensively studied in [DK2]. Here we are
interested in non-generic arrangements. Since µ(Ω̃1(A)) = 3/2, all semi-stable
arrangements are stable. Also we have dimAr2,6 = dimS2,6 = 12, so the map

log : Ars
2,6 → S2,6 = MP2(2; 3, 6) ∼= MP2(2;−1, 4)

is a birational morphism which is an isomorphism on the set of Torelli arrange-
ments.

Let A ∈ Ars
2,6(1). The bundle Ω1(A) belongs to the 8-dimensional vari-

ety MP2(2; 3, 5) ∼= MP2(2;−1, 3). The three lines from A which do not pass
through the unique triple point x ∈ A are the jumping lines of Ω1(A). It is
known that a vector bundle E from MP2(2; 3, 5) with 3 non-concurrent jumping
lines L1, L2, L3 is unique up to an automorphism of P2([Hu]). Its set of jumping
lines is the set {L1, L2, L3} and it is given by an extension

(6.6) 0 → OP2(1) → E → IZ(2) → 0,

where Z is a 0-dimensional reduced closed subscheme of P2 which consists of
three points pij = Li ∩ Lj . Twisting by OP2(−1) we see that

h0(E(−1)) = 1.

This shows that the extension is determined uniquely by the isomorphism class
of E . The set of non-isomorphic extensions as in (6.6) is naturally isomorphic
to E = P(H0(OZ)) ∼= P2. The open subspace of E which consists of sections
non-vanishing at any point of Z corresponds to stable sheaves. They are all
vector bundles. The isomorphism class of E is uniquely determined by Z and
the class of the extension. Since the map u ◦ log1 : Ars

2,6(1) → MP2(2; 3, 5)
is PGL(3)-equivariant, we obtain that any vector bundle from MP2(2; 3, 5) is
isomorphic to Ω1(A) for some arrangement A with δ(A) = 1. It determines
three lines of A not passing through the triple point.

Since any coherent sheaf T supported at one point x with h0(T ) = 1 is
isomorphic to the sheaf Ox, the sheaf Ω̃1(A) for such an arrangement is given
by an extension (3.3)

(6.7) 0 → Ω̃1(A) → Ω1(A) α→ Ox → 0,
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where x is the triple point of A. The restriction of α to the subsheaf OP2(1)
from (6.6) is not zero. Indeed, otherwise we get that Ω̃1(A) is given by an
extension

(6.8) 0 → OP2(1) → Ω̃1(A) → IZ∪x(2) → 0.

Tensoring by OP2(−1) we obtain that h0(Ω̃1(A)(−1)) = 1. The residue exact
sequence (3.2) shows that h0(Ω̃1(A)(−1)) = 0. In fact, stable sheaves defined by
extensions of type (6.8) define Hulsbergen vector bundles E with h0(E(−1)) = 1.
They are not isomorphic to Ω1(A) for any generic arrangement A. Since α is
not zero on OP2(1) we see that Ω̃1(A) is given by an extension

(6.9) 0 → Ix(1) → Ω̃1(A) → IZ(2) → 0,

where x is the triple point of A, and Z is the set of intersection points of the
lines not passing through x. A standard calculation shows that

P(Ext1
P2(IZ(2), Ix(1))) ∼= P

3.

Any arrangement of 6 lines with one triple point is a Torelli arrangement.
Indeed, suppose L is an unstable line which is not a component of A. By
tensoring with OL(−2), we easily see that L must contain the triple point.
Since W (Ω̃1(A)) cannot be a finite set of more than 6 points, W (Ω̃1(A)) con-
tains the pencil of lines through x. Let L1 be a line from A from this pencil.
Since the lines L2, . . . , L6 form a generic arrangement osculating a nonsingu-
lar conic, we see that W (Ω̃1(A \ {L1})) is the dual conic C. By Proposition
5.1, W (Ω̃1(A)) ⊂ C ∪ {L1}. This shows that W (Ω̃1(A)) cannot contain a
line. Counting parameters we see that any arrangement with one triple point
is uniquely determined by the sheaf Ω̃1(A) which is given by a unique extension
(6.9). So the boundary Ar12,6 is birationally isomorphic to a P

2 × P
1 fibration

over MP2(2;−1, 3)′, where MP2(2;−1, 3)′ is the open subset of MP2(2;−1, 3)
representing vector bundles with 3 non-concurrent jumping lines.

Let A ∈ Ars
2,6(2) be an arrangement with two triple points x, y. There

are two irreducible components of Ars
2,6(2), each one is of codimension 2 in

Ar2,6. The first one F1 consists of arrangements such that the line 〈x, y〉 is a
component of A. The second one F2 consists of arrangements with each line
passing through x or y. The vector bundle Ω1(A) belongs to MP2(2; 3, 4) ∼=
MP2(2;−1, 2). The variety MP2(2;−1, 2)0 is explicitly described in [Hu]. It is
isomorphic to the 4-dimensional variety of reducible but not multiple conics.
The conic is the conic in P̌

2 of jumping lines of the second kind of a bundle E
from MP2(2; 3, 4). Its singular point is the unique jumping line of E . Each E
is isomorphic to Ω1(A) for some arrangement A. If A ∈ F1 (resp. A ∈ F2),
then the unique jumping line of Ω1(A) is the line from A which does not pass
through the triple points of A (resp. the line 〈x, y〉) (see [Sch]). We have an
extension

(6.10) 0 → OP2(1) → Ω1(A) → IZ(2) → 0,
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where Z is a closed 0-dimensional subscheme of P
2 with h0(OZ) = 2 contained

in the jumping line. All extension classes with fixed Z are parametrized by P
1

and define isomorphic vector bundles. The two points of Z represent the curve
of jumping lines of the second kind. So, we see that Ω1(A) determines very
little of A.

As in the previous case, one can show that Ω̃1(A) is defined by an extension

(6.11) 0 → Ix,y(1) → Ω̃1(A) → IZ(2) → 0.

All such extensions with fixed Z and x, y are parametrized by P
s, where s =

3−#(Z ∩ {x, y}). Each isomorphism class of sheaves is determined by a P
1 of

extensions.
Any arrangements from F1 is a Torelli arrangement. The proof is similar

to the case of arrangements with δ(A) = 1. We choose the conic osculating the
lines from A different from the line 〈x, y〉. The sheaf Ω̃1(A) is given by (6.11),
where Z does not lie on the line 〈x, y〉.

For any arrangements A from F2 with triple points x, y the sheaf Ω1(A)
has the unique jumping line 〈x, y〉. This shows that the image of the map
log : F2 → MP2(2;−1, 2) is of dimension ≤ 2. Since Ω̃1(A) is determined by
Ω1(A) and the surjective map Ω1(A) → Ox,y we see that the sheaves Ω̃1(A)
with fixed x, y depend on at most 4 parameters. Thus the arrangement A is
not a Torelli arrangement.

Let A ∈ Ars
2,6(3). The variety Ars

2,6(3) is an irreducible variety of dimen-
sion 8, it belongs to the closure of the irreducible component F1 of Ars

2,6(3). The
arrangement A has 3 triple points. In this case MP2(2; 3, 3) ∼= MP2(2;−1, 1)
consists of one point represented by the bundle Ω1

P2(3) with no jumping lines.
So

Ω1(A) ∼= Ω1
P2(3) ∼= ΘP2 .

A nonzero section of ΘP2 defines an extension

0 → OP2 → ΘP2 → OP2(3) → 0.

The sheaf Ω̃1(A) is isomorphic to the kernel of a surjective morphism of sheaves
Ω1(A) → Ox ⊕Oy ⊕Oz, where x, y, z are the triple points of A. Arguing as in
the previous cases, we obtain that Ω̃1(A) is given by an extension

0 → Ix,y,z → Ω̃1(A) → OP2(3) → 0.

The classes of non-trivial extensions are parametrized by P
2. The trivial ex-

tension is unstable. It is easy to see that any unstable line of Ω̃1(A) must pass
through one of the points x, y, z, i.e. W (Ω̃1(A)) is contained in the union of
three lines. On the other hand, after deleting the line L = 〈x, y〉 from A, we ob-
tain by Corollary 5.1 that W (Ω̃1(A)) ⊂ W (Ω̃1(A′))∪{L}, where A′ ∈ Ar2,5(1).
It follows from the previous example that the latter consists of two pencils of
lines through z and the point p = Li∩Lj , where Li, Lj are the lines from A′ not
passing through z. Now changing the pair x, y to x, z and y, z, and applying
the same argument we see that A is a Torelli arrangement.
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Our computations show that the only non-Torelli semi-stable arrangement
of 6 lines is the arrangement whose dual points in P̌

2 are nonsingular points
of a conic, nonsingular if the arrangement is generic, and reducible otherwise.
This confirms Conjecture 5.
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