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The phase space of coupled Painlevé III system
in dimension four

By

Yusuke Sasano

Abstract

We find and study a 3-parameter family of coupled Painlevé III
systems in dimension four, which can be obtained by a degeneration
from the system of type A

(1)
5 . We also give the phase space for this

system.

1. Introduction

In 1998, Noumi and Yamada [2] proposed a system of autonomous ordinary
differential equations for l+1 unknown functions f0, f1, . . . , fl involving complex
parameters α0, α1, . . . , αl satisfying α0 + α1 + · · · + αl = 1. This system’s
salient feature is that it has the symmetry under the affine Weyl group of
type A

(1)
l , where α0, α1, . . . , αl are considered as simple roots of the affine root

system of type A
(1)
l . When l = 3, this system of type A

(1)
3 is equivalent to the

fifth Painlevé equation PV . When l > 3, the higher order Painlevé equations
corresponding to these systems are not known to satisfy the Painlevé property,
but it is widely believed that this is the case. They are considered to be higher
order versions of PV (resp. PIV ) when l is odd (resp. even).

It is well-known that PV has a confluence to the third Painlevé equation
PIII , where two accessible singularities come together into a single singularity.
This suggests the possibility that there exist higher order versions of PIII as
well, and furthermore, suggests a procedure for searching for such higher order
versions. In this vein, the goal of this work is to find a fourth-order version
of the Painlevé III equation. The purpose of this paper is to present a 3-
parameter family of fourth-order algebraic ordinary differential equations that
can be considered as a coupled Painlevé III system in dimension four, and which
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is given as follows:

(1.1)




dx

dt
=

2x2y + 2xzw − x2 + (1 − 2α1)x
t

+ 1,

dy

dt
=

−2xy2 − 2yzw + 2xy − (1 − 2α1)y + α0

t
,

dz

dt
=

2z2w + 2xyz − z2 + (1 − 2α1)z
t

+ 1,

dw

dt
=

−2zw2 − 2xyw + 2zw − (1 − 2α1)w + β0

t
.

Here x, y, z and w denote unknown complex variables, and α0, α1 and β0 are
complex parameters.

Our differential system is equivalent to a Hamiltonian system given by

H =
x2y(y − 1) + x((1 − 2α1)y − α0) + ty

t

+
z2w(w − 1) + z((1 − 2α1)w − β0) + tw

t
+

2xyzw

t

= HIII(x, y, t; α0, α1) + HIII(z, w, t; β0, α1) +
2xyzw

t
.

(1.2)

Here HIII(q, p, t; α0, α1) denotes the Hamiltonian of the second-order Painlevé
III equations.

Our system (1.1) has the following symmetry.

Theorem 1.1. The system (1) is invariant under the following trans-
formations defined as follows: with the notation (∗) = (x, y, z, w, t; α0, α1, β0)

s1 : (∗) →
(

x +
α0

y
, y, z, w, t;−α0, α1 + α0, β0

)
,

s2 : (∗) →
(

x, y, z +
β0

w
, w, t; α0, α1 + β0,−β0

)
,

s3 : (∗) →
(

x +
1 − α0 − 2α1 − β0

(y + w − 1)
, y, z +

1 − α0 − 2α1 − β0

(y + w − 1)
, w, t;

α0, 1 − α0 − α1 − β0, β0

)
,

π1 : (∗) →
(

t

x
,−x(xy + α0)

t
,
t

z
,−z(zw + β0)

t
, t; α0,

1
2
− α1 − α0 − β0, β0

)
,

π2 : (∗) → (z, w, x, y, t; β0, α1, α0).

Lemma 1.1. The transformations described in Theorem (1.1) satisfy
the following relations:

s2
1 = s2

2 = s2
3 = π2

1 = π2
2 = (s1s2)2 = (s1s3)2 = (s2s3)2 = (π1π2)2 = 1,

π1(s1, s2) = (s1, s2)π1, π2(s1, s2, s3) = (s2, s1, s3)π2.
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Remark 1. The transformation (s3π1)2 acts on the parameter as its
translation:

(1.3) (s3π1)2 : (α0, α1, β0) → (α0, α1, β0) + (0,−1, 0).

Moreover, we show that the system (1.1) has the following first integral.

Theorem 1.2. The system (1.1) has the following first integral I:

I = (x − z)(xyw − yzw + α0w − β0y).

Theorems 1.1, 1.2 and Lemma 1.1 can be checked by a direct calculation.
As the fourth-order analogue of PV → PIII , we consider a degeneration

from the system of type A
(1)
5 . Here, we recall the system of type A

(1)
5 (see [2])

(1.4)


dx

dt
=

2x2y + 2xzw

t
+ x2 − 2xy + 2zw

t
−

(
1 +

α1 + β1 + α3

t

)
x +

α1 + β1

t
,

dy

dt
= −2xy2 + 2yzw

t
+

y2

t
− 2xy +

(
1 +

α1 + β1 + α3

t

)
y − α2,

dz

dt
=

2z2w + 2xyz

t
+ z2 − 2zw + 2yz

t
−

(
1 +

α1 + β1 + α3

t

)
z +

β1

t
,

dw

dt
= −2zw2 + 2xyw

t
+

w2

t
− 2zw +

2yw

t
+

(
1 +

α1 + β1 + α3

t

)
w − β2,

where α1, α2, α3 and β1, β2 are complex parameters.

Theorem 1.3. For the system (1.4) of type A
(1)
5 , we make a change of

parameters and variables

α1 = 0, α2 = A0, α3 = 2A1 − ε−1, β1 = ε−1, β2 = B0,

t = −εT, x = 1 +
X

εT
, y = εTY, z = 1 +

Z

εT
, w = εTW,

from α1, α2, α3, β1, β2, t, x, y, z, w to A0, A1, B0, ε, T, X, Y, Z, W . Then the sys-
tem (1.4) can also be written in the new variables T, X, Y, Z, W and parameters
A0, A1, B0, ε as a Hamiltonian system. This new system tends to the system
(1.1) as ε → 0.

We regard the system (1.1) as an algebraic vector field v defined on C4×B:

v =
∂

∂t
+

dx

dt

∂

∂x
+

dy

dt

∂

∂y
+

dz

dt

∂

∂z
+

dw

dt

∂

∂w
, (x, y, z, w, t) ∈ C

4 × B

with B = C. If we take a relative compactification P
4 × B of C

4 × B, the
extended vector field ṽ satisfies the condition:

ṽ ∈ H0(P4, ΘP4(− logH)(H)).
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Here H is the boundary divisor in P
4 and ΘP4(− logH)(H) is the subsheaf of

ΘP4 whose local section v satisfies v(f) ∈ (f) for any local equation f of H.
Let us extend the regular vector field v on C

4 × B to a rational vector field
ṽ on P

4 × B. Then ṽ has poles along the boundary divisor H. Moreover, ṽ
has accessible singularities along subvarieties in the boundary divisor H. (For
the definition of accessible singularities, see Definition 2.1.) In order to explain
our main results, we recall the definition of a symplectic transformation and its
properties (see [1], [10]). Let

ϕ : x = x(X, Y, Z, W, t), y = y(X, Y, Z, W, t), z = z(X, Y, Z, W, t),
w = w(X, Y, Z, W, t), t = t

be a biholomorphic mapping from a domain D in C
5 � (X, Y, Z, W, t) into

C
5 � (x, y, z, w, t). We say that the mapping is symplectic if

dx ∧ dy + dz ∧ dw = dX ∧ dY + dZ ∧ dW,

where t is considered as a constant or a parameter, namely, if, for t = t0,
ϕt0 = ϕ|t=t0 is a symplectic mapping from the t0-section Dt0 of D to ϕ(Dt0).
Suppose that the mapping is symplectic. Then any Hamiltonian system

dx/dt = ∂H/∂y, dy/dt = −∂H/∂x, dz/dt = ∂H/∂w, dw/dt = −∂H/∂z

is transformed to

dX/dt = ∂K/∂Y, dY/dt = −∂K/∂X, dZ/dt = ∂K/∂W, dW/dt = −∂K/∂Z,

where

(A) dx ∧ dy + dz ∧ dw − dH ∧ dt = dX ∧ dY + dZ ∧ dW − dK ∧ dt.

Here t is considered as a variable. By this equation, the function K is deter-
mined by H uniquely modulo functions of t, namely, modulo functions inde-
pendent of X, Y, Z and W . Regarding the vector field v in (1.1), we obtain the
following theorem.

Theorem 1.4. The phase space X over B = C∗ = C − {0} for the
vector field v in (1) is obtained by gluing sixteen copies of C

4 × C
∗:

U0 × C
∗ = C

4 × C
∗ � (x, y, z, w, t),

Uj × C
∗ = C

4 × C
∗ � (xj , yj , zj , wj , t) (j = 1, 2, . . . , 15),

via the following birational and symplectic transformations:

1) x1 =
1
x

, y1 = −x(xy + α0), z1 = z, w1 = w,

2) x2 = x, y2 = y, z2 =
1
z
, w2 = −z(zw + β0),
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3) x3 = x, y3 = y + w +
2(z − x)w − 2α1

x
+

t

x2
, z3 =

z − x

x2
, w3 = x2w,

4) x4 =
x − z

z2
, y4 = z2y, z4 = z, w4 = w + y +

2(x − z)y − 2α1

z
+

t

z2
,

5) x5 =
1
x

, y5 = −((y + w − 1)x + 1 − α0 − 2α1 − β0)x,

z5 = z − x, w5 = w,

6) x6 = −(x − z)y2, y6 =
1
y
, z6 = z, w6 = y + w,

7) x7 =
1
x

, y7 = −x(xy + α0), z7 =
1
z
, w7 = −z(zw + β0),

8) x8 =
1
x

, y8 = −((y + w − 1)x + 1 − α0 − 2α1 − β0)x,

z8 =
1

(z − x)
, w8 = −(z − x)((z − x)w + β0),

9) x9 =
1
x

, y9 = −((y + w − 1)x + 1 − α0 − 2α1 − β0)x,

z9 = −(z − x)w2, w9 =
1
w

,

10) x10 =
x(x − z)(xy + α0)2

z
, y10 = − 1

x(xy + α0)
,

z10 =
1
z
, w10 = −x2y − α0x − z2w − β0z,

11) x11 = x, y11 = y + w +
2(z − x)w − 2α1

x
+

t

x2
,

z11 =
x2

z − x
, w11 = −−(z − x)((z − x)w + β0)

x2
,

12) x12 = x, y12 = y + w +
2(z − x)w − 2α1

x
+

t

x2
,

z12 = −(z − x)x2w2, w12 =
1

x2w
,

13) x13 =
1

(x − z)
, y13 = −(x − z)((x − z)y + α0),

z13 =
1
z
, w13 = −z((w + y − 1)z + 1 − α0 − 2α1 − β0),

14) x14 =
z2

(x − z)
, y14 = − (x − z)((x − z)y + α0)

z2
,

z14 = z, w14 = w + y +
2(x − z)y − 2α1

z
+

t

z2
,

15) x15 = −(x − z)y2z2, y15 =
1

yz2
,

z15 = z, w15 = w + y +
2(x − z)y − 2α1

z
+

t

z2
.
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Because every coordinate transformation is symplectic, the Hamiltionian
system H in U0 × C∗ is also written as a Hamiltonian system in each Uj × C∗

(j = 1, 2, . . . , 15). By direct calculation, we can verify the following theorem.

Theorem 1.5. On each affine open set (xi, yi, zi, wi, t) ∈ Ui × B in
Theorem (1.4) each corresponding Hamiltonian Hi on Ui ×B is expressed as a
polynomial in xi, yi, zi, wi and a rational function in t and satisfies the following
condition:

dx ∧ dy + dz ∧ dw − dH ∧ dt = dxi ∧ dyi + dzi ∧ dwi − dHi ∧ dt.

This paper is organized as follows. In Section 1, we recall the system
of type A

(1)
5 and prove Theorem 1.3. In Section 2, we review the notion of

accessible singularity. In Section 3, we will prove Theorems 1.4 and 1.5 by
giving an explicit birational transformation for each step.

2. The system of type A
(1)
5 and proof of Theorem 1.3

As is well-known, the second-order Painlevé III system can be obtained by
the following degeneration from the Painlevé V system (see [2], [11]):




dx

dt
=

2x2y

t
+ x2 − 2xy

t
−

(
1 +

α1 + α3

t

)
x +

α1

t
,

dy

dt
= −2xy2

t
+

y2

t
− 2xy +

(
1 +

α1 + α3

t

)
y − α2

with the Hamiltonian HPV

HPV
=

x2y2

t
+ x2y − xy2

t
−

(
1 +

α1 + α3

t

)
xy +

α1y

t
+ α2x.

Here α1, α2 and α3 are complex parameters (see [11], [13]). At first we set

α1 = ε−1, α2 = A0, α3 = 2A1 − ε−1,

t = −εT, x = 1 +
X

εT
, y = εTY.

Since the change of variables is symplectic, we obtain the following system:



dX

dT
=

2X2Y − X2

T
+ 2εXY − εX +

(1 − 2A1)X
T

+ 1 − 2εA1,

dY

dT
=

−2XY 2 + 2XY

T
− εY 2 + εY − (1 − 2A1)Y

T
+

A0

T

with the Hamiltonian H̃PV

H̃PV
=

{X(1 − 2A1 + X(Y − 1)) + T (1 − 2A1ε + εX(Y − 1))}Y − A0X

T
.
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P
1 × P

1

Confluence of the two points

P1

P2

P1 and P2

Figure 1.

If we take the limit ε → 0, we obtain the third Painlevé system.
The above process can be considered as the confluence of two accessible

singular points P1, P2 (see Figure 1):

P1 = {(u, v) = (0, 0)}, P2 = {(u, v) = (−εT, 0)}.
Here the coordinate system (u, v) is the boundary coordinate system of P1×P1

with the rational transformations (u, v) = (X, 1/Y ).
Let us recall the system (1.4) of type A

(1)
5 . This system is equivalent to a

Hamiltonian system given by

H
A

(1)
5

=
x(x − 1)y(y + t) − (α1 + β1 + α3)xy + (α1 + β1)y + α2tx

t

+
z(z − 1)w(w + t) − (α1 + β1 + α3)zw + β1w + β2tz

t
+

2(x − 1)yzw

t
= HV (x, y, t; α1 + β1, α2, α3) + HV (z, w, t; β1, β2, α3 + α1)

+
2(x − 1)yzw

t
.

Here HV (q, p, t; α1, α2, α3) denotes the Hamiltonian of the second-order Painle-
vé V equations. This system is invariant under the affine Weyl group of type
A

(1)
5 =< s0, s1, s2, s3, s4, s5 >, explicitly written as follows (see [2, 3]).

The affine Weyl group of type A
(1)
5 =< s0, s1, s2, s3, s4, s5 >

By using the notation

(∗) = (x, y, z, w, t; α0, α1, α2, α3, β1, β2) (α0 + α1 + α2 + α3 + β1 + β2 = 1),

we define

s0 : (∗) → (x, y − α3/(x − 1), z, w, t; α0 + α3, α1, α2 + α3,−α3, β1, β2),

s1 : (∗) →
(

x +
α2

y
, y, z, w, t; α0, α1 + α2,−α2, α3 + α2, β1, β2

)
,

s2 : (∗) →
(

x, y − α1

x − z
, z, w +

α1

x − z
, t; α0,−α1, α2 + α1, α3, β1, β2 + α1

)
,
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s3 : (∗) →
(

x, y, z +
β2

w
, w, t; α0, α1 + β2, α2, α3, β1 + β2,−β2

)
,

s4 : (∗) →
(

x, y, z, w − β1

z
, t; α0 + β1, α1, α2, α3,−β1, β2 + β1

)
,

s5 : (∗) →
(

x +
α0

y + w + t
, y, z +

α0

y + w + t
, w, t;

− α0, α1, α2, α3 + α0, β1 + α0, β2

)
.

We note that the generators si satisfy the following relations:

s2
0 = s2

1 = s2
2 = s2

3 = s2
4 = s2

5 = 1,

(s0s2)2 = (s0s3)2 = (s0s4)2 = (s1s3)2

= (s1s4)2 = (s1s5)2 = (s2s4)2 = (s2s5)2 = (s3s5)2 = 1,

(s0s1)3 = (s1s2)3 = (s2s3)3 = (s3s4)3 = (s4s5)3 = (s5s0)3 = 1.

s0

z

y + w + t

x − 1

y

x − z

w y + w − 1

y

w

s1

s2

s3

s4

s5

Figure 2. Dynkin diagram

Here let us explain Figure 2:
1. The left hand side of Figure 2 denotes the Dynkin diagram of type

A
(1)
5 . The symbol in each circle denotes the invariant divisor of the system of

type A
(1)
5 .

2. The process from the left side to the right side denotes the confluence
process of the system of type A

(1)
5 to the system (1.1) in Theorem 1.3.

As the fourth-order analogue of PV → PIII , we consider the following
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degeneration from the system of type A
(1)
5 . At first we set

α1 = 0, α2 = A0, α3 = 2A1 − ε−1, β1 = ε−1, β2 = B0,

t = −εT, x = 1 +
X

εT
, y = εTY, z = 1 +

Z

εT
, w = εTW.

Since the change of variables is symplectic, we obtain the following system:

(2.1)


dX

dT
=

2X2Y + 2XZW − X2

T
+ 2εX(Y + W ) − εX

+
X − 2A1X

T
+ 1 − 2εA1,

dY

dT
=

−2XY 2 − 2Y ZW

T
− εY 2 +

2XY

T
− 2εY W + εY

+
−Y + 2A1Y

T
+

A0

T
,

dZ

dT
=

2Z2W + 2XY Z − Z2

T
+ 2εZW + 2εXY − εZ

+
Z − 2A1Z

T
+ 1 − 2εA1,

dW

dT
=

−2ZW 2 − 2XY W

T
− εW 2 +

2ZW

T
+ εW +

−W + 2A1W

T
+

B0

T

with the Hamiltonian H̃
A

(1)
5

H̃
A

(1)
5

= −A0X − TY + 2A1εTY − XY + 2A1XY + εTXY − 2εTXY W

T

− −X2Y − εTXY 2 − X2Y 2 − 2XY ZW − TW + 2A1εTW

T

− B0Z − ZW + 2A1ZW + εTZW − εTZW 2 + Z2W − Z2W 2

T
.

If we take the limit ε → 0, we obtain the system (1.1) with the Hamiltonian
(1.2). The proof of Theorem 1.3 is now complete.

3. Accessible singularities

Let us review the notion of accessible singularity in accordance with [6].
Let B be a connected open domain in C and π : W −→ B a smooth proper
holomorphic map. We assume that H ⊂ W is a normal crossing divisor which
is flat over B. Let us consider a rational vector field ṽ on W satisfying the
condition

ṽ ∈ H0(W , ΘW(− logH)(H)).

Fixing t0 ∈ B and P ∈ Wt0 , we can take a local coordinate system (x1, x2, . . . ,
xn) of Wt0 centered at P such that Hsmooth can be defined by the local equation
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x1 = 0. Since ṽ ∈ H0(W , ΘW(− logH)(H)), we can write down the vector field
ṽ near P = (0, 0, . . . , 0, t0) as follows:

ṽ =
∂

∂t
+ a1

∂

∂x1
+

a2

x1

∂

∂x2
+ · · · + an

x1

∂

∂xn
.

This vector field defines the following system of differential equations

(3.1)




dx1

dt
= a1(x1, x2, . . . , xn, t),

dx2

dt
=

a2(x1, x2, . . . , xn, t)
x1

,

...
dxn

dt
=

an(x1, x2, . . . , xn, t)
x1

.

Here ai(x1, x2, . . . , xn, t), i = 1, 2, . . . , n, are holomorphic functions defined
near P = (0, . . . , 0, t0).

Definition 3.1. With the above notation, assume that the rational vec-
tor field ṽ on W satisfies the condition

ṽ ∈ H0(W , ΘW(− logH)(H)).

We say that ṽ has an accessible singularity at P = (0, 0, . . . , 0, t0) if

x1 = 0 and ai(0, 0, . . . , 0, t0) = 0 for every i, 2 ≤ i ≤ n.

If P ∈ Hsmooth is not an accessible singularity, all solutions of the ordinary
differential equation passing through P are vertical solutions, that is, the solu-
tions are contained in the fiber Wt0 over t = t0. If P ∈ Hsmooth is an accessible
singularity, there may be a solution of (3.1) which passes through P and goes
into the interior W −H of W .

Let us recall the notion of local index. When we construct the phase
spaces of the higher order Painlevé equations, an object, called the local index,
is the key to determining when we need to make a blowing-up of an accessible
singularity or a blowing-down to a minimal phase space. In the case of equations
of higher order with favorable properties, for example the systems of type A

(1)
4

[2], the local index at the accessible singular point corresponds to the set of
orders that appears in the free parameters of formal solutions passing through
that point [12].

Definition 3.2. Let v be an algebraic vector field which is given by
(3.1) and (X, Y, Z, W ) be a boundary coordinate system in a neighborhood of
an accessible singularity P = (0, 0, 0, 0, t). Assume that the system is written
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as 


dX

dt
= a + f1(X, Y, Z, W, t),

dY

dt
=

bY + f2(X, Y, Z, W, t)
X

,

dZ

dt
=

cZ + f3(X, Y, Z, W, t)
X

,

dW

dt
=

dW + f4(X, Y, Z, W, t)
X

near the accessible singularity P , where a, b, c and d are nonzero constants. We
say that the vector field v has the local index (a, b, c, d) at P if f1(X, Y, Z, W, t)
is a polynomial which vanishes at P = (0, 0, 0, 0, t) and fi(X, Y, Z, W, t), i =
2, 3, 4, are polynomials of order 2 in X, Y, Z, W . Here fi ∈ C[X, Y, Z, W, t] for
i = 1, 2, 3, 4.

Remark 2. We are interested in the case with local index (1, b/a, c/a,
d/a) ∈ Z

4. If each component of (1, b/a, c/a, d/a) has the same sign, we may
resolve the accessible singularity by blowing-up finitely many times. However,
when different signs appear, we may need to both blow up and blow down.

4. Proof of Theorems 1.4 and 1.5

Comparing the resolution of singularities for the differential equations
of Painlevé type, there are important differences between the second-order
Painlevé equations and those of higher order. Unlike the second-order case,
in higher order cases there may exist some meromorphic solution spaces with
codimension 2. In 1979, K. Okamoto constructed the spaces of initial con-
ditions of Painlevé equations, which can be considered as the parametrized
spaces of all solutions, including the meromorphic solutions (see [1], [4], [5], [7],
[8], [9], [10]). They are constructed by means of successive blowing-up proce-
dures at singular points. For second-order Painlevé equations, we can obtain
the entire space of initial conditions by adding subvarieties of codimension 1
(equivalently, of dimension 1) to the space of initial conditions of holomorphic
solutions. However, in the case of fourth-order differential equations, we need
to add codimension 2 subvarieties to the space in addition to codimension 1
subvarieties (see [12]). In order to resolve singularities, we need to both blow
up and blow down. Moreover, to obtain a smooth variety by blowing-down, we
need to resolve for a pair of singularities (see [8], [9], [12]). In this section, we
will give the canonical coordinate systems of the system (1.1). Each of them
corresponds to a 3-parameter or 2-parameter family of meromorphic solutions.

4.1. Accessible singularities of the system (1.1)
In order to consider a family of phase spaces for the system (1.1), let us take

the compactification ([z0 : z1 : z2 : z3 : z4], t) ∈ P4×B of (x, y, z, w, t) ∈ C4×B
with the natural embedding

(x, y, z, w) = (z1/z0, z2/z0, z3/z0, z4/z0).
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Moreover, we denote the boundary divisor in P
4 by H. Fixing the parameters

α0, α1, β0, consider the product P4 × B and extend the regular vector field on
C

4 × B to a rational vector field ṽ on P4 × B. It is easy to see that P4 × B is
covered by five copies of C

4 × B:

U0 × B = C
4 × B � (x, y, z, w, t),

Uj × B = C
4 × B � (Xj , Yj , Zj , Wj , t) (j = 1, 2, 3, 4),

via the following rational transformations

1) X1 = 1/x, Y1 = y/x, Z1 = z/x, W1 = w/x,

2) X2 = x/z, Y2 = y/z, Z2 = 1/z, W2 = w/z,

3) X3 = x/y, Y3 = 1/y, Z3 = z/y, W3 = w/y,

4) X4 = x/w, Y4 = y/w, Z4 = z/w, W4 = 1/w.

The following Lemma 3.1 shows that this rational vector field ṽ has six acces-
sible singular loci on the boundary divisor H× t ⊂ P

4 × t for each t ∈ B.

Lemma 4.1. The rational vector field ṽ has the following accessible sin-
gular loci:




Pi = {(Xi, Yi, Zi, Wi)|Xi = Yi = Zi = Wi = 0} (1 = 1, 2, 3, 4),
P5 = {(X1, Y1, Z1, W1)|X1 = Y1 = W1 = 0, Z1 = 1},
P6 = {(X3, Y3, Z3, W3)|X3 = Y3 = Z3 = 0, W3 = −1}.

This lemma can be proven by a direct calculation.

Remark 3. By the symmetry

π2 : (x, y, z, w; α0, α1, β0) −→ (z, w, x, y; β0, α1, α0),

it is easy to see that

π2(P1) = P2, π2(P2) = P1, π2(P3) = P4, π2(P4) = P3.

Let us explain Figure 3. This figure denotes the four-dimensional projective
space P

4 = C
4 � P

3. P
4 is covered by five open sets C

4 around the points
Pi (i = 0, 1, 2, 3, 4). We also remark that the figure spanned by the points
Pi (i = 1, 2, 3, 4) denotes the three-dimensional projective space P3 = C3 � P2.

Now we are ready to prove Theorems 1.4 and 1.5.

4.2. Resolution of the accessible singular point P1

In this subsection, we give an explicit resolution process for the accessible
singular point P1 by giving a convenient coordinate system at each step.

By the following steps, we can resolve the accessible singular point P1.
At first, we take the coordinate system centered at {(X1, Y1, Z1, W1)|

X1 = Y1 = Z1 = W1 = 0}.



The phase space of coupled Painlevé III system in dimension four 235

z y w
x

P3

P5

P4

C
4

P
4P1

P2

P6

P0

Figure 3. Four-dimensional projective space

Step 1: We blow up at the point

P1 = {(X1, Y1, Z1, W1)|X1 = Y1 = Z1 = W1 = 0} :

x1
(1) = X1, y1

(1) =
Y1

X1
, z1

(1) =
Z1

X1
, w1

(1) =
W1

X1
.

Step 2: We blow up along the surface

{(x1
(1), y1

(1), z1
(1), w1

(1))|y1
(1) = x1

(1) = 0} :

x1
(2) = x1

(1), y1
(2) =

y1
(1)

x1
(1)

, z1
(2) = z1

(1), w1
(2) = w1

(1).

Step 3: We blow up along the surface

{(x1
(2), y1

(2), z1
(2), w1

(2))|y1
(2) + α0 = x1

(2) = 0} :

x1
(3) = x1

(2), y1
(3) =

y1
(2) + α0

x1
(2)

, z1
(3) = z1

(2), w1
(3) = w1

(2).

We have resolved the accessible singular point P1. The coordinate system
(x1

(3),−y1
(3), z1

(3), w1
(3)) corresponds to the coordinate system (x1, y1, z1, w1)

in Theorem 1.4. By a direct calculation, it is easy to see that the differential
system with respect to the coordinate system (x1, y1, z1, w1) is a Hamiltonian
system, whose Hamiltonian H1 satisfies the following condition:

dx1 ∧ dy1 + dz1 ∧ dw1 − dH1 ∧ dt = dx ∧ dy + dz ∧ dw − dH ∧ dt.

Let us explain Figure 4. The first picture denotes the boundary divisor
H ∼= P

3 of P
4. By Step 1, the point P1 is transformed to P

3. By Step 2, each
point on the surface {(x1

(1), y1
(1), z1

(1), w1
(1))|y1

(1) = x1
(1) = 0} is transformed

to P
1.
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P1

Step 1 Step 2 Step 3

Figure 4. Resolution process from Step 1 to Step 3

4.3. Resolution of the accessible singular locus S7

By using the coordinate system (x1, y1, z1, w1), we now make a coordinate
system associated with small meromorphic solution spaces. Let us explain our
approach [12]. At first, we can take the coordinate system (x1, y1, z1, w1) =
(1/x,−x(xy+α0), z, w). As a boundary coordinate system of this system (x1, y1

, z1, w1), we can take the coordinate system

(X7, Y7, Z7, W7) = (x1, y1, 1/z1, w1).

It is easy to see that there is an accessible singular locus along the surface

S7 = {(X7, Y7, Z7, W7)|Z7 = W7 = 0}.

Now we blow up along the accessible singularity S7.
Step 1: We blow up along the surface S7:

x7
(1) = X7, y7

(1) = Y7, z7
(1) = Z7, w7

(1) =
W7

Z7
.

Step 2: We blow up along the surface

{(x7
(1), y7

(1), z7
(1), w7

(1))|w7
(1) + β0 = z7

(1) = 0} :

x7
(2) = x7

(1), y7
(2) = y7

(1), z7
(2) = z7

(1), w7
(2) =

w7
(1) + β0

z7
(1)

.

We have resolved the accessible singular locus S7. The coordinate system
(x7

(2), y7
(2), z7

(2),−w7
(2)) corresponds to the coordinate system (x7, y7, z7, w7)

in Theorem 1.4. By a direct calculation, it is easy to see that the differential
system with respect to the coordinate system (x7, y7, z7, w7) is a Hamiltonian
system, whose Hamiltonian H7 satisfies the following condition:

dx7 ∧ dy7 + dz7 ∧ dw7 − dH7 ∧ dt = dx ∧ dy + dz ∧ dw − dH ∧ dt.

Remark 4. By the following blowing-ups and blowing-down, we can
take the canonical coordinate system (X7, Y7, Z7, W7) of the coordinate system
(x1, y1, z1, w1).
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Step 2 Step 3

P1 P2

V1
Step 1

C1

S7

Step 4 Step 5

z1

Figure 5.

Step 1: We blow up at the points P1, P2 (see Figure 5 for each step).
Step 2: We blow up along the curve C1

∼= P1.
Step 3: We blow down the 3−fold V1

∼= P
2 × P

1 along the P
1−fiber.

Step 4: We blow up along the surface.
Step 5: We blow up along the surface.
Let us explain Figure 5. The first picture denotes the boundary divisor

H ∼= P
3 of P

4. The resolution process from Step 2 to Step 3 is well-known as
P

2−flop. By Step 1, each of points P1, P2 is transformed to P3. By Step 2,
each point on C1 is transformed to P2. The 3-fold V1 is isomorphic to P2 × P1.
By Step 3, we blow down the 3-fold V1 along the P

1−fiber. After Step 5, we
take the boundary coordinate system (X7, Y7, Z7, W7) = (x1, y1, 1/z1, w1).

4.4. Resolution of the accessible singular point P5

In this subsection, we give an explicit resolution process for the accessible
singular point P5 by giving a convenient coordinate system at each step.

By the following steps, we can resolve the accessible singular point P5.
Step 0: We take the coordinate system centered at P5:

x5
(0) = X1, y5

(0) = Y1, z5
(0) = Z1 − 1, w5

(0) = W1.

Step 1: We blow up at the point

P5 = {(x5
(0), y5

(0), z5
(0), w5

(0))|x5
(0) = y5

(0) = z5
(0) = w5

(0) = 0} :

x5
(1) = x5

(0), y5
(1) =

y5
(0)

x5
(0)

, z5
(1) =

z5
(0)

x5
(0)

, w5
(1) =

w5
(0)

x5
(0)

.

Step 2: We blow up along the surface

{(x5
(1), y5

(1), z5
(1), w5

(1))|x5
(1) = y5

(1) + w5
(1) − 1 = 0} :

x5
(2) = x5

(1), y5
(2) =

y5
(1) + w5

(1) − 1
x5

(1)
, z5

(2) = z5
(1), w5

(2) = w5
(1).
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Step 3: We blow up along the surface

{(x5
(2), y5

(2), z5
(2), w5

(2))|x5
(2) = 0, y5

(2) = −1 + α0 + 2α1 + β0} :

x5
(3) = x5

(2), y5
(3) =

y5
(2) + 1 − α0 − 2α1 − β0

x5
(2)

z5
(3) = z5

(2), w5
(3) = w5

(2).

We have resolved the accessible singular point P5. The coordinate system
(x5

(3),−y5
(3), z5

(3), w5
(3)) corresponds to the coordinate system (x5, y5, z5, w5)

in Theorem 1.4. By a direct calculation, it is easy to see that the differential
system with respect to the coordinate system (x5, y5, z5, w5) is a Hamiltonian
system, whose Hamiltonian H5 satisfies the following condition:

dx5 ∧ dy5 + dz5 ∧ dw5 − dH5 ∧ dt = dx ∧ dy + dz ∧ dw − dH ∧ dt.

Remark 5. Taking the boundary coordinate system centered at the
accessible singular point P5 as (x̃5

(0), ỹ5
(0), z̃5

(0), w̃5
(0)) = (X2 − 1, Y2, Z2, W2),

we can resolve the accessible singular point P5 by the following steps.

Step 0: We take the coordinate system centered at P5:

x̃5
(0) = X2 − 1, ỹ5

(0) = Y2, z̃5
(0) = Z2, w̃5

(0) = W2.

Step 1: We blow up at the point

P5 = {(x̃5
(0), ỹ5

(0), z̃5
(0), w̃5

(0))|x̃5
(0) = ỹ5

(0) = z̃5
(0) = w̃5

(0) = 0} :

x̃5
(1) =

x̃5
(0)

z̃5
(0)

, ỹ5
(1) =

ỹ5
(0)

z̃5
(0)

, z̃5
(1) = z̃5

(0), w̃5
(1) =

w̃5
(0)

z̃5
(0)

.

Step 2: We blow up along the surface

{(x̃5
(1), ỹ5

(1), z̃5
(1), w̃5

(1))|z̃5
(1) = w̃5

(1) + ỹ5
(1) − 1 = 0} :

x̃5
(2) = x̃5

(1), ỹ5
(2) = ỹ5

(1), z̃5
(2) = z̃5

(1), w̃5
(2) =

w̃5
(1) + ỹ5

(1) − 1
z̃5

(1)
.

Step 3: We blow up along the surface

{(x̃5
(2), ỹ5

(2), z̃5
(2), w̃5

(2))|z̃5
(2) = 0, w̃5

(2) = −1 + α0 + 2α1 + β0} :

x̃5
(3) = x̃5

(2), ỹ5
(3) = ỹ5

(2)

z̃5
(3) = z̃5

(2), w̃5
(3) =

w̃5
(2) + 1 − α0 − 2α1 − β0

z̃5
(2)

.

We have resolved the accessible singular point P5. The transition function
between (x̃5, ỹ5, z̃5, w̃5) := (x̃5

(3), ỹ5
(3), z̃5

(3),−w̃5
(3)) and (x, y, z, w) is sym-

plectic, which is explicitly written as follows:

(x̃5, ỹ5, z̃5, w̃5) = (x − z, y, 1/z,−((w + y − 1)z + 1 − α0 − 2α1 − β0)z).
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4.5. Resolution of the accessible singular point P6

In this subsection, we give an explicit resolution process for the accessible
singular point P6 by giving a convenient coordinate system at each step.

By the following steps, we can resolve the accessible singular point P6.
Step 0: We take the coordinate system centered at P6:

x6
(0) = X3, y6

(0) = Y3, z6
(0) = Z3, w6

(0) = W3 + 1.

Step 1: We blow up along the surface

{(x6
(0), y6

(0), z6
(0), w6

(0))|x6
(0) = y6

(0) = z6
(0) = w6

(0) = 0} :

x6
(1) =

x6
(0)

y6
(0)

, y6
(1) = y6

(0), z6
(1) =

z6
(0)

y6
(0)

, w6
(1) =

w6
(0)

y6
(0)

.

Step 2: We blow up along the surface

{(x6
(1), y6

(1), z6
(1), w6

(1))|x6
(1) − z6

(1) = y6
(1) = 0} :

x6
(2) =

x6
(1) − z6

(1)

y6
(1)

, y6
(2) = y6

(1), z6
(2) = z6

(1), w6
(2) = w6

(1).

Step 3: We blow up along the surface

{(x6
(2), y6

(2), z6
(2), w6

(2))|x6
(2) = y6

(2) = 0} :

x6
(3) =

x6
(2)

y6
(2)

, y6
(3) = y6

(2), z6
(3) = z6

(2), w6
(3) = w6

(2).

We have resolved the accessible singular point P6. The coordinate system
(−x6

(3), y6
(3), z6

(3), w6
(3)) corresponds to the coordinate system (x6, y6, z6, w6)

in Theorem 1.4. By a direct calculation, it is easy to see that the differential
system with respect to the coordinate system (x6, y6, z6, w6) is a Hamiltonian
system, whose Hamiltonian H6 satisfies the following condition:

dx6 ∧ dy6 + dz6 ∧ dw6 − dH6 ∧ dt = dx ∧ dy + dz ∧ dw − dH ∧ dt.

4.6. Resolution of the accessible singular point P3

In this subsection, we give an explicit resolution process for the accessible
singular point P3 by giving a convenient coordinate system at each step.

By the following steps, we can resolve the accessible singular point P3. At
first, we take the coordinate system centered at {(X3, Y3, Z3, W3)|X3 = Y3 =
Z3 = W3 = 0}.

Step 1: We blow up along the curve

{(X3, Y3, Z3, W3)|X3 = Y3 = Z3 = 0} :

x3
(1) =

X3

Y3
, y3

(1) = Y3, z3
(1) =

Z3

Y3
, w3

(1) = W3.
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Step 2: We blow up along the curve

{(x3
(1), y3

(1), z3
(1), w3

(1))|x3
(1) = y3

(1) = z3
(1) = 0} :

x3
(2) = x3

(1), y3
(2) =

y3
(1)

x3
(1)

, z3
(2) =

z3
(1)

x3
(1)

, w3
(2) = w3

(1).

Step 3: We blow up along the curve

{(x3
(2), y3

(2), z3
(2), w3

(2))|x3
(1) = y3

(1) = 0, z3
(1) = 1} :

x3
(3) = x3

(2), y3
(3) =

y3
(2)

x3
(2)

, z3
(3) =

z3
(2) − 1
x3

(2)
, w3

(3) = w3
(2).

Step 4: We blow up along the surface

{(x3
(3), y3

(3), z3
(3), w3

(3))|y3
(3) = w3

(3) = 0} :

x3
(4) = x3

(3), y3
(4) = y3

(3), z3
(4) = z3

(3), w3
(4) =

w3
(3)

y3
(3)

.

Step 5: We make a change of variables

x3
(5) = x3

(4), y3
(5) =

1
y3

(4)
, z3

(5) = z3
(4), w3

(5) = w3
(4).

This change of variables is necessary for making the transition functions in the
description of X symplectic [1].

Step 6: We blow up along the surface

{(x3
(5), y3

(5), z3
(5), w3

(5))|x3
(5) = y3

(5) + w3
(5) + t = 0} :

x3
(6) = x3

(5), y3
(6) =

y3
(5) + w3

(5) + t

x3
(5)

, z3
(6) = z3

(5), w3
(6) = w3

(5).

Step 7: We blow up along the surface

{(x3
(6), y3

(6), z3
(6), w3

(6))|y3
(6) + 2z3

(6)w3
(6) − 2α1 = x3

(6) = 0} :

x3
(7) = x3

(6), y3
(7) =

y3
(6) + 2z3

(6)w3
(6) − 2α1

x3
(6)

z3
(7) = z3

(6), w3
(7) = w3

(6).

We have resolved the accessible singular point P3. The coordinate system
(x3

(7), y3
(7), z3

(7), w3
(7)) corresponds to the coordinate system (x3, y3, z3, w3)

in Theorem 1.4. By a direct calculation, it is easy to see that the differential
system with respect to the coordinate system (x3, y3, z3, w3) is a Hamiltonian
system, whose Hamiltonian H3 satisfies the following condition:

dx3 ∧ dy3 + dz3 ∧ dw3 − dH3 ∧ dt = dx ∧ dy + dz ∧ dw − d

(
H +

1
x

)
∧ dt.



The phase space of coupled Painlevé III system in dimension four 241

4.7. Resolution of the accessible singular locus S8

By using the coordinate system (x5, y5, z5, w5), we now make a coordinate
system associated with small meromorphic solution spaces. At first, we can take
the coordinate system (x5, y5, z5, w5) = (1/x,−x((y +w− 1)x+1−α0 − 2α1 −
β0), z − x, w). As a boundary coordinate system of this system (x5, y5, z5, w5),
we can take the coordinate system

(X8, Y8, Z8, W8) = (x5, y5, 1/z5, w5).

It is easy to see that there is an accessible singular locus along the surface

S8 = {(X8, Y8, Z8, W8)|Z8 = W8 = 0}.
Now we blow up along the accessible singularity S8.

Step 1: We blow up along the surface S8:

x8
(1) = X8, y8

(1) = Y8, z8
(1) = Z8, w8

(1) =
W8

Z8
.

Step 2: We blow up along the surface

{(x8
(1), y8

(1), z8
(1), w8

(1))|z8
(1) = w8

(1) + β0 = 0} :

x8
(2) = x8

(1), y8
(2) = y8

(1), z8
(2) = z8

(1), w8
(2) =

w8
(1) + β0

z8
(1)

.

We have resolved the accessible singular locus S8. The coordinate system
(x8

(2), y8
(2), z8

(2),−w8
(2)) corresponds to the coordinate system (x8, y8, z8, w8)

in Theorem 1.4. By a direct calculation, it is easy to see that the differential
system with respect to the coordinate system (x8, y8, z8, w8) is a Hamiltonian
system, whose Hamiltonian H8 satisfies the following condition:

dx8 ∧ dy8 + dz8 ∧ dw8 − dH8 ∧ dt = dx ∧ dy + dz ∧ dw − dH ∧ dt.

4.8. Resolution of the accessible singular locus S9

By using the coordinate system (x5, y5, z5, w5), we now make a coordi-
nate system associated with the small meromorphic solution spaces other than
(x8, y8, z8, w8). At first, we can take the coordinate system (x5, y5, z5, w5) =
(1/x,−x((y+w−1)x+1−α0−2α1−β0), z−x, w). As a boundary coordinate
system of this system (x5, y5, z5, 1/w5), we can take the coordinate system

(X9, Y9, Z9, W9) = (x5, y5, z5, 1/w5).

It is easy to see that there is an accessible singular locus along the surface

S9 = {(X9, Y9, Z9, W9)|Z9 = W9 = 0}.
Now we blow up along the accessible singularity S9.

Step 1: We blow up along the surface S9:

x9
(1) = X9, y9

(1) = Y9, z9
(1) =

Z9

W9
, w9

(1) = W9.
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Step 2: We blow up along the surface

{(x9
(1), y9

(1), z9
(1), w9

(1))|z9
(1) = w9

(1) = 0} :

x9
(2) = x9

(1), y9
(2) = y9

(1), z9
(2) =

z9
(1)

w9
(1)

, w9
(2) = w9

(1).

We have resolved the accessible singular locus S9. The coordinate system
(x9

(2), y9
(2),−z9

(2), w9
(2)) corresponds to the coordinate system (x9, y9, z9, w9)

in Theorem 1.4. By a direct calculation, it is easy to see that the differential
system with respect to the coordinate system (x9, y9, z9, w9) is a Hamiltonian
system, whose Hamiltonian H9 satisfies the following condition:

dx9 ∧ dy9 + dz9 ∧ dw9 − dH9 ∧ dt = dx ∧ dy + dz ∧ dw − dH ∧ dt.

4.9. Resolution of the accessible singular locus S10

By using the coordinate system (x7, y7, z7, w7), we now make a coordinate
system associated with small meromorphic solution spaces. At first, we can take
the coordinate system (x7, y7, z7, w7) = (1/x,−x(xy + α0), 1/z,−z(zw + β0)).
As a boundary coordinate system of this system (x7, y7, z7, w7), we can take
the coordinate system

(X10, Y10, Z10, W10) = (x7, 1/y7, z7, w7).

It is easy to see that there is an accessible singular locus along the surface

S10 = {(X10, Y10, Z10, W10)|X10 = Y10 = 0}.

Now we blow up along the accessible singularity S10.
Step 1: We blow up along the surface S10:

x10
(1) =

X10

Y10
, y10

(1) = Y10, z10
(1) = Z10, w10

(1) = W10.

Step 2: We blow up along the surface

{(x10
(1), y10

(1), z10
(1), w10

(1))|x10
(1) = y10

(1) = 0} :

x10
(2) =

x10
(1)

y10
(1)

, y10
(2) = y10

(1), z10
(2) = z10

(1), w10
(2) = w10

(1).

We have resolved the accessible singular locus S10. The coordinate system
(−x10

(2), y10
(2), z10

(2), w10
(2)) corresponds to the coordinate system (x10, y10,

z10, w10) in Theorem 1.4. By a direct calculation, it is easy to see that the
differential system with respect to the coordinate system (x10, y10, z10, w10) is
a Hamiltonian system, whose Hamiltonian H10 satisfies the following condition:

dx10 ∧ dy10 + dz10 ∧ dw10 − dH10 ∧ dt = dx ∧ dy + dz ∧ dw − dH ∧ dt.
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4.10. Resolution of the accessible singular locus S11

By using the coordinate system (x3, y3, z3, w3), we now make a coordinate
system associated with small meromorphic solution spaces. At first, we can take
the coordinate system (x3, y3, z3, w3) = (x, y+w+ 2(z−x)w−2α1

x + t
x2 , z−x

x2 , x2w).
As a boundary coordinate system of this system (x3, y3, z3, w3), we can take
the coordinate system

(X11, Y11, Z11, W11) = (x3, y3, 1/z3, w3).

It is easy to see that there is an accessible singular locus along the surface

S11 = {(X11, Y11, Z11, W11)|Z11 = W11 = 0}.

Now we blow up along the accessible singularity S11.
Step 1: We blow up along the surface S11:

x11
(1) = X11, y11

(1) = Y11, z11
(1) = Z11, w11

(1) =
W11

Z11
.

Step 2: We blow up along the surface

{(x11
(1), y11

(1), z11
(1), w11

(1))|z11
(1) = w11

(1) + β0 = 0} :

x11
(2) = x11

(1), y11
(2) = y11

(1), z11
(2) = z11

(1), w11
(2) =

w11
(1) + β0

z11
(1)

.

We have resolved the accessible singular locus S11. The coordinate system
(x11

(2), y11
(2), z11

(2),−w11
(2)) corresponds to the coordinate system (x11, y11,

z11, w11) in Theorem 1.4. By a direct calculation, it is easy to see that the
differential system with respect to the coordinate system (x11, y11, z11, w11) is
a Hamiltonian system, whose Hamiltonian H11 satisfies the following condition:

dx11 ∧ dy11 + dz11 ∧ dw11 − dH11 ∧ dt = dx ∧ dy + dz ∧ dw − d

(
H +

1
x

)
∧ dt.

4.11. Resolution of the accessible singular locus S12

By using the coordinate system (x3, y3, z3, w3), we now make a coordi-
nate system associated with the small meromorphic solution spaces other than
(x11, y11, z11, w11). At first, we can take the coordinate system (x3, y3, z3, w3) =
(x, y + w + 2(z−x)w−2α1

x + t
x2 , z−x

x2 , x2w). As a boundary coordinate system of
this system (x3, y3, z3, w3), we can take the coordinate system

(X12, Y12, Z12, W12) = (x3, y3, z3, 1/w3).

It is easy to see that there is an accessible singular locus along the surface

S12 = {(X12, Y12, Z12, W12)|Z12 = W12 = 0}.

Now we blow up along the accessible singularity S12.
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Step 1: We blow up along the surface S12:

x12
(1) = X12, y12

(1) = Y12, z12
(1) =

Z12

W12
, w12

(1) = W12.

Step 2: We blow up along the surface

{(x12
(1), y12

(1), z12
(1), w12

(1))|z12
(1) = w12

(1) = 0} :

x12
(2) = x12

(1), y12
(2) = y12

(1), z12
(2) =

z12
(1)

w12
(1)

, w12
(2) = w12

(1).

We have resolved the accessible singular locus S12. The coordinate system
(x12

(2), y12
(2),−z12

(2), w12
(2)) corresponds to the coordinate system (x12, y12,

z12, w12) in Theorem 1.4. By a direct calculation, it is easy to see that the
differential system with respect to the coordinate system (x12, y12, z12, w12) is
a Hamiltonian system, whose Hamiltonian H12 satisfies the following condition:

dx12 ∧ dy12 + dz12 ∧ dw12 − dH12 ∧ dt = dx ∧ dy + dz ∧ dw − d

(
H +

1
x

)
∧ dt.

4.12. Resolution of the remaining accessible singular points
Each procedure is the same as that given in the preceding sections 3.2

through 3.11, provided the variables and parameters x, y, z, w, α0, α1, β0 are
replaced by the transformation

π2 : (x, y, z, w, t; α0, α1, β0) 
−→ (z, w, x, y, t; β0, α1, α0).

Each coordinate system (xj , yj , zj , wj) for j = 13, 14, 15 is explicitly given as
follows:

(xj , yj , zj , wj) = π2(xk, yk, zk, wk), k = 8, 11, 12, respectively.

Each Hamiltonian Hj for j = 13, 14, 15 is explicitly given as follows:

H13 = π2(H8), H14 = π2(H11), H15 = π2(H12).

In Sections 3.2 through 3.12, we have resolved all the accessible singu-
larities for the system (1.1), thus completing the proof of Theorems 1.4 and
1.5.
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II, Proc. Japan Acad. 56 (1980), 264–268; ibid, 367–371.

[6] M.-H. Saito, Deformation of logarithmic symplectic manifold and equations
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