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NAIMARK’S PROBLEM FOR GRAPH C∗-ALGEBRAS

NISHANT SURI AND MARK TOMFORDE

Abstract. Naimark’s problem asks whether a C∗-algebra that
has only one irreducible ∗-representation up to unitary equiva-
lence is isomorphic to the C∗-algebra of compact operators on

some (not necessarily separable) Hilbert space. This problem has

been solved in special cases, including separable C∗-algebras and

Type I C∗-algebras. However, in 2004 Akemann and Weaver used

the diamond principle to construct a C∗-algebra with ℵ1 genera-
tors that is a counterexample to Naimark’s Problem. More pre-
cisely, they showed that the statement “There exists a counterex-
ample to Naimark’s Problem that is generated by ℵ1 elements.” is

independent of the axioms of ZFC. Whether Naimark’s problem

itself is independent of ZFC remains unknown. In this paper, we

examine Naimark’s problem in the setting of graph C∗-algebras,

and show that it has an affirmative answer for (not necessarily

separable) AF graph C∗-algebras as well as for C∗-algebras of
graphs in which each vertex emits a countable number of edges.

1. Introduction

In 1948, Naimark proved that any two irreducible representations of K(H)
are unitarily equivalent [8], and in 1951 he asked whether this property char-
acterizes K(H) up to isomorphism [9]. More precisely, Naimark asks the fol-
lowing: If A is a C∗-algebra with only one irreducible representation up to
unitary equivalence, is A isomorphic to K(H) for some (not necessarily sepa-
rable) Hilbert space H? This question became known as Naimark’s problem,
and a hypothetical C∗-algebra satisfying the premise of this question but not
its conclusion is called a counterexample to Naimark’s problem.

There are several perspectives with which one can view the significance of
Naimark’s problem. Classically, as representations of C∗-algebras were studied
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extensively throughout the 1940s and 1950s, researchers asked to what extent
the isomorphism class of a C∗-algebra is determined by its representation
theory. Naimark’s problem may be viewed as the simplest case of this question.
Due to the GNS construction, any C∗-algebra has a (nonzero) irreducible
representation, and hence the most basic representation theory possible for a
C∗-algebra is when any two irreducible representations are unitarily equivalent
(in other words, up to a change of Hilbert space coordinates, the C∗-algebra
has a unique irreducible representation). Correspondingly, the most basic C∗-
algebra one can imagine is K(H) for some Hilbert space H, and accordingly
such C∗-algebras are called elementary C∗-algebras. Thus, Naimark’s problem
is asking whether a C∗-algebra with the most basic possible representation
theory must be isomorphic to the most elementary of C∗-algebras.

From the modern standpoint, one may also view Naimark’s problem as an
early inquiry into the classification of C∗-algebras—one that predates the first
steps of Elliott’s classification program by 25 years. Indeed, in modern lan-
guage, Naimark’s question is tantamount to asking whether a (not necessarily
separable) C∗-algebra that is Morita equivalent to the compact operators on
some Hilbert space must be isomorphic to K(H) for some (not necessarily
separable) Hilbert space H.

In the years following Naimark’s proposal of the problem, various partial
solutions were obtained. In 1951, almost immediately after the problem was
posed, Kaplansky showed that Naimark’s question has an affirmative answer
for GCR C∗-algebras (today more commonly known as Type I C∗-algebras) [6,
Theorem 7.3]. Two years later, in 1953, A. Rosenberg proved that Naimark’s
problem has an affirmative answer for separable C∗-algebras [14, Theorem 4].
In 1960 Fell, building off ideas of Kaplansky, showed that any two irreducible
representations of a Type I C∗-algebra with equal kernels must be unitarily
equivalent [4]. That same year, Dixmier proved a partial converse: a separable
C∗-algebra that is not Type I necessarily has unitarily inequivalent represen-
tations whose kernels are equal [3]. (In fact, in 1961 Glimm showed that a
separable C∗-algebra that is not Type I has uncountably many inequivalent
irreducible representations [5].) Dixmier’s result, combined with Kaplansky’s
affirmative answer to Naimark’s problem for Type I C∗-algebras, recovered
A. Rosenberg’s 1953 result.

Despite this surge of activity in the years immediately following the ques-
tion’s proposal, very little progress was accomplished on Naimark’s problem
over the following 40 years. The next major accomplishment came in 2004
when Akemann and Weaver used Jensen’s ♦ axiom (pronounced “diamond
axiom”), a combinatorial principle known to be independent of ZFC, to con-
struct a counterexample to Naimark’s problem that is generated by ℵ1 ele-
ments [1]. This shows that, at the very least, one cannot prove an affirmative
answer to Naimark’s problem within ZFC alone. In fact, Akemann and Weaver
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showed more: they proved that the existence of an ℵ1-generated counterexam-
ple is independent of ZFC. Whether Naimark’s problem itself is independent
of ZFC remains unknown.

Akemann and Weaver’s result suggests that there are set-theoretic obstruc-
tions to obtaining an answer to Naimark’s problem in its most general form.
In light of this, it is reasonable to consider restrictions of the problem to par-
ticular types of C∗-algebras and to ask whether there is an affirmative answer
to the problem for certain subclasses of C∗-algebras. We do so in this pa-
per for the class of graph C∗-algebras. In particular, we show that Naimark’s
problem has an affirmative answer for (not necessarily separable) AF graph
C∗-algebras as well as for C∗-algebras of graphs in which each vertex emits a
countable number of edges.

It is an elementary result that a C∗-algebra with a unique representation
up to unitary equivalence must be simple. (See Lemma 2.4 of this paper for
a proof.) There is also a well-known dichotomy for simple graph C∗-algebras:
If the C∗-algebra of a (not necessarily countable) graph is simple, then the
C∗-algebra is either AF or purely infinite. Consequently, the results of this
paper are close to establishing an answer to Naimark’s problem for all graph
C∗-algebras. Specifically, our results show that if a graph C∗-algebra coun-
terexample to Naimark’s problem exists, it must be a simple purely infinite
C∗-algebra of a graph containing a vertex that emits an uncountable numebr
of edges. Unfortunately, we are unable to determine if such a counterexample
exists within the class of graph C∗-algebras. Indeed, at the time of this writing
it is unknown whether it is possible for any simple purely infinite C∗-algebra
to be a counterexample to Naimark’s problem.

Convention: We use the term AF-algebra to mean a C∗-algebra that is
a direct limit of a directed system (not necessarily a directed sequence) of
finite-dimensional C∗-algebras. In particular, this allows for AF-algebras that
are non-separable.

Countable and Uncountable Graphs: It is fairly standard for papers
on graph C∗-algebras to impose the standing hypothesis that all graphs are
countable, despite the fact this hypothesis may not be explicitly stated in
individual results. Countability of the graph ensures that the associated C∗-
algebra is separable, which is a common hypothesis imposed in C∗-algebra
theory. While separability is needed in a small number of graph C∗-algebra
theorems (e.g., to apply K-theory classification), for most results it is unnec-
essary. Consequently, when working with uncountable graphs, one must often
go through proofs of individual results (and the results they reference) to de-
termine whether the countability of the graph is needed, or even used. In this
paper we will need to apply four well-known results proven in papers where
the graphs were assumed to be countable: (1) the simplicity of a graph C∗-
algebra is equivalent to the graph being cofinal and satisfying Condition (L)
(which is also equivalent to the graph having no proper nontrivial saturated
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hereditary subsets and satisfying Condition (L)); proven in [10, Theorem 4]
and [15, Theorem 12]), (2) a graph C∗-algebra is a limit of finite-dimensional
C∗-algebras if and only if the graph has no cycles; proven in [12, §5.4], (3) if E
is a graph andH is a hereditary subset of E, then C∗(EH) is Morita equivalent
to IH ; proven in [2, Proposition 3.4], and (4) the Cuntz–Krieger Uniqueness
theorem for relative graph C∗-algebras; proven in [7, Theorem 3.11]. In all
four of these results the countability hypothesis is unnecessary, and the same
proofs go through for uncountable graphs.

2. Preliminaries

Definition 2.1. A representation of A is a ∗-algebra homomorphism π :
A→B(H). A subspace V ⊆H is invariant (for π) if π(a)V ⊆ V for all a ∈A.
A representation is irreducible if its only closed invariant subspaces are {0}
and H.

Definition 2.2. Two representations π : A→ B(Hπ) and ρ : A→ B(Hρ)
of A are unitarily equivalent, denoted π ∼u ρ, if there is a unitary operator
U :Hπ →Hρ such that π(a) = U∗ρ(a)U for all a ∈A.

It is straightforward to verify that unitary equivalence of representations
is an equivalence relation. In addition, it follows from the GNS construction
that every C∗-algebra has a nonzero irreducible representation. (See [13, The-
orem A.14, p. 210] for a statement and proof.)

Definition 2.3. We say a C∗-algebra has a unique irreducible represen-
tation up to unitary equivalence if any two irreducible representations of the
C∗-algebra are unitarily equivalent.

Note that since every C∗-algebra has a nonzero irreducible representation,
there is no need to hypothesize the existence of an irreducible representation
in the above definition.

An ideal I � A is called a primitive ideal if I = kerπ for some irreducible
representation π : A → B(H). One can easily see that if π and ρ are uni-
tarily equivalent representations, then kerπ = kerρ. Thus, a C∗-algebra with
a unique irreducible representation up to unitary equivalence has a unique
primitive ideal. The following straightforward lemma shows that in this case
the primitive ideal is zero, and moreover any such C∗-algebra is simple.

Lemma 2.4. If A is a C∗-algebra with a unique irreducible representation
up to unitary equivalence, then A is simple.

Proof. It is a standard result that every closed proper ideal is equal to the
intersection of all primitive ideals containing it. (See [13, Proposition A.17,
p. 212] for a statement and self-contained proof of this result.) Since A has
only one irreducible representation up to unitary equivalence, A has a unique
primitive ideal I . Thus, every closed proper ideal of A must equal I . Since
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{0} is a closed proper ideal of A, it follows that any closed proper ideal of A
is equal to {0}. In particular, A is simple. �

A graph E := (E0,E1, r, s) consists of a set of vertices E0, a set of edges
E1, and maps r :E1 →E0 and s :E1 →E0 identifying the range and sources
of each edge. Throughout this paper, we do not make any assumptions of the
cardinality of our graphs, and in particular, we do not require the vertex or
edge sets of our graphs to be finite or countable.

A vertex v ∈ E0 is a sink if s−1(v) = ∅. A vertex v ∈ E0 is an infinite
emitter if s−1(v) is infinite. A singular vertex is a vertex that is either a sink
or an infinite emitter. A regular vertex is a vertex that is not a singular vertex;
equivalently: a vertex v is regular if and only if s−1(v) is a finite and nonempty
set. A graph is called row-finite if for every v ∈E0 the set s−1(v) is finite (and
possibly empty). A graph is called row-countable if for every v ∈ E0 the set
s−1(v) is countable (and possibly empty). A graph E = (E0,E1, r, s) is finite
if both E0 and E1 are finite sets. A graph E = (E0,E1, r, s) is countable if
both E0 and E1 are countable sets.

A path e1 . . . en in a graph E consists of a finite list of edges e1, . . . , en ∈E1

satisfying r(ei) = s(ei+1) for all 1 ≤ i ≤ n − 1, and we say such a path has
length |α| := n. We consider vertices to be paths of length zero, and edges to
be paths of length one. We also let En denote the set of paths of E of length
n, and the let E∗ :=

⋃∞
n=0E

n denote the set of all paths of E. We extend r
and s to E∗ in the obvious way: If α := e1 . . . en ∈E∗, then s(α) := s(e1) and
r(α) := r(en).

An infinite path e1e2 . . . consists of a sequence of edges e1, e2, . . . ∈E1 with
r(ei) = s(ei+1) for all i ∈N. We let E∞ denote the set of all infinite paths in
E, and we extend the map s to E∞ in the obvious way: If α := e1e2 . . . ∈E∞,
then s(α) := s(e1).

A cycle is a path α ∈E∗ such that s(α) = r(α). If α := e1 . . . en is a cycle,
an exit for α is an edge f ∈ E1 such that s(f) = s(ei) and f �= ei for some
1≤ i≤ n. A graph is said to satisfying Condition (L) if every cycle in E has
an exit.

If v,w ∈ E0, we say v can reach w, written v ≥ w, if there exists a path
α ∈ E∗ with s(α) = v and r(α) = w. A graph is called cofinal if whenever
v ∈E0 and α := e1e2 . . . ∈E∞, then v ≥ s(ei) for some i ∈N.

A subset H ⊂E0 is called hereditary if whenever e ∈E1 and s(e) ∈H , then
r(e) ∈H . A hereditary subset H is called saturated if whenever v is a regular
vertex and r(s−1(v))⊆H , then v ∈H .

Definition 2.5. If E := (E0,E1, r, s) is a graph, a Cuntz–Krieger E-
family is a collection of elements {se, pv : e ∈ E1, v ∈ E0} in a C∗-algebra
such that {pv : v ∈E0} is a collection of mutually orthogonal projections and
{se : e ∈ E1} is a collection of partial isometries with mutually orthogonal
ranges satisfying the Cuntz–Krieger relations:
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(CK1) s∗ese = pr(e) for all e ∈E1,

(CK2) ses
∗
e ≤ ps(e) for all e ∈E1, and

(CK3) pv =
∑

s(e)=v ses
∗
e whenever v ∈E0 is a regular vertex.

The graph C∗-algebra C∗(E) is the universal C∗-algebra generated by a
Cuntz–Krieger E-family.

If α := e1 . . . en ∈ E∗, we define sα := se1 . . . sen , and when α = v ∈ E0 we
interpret this as sα := pv . One can use the Cuntz–Krieger relations to show
that C∗(E) = span{sαs∗β : α,β ∈ E∗}. Moreover, C∗(E) is separable if and
only if E is a countable graph. Indeed, when E is countable{

n∑
k=1

(ak + ibk)sαk
s∗βk

: n ∈N and αk, βk ∈E∗, ak, bk ∈Q for 1≤ k ≤ n

}

is a countable dense subset of C∗(E).
There are numerous results relating the structure of E to the structure of

C∗(E), and we state (with reference) a few that we shall use throughout this
paper.

Theorem 2.6 ([10, Theorem 4], [15, Theorem 12]). Let E be a directed
graph. Then the following three conditions are equivalent:

(1) C∗(E) is simple.
(2) E satisfies Condition (L), E is cofinal, and every vertex of E can reach

every singular vertex of E.
(3) E satisfies Condition (L) and the only saturated hereditary subsets of E

are E0 and ∅.

We mention that while the papers [10], [15] impose a standing hypothesis
that the graphs they consider are countable, this hypothesis in unnecessary
for their proofs of the results stated in Theorem 2.6.

In this paper, we call a C∗-algebra an AF-algebra, or say the C∗-algebra
is AF (short for approximately finite-dimensional), if it is the direct limit of
finite-dimensional C∗-algebras. Note that this differs from the standard usage
of the term, which typically requires a sequential direct limit and therefore
implies the limit is separable. Our notion of AF coincides with the usual defini-
tion for separable C∗-algebras, but also allows for nonseparable AF-algebras,
which are direct limits of general directed families of finite-dimensional C∗-
algebras. The following result gives a very nice characterization of AF graph
C∗-algebras.

Theorem 2.7 ([12, §5.4]). If E is a graph, then C∗(E) is AF if and only
if E has no cycles.

Although this result in [12, §5.4] is stated and proven for countable graphs,
the same proof works without the countability hypothesis, showing that C∗(E)



NAIMARK’S PROBLEM FOR GRAPH C∗-ALGEBRAS 485

is a (not necessarily sequential) direct limit of finite-dimensional C∗-algebras
if and only if E has no cycles.

If E = (E0,E1, rE , sE) is a graph, a subgraph of E is a graph F =
(F 0, F 1, rF , sF ) such that F 0 ⊆E0, F 1 ⊆E∗, and rF and sF are restrictions
of the range and source maps that rE and sE induce on E∗.

If H is a hereditary subset (that is not necessarily saturated) of the
graph E = (E0,E1, r, s), the restriction of E to H is the graph EH :=
(E0

H ,E1
H , rH , sH) with vertex set E0

H :=H , edge set E1
H := s−1(H), and range

and source maps rH := r|E1
H

and sH := s|E1
H
. In addition, we let IH denote

the closed two-sided ideal in C∗(E) generated by {pv : v ∈H}.

Theorem 2.8 ([2, Proposition 3.4]). If E is a graph and H is a hereditary
subset of E, then C∗(EH) is Morita equivalent to IH .

Although the above result is stated for countable graphs in [2, Propo-
sition 3.4], the countability hypothesis in unnecessary, and the same proof
works for general (not necessarily countable) graphs.

Definition 2.9 ([7, §3]). If E := (E0,E1, r, s) is a graph, let E0
reg denote

the regular vertices of E, and let S ⊆E0
reg. A Cuntz–Krieger (E,S)-family is a

collection of elements {se, pv : e ∈E1, v ∈E0} in a C∗-algebra such that {pv :
v ∈E0} is a collection of mutually orthogonal projections and {se : e ∈E1} is
a collection of partial isometries with mutually orthogonal ranges satisfying
the Cuntz–Krieger relations:

(CK1) s∗ese = pr(e) for all e ∈E1,

(CK2) ses
∗
e ≤ ps(e) for all e ∈E1, and

(CK3) pv =
∑

s(e)=v ses
∗
e whenever v ∈ S.

The relative graph C∗-algebra C∗(E,S) is the C∗-algebra generated by a uni-
versal Cuntz–Krieger (E,S)-family.

Observe that if S =E0
reg, then C∗(E,E0

reg) is exactly the graph C∗-algebra
C∗(E). If S = ∅, then C∗(E,∅) is called the Toeplitz algebra of E, and often
denoted TC∗(E).

If C∗(E,S) is a relative graph C∗-algebra and {se, pv : e ∈E1, v ∈E0} is a
generating Cuntz–Krieger (E,S)-family in C∗(E,S), then for any v ∈E0

reg \S,
we call qv := pv −

∑
s(e)=v ses

∗
e the gap projection at v.

If I is the ideal generated by {qv : v ∈E0
reg \S}, then C∗(E,S)/I ∼=C∗(E),

and hence the graph C∗-algebra is a quotient of the relative graph C∗-algebra
C∗(E,S).

In addition, whenever E is a graph and S ⊆E0
reg there exists a graph ES

such that C∗(ES) is isomorphic to C∗(E,S). Thus, every relative graph C∗-
algebra is isomorphic to a graph C∗-algebra (of a possibly different graph).

Furthermore, we have the following Cuntz–Krieger Uniqueness theorem for
relative graph C∗-algebras.
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Theorem 2.10. ([7, Theorem 3.11]) Let E be a graph, let S ⊆E0
reg, and let

φ : C∗(E,S) → A be a homomorphism from C∗(E,S) into a C∗-algebra A.
If {se, pv : e ∈ E1, v ∈ E0} is a generating Cuntz–Krieger (E,S)-family in
C∗(E,S) and the following three conditions hold

(1) E satisfies Condition (L),
(2) φ(pv) �= 0 for all v ∈E0, and
(3) φ(qv) �= 0 for all v ∈E0

reg \ S,
then φ is injective.

3. Structure results for graph C∗-algebra with a unique
irreducible representation

Lemma 3.1. If F is the graph

(3.1) w1

e1
��

f1

�� w2

e2
��

f2

�� w3

e3
��

f3

�� · · ·

then C∗(F ) contains a full corner isomorphic to the UHF-algebra M2∞ , and
C∗(F ) is not a Type I C∗-algebra.

Proof. Consider the corner pw1C
∗(F )pw1 . Since F has no cycles, the ideals

of C∗(F ) are in bijective correspondence with the saturated hereditary subsets
of F . Since pw1 ∈ pw1C

∗(F )pw1 , and any hereditary subset containing w1 must
equal F 0, we may conclude that any ideal containing pw1C

∗(F )pw1 is equal
to C∗(F ). Thus, pw1C

∗(F )pw1 is a full corner of C∗(F ).
If {se, pv : e ∈ F 1, v ∈ F 0} is a generating Cuntz–Krieger F -family, then we

see that

pw1C
∗(F )pw1 = span

{
sαs

∗
β : s(α) = s(β) =w1 and r(α) = r(β)

}
.

For each n ∈N∪ {0}, define
En :=

{
α ∈ F ∗ : s(α) =w1 and r(α) =wn

}
and let

An := span
{
sαs

∗
β : α,β ∈En

}
.

Then we see that each An is a C∗-subalgebra of C∗(F ), A0 ⊆A1 ⊆A2 ⊆ . . .,
and

C∗(F ) =

∞⋃
n=0

An.

For each n ∈ N ∪ {0}, we see that {sαs∗β : α,β ∈En} is a set of matrix units,

and since |En|= 2n it follows that An
∼=M2n(C). Furthermore, for each sαs

∗
β

with α,β ∈En, we see that

sαs
∗
β = sαpwns

∗
β = sα

(
sens

∗
en + sfns

∗
fn

)
s∗β = sαens

∗
βen + sαfns

∗
βfn .
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Hence if for all n ∈N∪{0}, we identify An with M2n(C) via an isomorphism,
then for each n the inclusion map An ↪→An+1 may be identified with the map

x �→ ( x 0
0 x ). Thus, C

∗(F ) =
⋃∞

n=0An is isomorphic to the UHF-algebra M2∞ .
Finally, it follows from [11, Theorem 6.5.7, p. 211] that M2∞ is not Type I.

Since any C∗-subalgebra of a Type I C∗-algebra is Type I [11, Theorem 6.2.9,
p. 199], we conclude that C∗(F ) is not Type I. �

Proposition 3.2. Let E be a row-countable directed graph such that C∗(E)
has a unique irreducible representation up to unitary equivalence. If v ∈ E0

and we define H(v) := {w ∈ E0 : v ≥ w}, then EH(v) is a countable graph,
C∗(EH(v)) is Morita equivalent to C∗(E), and C∗(EH(v)) ∼=K(H) for some
separable Hilbert space H.

Proof. We see that H(v) := {w ∈ E0 : v ≥ w} is a hereditary subset of E.
In addition, if we let H0 = {v} and inductively define Hn+1 := r(s−1(Hn)),
then one can easily verify that H(v) =

⋃∞
n=0Hn. Since H0 is finite and E

is row-countable, an inductive argument shows that Hn is countable for all
n ∈N. Hence E0

H(v) :=H(v) =
⋃∞

n=0Hn is countable, and E1
H(v) := s−1(Hv) is

countable. Thus, EH(v) := (E0
H(v),E

1
H(v), r|H(v), s|H(v)) is a countable graph.

It follows from Theorem 2.8 that C∗(EH(v)) is Morita equivalent to IH(v).
Since C∗(E) has a unique irreducible representation up to unitary equivalence,
it follows from Lemma 2.4 that C∗(E) is simple. Because IH(v) is a nonzero
ideal of C∗(E), it follows that IH(v) = C∗(E). Thus, C∗(EH(v)) is Morita
equivalent to C∗(E)

Finally, since C∗(E) has a unique irreducible representation up to uni-
tary equivalence and C∗(EH(v)) is Morita equivalent to C∗(E), we may con-
clude that C∗(EH(v)) has a unique irreducible representation up to unitary
equivalence. (This is because the Rieffel correspondence provides a bijec-
tive correspondence between representations of Morita equivalent C∗-algebras
that preserves irreducibility and unitary equivalence.) Moreover, the fact that
EH(v) := (E0

H(v),E
1
H(v), r|H(v), s|H(v)) is a countable graph implies C∗(EH(v))

is a separable C∗-algebra. Hence by Rosenberg’s theorem [14, Theorem 4],
C∗(EH(v))∼=K(H) for a separable Hilbert space H. �

Proposition 3.3. Let E be a directed graph such that C∗(E) has a unique
irreducible representation up to unitary equivalence. Then the following are
equivalent:

(1) E is row-countable.
(2) E is row-finite.
(3) C∗(E) is AF.

Proof. (2) =⇒ (1): This is immediate from the definitions.
(1) =⇒ (3): Let v ∈E0, and set H(v) := {w ∈E0 : v ≥ w}. Then H(v) is a

hereditary subset of E, and by Proposition 3.2 C∗(EH(v))∼=K(H) for some
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separable Hilbert space H. Consequently C∗(EH(v)) is AF, and Theorem 2.7
implies the graph EH(v) has no cycles. Hence, E has no cycles with vertices
in H(v). Furthermore, C∗(E) is simple by Lemma 2.4, and thus Theorem 2.6
implies that E is cofinal. Since vertices in the hereditary set H(v) cannot
reach cycles containing vertices in E0 \H(v), we may conclude that E has no
cycles. Thus, Theorem 2.7 implies C∗(E) is AF.

(3) =⇒ (2): Since C∗(E) is AF, Theorem 2.7 implies the graph E has no
cycles. In addition, since C∗(E) has a unique irreducible representation up to
unitary equivalence, Lemma 2.4 implies that C∗(E) is simple. It then follows
from Theorem 2.6 that every vertex of E can reach every singular vertex
of E. Let v ∈ E0, and suppose v is not a sink. Then there exists e ∈ s−1(v).
Since E has no cycles, it follows that r(e) cannot reach v. But this implies
that v is not a singular vertex, and hence v emits a finite number of edges.
Since every vertex of E that is not a sink emits a finite number of edges, E is
row-finite. �

Proposition 3.4. Let E be a directed graph such that C∗(E) has a unique
irreducible representation up to unitary equivalence. If C∗(E) is AF, then E
does not contain a subgraph of the form

(3.2) v1

β1

��� � �

α1

��� � � v2

β2

��� � �

α2

��� � � v3

β3

��� � � � �

α3

��� � � � �· · ·

where v1, v2, . . . are distinct vertices and α1, β1, α2, β2, . . . are distinct paths.

Proof. For the sake of contradiction, suppose that E has a subgraph of
the form in (3.2), and use the labeling of vertices and paths listed in (3.2).
Since C∗(E) is AF, Proposition 3.3 implies E is row-finite. If H(v1) := {w ∈
E0 : v1 ≥ w}, then H(v1) is a hereditary subset of E and Proposition 3.2
implies C∗(EH(v))∼=K(H) for a separable Hilbert space H. Thus C∗(EH(v))
is a Type I C∗-algebra. Furthermore, since v1 can reach every vertex on each
path αi and each path βi for all i ∈N, we conclude that the graph EH(v) has
a subgraph of the form in (3.2).

Let {se, pv : e ∈ E1
H(v), v ∈ E0

H(v)} be a generating Cuntz–Krieger EH(v)-

family in C∗(EH(v)), and consider the set {pvi , sαi , sβi}∞i=1. Also let F be the
graph

(3.3) w1

e1
��

f1

�� w2

e2
��

f2

�� w3

e3
��

f3

�� · · ·

and let
S :=

{
wi : i ∈N and pvi = sαis

∗
αi

+ sβis
∗
βi

}
.

Then {pvi , sαi , sβi}∞i=1 is an (F,S)-family in C∗(EH(v)), and there exists a
homomorphism φ : C∗(F,S)→ C∗(EH(v)) (where C∗(F,S) denotes the rela-
tive graph C∗-algebra of F with the (CK3) relation imposed at the vertices
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in S). We observe that F has no cycles, and whenever i ∈ N with wi /∈ S,
then the gap projection pvi − sαis

∗
αi

− sβis
∗
βi

�= 0 whenever vi /∈ S, it follows
from the Cuntz–Krieger Uniqueness theorem for relative graph C∗-algebras
that φ is injective. Hence, imφ is a C∗-subalgebra of C∗(EH(v)) isomorphic
to C∗(F,S).

It follows from Proposition 3.1 that C∗(F ) is not a Type I C∗-algebra. Since
C∗(F ) is a quotient of C∗(F,S), and all quotients of Type I C∗-algebras are
Type I [11, Theorem 6.2.9, p. 199], it follows that C∗(F,S) is not a Type I
C∗-algebra. Thus imφ∼=C∗(F,S) is a C∗-subalgebra of C∗(EH(v)) that is not
Type I, and since all C∗-subalgebras of Type I C∗-algebras are Type I [11,
Theorem 6.2.9, p. 199], it follows that C∗(EH(v)) is not a Type I C∗-algebra.
But this contradicts the fact that C∗(EH(v))∼=K(H). �

Proposition 3.5. Let E be a directed graph such that C∗(E) is AF and
has a unique irreducible representation up to unitary equivalence. Then one
of two distinct possibilities must occur: Either

(1) E has exactly one sink and no infinite paths; or
(2) E has no sinks and E contains an infinite path α := e1e2 . . . with

s−1(s(ei)) = {ei} for all i ∈N.

Proof. Since C∗(E) has a unique irreducible representation up to unitary
equivalence, it follows from Lemma 2.4 that C∗(E) is simple, and it follows
from Theorem 2.6 that E is cofinal, satisfies Condition (L), and every vertex
of E can reach every singular vertex of E.

The fact that every vertex of E can reach every singular vertex of E implies
that E has at most one sink. If E has one sink, then the cofinality of E implies
that E has no infinite paths (since a sink cannot reach a vertex on the infinite
path), and hence we are in situation (1) of the proposition.

If E has no sinks, then E must contain an infinite path f1f2 . . . . To show
that we are in situation (2), it suffices to show that there exists N ∈ N such
that s−1(s(fi)) = {fi} for all i ≥ N . (For then we can take ei := fN+i, and
e1e2 . . . is the desired path.)

Suppose to the contrary that the infinite path f1f2 . . . does not have our
desired property. This means that for each k ∈N there exists n≥ k such that
s−1(s(fn)) contains an element different from fn. For convenience of notation,
we shall set vi := s(fi) for all i ∈N.

We shall describe an inductive construction to produce a subgraph: To be-
gin, choose a natural number n1 such that s−1(fn1) contains an element g
different from fn1 . By cofinality there exists a path μ with s(μ) = r(g) and
r(μ) = s(fn2) for some n2 ∈ N. Since C∗(E) is AF, it follows from Theo-
rem 2.7 that E has no cycles, and hence n2 > n1. Moreover, by the defining
property of the path f1f2 . . . we may, after possibly extending μ along this
path, assume that s−1(fn2) contains an element g′ different from fn2 . If we
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let α1 := fn1fn1+1 . . . fn2−1 and β1 := gμ, we have produced a subpath

vn1

β1

��� 	 � 
 �

α1

��� 
 � 	 � vn2

with n1 < n2 and the property that vn2 = s−1(fn2) contains an element g′

different from fn2 .
Repeating this process, we inductively construct a subgraph

vn1

β1

��� 	 � 
 �

α1

��� 
 � 	 � vn2

β2

��� 	 � 
 �

α2

��� 
 � 	 � vn3

β3

��� 	 � 
 � �

α3

��� 
 � 	 � � · · ·

with n1 < n2 < n3 < · · · in the vertex subscripts.
Since C∗(E) has a unique irreducible representation up to unitary equiva-

lence, Proposition 3.4 implies that E does not have such a subgraph. Hence,
we have a contradiction. �

4. Naimark’s problem for certain graph C∗-algebras

In this section, we prove our two main results: (1) Naimark’s Problem
has an affirmative answer for the class of AF graph C∗-algebras, and (2)
Naimark’s Problem has an affirmative answer for the class of C∗-algebras of
row-countable graphs.

If H is a Hilbert space, then for any x, y ∈H, we let Θx,y :H→H denote
the rank-one operator given by

Θx,y(z) := 〈y, z〉x.

Since K(H) is the closure of the finite-rank operators, we see that if β is a
basis for H, then K(H) = span{Θx,y : x, y ∈ β}.

If V : H1 → H2 is an isometry between Hilbert spaces, we let AdV :
K(H1)→K(H2) denote the homomorphism given by AdV (T ) := V TV ∗. It is
straightforward to verify that AdV is injective and for any x, y ∈H1 we have
AdV (Θx,y) = ΘV x,V y .

Theorem 4.1. Let E be a directed graph such that C∗(E) is AF. If
C∗(E) has a unique irreducible representation up to unitary equivalence, then
C∗(E)∼=K(H) for some Hilbert space H.

Proof. Throughout, let {se, pv : e ∈ E1, v ∈ E0} be a generating Cuntz–
Krieger E-family. By Proposition 3.5 there are two cases to consider.

Case I: E has exactly one sink and no infinite paths.
Let v0 denote the sink of E, and let E∗(v0) := {α ∈E∗ : r(α) = v0}. Define

Iv0 := span{sαs∗β : α,β ∈ E∗(v0)}. Since no path ending at the sink v0 can
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be extended, for any finite paths α, β, γ, δ with either r(α) = r(β) = v0 or
r(γ) = r(δ) we have

(
sαs

∗
β

)(
sγs

∗
δ

)
:=

{
sαs

∗
δ if β = γ,

0 if β �= γ,

which implies that Iv0 is an ideal, and that {sαs∗β : α,β ∈E∗(v0)} is a set of

matrix units indexed by E∗(v0). Hence Iv0
∼=K(H), where H := �2(E∗(v0)).

Furthermore, since pv0 ∈ Iv0 , the ideal Iv0 is nonzero. By Lemma 2.4 C∗(E)
is simple, and hence Iv0 =C∗(E). Thus, the result holds in this case.

Case II: E contains an infinite path α := e1e2 . . . with s−1(s(ei)) = {ei}
for all i ∈N.

v1
e1 �� v2

e2 �� v3
e3 �� · · ·

For convenience of notation, let vi := s(ei), and for each n ∈N define E∗(vn) :=
{α ∈ E∗ : r(α) = vn. Let Hn := �2(E∗(vn)), and for each α ∈ E∗(vn) let δα ∈
Hn denote the point mass function at α, so that {δα : α ∈E∗(vn)} forms an
orthonormal basis for Hn.

For each n ∈N define Vn :Hn →Hn+1 to be the isometry with

Vn(δα) := δαen

for each α ∈ �2(E∗(vn)). Also define AdVn :K(Hn)→K(Hn+1) by AdVn(T ) :=
VnTV

∗
n .

For each n ∈ N define An := {sαs∗β : α,β ∈ E∗(vn)}. If we consider the

generating set {sαs∗β : α,β ∈ E∗(vn)}, then for any β,γ ∈ E∗(vn), we have

r(β) = r(γ) = vn, and since E has no cycles the only way for one of β and γ
to extend the other is if β = γ. Hence for any α,β, γ, δ ∈E∗(vn), we have

(
sαs

∗
β

)(
sγs

∗
δ

)
:=

{
sαs

∗
δ if β = γ,

0 if β �= γ

and {sαs∗β : α,β ∈E∗(vn)} is a set of matrix units indexed by E∗(vn). Hence,

there exists an isomorphism φn :An →K(Hn) satisfying φn(Θα,β) = sαs
∗
β .

Let ιn : An ↪→ An+1 denote the inclusion map. For each n ∈ N and for all
α,β ∈E∗(vn) we have

φn+1 ◦AdVn(Θδα,δβ ) = φn+1

(
VnΘδα,δβV

∗
n

)
= φn+1(ΘVnδα,Vnδβ )

= φn(Θδαen ,δβen
) = sαens

∗
βen = sαsens

∗
ens

∗
β = sαps(en)s

∗
β

= sαps(en)s
∗
β = sαs

∗
β = ιn ◦ φn(Θδα,δβ ).
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Thus for each n ∈N we have φn+1 ◦AdVn = ιn ◦ φn and the diagram

(4.1) K(Hn)
AdVn ��

φn

��

K(Hn+1)

φn+1

��

An
ιn �� An+1

commutes. Since the direct limit of the sequence

A1
ι1 �� A2

ι2 �� A3
ι3 �� . . .

is equal to
⋃∞

n=1An, and since for all n ∈ N the map φn : An → An+1 is an
isomorphism and the diagram in (4.1) commutes, we may conclude that

(4.2) lim−→K(Hn)∼=
∞⋃

n=1

An,

where lim−→K(Hn) is the direct limit of the sequence

K(H1)
AdV1 �� K(H2)

AdV2 �� K(H3)
AdV3 �� . . . .

Next, we consider the set of infinite paths E∞. For any infinite path
μ ∈ E∞, we must have μ= αeiei+1ei+1 . . . for some α ∈ E∗ and some i ∈ N,
for otherwise the vertex v1 could not reach a vertex on μ, contradicting the
cofinality of E.

Define H∞ := �2(E∞) and for μ ∈E∞ let δμ denote the point mass function
at μ. Then {δμ : μ ∈ E∞} is an orthonormal basis for H∞. For each n ∈ N

define an isometry Wn :Hn →H∞ by

Wn(δα) = δαenen+1....

For each n ∈N and for any α ∈E∗(vn) we have

Wn+1

(
Vn(δα)

)
=Wn+1(δαen) = δαenen+1en+2... =Wn(δα)

and hence Wn+1 ◦ Vn =Wn for all n ∈N.
In addition, for any n ∈ N we define AdWn : K(Hn) → K(H∞) by

AdWn(T ) :=WnTW
∗
n . For any T ∈K(Hn) we have

AdWn+1 ◦AdVn(T ) = AdWn+1

(
VnTV

∗
n

)
=Wn+1VnTV

∗
nW

∗
n+1

= (Wn+1Vn)T (Wn+1Vn)
∗ =WnTW

∗
n =AdWn(T )

so that

AdWn+1 ◦AdVn =AdWn

for all n ∈ N. By the universal property of the direct limit there exists a
homomorphism ψ : lim−→K(Hn)→K(H∞) with imAdWn ⊆ imψ for all n ∈N,
and furthermore, since each AdWn is injective for all n ∈N, we may conclude
that ψ : lim−→K(Hn)→K(H∞) is injective.
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Moreover, for any μ, ν ∈ E∞, we may write μ = αejej+1 . . . and ν =
βejej+1 . . . for some j ∈N and some α,β ∈E∗(vj), from which it follows that

Θδμ,δν =Θδαejej+1...,δβejej+1...
=ΘWj(δα),Wj(δβ) =WjΘα,βW

∗
j

=AdWj (Θδα,δβ ) ∈ imAdWj ⊆ imψ.

Hence {Θδμ,δν : μ, ν ∈E∞} ⊆ imψ, so that imψ =K(H∞), and ψ is surjective.
Therefore ψ : lim−→K(Hn)→K(H∞) is an isomorphism, and

(4.3) lim−→K(Hn)∼=K(H∞).

Next, we let

H :=

{
v ∈E0 : pv =

k∑
i=1

sαis
∗
βi

for some α1, . . . , αk, β1, . . . , βk ∈
∞⋃

n=1

E∗(vn)

satisfying s(αi) = s(βi) = v for all 1≤ i≤ k

}
.

We shall show that H is a saturated and hereditary subset of E.
To show that H is hereditary, we first observe that for each i ∈N we have

pvi = seis
∗
ei and that s(ei) = vi and r(ei) = vi+1, implying that vi ∈H . Thus

{v1, v2, . . .} ⊆ H . Next, suppose that e ∈ E1 and s(e) ∈ H . If s(e) = vi for
some i ∈N, then from the previous sentence we have that r(e) = ve+i ∈H . If
s(e) �= vi for all i ∈N, we use the fact that s(e) ∈H to write

ps(e) =

k∑
i=1

sαis
∗
βi

for some α1, . . . , αk, β1, . . . , βk ∈
⋃∞

n=1E
∗(vn) with s(αi) = s(βi) = s(e) for all

1≤ i ≤ k, and moreover, the fact that s(e) �= vi for all i ∈ N implies that αi

and βi are paths of length at least 1 for each 1≤ i≤ k. Consequently,

(4.4) pr(e) = s∗ese = s∗eps(e)se = s∗e

(
k∑

i=1

sαis
∗
βi

)
se =

k∑
i=1

s∗esαis
∗
βi
se.

For each 1≤ i≤ k, we may use the fact that αi and βi have lengths at least
1 to write αi = f1 . . . fl and βi = g1 . . . gm for edges f1, . . . , fl, g1, . . . , gm ∈E1,
and then we have

s∗esαis
∗
βi
se =

{
sf2...fls

∗
g2...gm if f1 = e and g1 = e,

0 otherwise.

For the nonzero case above, we see that s(f2) = r(e) and s(g2) = r(e), and
also r(fl) = r(gm) = r(αi) = r(βi) so that s∗esαis

∗
βi
se = sf2...fls

∗
g2...gm has the

properties given in defining the set H . Consequently, (4.4) shows that r(e) ∈
H . Hence, H is hereditary.
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To see that H is saturated, suppose that v ∈ E0 is a regular vertex with
r(s−1(v))⊆H . For each e ∈ s−1(v), the fact that r(e) ∈H allows us to write

pr(e) =

ke∑
i=1

sαe
i
s∗βe

i

for some αe
1, . . . , α

e
k, β

e
1, . . . , β

e
k ∈

⋃∞
n=1E

∗(vn) with s(αe
i ) = s(βe

i ) = v for all
1≤ i≤ ke. Hence,

pv =
∑

s(e)=v

ses
∗
e =

∑
s(e)=v

sepr(e)s
∗
e =

∑
s(e)=v

se

(
ke∑
i=1

sαe
i
s∗βe

i

)
s∗e

=
∑

s(e)=v

ke∑
i=1

sesαe
i
s∗βe

i
s∗e =

∑
s(e)=v

ke∑
i=1

seαe
i
s∗eβe

i

and since s(eαe
i ) = s(eβe

i ) = v and r(eαe
i ) = r(eβe

i ) ∈
⋃∞

n=1E
∗(vn), it follows

that v ∈H . Thus, H is saturated.
Since H is a nonempty saturated hereditary subset, and since C∗(E)

is simple by Lemma 2.4, it follows from Theorem 2.6 that H = E0. Con-

sequently, for any v ∈ E0 we have that pv =
∑k

i=1 sαis
∗
βi

for some paths

α1, . . . , αk, β1, . . . , βk ∈
⋃∞

n=1E
∗(vn) satisfying s(αi) = s(βi) = v for all 1 ≤

i≤ k. Thus pv ∈
⋃∞

n=1An.

Likewise, for any e ∈ E1, we have r(e) ∈ H and pr(e) =
∑k

i=1 sαis
∗
βi

for

some α1, . . . , αk, β1, . . . , βk ∈
⋃∞

n=1E
∗(vn) satisfying s(αi) = s(βi) = r(e) for

all 1≤ i≤ k. Thus se = sepr(e) =
∑k

i=1 sesαis
∗
βi

=
∑k

i=1 seαis
∗
βi

∈
⋃∞

n=1An.

Hence, {pv, se : v ∈E0, e ∈E1} ⊆
⋃∞

n=1An, and it follows that

(4.5) C∗(E) =
∞⋃

n=1

An.

Combining (4.2), (4.3), and (4.5) gives the desired result. �

Theorem 4.2. If E is a row-countable directed graph such that C∗(E) has
a unique irreducible representation up to unitary equivalence, then C∗(E) ∼=
K(H) for some Hilbert space H.

Proof. It follows from Lemma 2.4 that C∗(E) is simple, and since E is row-
countable, Proposition 3.3 implies that C∗(E) is AF. The result then follows
from Theorem 4.1. �
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