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Fundamental groups of symmetric sextics

By

Alex Degtyarev

Abstract

We study the moduli spaces and compute the fundamental groups
of plane sextics of torus type with at least two type E6 singular points.
As a simple application, we compute the fundamental groups of 125 other
sextics, most of which are new.

1. Introduction

1.1. Principal results
Recall that a plane sextic B is said to be of torus type if its equation can

be represented in the form p3 + q2 = 0, where p and q are certain homogeneous
polynomials of degree 2 and 3, respectively. Alternatively, B ⊂ P2 is of torus
type if and only if it is the ramification locus of a projection to P2 of a cubic
surface in P3. A representation of the equation in the form p3 + q2 = 0 (up to
the obvious equivalence) is called a torus structure of B. A singular point P
of B is called inner (outer) with respect to a torus structure (p, q) if P does
(respectively, does not) belong to the intersection of the conic {p = 0} and
the cubic {q = 0}. The sextic B is called tame if all its singular points are
inner. Note that, according to [5], each sextic B considered in this paper has
a unique torus structure; hence, we can speak about inner and outer singular
points of B. For the reader’s convenience, when listing the set of singularities
of a sextic of torus type, we indicate the inner singularities by enclosing them
in parentheses.

Apparently, it was O. Zariski [19] who first understood the importance of
sextics of torus type. Since then, they have been a subject of intensive study.
For details and further information, we refer to M. Oka, D. T. Pho [14], [15]
(topology, sets of singularities, moduli, fundamental groups), H. Tokunaga [18]
(algebro-geometric approach), and A. Degtyarev [5].

In recent paper [8], we described the moduli spaces and calculated the
fundamental groups of all sextics of torus type of weight 8 and 9 (in a sense,
those with the largest fundamental groups). The approach used in [8], reduc-
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ing sextics to maximal trigonal curves, was also helpful in the study of some
other sextics with nonabelian groups (see [7]), and then, in [9], we classified all
irreducible sextics for which this approach should work. The purpose of this
paper is to treat one of the classes that appeared in [9]: sextics with at least
two type E6 singular points; they are reduced to trigonal curves with the set
of singularities E6 ⊕ A2. Our principal results are Theorems 1.1.1 and 1.1.3
below.

Table 1. Sextics with two type E6 singular points

∗ (3E6) ⊕ A1

(3E6)
∗ (2E6 ⊕ A5) ⊕ A2

(2E6 ⊕ A5) ⊕ A1

(2E6 ⊕ A5)

∗ (2E6 ⊕ 2A2) ⊕ A3
∗ (2E6 ⊕ 2A2) ⊕ A2
∗ (2E6 ⊕ 2A2) ⊕ 2A1

(2E6 ⊕ 2A2) ⊕ A1

(2E6 ⊕ 2A2)

Theorem 1.1.1. Any sextic of torus type with at least two type E6 sin-
gular points has one of the sets of singularities listed in Table 1. With the
exception of (2E6⊕A5)⊕A2, the moduli space of sextics of torus type realizing
each set of singularities in the table is rational (in particular, it is nonempty
and connected); the moduli space of sextics with the exceptional set of singular-
ities (2E6 ⊕ A5) ⊕ A2 consists of two isolated points, both of torus type.

Note that we do not assume a priori that the curves are irreducible or have
simple singularities only. Both assertions hold automatically for any sextic with
at least two type E6 singular points, see the beginning of Section 2.7.

Theorem 1.1.1 is proved in Section 2.7. The two classes of sextics realizing
the set of singularities (2E6 ⊕A5)⊕A2 were first discovered in Oka, Pho [14].
The sets of singularities that can be realized by sextics of torus type are also
listed in [14]. Note that the list given by Table 1 can also be obtained from the
results of J.-G. Yang [20], using the characterization of irreducible sextics of
torus type found in [5]. The deformation classification can be obtained using [4].

Remark 1.1.2. A simple calculation using [4] or [20] and the charac-
terization of irreducible sextics of torus type found in [5] shows that the sets
of singularities marked with a ∗ in Table 1 are realized by sextics of torus type
only. Each of the remaining five sets of singularities is also realized by a single
deformation family of sextics not of torus type, see A. Özgüner [16] for details.
Furthermore, Table 1 lists all sets of singularities of plane sextics, both of and
not of torus type, containing at least two type E6 points.

Theorem 1.1.3. Let B be a sextic of torus type whose set of singu-
larities Σ is one of those listed in Table 1. Then the fundamental group
π1 := π1(P2 � B) is as follows:
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1. if Σ = (2E6 ⊕ 2A2) ⊕ A3, then π1 is the group G3 given by (4.3.7);
2. if Σ = (3E6)⊕A1 or (2E6⊕2A2)⊕2A1, then π1 = G0 := B4/σ2σ

2
1σ2σ

2
3 ;

3. if Σ = (2E6 ⊕ A5) ⊕ A2, then, depending on the family, π1 is one of
the groups G′

2, G′′
2 given by (4.4.10) and (4.5.4), respectively ;

4. otherwise, π1 = B3/(σ1σ2)3.
(Here, {σ1, . . . , σn−1} is a canonical basis for the braid group Bn on n strings.)

The fundamental groups are calculated in §4. An alternative presentation
of the groups G′

2, G′′
2 mentioned in 1.1.3(3) is found in C. Eyral, M. Oka [10],

where it is conjectured that the two groups are not isomorphic. We suggest
to attack this problem studying the relation between G′

2, G′′
2 and the local

fundamental group at the type A5 singular point, cf . Proposition 4.6.1 and
Conjecture 4.6.2. The group of a sextic of torus type with the set of singularities
(2E6 ⊕ A5) ⊕ A1, see 1.1.3(4), is also found in [10]; the group of a sextic with
the set of singularities (3E6) ⊕ A1, see 1.1.3(2), as well as the groups of the
three tame sextics listed in Table 1 (the sets of singularities (3E6), (2E6⊕A5),
and (2E6 ⊕ 2A2)) are found in Oka, Pho [15].

With the possible exception of G′
2, G′′

2 , all groups listed in Theorem 1.1.3
are ‘geometrically’ distinct in the sense of the following theorem.

Theorem 1.1.4. All epimorphisms

G3 � G0 � B3/(σ1σ2)3, G′
2, G

′′
2 � B3/(σ1σ2)3

induced by the respective perturbations of the curves (cf. O. Zariski [19]) are
proper, i.e., they are not isomorphisms.

This theorem is proved in Section 4.8. Some of the statements follow from
the previous results by Eyral, Oka [10] and Oka, Pho [15].

As a further application of Theorem 1.1.3, we use the presentations ob-
tained and the results of [8] to compute the fundamental groups of eight sex-
tics of torus type and 117 sextics not of torus type that are not covered by
M. V. Nori’s theorem [13], see Theorems 5.2.1 and 5.3.1. As for most sets of
singularities the connectedness of the moduli space has not been established
(although expected), we state these results in the form of existence.

1.2. Contents of the paper
In §2, we use the results of [9] and construct the trigonal models of sextics

in question, which are pairs (B̄, L̄), where B̄ is a (fixed) trigonal curve in the
Hirzebruch surface Σ2 and L̄ is a (variable) section. We study the conditions
on L̄ resulting in a particular set of singularities of the sextic. As a consequence,
we obtain explicit equations of the sextics and rational parameterizations of the
moduli spaces. Theorem 1.1.1 is proved here.

In §3, we present the classical Zariski–van Kampen method [12] in a form
suitable for curves on Hirzebruch surfaces. The contents of this section is a
formal account of a few observations found in [7] and [6].

In §4, we apply the classical Zariski–van Kampen theorem to the trigonal
models constructed above and obtain presentations of the fundamental groups.
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The main advantage of this approach (replacing sextics with their trigonal
models) is the fact that the number of points to keep track of reduces from 6
to 4, which simplifies the computation of the braid monodromy. As a first
application, we show that all groups can be generated by loops in a small
neighborhood of (any) type E6 singular point of the curve.

In §5, we study perturbations of sextics considered in §§2 and 4. We confine
ourselves to a few simple cases when the perturbed group is easily found by
simple local analysis. This gives 117 new (compared to [8]) sextics with abelian
fundamental group and 8 sextics of torus type. More complicated perturbations
are not necessary, as the resulting sextics are not new, see Remark 5.3.2.

2. The trigonal model

2.1. Trigonal curves
Recall that the Hirzebruch surface Σ2 is a geometrically ruled rational

surface with an exceptional section E of self-intersection (−2). A trigonal
curve is a reduced curve B̄ ⊂ Σ2 disjoint from E and intersecting each generic
fiber of Σ2 at three points. A singular fiber (sometimes referred to as vertical
tangent) of a trigonal curve B̄ is a fiber of Σ2 that is not transversal to B̄. The
double covering X of Σ2 ramified at B̄+E is an elliptic surface, and the singular
fibers of B̄ are the projections of those of X. For this reason, to describe the
topological types of singular fibers of B̄, we use (one of) the standard notation
for the types of singular elliptic fibers, referring to the corresponding extended
Dynkin diagrams. The types are as follows:

• Ã∗
0: a simple vertical tangent;

• Ã∗∗
0 : a vertical inflection tangent;

• Ã∗
1: a node of B̄ with one of the branches vertical;

• Ã∗
2: a cusp of B̄ with vertical tangent;

• Ãp, D̃q, Ẽ6, Ẽ7, Ẽ8: a simple singular point of B̄ of the same type
with minimal possible local intersection index with the fiber.

For the relation to Kodaira’s classification of singular elliptic fibers and
further details and references, see [6]. In the present paper, we merely use the
notation.

The (functional) j-invariant j = jB̄ : P1 → P1 of a trigonal curve B̄ ⊂ Σ2

is defined as the analytic continuation of the function sending a point b in the
base P1 of Σ2 representing a nonsingular fiber F of B̄ to the j-invariant (divided
by 123) of the elliptic curve covering F and ramified at F∩(B̄+E). The curve B̄
is called isotrivial if jB̄ = const. Such curves can easily be enumerated, see,
e.g., [6]. The curve B̄ is called maximal if it has the following properties:

• B̄ has no singular fibers of type D4;
• j = jB̄ has no critical values other than 0, 1, and ∞;
• each point in the pull-back j−1(0) has ramification index at most 3;
• each point in the pull-back j−1(1) has ramification index at most 2.

The maximality of a non-isotrivial trigonal curve B̄ ⊂ Σ2 can easily be de-
tected by applying the Riemann–Hurwitz formula to the map jB̄ : P1 → P1;
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it depends only on the (combinatorial) set of singular fibers of B̄, see [6] for
details. The classification of such curves reduces to a combinatorial problem;
a partial classification of maximal trigonal curves in Σ2 is found in [9]. An
important property of maximal trigonal curves is their rigidity, see [6]: any
small deformation of such a curve B̄ is isomorphic to B̄. For this reason, we
do not need to keep parameters in the equations below.

2.2. The trigonal curve B̄
Let B be an irreducible sextic of torus type with simple singularities only

and with at least two type E6 singular point. (Below, we show that the empha-
sized properties hold automatically, see 2.7.) Clearly, the set of inner singular-
ities of B can only be (3E6), (2E6 ⊕ A5), or (2E6 ⊕ 2A2). Hence, according
to [9], B has an involutive symmetry (i.e., projective automorphism) c stable
under equisingular deformations. Let Lc and Oc be, respectively, the fixed line
and the isolated fixed point of c. One has Oc /∈ B. Denote by P2(Oc) the
blow-up of P2 at Oc. Then, the quotient P2(Oc)/c is the Hirzebruch surface Σ2

and the projection B/c is a trigonal curve B̄ ⊂ Σ2 with the set of singularities
E6 ⊕ A2. The double covering P2(Oc) → Σ2 is ramified at E and a generic
section L̄ ⊂ Σ2 (the image Lc/c) disjoint from E and not passing through the
type E6 singular point of B̄ (as otherwise the two type E6 singular points of B
would merge to a single non-simple singularity).

Conversely, given a trigonal curve B̄ ⊂ Σ2 with the set of singularities
E6 ⊕ A2 and a section L̄ ⊂ Σ2 disjoint from E and not passing through the
type E6 singular point of B̄, the pull-back of B̄ in the double covering of Σ2/E
ramified at E/E and L̄ is a sextic B ⊂ P2 with at least two type E6 singular
points. Below we show that B is necessarily of torus type, see (2.3.5).

2.3. Equations
Any trigonal curve B̄ ⊂ Σ2 with the set of singularities E6 ⊕ A2 is either

isotrivial or maximal (see [9] for precise definitions); in particular, such curves
are rigid, i.e., within each of the two families, any two curves are isomorphic
in Σ2. A curve B̄ can be obtained by an elementary transformation from a
cuspidal cubic C ⊂ Σ1 = P2(O): the blow-up center O should be chosen on
the inflection tangent to C, and the elementary transformation should contract
this tangent.

In appropriate affine coordinates (x, y) in Σ2 any trigonal curve B̄ as above
can be given by an equation of the form

(2.3.1) fr(x, y) := y3 + r2y2 + 2rxy + x2 = 0,

where r ∈ C is a parameter. If r = 0, the curve is isotrivial, its j-invariant
being j ≡ 0. Otherwise, the automorphism (x, y) 	→ (r3x, r2y) of Σ2 converts
the curve to f1(x, y) = 0. Below, in all plots and numeric evaluation, we use
the value r = 3.

The y-discriminant of the polynomial fr given by (2.3.1) is −x3(27x−4r3).
Thus, if r 
= 0, the curve has three singular fibers, of types Ã2, Ã∗

0 (vertical
tangent), and Ẽ6 over x = 0, 4r3/27, and ∞, respectively. In the isotrivial case
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r = 0, there are two singular fibers, of types Ã∗
2 and Ẽ6, over x = 0 and ∞,

respectively.
The curve B̄ is rational; it can be parameterized by

(2.3.2) x = xt := rt2 + t3, y = yt := −t2.

The vertical tangency point of B̄ corresponds to the value t = −2r/3.
Consider a section L̄ of Σ2 given by

(2.3.3) y = s(x) := ax2 + bx + c, a 
= 0.

(The assumption a 
= 0 is due to the fact that L̄ should not pass through the
type E6 singular point of B̄.) Let B ⊂ P2 be the pull-back of B̄ under the
double covering of Σ2/E ramified at E/E and L̄. It is a plane sextic which, in
appropriate affine coordinates (x, y) in P2, is given by the equation

(2.3.4) fr(x, y2 + s(x)) = 0.

Obviously, B is of torus type, the torus structure being

(2.3.5) fr(x, ȳ) = ȳ3 + (rȳ + x)2, ȳ = y2 + s(x).

According to [5], this is the only torus structure on B. The inner singularities
of B are two type E6 points over the type E6 point of B̄ and two cusps or one
type A5 or E6 point over the cusp of B̄. (There is only one point if L̄ passes
through the cusp of B̄; this point is of type E6 if L̄ is tangent to B̄ at the cusp.)
The outer singularities of B arise from the tangency of L̄ and B̄: each point of
p-fold intersection, p > 1, of L̄ and B̄ smooth for B̄ gives rise to a type Ap−1

outer singularity of B. For detail, see [7].
In the rest of this section, we discuss various degenerations of the pair

(B̄, L̄) and parameterize the corresponding triples (a, b, c). For convenience,
each time we mention parenthetically the set of singularities of the sextic B
arising from (B̄, L̄).

2.4. Tangents and double tangents
Equating the values and the derivatives of s(xt(t)) and yt(t), one concludes

that a section L̄ as in (2.3.3) is tangent to B̄ at a point (xt(t), yt(t)), t 
= 0,
−2r/3, (the set of singularities (2E6 ⊕ 2A2) ⊕ A1) if and only if

(2.4.1) b = −2t2(t + r)a − 2
3t + 2r

, c = t4(t + r)2a − t3

3t + 2r
.

Double tangents are described by the following lemma.

Lemma 2.4.2. There exists a section L̄ tangent to the curve B̄ at two
distinct points (xt(t1), yt(t1)) and (xt(t2), yt(t2)), t1 
= t2, if and only if t1+t2 =
−r/3 and neither t1 nor t2 is 0, −r/6, or −2r/3.
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Proof. Substituting t = t1 and t = t2 to (2.4.1), equating the resulting
values of b and c, solving both equations for a, and equating the results, one
obtains (t1 − t2)2(3t1 + 3t2 + r) = 0; now, the statement is immediate.

Thus, a section L̄ as in (2.3.3) is double tangent to B̄ (the set of singularities
(2E6 ⊕ 2A2) ⊕ 2A1) if and only if, for some t 
= 0, −r/6, −2r/3, one has

a = − 27
(3t − r)2(3t + 2r)2

,

b =
2r(27t2 + 9rt − 2r2)
(3t − r)2(3t + 2r)2

,

c = − 2t3(3t + r)3

(3t − r)2(3t + 2r)2
.

(2.4.3)

A point of quadruple intersection of L̄ and B̄ can be obtained from Lemma
2.4.2 letting t1 = t2. (Alternatively, one can equate the derivatives of order 0
to 3 of s(xt(t)) and yt(t).) As a result, (xt(t), yt(t)) is a point of quadruple
intersection of L̄ and B̄ (the set of singularities (2E6 ⊕ 2A2)⊕A3) if and only
if

(2.4.4) t = −r

6
, (a, b, c) =

(
− 16

3r4
,− 88

81r
,

r2

4374

)
.

All points of intersection of this section L̄ and B̄ are:

• transversal intersection at t =
(
−2

3
+

√
2

2

)
r, x =

(
−19

54
+

√
2

4

)
r3 ≈

.0459;

• transversal intersection at t =
(
−2

3
−

√
2

2

)
r, x =

(
−19

54
−

√
2

4

)
r3 ≈

−19.1;

• quadruple intersection at t = −r

6
, x =

5r3

216
= .625.

The curve B̄ and the section L̄ given by (2.4.4) are plotted in Figure 1 (in black
and grey, respectively). The section is above the curve over x = 0; it intersects
the topmost branch over x ≈ .0459 and is tangent to the middle branch over
x = .625.

2.5. Sections through the cusp
A section L̄ as in (2.3.3) passes through the cusp of B̄ (the set of singular-

ities (2E6 ⊕A5)) if and only if c = 0; it is tangent to B̄ at the cusp (the set of
singularities (3E6)) if and only if, in addition, b = −1/r.

A section tangent to B̄ at a point (xt(t), yt(t)), see (2.4.1), passes through
the cusp of B̄ (the set of singularities (2E6 ⊕ A5) ⊕ A1) if and only if

(2.5.1) a =
1

t(t + r)2(3t + 2r)
, b = − 2(2t + r)

(t + r)(3t + 2r)
, c = 0,

t 
= 0, −r, −2r/3. (Note that the value t = −r corresponds to the smooth
point of B̄ in the same vertical fiber as the cusp.) Such a section is tangent
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Figure 1. The set of singularities (2E6 ⊕ 2A2) ⊕ A3

to B̄ at the cusp (the set of singularities (3E6) ⊕ A1) if and only if

(2.5.2) t = −r

3
, (a, b, c) =

(
− 27

4r4
,−1

r
, 0

)
.

The points of intersection of the latter section L̄ and B̄ are:
• the cusp of B̄ at t = 0, x = 0;

• transversal intersection at t = −4r

3
, x = −16r3

27
= −16;

• tangency at t = −r

3
, x =

2r3

27
= 2.

The section L̄ given by (2.5.2) looks similar to that shown in Figure 1. (Near the
cusp of B̄, the two curves are too close to be distinguished visually.) Between
x = 0 and x = 2, the section lies between the topmost and middle branches
of B̄.

2.6. Inflection tangents
Equating the derivatives of s(xt(t)) and yt(t) of order 0, 1, and 2, one

can see that a section L̄ as in (2.3.3) is inflection tangent to B̄ at a point
(xt(t), yt(t)), t 
= 0, −2r/3, (the set of singularities (2E6 ⊕ 2A2) ⊕ A2) if and
only if
(2.6.1)

a =
3

t(3t + 2r)3
, b = −2(12t2 + 15rt + 4r2)

(3t + 2r)3
, c = − t3(6t2 + 6rt + r2)

(3t + 2r)3
.

Such a section passes through the cusp of B̄ (giving rise to the set of singularities
(2E6⊕A5)⊕A2) if and only if t = (−3±

√
3)r/6. Thus, we obtain two families,
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which are Galois conjugate over Q[
√

3], cf . [14]. For one of the families, one
has

(2.6.2) t =
(
−1

2
+

√
3

6

)
r, (a, b, c) =

(12(3 − 2
√

3)
r4

,−4(2 −
√

3)
r

, 0
)
,

and the points of intersection of L̄ and B̄ are:
• the cusp of B̄ at t = 0, x = 0;

• transversal intersection at t =
(
−1

2
−

√
3

2

)
r, x =

(
−1

4
−

√
3

4

)
r3 ≈

−18.4;

• inflection tangency at t =
(
−1

2
+

√
3

6

)
r, x =

( 1
12

−
√

3
36

)
r3 ≈ .951.

This section looks similar to that shown in Figure 1; between x = 0 and x ≈
.951, the section is just below the middle branch of the curve.

For the other family, one has

(2.6.3) t =
(
−1

2
−

√
3

6

)
r, (a, b, c) =

(12(3 + 2
√

3)
r4

,−4(2 +
√

3)
r

, 0
)
,

and the points of intersection of L̄ and B̄ are:
• the cusp of B̄ at t = 0, x = 0;

• transversal intersection at t =
(
−1

2
+
√

3
2

)
r, x =

(
−1

4
+
√

3
4

)
r3 ≈ 4.94;

• inflection tangency at t =
(
−1

2
−

√
3

6

)
r, x =

( 1
12

+
√

3
36

)
r3 ≈ 3.55.

The curve B̄ and the section L̄ given by (2.6.3) are plotted in Figure 2, in black
and grey, respectively.

–8

–6

–4

–2

0

y

1 2 3 4 5
x

Figure 2. The set of singularities (2E6 ⊕ A5) ⊕ A2, the family (2.6.3)
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2.7. Proof of Theorem 1.1.1
First, note that any sextic with two type E6 singular points is irreducible

and has simple singularities only. The first statement follows from the fact that
an irreducible curve of degree 4 or 5 (respectively, � 3) may have at most one
(respectively, none) type E6 singular point, and the second one, from the fact
that a type E6 (respectively, non-simple) singular point takes 3 (respectively,
� 6) off the genus, whereas the genus of a nonsingular sextic is 10. Thus, we
can apply the results of [9] enumerating stable symmetries of curves.

For a set of singularities Σ ⊃ 2E6, consider the moduli space M(Σ) of
sextics B of torus type with the set of singularities Σ and the moduli space
M̃(Σ) of pairs (B, c), where B is a sextic as above and c is a stable involution
of B. Due to [9], the forgetful map M̃(Σ) → M(Σ) is generically finite-to-one
and onto.

As explained in Sections 2.2 and 2.3, the space M̃(Σ) can be identified
with the moduli space of pairs (B̄, L̄), where B̄ ⊂ Σ2 is a trigonal curve given
by (2.3.1) and L̄ is a section of Σ2 in a certain prescribed position with respect
to B̄. The spaces of pairs (B̄, L̄) are described in Sections 2.4–2.6, and for
each Σ 
= (2E6 ⊕ A5) ⊕ A2, an explicit rational parameterization is found.
(Strictly speaking, in order to pass to the moduli, we need to fix a value of r,
say, r = 3. This results in a Zariski open subset of the moduli space. The
portion corresponding to r = 0 has positive codimension as the isotrivial curve
f0 = 0 has 1-dimensional group C∗ of symmetries.) Hence, the space M̃(Σ) is
rational and, if dimM(Σ) � 2, so is M(Σ). The only case when dimM(Σ) � 3
is Σ = (2E6 ⊕ 2A2). In this case, each curve B has a unique stable involution,
see [9], and the map M̃(Σ) → M(Σ) is generically one-to-one; hence, M(Σ) is
still rational.

In the exceptional case Σ = (2E6 ⊕ A5) ⊕ A2, the space M(Σ) = M̃(Σ)
consists of two points. The fact that any sextic with this set of singularities is
of torus type follows immediately from [4].

Remark 2.7.1. The only sets of singularities containing 2E6 where the
curves have more than one (in fact, three) stable involutions are (3E6) and
(3E6) ⊕ A1, see [9]. In both cases, the group of stable symmetries can be
identified with the group S3 of permutations of the three type E6 points. It
follows that all three involutions are conjugate by stable symmetries; hence,
the map M̃(Σ) → M(Σ) is still one-to-one.

3. Van Kampen’s method in Hirzebruch surfaces

In this section, we give a formal and detailed exposition of a few observa-
tions outlined in [7]. Keeping in mind future applications, we treat the general
case of a Hirzebruch surface Σk, k � 1, and a d-gonal curve C ⊂ Σk, see
Definition 3.1.1.

Certainly, the essence of this approach is due to van Kampen [12]; we
merely introduce a few restrictions to the objects used in the construction
which make the choices involved slightly more canonical and easier to handle.
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By no means do we assert that the restrictions are necessary for the approach
to work in general.

3.1. Preliminary definitions
Fix a Hirzebruch surface Σk, k � 1. Denote by p : Σk → P1 the ruling,

and let E ⊂ Σk be the exceptional section, E2 = −k. Given a point b in
the base P1, we denote by Fb the fiber p−1(b). Let F ◦

b be the ‘open fiber’
Fb � E. Observe that F ◦

b is a dimension 1 affine space over C; hence, one can
speak about lines, circles, convexity, convex hulls, etc. in F ◦

b . (Thus, strictly
speaking, the notation F ◦

b means slightly more than just the set theoretical
difference Fb � E: we always consider F ◦

b with its canonical affine structure.)
Define the convex hull conv C of a subset C ⊂ Σk � E as the union of its
fiberwise convex hulls:

conv C =
⋃

b∈P1

conv(C ∩ F ◦
b ).

Definition 3.1.1. Let d � 1 be an integer. A d-gonal curve (or degree
d curve) on Σk is a reduced algebraic curve C ∈ |dE + dkF | disjoint from
the exceptional section E. (Here, F is any fiber of Σk.) A singular fiber of a
d-gonal curve C is a fiber of Σk that intersects C at fewer than d points. (With
a certain abuse of the language, the points in the base P1 whose pull-backs are
singular fibers will also be referred to as singular fibers of C.)

Remark 3.1.2. Recall that the complement Σk � E can be covered by
two affine charts, with coordinates (x, y) and (x′, y′) and transition function
x′ = 1/x, y′ = y/xk. In the coordinates (x, y), any d-gonal curve C is given by
an equation of the form

f(x, y) =
d∑

i=0

yiqi(x) = 0, deg qi = k(d − i), qd = const 
= 0,

and the singular fibers of C are those of the form Fx, where x is a root of the
y-discriminant Dy of f . (The fiber F∞ over x = ∞ is singular for C if and only
if deg Dy < kd(d − 1).)

3.2. Proper sections and braid monodromy
Fix a d-gonal curve C ⊂ Σk. The term ‘section’ below stands for a contin-

uous section of (an appropriate restriction of) the fibration p : Σk → P1.

Definition 3.2.1. Let Δ ⊂ P1 be a closed (topological) disk. A partial
section s : Δ → Σk of p is called proper if its image is disjoint from both E and
conv C.

Lemma 3.2.2. Any disk Δ ⊂ P1 admits a proper section s : Δ → Σk.
Any two proper sections over Δ are homotopic in the class of proper sections ;
furthermore, any homotopy over a fixed point b ∈ Δ extends to a homotopy
over Δ.
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Proof. The restriction p′ of p to Σk � (E ∪ conv C) is a locally trivial
fibration with a typical fiber F ′ homeomorphic to a punctured open disk. Since
Δ is contractible, p′ is trivial over Δ and, after trivializing, sections over Δ can
be identified with maps Δ → F ′. Such maps do exist, and any two such maps
are homotopic, again due to the fact that Δ is contractible.

Pick a closed disk Δ ⊂ P1 as above and denote Δ� = Δ � {b1, . . . , bl},
where b1, . . . , bl are the singular fibers of C that belong to Δ. Fix a point
b ∈ Δ�. The restriction p� : p−1(Δ�)�(C∪E) → Δ� is a locally trivial fibration
with a typical fiber F ◦

b � C, and any proper section s : Δ → Σk restricts to
a section of p�. Hence, given a proper section s, one can define the group
πF := π1(F ◦

b � C, s(b)) and the braid monodromy m : π1(Δ�, b) → AutπF .
Informally, for a loop σ : [0, 1] → Δ�, the automorphism m([σ]) of πF is obtained
by dragging the fiber Fb along σ(t) while keeping the base point on s(σ(t)).
(Formally, it is obtained by trivializing the fibration σ∗p�.)

It is essential that, in this paper, we reserve the term ‘braid monodromy’
for the homomorphism m constructed using a proper section s. Under this
convention, the following lemma is an immediate consequence of Lemma 3.2.2
and the obvious fact that the braid monodromy is homotopy invariant.

Lemma 3.2.3. The braid monodromy m : π1(Δ�, b) → AutπF is well
defined and independent of the choice of a proper section over Δ passing through
s(b).

Remark 3.2.4. More generally, given a path

σ̃ : [0, 1] → p−1(Δ�) � (conv C ∪ E),

one can use Lemma 3.2.2 to conclude that the braid monodromy commutes
with the translation isomorphism

Tσ : π1(Δ�, σ(0)) → π1(Δ�, σ(1))

(where σ = p ◦ σ̃ : [0, 1] → Δ�) and the isomorphism

Autπ1(F ◦
σ(0) � C, σ̃(0)) → Autπ1(F ◦

σ(1) � C, σ̃(1))

induced by the translation Tσ̃ along σ̃.

Remark 3.2.5. For most computations, we will take for s a ‘constant
section’ constructed as follows: pick an affine coordinate system (x, y), see
Remark 3.1.2, so that the point x = ∞ does not belong to Δ, and let s be the
section x 	→ c = const, |c| � 0. (In other words, the graph of s is the 1-gonal
curve {y = c} ⊂ Σk.) Since the intersection p−1(Δ) ∩ conv C ⊂ Σk � E is
compact, such a section is indeed proper whenever |c| is sufficiently large.

Remark 3.2.6. Another consequence of Lemma 3.2.3 is the fact that,
for any nested pair of disks Δ1 ⊂ Δ2, the braid monodromy commutes with the
inclusion homomorphism π1(Δ

�
1) → π1(Δ

�
2). Indeed, one can construct both

monodromies using a proper section over Δ2 and restricting it to Δ1 when
necessary.
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Pick a basis ζ1, . . . , ζd for πF and a basis σ1, . . . , σl for π1(Δ�, b). Denote
mi = m(σi), i = 1, . . . , l. The following statement is the essence of Zariski–van
Kampen’s method for computing the fundamental group of a plane algebraic
curve, see [12] for the proof and further details.

Theorem 3.2.7. Let Δ ⊂ P1 be a closed disk as above, and assume that
the boundary ∂Δ is free of singular fibers of C. Then one has

π1(p−1(Δ) � (C ∪ E), s(b)) =
〈
ζ1, . . . , ζd

∣∣ mi = id, i = 1, . . . , l
〉
,

where each braid relation mi = id should be understood as a d-tuple of relations
ζj = mi(ζj), j = 1, . . . , d.

3.3. The monodromy at infinity
Let b ∈ Δ� ⊂ Δ ⊂ P1 be as in Section 3.2. Denote by ρb ∈ πF the

‘counterclockwise’ generator of the abelian subgroup Z ∼= π1(F ◦
b � conv C)

of πF . (In other words, ρb is the class of a large circle in F ◦
b encompassing

conv C ∩ F ◦
b . If ζ1, . . . , ζd is a ‘standard basis’ for πF , cf . Figure 3, left, then

ρb = ζ1 · . . . · ζd.) Clearly, ρb is invariant under the braid monodromy and,
properly understood, it is preserved by the translation homomorphism along
any path in p−1(Δ�) � (conv C ∪ E). (Indeed, as explained in the proof of
Lemma 3.2.2, the fibration p−1(Δ) � (conv C ∪ E) → Δ is trivial, hence 1-
simple.) Thus, there is a canonical identification of the elements ρb′ , ρb′′ in
the fibers over any two points b′, b′′ ∈ Δ�; for this reason, we will omit the
subscript b in the sequel.

Assume that the boundary ∂Δ is free of singular fibers of C. Then, con-
necting ∂Δ with the base point b by a path in Δ� and traversing it in the
counterclockwise direction (with respect to the canonical complex orientation
of Δ), one obtains a certain element [∂Δ] ∈ π1(Δ�, b) (which depends on the
choice of the path above).

Proposition 3.3.1. In the notation above, assume that the interior
of Δ contains all singular fibers of C. Then, for any ζ ∈ πF , one has

m([∂Δ])(ζ) = ρkζρ−k.

(In particular, m([∂Δ]) does not depend on the choices in the definition of the
class [∂Δ].)

Proof. Due to the homotopy invariance of the braid monodromy (and the
invariance of ρ), one can replace Δ with any larger disk and assume that the
base point b is in the boundary. Consider affine charts (x, y) and (x′, y′), see
Remark 3.1.2, such that the fiber {x = ∞} = {x′ = 0} does not belong to Δ
(and hence is nonsingular for C), and replace Δ with the disk {|x| � 1/ε} for
some positive ε � 1. About x′ = 0, the curve C has d analytic branches of
the form y′ = ci + x′ϕi(x′), where ci are pairwise distinct constants and ϕi

are analytic functions, i = 1, . . . , d. Restricting these expressions to the circle
x′ = ε exp(−2πt), t ∈ [0, 1], and passing to x = 1/x′ and y = y′xk, one obtains



778 Alex Degtyarev

y = ciε
−k exp(2kπt)+O(ε−k+1), i = 1, . . . , d. Thus, from the point of view of a

trivialization of the ruling over Δ (e.g., the one given by y), the parameter ε can
be chosen so small that the d branches move along d pairwise disjoint concentric
circles (not quite round), each branch making k turns in the counterclockwise
direction. On the other hand, one can assume that the base point remains in a
constant section y = c = const with |c| � ε−k max|ci|, see Remark 3.2.5. The
resulting braid is the conjugation by ρ−k.

3.4. The relation at infinity
We are ready to state the principal result of this section. Fix a d-gonal

curve C ⊂ Σk and choose a closed disk Δ ⊂ P1 satisfying the following condi-
tions:

1. Δ contains all but at most one singular fibers of C;
2. none of the singular fibers of C is in the boundary ∂Δ.

As in Section 3.2, pick a base point b ∈ Δ�, a basis ζ1, . . . , ζd for the group
πF over b, and a basis σ1, . . . , σl for the group π1(Δ�, b). Let mi = m(σi),
i = 1, . . . , l, where m : π1(Δ�, b) → AutπF is the braid monodromy.

Theorem 3.4.1. Under the assumptions (1), (2) above, one has

π1(Σk � (C ∪ E)) =
〈
ζ1, . . . , ζd

∣∣ mi = id, i = 1, . . . , l, ρk = 1
〉
,

where each braid relation mi = id should be understood as a d-tuple of relations
ζj = mi(ζj), j = 1, . . . , d, and ρ ∈ πF is the element introduced in Section 3.3.

The relation ρk = 1 in Theorem 3.4.1 is called the relation at infinity. If
k = 1, it coincides with the well known relation ρ = 1 for the group of a plane
curve.

Proof. First, consider the case when Δ contains all singular fibers of C.
As in the proof of Proposition 3.3.1, one can replace Δ with any larger disk, e.g.,
with the one given by {|x| � 1/ε}, where (x, y) are affine coordinates such that
the point x = ∞ is not in Δ and ε is a sufficiently small positive real number.
Furthermore, one can take for s a constant section x 	→ ε−kc = const, |c| � 0,
see Remark 3.2.5, and choose the base point b in the boundary ∂Δ. The funda-
mental group π1(p−1(Δ)�(C∪E)) is given by Theorem 3.2.7, and the patching
of the nonsingular fiber {x = ∞} = {x′ = 0} results in the additional relation
[∂Γ] = 1, where Γ is the disk {y′ = c, |x′| � ε}. (Here, x′ = 1/x and y′ = y/xk

are the affine coordinates in the complementary chart, see Remark 3.1.2. We
assume that the constant |c| is so large that Γ∩conv C = ∅.) Restricting to the
boundary x′ = ε exp(−2πt), t ∈ [0, 1], and passing back to (x, y), one finds that
the loop ∂Γ is given by x = ε−1 exp(2πt), y = ε−kc exp(2kπt); it is homotopic
to ρk · [s(∂Δ)]. Since the loop s(∂Δ) is contractible (along the image of s), the
extra relation is ρk = 1, as stated.

Now, assume that one singular fiber of C is not in Δ. Extend Δ to a
larger disk Δ′ ⊃ Δ containing the missing singular fiber (and extend the braid
monodromy, see Remark 3.2.6). For Δ′, the theorem has already been proved,
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and the resulting presentation of the group differs from the one given by Δ
by an extra relation ml+1 = id. However, under an appropriate choice of the
additional generator σl+1, one has [∂Δ′] = [∂Δ] · σl+1. Clearly, m([∂Δ]) is a
word in m1, . . . , ml and, in view of Proposition 3.3.1, the monodromy m([∂Δ′])
is the conjugation by ρ−k. Hence, in the presence of the relation at infinity
ρk = 1, the additional relation ml+1 = id is a consequence of the other braid
relations, and the statement follows.

4. The fundamental group

4.1. Preliminaries
Fix a sextic B, pick a stable involutive symmetry c of B, see §2, and let

B̄, L̄ ⊂ Σ2 = P2(Oc)/c be the projections of B and Lc, respectively. We start
with applying Theorem 3.4.1 to the 4-gonal curve B̄ + L̄ and computing the
group π̄1 := π1(Σ2 � (B̄ ∪ L̄ ∪ E)).

In order to visualize the braid monodromy, we will consider the standard
real structure (i.e., anti-holomorphic involution) conj : (x, y) 	→ (x̄, ȳ) on Σ2,
where bar stands for the complex conjugation. A reduced algebraic curve C
in Σ2 is said to be real (with respect to conj) if it is conj-invariant (as a set).
Alternatively, C is real if and only if, in the coordinates (x, y), it can be given by
a polynomial with real coefficients. In particular, the curve B̄ given by (2.3.1)
is real. Given a real curve C ⊂ Σ2, one can speak about its real part CR (i.e.,
the set of points of C fixed by conj), which is a codimension 1 subset in the
real part of Σ2.

To use Theorem 3.4.1, we take for Δ a closed regular neighborhood of the
smallest segment of the real axis P1

R
containing all singular fibers of B̄ + L̄

except the one of type Ẽ6 at infinity, see the shaded area in Figure 3, right.
Recall that singular are the fiber {x = 0} through the cusp, the vertical tangent
{x = 4}, and the fibers through the points of intersection of B̄ and L̄. (As in §2,
we use the value r = 3 for the numeric evaluation.) We only consider the four
extremal sections L̄ given by (2.4.4), (2.5.2), (2.6.2), and (2.6.3). In each case,
all singular fibers are real; they are listed in §2.

To compute the braid monodromy, we use a constant real section s : Δ →
Σ2 given by x 	→ const � 0, see Remark 3.2.5, and the base point b = (ε, 0) ∈ Δ,
where ε > 0 is sufficiently small. The basis σ1, . . . , σl for the group π1(Δ�, b) is
chosen as shown in Figure 3, right: each σi is a small loop about a singular fiber
connected to b by a real segment, circumventing the interfering singular fibers
in the counterclockwise direction. Let F = Fb be the base fiber, and choose a
basis α, β, γ, δ for the group πF = π1(F ◦ � (B̄∪ L̄), s(b)) as shown in Figure 3,
left. (Note that, in all cases considered below, all points of the intersection
F ∩ (B̄ ∪ L̄) are real.) The following notation convention is important for the
sequel.

Remark 4.1.1. We use a double notation for the elements of the basis
for πF . On the one hand, to be consistent with Theorem 3.4.1, we denote them
ζ1, . . . , ζ4, numbering the loops consecutively according to the decreasing of the
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y-coordinate of the point. Then the element ρ ∈ πF introduced in Section 3.3
is given by ρ = ζ1ζ2ζ3ζ4, and the relation at infinity in Theorem 3.4.1 turns
to (ζ1ζ2ζ3ζ4)2 = 1. On the other hand, to make the formulas more readable,
we denote the basis elements by α, β, γ, and δ. The first three elements are
numbered consecutively, whereas δ plays a very special rôle in the passage to
the group π1(P2 � B), see Lemma 4.1.2 below: we always assume that δ is
the element represented by a loop about the point F ∩ L̄. Thus, the position
of δ in the sequence (α, β, γ, δ) may change; this position is important for the
expression for ρ and hence for the relation at infinity.

FR

α

β

γ

δ F ∩ L̄

s(b)

P2
R

σ2σ1 σl−1 σl. . . . . .

b

Figure 3. The basis α, β, γ, δ and the loops σi

The passage from a presentation of π̄1 to the that of the group π1 :=
π1(P2 � B) is given by the following lemma.

Lemma 4.1.2. If π̄1 is given by
〈
α, β, γ, δ

∣∣ Rj = 1, j = 1, . . . , s
〉
, then

π1 =
〈
α, ᾱ, β, β̄, γ, γ̄

∣∣ R′
j = R̄′

j = 1, j = 1, . . . , s
〉
,

where bar stands for the conjugation by δ, w̄ = δ−1wδ, each relation R′
j is

obtained from Rj, j = 1, . . . , s, by letting δ2 = 1 and expressing the result in
terms of the generators α, ᾱ, . . . , and R̄′

j = δ−1R′
jδ, j = 1, . . . , s. (In other

words, R̄′
j is obtained from R′

j by interchanging α ↔ ᾱ, β ↔ β̄, and γ ↔ γ̄.)

Proof. The projection P2 � (B∪Oc) → Σ2 � (B̄∪E) is a double covering
ramified at L̄. Hence, one has

π1 = π1(P2 � (B ∪ Oc)) = Ker[κ : π̄1/δ2 → Z2],

where κ : α, β, γ 	→ 0 and κ : δ 	→ 1. (Note that the compactification of the
double covering above is not ramified at B̄.) Lift κ to a homomorphism
κ̃ : 〈α, β, γ, δ〉 → Z2. The two cosets modulo Ker κ̃ are represented by 1 and δ,
and the standard calculation shows that Ker κ̃ is the free group generated by
α, ᾱ, β, β̄, γ, γ̄, δ2. The kernel N of the epimorphism Ker κ̃ � π1 is normally
generated in 〈α, β, γ, δ〉 by δ2 and R′

j , j = 1, . . . , s. Hence, one can remove the
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generator δ2 from the presentation. Besides, since the conjugation by δ is not
an inner automorphism of Ker κ̃, one should add the conjugates R̄′

j = δ−1R′
jδ

to obtain a set normally generating N in Ker κ̃. The resulting presentation
of π1 is the one stated in the lemma.

Remark 4.1.3. Note that :̄ w 	→ w̄ = δwδ is an involutive automor-
phism of π1. Hence, whenever a relation R = 1 holds in π1, the relation R̄ = 1
also holds.

4.2. The set of singularities (3E6) ⊕ A1

Take for L̄ the section given by (2.5.2). The pair (B̄, L̄) looks as shown
in Figure 1, and the singular fibers are listed in 2.5. The generators ζ1 = α,
ζ2 = δ, ζ3 = β, ζ4 = γ for π̄1 are subject to the relations

(δβ)2 = (βδ)2 (the tangency point x = 2),

(δβ)β(δβ)−1 = γ (the vertical tangent x = 4),
[δ, αδβα] = 1, αδβα = βαδβ (the cusp x = 0),

[δ, (αδβ)γ(αδβ)−1] = 1 (the transversal intersection x = −16),

(αδβγ)2 = 1 (the relation at infinity).

Letting δ2 = 1 and passing to α, ᾱ, β, β̄, γ, γ̄, see Lemma 4.1.2, one can rewrite
these relations in the following form:

[β, β̄] = 1,(4.2.1)
γ = β̄, γ̄ = β,(4.2.2)

αβ̄ᾱ = ᾱβα = βαβ̄ = β̄ᾱβ,(4.2.3)

αβα−1 = ᾱβ̄ᾱ−1,(4.2.4)
αβ̄βᾱββ̄ = 1.(4.2.5)

(In (4.2.4) and (4.2.5), we eliminate γ using (4.2.2).) Now, one can use the
last relation in (4.2.3) to eliminate ᾱ: one has ᾱ = β̄−1βαβ̄β−1. Substituting
this expression to αβ̄ᾱ = βαβ̄ and ᾱβα = βαβ̄ in (4.2.3) and using (4.2.1),
one obtains, respectively, the braid relations αβα = βαβ and αβ̄α = β̄αβ̄.
Conjugating by δ, one also has ᾱβᾱ = βᾱβ and ᾱβ̄ᾱ = β̄ᾱβ̄. Then, (4.2.4)
turns to β−1αβ = β̄−1ᾱβ̄ and, eliminating ᾱ, one obtains [α, β̄2β−2] = 1.
Finally, eliminating ᾱ from the last relation (4.2.5), one gets αβ2αβ̄2 = 1.
Thus, the map β 	→ σ1, α 	→ σ2, β̄ 	→ σ3 establishes an isomorphism

π1(P2 � B) = B4/〈[σ2, σ
2
1σ−2

3 ], σ2σ
2
1σ2σ

2
3〉.

It remains to notice that, in the presence of the second relation in the presen-
tation above, the first one turns into [σ2, σ

2
1σ2σ

2
1σ2] = 1, or [σ2, (σ1σ2)3] = 1,

which holds automatically. Thus, one has

(4.2.6) π1(P2 � B) = B4/σ2σ
2
1σ2σ

2
3 .
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Corollary 4.2.7. Let D be a Milnor ball about a type E6 singular point
of B. Then the inclusion homomorphism π1(D � B) → π1(P2 � B) is onto.

Proof. Since any pair of type E6 singular points can be permuted by
a stable symmetry of B, see [9], it suffices to prove the statement for the
type E6 point resulting from the cusp of B̄. In this case, the statement follows
from (4.2.2), as α, ᾱ, β, and β̄ are all in the image of π1(D � B).

4.3. The set of singularities (2E6 ⊕ 2A2) ⊕ A3

Take for L̄ the section given by (2.4.4). The pair (B̄, L̄) is plotted in
Figure 1, and the singular fibers are listed in 2.4. The generators ζ1 = δ,
ζ2 = α, ζ3 = β, ζ4 = γ for π̄1 are subject to the relations

[δ, α] = 1 (the transversal intersection x ≈ .0459),
αβα = βαβ (the cusp x = 0),

[δ, βα−1γαβ−1] = 1 (the transversal intersection x ≈ −19.1),

(δβ)4 = (βδ)4 (the tangency point x = .625),

(δβ)2β(δβ)−2 = γ (the vertical tangent x = 4),

(δαβγ)2 = 1 (the relation at infinity).

(The third relation is simplified using [δ, α] = 1.) Letting δ2 = 1 and passing to
α = ᾱ, β, β̄, γ, γ̄, see Lemma 4.1.2, one can rewrite these relations as follows:

α = ᾱ,(4.3.1)
αβα = βαβ, αβ̄α = β̄αβ̄,(4.3.2)

βα−1β̄ββ̄−1αβ−1 = β̄α−1ββ̄β−1αβ̄−1,(4.3.3)

(β̄β)2 = (ββ̄)2,(4.3.4)

β̄ββ̄−1 = γ, ββ̄β−1 = γ̄,(4.3.5)

αβ̄ββ̄β−1αββ̄ββ̄−1 = 1.(4.3.6)

(We use (4.3.1) and (4.3.5) to eliminate ᾱ, γ, and γ̄ in the other relations.)
Thus,

(4.3.7) π1(P2 � B) = G3 :=
〈
α, β, β̄

∣∣ (4.3.2)–(4.3.4), (4.3.6)
〉
.

The following statement is a consequence of the monodromy computation.

Lemma 4.3.8. Let F ′ be the fiber {x = const � 0} and let α1, β1, γ1,
δ1 be the basis in F ′ shown in Figure 4, left. Then, considering α1, β1, and γ1

as elements of π̄1, one has α1 = β̄, β1 = β−1αβ, and γ1 = γ.

Corollary 4.3.9. Let D be a Milnor ball about a type E6 singular point
of B. Then the inclusion homomorphism π1(D � B) → π1(P2 � B) is onto.
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F ′
R

α1 β1

γ1

δ1 F ′ ∩ L̄

s(b′)
F ′

R

α1 β1

γ1

δ1

s(b′)

Figure 4. Generators in F ′ = {x = b′ = const � 0}

Proof. In view of (4.3.5), one has β = α−1
1 γ1α1. Then α = ββ1β

−1;
hence, the elements α1, β1, and γ1 generate the group. On the other hand, α1,
β1, γ1 are in the image of π1(D � B).

4.4. The set of singularities (2E6 ⊕ A5) ⊕ A2: the first family
Take for L̄ the section given by (2.6.2). The pair (B̄, L̄) looks as shown

in Figure 1, and the singular fibers are listed in 2.6. The generators ζ1 = α,
ζ2 = β, ζ3 = δ, ζ4 = γ satisfy the following relations:

[δ, αβ] = 1, δαβα = βαβδ (the cusp x = 0),

(βδ)3 = (δβ)3 (the tangency point x ≈ .951),

(βδ)β(βδ)−1 = γ (the vertical tangent x = 4),

[δ, α−1γα] = 1 (the transversal intersection x ≈ −18.4),

(αβδγ)2 = 1 (the relation at infinity).

Letting δ2 = 1 and passing to α, ᾱ, β, β̄, γ, γ̄, see Lemma 4.1.2, one obtains

αβ = ᾱβ̄, ᾱβ̄ᾱ = βαβ, αβα = β̄ᾱβ̄,(4.4.1)
β̄ββ̄ = ββ̄β,(4.4.2)

ββ̄β−1 = γ, β̄ββ̄−1 = γ̄,(4.4.3)

α−1γα = ᾱ−1γ̄ᾱ,(4.4.4)
αβγ̄αβγ = 1.(4.4.5)

The cusp relations (4.4.1) can be rewritten in the form

(4.4.6) ᾱ = (αβ)−1β(αβ), β̄ = (αβ)α(αβ)−1, (αβ)3 = (βα)3,

or, in terms of ᾱ, β̄, in the form

(4.4.7) α = (ᾱβ̄)−1β̄(ᾱβ̄), β = (ᾱβ̄)ᾱ(ᾱβ̄)−1, (ᾱβ̄)3 = (β̄ᾱ)3.

Geometrically, one has π1(D � B) =
〈
α, β

∣∣ (αβ)3 = (βα)3
〉
, where D is a

Milnor ball around the type A5 singular point.
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Writing (4.4.5) as αβγ̄ᾱβ̄γ = 1 and eliminating γ and γ̄ using (4.4.3)
and (4.4.2), we can rewrite this relation in the form

(4.4.8) αβ̄βᾱββ̄ = 1.

Eliminating γ and γ̄ from (4.4.4), we obtain

(4.4.9) α−1ββ̄β−1α = ᾱ−1β̄ββ̄−1ᾱ.

Thus, we have

(4.4.10) π1(P2 � B) = G′
2 :=

〈
α, β

∣∣ (αβ)3 = (βα)3, (4.4.2), (4.4.8), (4.4.9)
〉
,

where ᾱ and β̄ are the words given by (4.4.6). I could not find any substantial
simplification of this presentation. An alternative presentation of G′

2 (as well
as of the group G′′

2 introduced in (4.5.4) below) is given in Eyral, Oka [10].
As a part of computing the braid monodromy, we get the following lemma.

Lemma 4.4.11. Let F ′ be the fiber {x = const � 0} and let α1, β1,
γ1, δ1 be the basis in F ′ shown in Figure 4, left. Then, considering α1, β1, and
γ1 as elements of π̄1, one has α1 = β, β1 = β̄−1ᾱβ̄, and γ1 = γ.

Corollary 4.4.12. Let D be a Milnor ball about a type E6 singular point
of B. Then the inclusion homomorphism π1(D � B) → π1(P2 � B) is onto.

Proof. Due to (4.4.3), one has β̄ = α−1
1 γ1α1. Then ᾱ = β̄β1β̄

−1 and, in
view of (4.4.7) and (4.4.3), ᾱ and β̄ generate the group.

4.5. The set of singularities (2E6 ⊕ A5) ⊕ A2: the second family
Now, let L̄ be the section given by (2.6.3). The pair (B̄, L̄) is plotted in

Figure 2, and the singular fibers are listed in 2.6. The generators for πF are
ζ1 = α, ζ2 = β, ζ3 = δ, ζ4 = γ, and the relations are:

[δ, αβ] = 1, δαβα = βαβδ (the cusp x = 0),

(γδ)3 = (δγ)3 (the tangency point x ≈ 3.55),

(δγδ)γ(δγδ)−1 = β (the vertical tangent x = 4),

[δ, γαγ−1] = 1 (the transversal intersection x ≈ 4.94),

(αβδγ)2 = 1 (the relation at infinity).

Let δ2 = 1 and pass to the generators α, ᾱ, β, β̄, γ, γ̄, see Lemma 4.1.2.
Then, in addition to the cusp relations (4.4.6) (or (4.4.1) ) and relation at
infinity (4.4.5), we obtain

γγ̄γ = γ̄γγ̄,(4.5.1)

γ̄γγ̄−1 = β, γγ̄γ−1 = β̄(4.5.2)

γαγ−1 = γ̄ᾱγ̄−1.(4.5.3)
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Thus,

π1(P2 � B) = G′′
2 :=

〈
α, β, γ, γ̄

∣∣ (αβ)3 = (βα)3, (4.4.5), (4.5.1)–(4.5.3)
〉
,

(4.5.4)

where ᾱ and β̄ are the words given by (4.4.6). Note that one can eliminate
either γ̄, using (4.4.5), or β, using (4.5.2).

Extending the braid monodromy beyond the cusp of B (to the negative
values of x), we obtain the following statement.

Lemma 4.5.5. Let F ′ be the fiber {x = const � 0} and let α1, β1, γ1,
δ1 be the basis in F ′ shown in Figure 4, right. Then, considering α1, β1, and
γ1 as elements of π̄1, one has α1 = β̄, β1 = β̄−1ᾱβ̄, and γ1 = γ.

Corollary 4.5.6. Let D be a Milnor ball about a type E6 singular point
of B. Then the inclusion homomorphism π1(D � B) → π1(P2 � B) is onto.

Proof. In view of (4.4.7) and (4.4.5), the elements ᾱ = α1β1α
−1
1 , β̄ = α1,

and γ = γ1 generate the group.

4.6. Comparing the two groups
Let B′ and B′′ be the sextics considered in 4.4 and 4.5, respectively, so

that their fundamental groups are G′
2 and G′′

2 . As explained in Eyral, Oka [10],
the profinite completions of G′

2 and G′′
2 are isomorphic (as the two curves are

conjugate over an algebraic number field). Whether G′
2 and G′′

2 themselves
are isomorphic is still an open question. Below, we suggest an attempt to
distinguish the two groups geometrically.

Proposition 4.6.1. Let D be a Milnor ball about the type A5 singular
point of B′. Then the inclusion homomorphism π1(D � B′) → π1(P2 � B′) is
onto.

Proof. According to (4.4.10), the group π1(P2 � B′) = G′
2 is generated

by α and β, which are both in the image of π1(D � B′).

Conjecture 4.6.2. Let D be a Milnor ball about the type A5 singular
point of B′′. Then the image of the inclusion homomorphism π1(D � B′′) →
π1(P2 � B′′) does not contain γ or γ̄.

Remark 4.6.3. If true, Conjecture 4.6.2 together with Proposition 4.6.1
would provide a topological distinction between the pairs (P2, B′) and (P2, B′′).
Note that, according to [4], the two pairs are not diffeomorphic.

4.7. Other symmetric sets of singularities
The set of singularities (3E6) is obtained by perturbing L̄ in Section 4.2

to a section tangent to B̄ at the cusp and transversal to B̄ otherwise. This
procedure replaces (4.2.1) with β̄ = β or, alternatively, introduces a relation
σ3 = σ1 in (4.2.6). The resulting group is B3/(σ1σ2)3.
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The sets of singularities of the form (2E6 ⊕ 2A2) ⊕ . . . are obtained by
perturbing L̄ in Section 4.3. If L̄ is perturbed to a double tangent (the set of
singularities (2E6 ⊕ 2A2) ⊕ 2A1), relation (4.3.4) is replaced with [β, β̄] = 1.
Then, (4.3.6) turns to αβ̄2αβ2 = 1, and (4.3.3) turns to

βα−1βαβ−1 = β̄α−1β̄αβ̄−1.

Replacing the underlined expressions using the braid relations (4.3.2) converts
this relation to β2αβ−2 = β̄2αβ̄−2, i.e., [α, β̄2β−2] = 1. As explained in 4.2,
the map β 	→ σ1, α 	→ σ2, β̄ 	→ σ3 establishes an isomorphism π1(P2 � B) =
B4/σ2σ

2
1σ2σ

2
3 .

Any other perturbation of L̄ produces an extra point of its transversal
intersection with B̄, replacing (4.3.4) with β = β̄. The resulting group is
B3/(σ1σ2)3.

Finally, the sets of singularities (2E6 ⊕ A5) ⊕ A1 and (2E6 ⊕ A5) are
obtained by perturbing the inflection tangency point of L̄ and B̄ in Section 4.4.
This procedure replaces (4.4.2) with β̄ = β. Then, from the first relation
in (4.4.1) one has ᾱ = α, relation (4.4.3) results in γ = β̄ = β, and relation
(4.4.5) turns to (αβ2)2 = 1. Hence, the group is B3/(σ1σ2)3. (Note that
(σ1σ

2
2)2 = (σ1σ2)3 in B3.)

4.8. Proof of Theorem 1.1.4
The fact that the perturbation epimorphisms G′

2, G
′′
2 � B3/(σ1σ2)3 are

proper is proved in Eyral, Oka [10], where it is shown that the Alexander
module of a sextic with the set of singularities (2E6 ⊕ A5) ⊕ A2 has a torsion
summand Z2 ×Z2, whereas the Alexander modules of all other groups listed in
Theorem 1.1.3 can easily be shown to be Z[t]/(t2 − t + 1). (In other words, the
abelianization of the commutant of G′

2 or G′′
2 is equal to Z2 × Z2 × Z × Z, and

for all other groups it equals Z × Z.)
The epimorphism

ϕ0 : G0 = B4/σ2σ
2
1σ2σ

2
3 � B3/(σ1σ2)3

is considered in Oka, Pho [15]. One can observe that both braids σ2σ
2
1σ2σ

2
3

and (σ1σ2)3 in the definition of the groups are pure, i.e., belong to the kernels
of the respective canonical epimorphism Bn � Bn/σ2

1 = Sn. Furthermore, ϕ0

takes each of the standard generators σ1, σ2, σ3 of B4 to a conjugate of σ1.
Hence, the induced epimorphism G0/ϕ−1(σ2

1) = S4 � B3/σ2
1 = S3 is proper,

and so is ϕ0.
A similar argument applies to the epimorphism ϕ3 : G3 � G0, which takes

each generator α, β, β̄ of G3 to a conjugate of σ1 ∈ G0. The induced epimor-
phism

G3/ϕ−1
3 (σ2

1) = SL(2, F3) � G0/σ2
1 = S4 = PSL(2, F3)

is proper; hence, so is ϕ3. (Alternatively, one can compare G3/ϕ−1
3 (σ4

1) and
G0/σ4

1 , which are finite groups of order 3 · 29 and 3 · 26, respectively. The finite
quotients of G3 and G0 were computed using GAP [11].)
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5. Perturbations

5.1. Perturbing a singular point
Consider a singular point P of a plain curve B and a Milnor ball D

around P . Let B′ be a nontrivial (i.e., not equisingular) perturbation of B
such that, during the perturbation, the curve remains transversal to ∂D.

Lemma 5.1.1. In the notation above, let P be of type E6. Then B′∩D
has one of the following sets of singularities:

1. 2A2 ⊕ A1: one has π1(D � B′) = B4;
2. A5 or 2A2: one has π1(D � B′) = B3;
3. D5, D4, A4 ⊕ A1, A4, A3 ⊕ A1, A3, A2 ⊕ kA1 (k = 0, 1, or 2), or

kA1 (k = 0, 1, 2, or 3): one has π1(D � B′) = Z.

Proof. The perturbations of a simple singularity are enumerated by the
subgraphs of its Dynkin graph, see E. Brieskorn [1] or G. Tjurina [17]. For the
fundamental group, observe that the space D �B is diffeomorphic to the space
P2 � (C ∪ L), where C ⊂ P2 is a plane quartic with a type E6 singular point,
and L is a line with a single quadruple intersection point with C. Then, the
perturbations of B inside D can be regarded as perturbations of C keeping the
point of quadruple intersection with L, see [2], and the perturbed fundamental
group π1(P2 � (C ′ ∪ L)) ∼= π1(D � B′) is found in [3].

Lemma 5.1.2. In the notation above, let P be of type A5. Then B′∩D
has one of the following sets of singularities:

1. 2A2: one has π1(D � B′) = B3;
2. A3 ⊕ A1 or 3A1: one has π1(D � B′) = Z × Z;
3. A4, A3, A2⊕A1, A2, or kA1 (k = 0, 1, or 2): one has π1(D�B′) = Z.

Lemma 5.1.3. In the notation above, let P be of type A2. Then B′∩D
has the set of singularities A1 or ∅, and one has π1(D � B′) = Z.

Proof of Lemmas 5.1.2 and 5.1.3. Both statements are a well known
property of type A singular points: any perturbation of a type Ap singular
point has the set of singularities

⊕
Api

with d = (p + 1)−
∑

(pi + 1) � 0, and
the group π1(D � B′) is given by 〈α, β |σsα = α, σsβ = β〉, where σ is the
standard generator of the braid group B2 acting on 〈α, β〉 and s = 1 if d > 0
or s = g. c. d.(pi + 1) if d = 0.

Proposition 5.1.4. Let B be a plane sextic of torus type with at least
two type E6 singularities, and let D be a Milnor ball about a type E6 singular
point of B. Then the inclusion homomorphism π1(D � B) → π1(P2 � B) is
onto.

Proof. The proposition is an immediate consequence of Corollaries 4.2.7,
4.3.9, 4.4.12 and 4.5.6.
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Corollary 5.1.5. Let B be a plane sextic of torus type with at least two
type E6 singular points, and let B′ be a perturbation of B.

1. If at least one of the type E6 singular points of B is perturbed as
in 5.1.1(3), then π1(P2 � B′) = Z6.

2. If at least one of the type E6 singular points of B is perturbed as
in 5.1.1(2) and B′ is still of torus type, then π1(P2 � B′) = B3/(σ1σ2)3.

Proof. Let D be a Milnor ball about the type E6 singular point in ques-
tion. Due to Proposition 5.1.4, the inclusion homomorphism π1(D � B) →
π1(P2�B) is onto. Hence, in case (1), there is an epimorphism Z � π1(P2�B′),
and in case (2), there is an epimorphism B3 � π1(P2 �B′). In the former case,
the epimorphism above implies that the group is abelian, hence Z6. In the
latter case, the central element (σ1σ2)3 ∈ B3 projects to 6 ∈ Z = B3/[B3, B3];
since the abelianization of π1(P2 � B′) is Z6, the epimorphism above must
factor through an epimorphism G := B3/(σ1σ2)3 � π1(P2 � B′). On the
other hand, since B′ is assumed to be of torus type, there is an epimorphism
π1(P2 �B′) � G, and as G ∼= PSL(2, Z) is Hopfian (as it is obviously residually
finite), each of the two epimorphisms is bijective.

Corollary 5.1.6. Let B be a plane sextic as in 4.4, and let B′ be a
perturbation of B such that the type A5 singular point is perturbed as in 5.1.2(2)
or (3). Then one has π1(P2 � B′) = Z6.

Proof. Due to Proposition 4.6.1 and Lemma 5.1.2, the group of the per-
turbed sextic B′ is abelian. Since B′ is irreducible, π1(P2 � B′) = Z6.

Corollary 5.1.7. Let B be a plane sextic as in 4.3, and let B′ be a
perturbation of B such that an inner type A2 singular point of B is perturbed
to A1 or ∅. Then one has π1(P2 � B′) = Z6.

Proof. Let P be the inner type A2 singular point perturbed, and let D be
a Milnor ball about P . In the notation of Section 4.3, the group π1(D � B) is
generated by α and β (or ᾱ = α and β̄ for the other point), and the perturbation
results in an extra relation α = β. Then (4.3.3) implies β̄ = β and the group
is cyclic.

5.2. Abelian perturbations
Theorem 5.2.1 below lists the sets of singularities obtained by perturbing

at least one inner singular point from a set listed in Table 1, not covered by
Nori’s theorem [13], and not appearing in [8].

Theorem 5.2.1. Let Σ be a set of singularities obtained from one of
those listed in Table 2 by several (possibly none) perturbations A2 → A1, ∅ or
A1 → ∅. Then Σ is realized by an irreducible plane sextic, not of torus type,
whose fundamental group is Z6.
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Table 2. Sextics with abelian fundamental group

2E6 ⊕ D5 ⊕ A1

2E6 ⊕ A4 ⊕ 2A1

2E6 ⊕ A3 ⊕ A2 ⊕ A1

2E6 ⊕ 2A2 ⊕ A1

2E6 ⊕ A2 ⊕ 3A1

E6 ⊕ 2D5 ⊕ A1

E6 ⊕ D5 ⊕ A5 ⊕ A1

E6 ⊕ D5 ⊕ A4 ⊕ 2A1

E6 ⊕ D5 ⊕ A3 ⊕ 2A2

E6 ⊕ D5 ⊕ 3A2

E6 ⊕ D5 ⊕ 2A2 ⊕ 2A1

E6 ⊕ D4 ⊕ A3 ⊕ 2A2

E6 ⊕ D4 ⊕ 3A2

E6 ⊕ D4 ⊕ 2A2 ⊕ 2A1

E6 ⊕ A5 ⊕ A4 ⊕ A1 ⊕ A2

E6 ⊕ A5 ⊕ A3 ⊕ A2 ⊕ A1

E6 ⊕ 2A4 ⊕ 3A1

E6 ⊕ A4 ⊕ A3 ⊕ 2A2 ⊕ A1

E6 ⊕ A4 ⊕ 2A2 ⊕ 3A1

E6 ⊕ 2A3 ⊕ 2A2 ⊕ A1

2D5 ⊕ A5 ⊕ A1

2D5 ⊕ A4 ⊕ 2A1

2D5 ⊕ A3 ⊕ 2A2

2D5 ⊕ 3A2

2D5 ⊕ 2A2 ⊕ 2A1

D5 ⊕ D4 ⊕ A3 ⊕ 2A2

D5 ⊕ D4 ⊕ 3A2

D5 ⊕ D4 ⊕ 2A2 ⊕ 2A1

D5 ⊕ 2A5 ⊕ A1

D5 ⊕ A5 ⊕ A4 ⊕ 2A1

D5 ⊕ A5 ⊕ A3 ⊕ 2A2

D5 ⊕ 2A4 ⊕ 3A1

D5 ⊕ A4 ⊕ A3 ⊕ 2A2 ⊕ A1

D5 ⊕ A4 ⊕ 2A2 ⊕ 3A1

D5 ⊕ 2A3 ⊕ 2A2 ⊕ A1

2D4 ⊕ A3 ⊕ 2A2

2D4 ⊕ 3A2

D4 ⊕ A5 ⊕ A3 ⊕ 2A2

D4 ⊕ A4 ⊕ A3 ⊕ 2A2 ⊕ A1

D4 ⊕ A4 ⊕ 2A2 ⊕ 3A1

D4 ⊕ 2A3 ⊕ 2A2 ⊕ A1

2A5 ⊕ A4 ⊕ A1 ⊕ A2

2A5 ⊕ A3 ⊕ A2 ⊕ A1

A5 ⊕ 2A4 ⊕ 2A1 ⊕ A2

A5 ⊕ A4 ⊕ A3 ⊕ 2A2 ⊕ A1

A5 ⊕ 2A3 ⊕ 2A2 ⊕ A1

3A4 ⊕ 4A1

2A4 ⊕ A3 ⊕ 2A2 ⊕ 2A1

2A4 ⊕ 2A2 ⊕ 4A1

A4 ⊕ 2A3 ⊕ 2A2 ⊕ 2A1

3A3 ⊕ 2A2 ⊕ 2A1

Altogether, perturbations as in Theorem 5.2.1 produce 244 sets of sin-
gularities not covered by Nori’s theorem; 117 of them are new as compared
to [8].

Proof. Each set of singularities in question is obtained by a perturbation
from one of the sets of singularities listed in Table 1. Furthermore, the pertur-
bation can be chosen so that at least one type E6 singular point is perturbed as
in 5.1.1(3), or the type A5 singular point is perturbed as in 5.1.2(3), or at least
one inner cusp is perturbed to A1 or ∅. According to [8], any such (formal)
perturbation is realized by a family of sextics, and due to Corollaries 5.1.5(1),
5.1.6, and 5.1.7, the perturbed sextic has abelian fundamental group.
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5.3. Non-abelian perturbations
In this section, we treat the few perturbations of torus type that can be

obtained from Table 1 and do not appear in [8].

Theorem 5.3.1. Each of the eight sets of singularities listed in Table 3
is realized by an irreducible plane sextic of torus type whose fundamental group
is B3/(σ1σ2)3.

Table 3. Sextics of torus type

(E6 ⊕ 2A5) ⊕ A2

(E6 ⊕ 2A5) ⊕ A1

(E6 ⊕ 2A5)
(3A5) ⊕ A2

(3A5) ⊕ A1

(3A5)
(E6 ⊕ A5 ⊕ 2A2) ⊕ A3

(2A5 ⊕ 2A2) ⊕ A3

Theorem 5.3.1 covers two tame sextics: (E6 ⊕ 2A5) and (3A5). The fun-
damental groups of these curves were first found in Oka, Pho [15].

Proof. As in the previous section, we perturb one of the sets of singular-
ities listed in Table 1, this time making sure that

1. each type E6 singular point is perturbed as in 5.1.1(1) or (2) (or is not
perturbed at all),

2. each type A5 singular point is perturbed as in 5.1.2(1) (or is not per-
turbed at all),

3. none of the inner cusps is perturbed, and
4. at least one type E6 singular point is perturbed as in 5.1.1(2).

(Note that, in the case under consideration, inner are the cusps appearing from
the cusp of B̄.) From the arithmetic description of curves of torus type given
in [5] (see also [4]) it follows that any perturbation satisfying (1)–(3) above
preserves the torus structure; then, in view of (4), Corollary 5.1.5(2) implies
that the resulting fundamental group is B3/(σ1σ2)3.

Remark 5.3.2. If all type E6 singular points are perturbed as in 5.1.1(1)
(or not perturbed at all), the study of the fundamental group would require
more work; in particular, one would need an explicit description of the homo-
morphism π1(DE6 � B) � π1(DE6 � B′). On the other hand, it is easy to
show that such perturbations do not give anything new compared to [8]. (In
fact, using [4], one can even show that the deformation classes of the sextics
obtained are the same; it suffices to prove the connectedness of the deforma-
tion families realizing the sets of singularities (E6 ⊕A5 ⊕ 2A2)⊕A2 ⊕A1 and
(E6 ⊕ 4A2)⊕A3 ⊕A1, which are maximal in the context.) For this reason, we
do not consider these perturbations here.
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