
Illinois Journal of Mathematics
Volume 59, Number 4, Winter 2015, Pages 1087–1109
S 0019-2082

LONG TURNS, INP’S AND INDICES FOR FREE GROUP
AUTOMORPHISMS

THIERRY COULBOIS AND MARTIN LUSTIG

Abstract. The goal of this paper is to introduce a new tool,
called long turns, which is a useful addition to the train track

technology for automorphisms of free groups, in that it allows

one to control periodic INPs in a train track map and hence the
index of the induced automorphism.

1. Introduction

Automorphisms of a non-Abelian free group FN of finite rank N ≥ 2 are
the focal point of many interesting recent research efforts. The most im-
portant class of such automorphisms are the ones that are irreducible with
irreducible powers (iwip), also called fully irreducible (see Section 2). Such
automorphisms can always be represented by a map f : Γ → Γ, where Γ is

a graph equipped with a marking isomorphism FN

∼=−→π1(Γ), and f has the
train track property: the map f defines a gate structure G=G(f) on Γ, that
is, a partition of the edge germs at every vertex into gates, which is preserved
by f in that f maps any G-legal path to a G-legal image path. Here a path
γ in Γ is G-legal if at any vertex it never enters and exits through the same
gate.

In this paper, we present a new tool, called long turns, which we use to
define in Section 5 below legalizing train track morphisms g : Γ → Γ′ (with
respect to fixed gate structures G on Γ and G′ on Γ′). A construction device
for such legalizing train track morphisms is given in Section 7.

Theorem 1.1. Let f : Γ→ Γ be a train track map which represents an iwip
automorphism of FN and has positive transition matrix M(f). Let g : Γ→ Γ
be a legalizing train track morphism with respect to the gate structure G(f),
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and assume that g induces an automorphism on π1(Γ) and is gate-stable (see
Definition 3.11). Then:

(1) The map f ◦ g : Γ→ Γ is a train track representative of an iwip auto-
morphism ϕ ∈Out(FN ).

(2) There is no periodic INP in Γ for the train track map f ◦ g. In partic-
ular, there are no non-trivial (f ◦ g)-periodic conjugacy classes in FN .

(3) The stable index list for ϕ is given by the gate index list for f .

To explain the last statement of this theorem, we recall from [8] and [17]
that for every automorphism Φ ∈ Aut(FN ) with no periodic w ∈ FN \ {1}
the induced action of a suitable positive power of Φ on ∂FN is particularly
simple: There are finitely many attractors and finitely many repellers on ∂FN ,
and every other orbit accumulates positively onto one of the attractors and
negatively onto one of the repellers. The index of Φ, as defined in [8], is in
this special case equal to

ind(Φ) :=
a(Φ)

2
− 1,

where a(Φ) denotes the number of attractors of the Φ-action on ∂FN .
For any given ϕ ∈Out(FN ), it has been shown in [8] that up to isogredience

(= conjugation by inner automorphisms), there are only finitely many lifts
Φk ∈ Aut(FN ) of ϕ which satisfy ind(Φk)> 0. Those indices form the index
list of ϕ (which is defined up to permutation and typically given in decreasing
order). Through replacing ϕ by a suitable positive power ϕt the number of
terms and also their values in the index list may increase, but eventually it
becomes stable (with respect to passing to further powers, see [8] or Section 8
below): this is called the stable index list of ϕ. It is an important invariant of
the conjugacy class of ϕ in Out(FN ) with interesting structural consequences
(see [5]). The main result of [8] states that for the stable index of any ϕ ∈
Out(FN ), that is, the sum of the values ind(Φk) in the stable index list of ϕ,
one has a uniform upper bound:

(1.1) indstab(ϕ) :=
∑

ind(Φk)≤N − 1.

On the other hand, the gate index list for any train track map f : Γ→ Γ is
the list of the gate indices

indG(f)(vk) =
g(vk)

2
− 1

at the essential vertices vk of Γ, where g(vk) is the number of gates at vk, and
vk is essential if it has at least 3 gates and is f -periodic. The advantage of
the gate index list over the above described index list is that it can be read
off directly from the given train track map.

It turns out that Statement (3) of Theorem 1.1 is a consequence of State-
ments (1) and (2). This follows from standard results on Outer space and
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R-trees. For the convenience of the reader, we recall and assemble the rele-
vant facts in Sections 8.

It is a direct consequence of Nielsen–Thurston theory for surface homeo-
morphisms that in the special case where ϕ is geometric, that is, ϕ is induced
by a homeomorphism of some surface with boundary, the above stable index
inequality (1.1) becomes an equality. In general, however, computer experi-
ments of the first author (see [6, Section 7.3], and [4]) indicate that random
automorphisms have very low stable index; indeed, for up to rank N ≤ 9 more
than half of the investigated automorphisms have index list equal to [12 ], to

[ 12 ,
1
2 ], to [1] or to [ 12 ,

1
2 ,

1
2 ].

In our subsequent work [6], we use Theorem 1.1 as crucial tool to produce
explicit automorphisms ϕI ∈ Out(FN ) which realize as stable index list any
given list I = [j1, . . . , j�] of positive values jk ∈ 1

2Z which satisfies the above
inequality (1.1), thus answering a question posed by Handel and Mosher [11].

Theorem 1.1 is also used to derive in Corollary 6.7 information about the el-
ements of the monoid generated by train track morphisms on a common graph
with respect to a fixed gate structure. This result is also the “door opener”
to a further study of strata in Outer space, in analogy to the well known and
heavily investigated strata in Teichmüller space, see, for instance, [19].

2. Notation and conventions

Throughout this paper, FN will denote the non-Abelian free group of finite
rankN ≥ 2, and Out(FN ) the group of its outer automorphisms. Furthermore,
we will use the following conventions and notations:

A graph is always connected, without vertices of valence 1, and finite, unless

it is the universal covering Γ̃ of a finite connected graph Γ. For every oriented
edge e of Γ, we denote by e the edge with reversed orientation. The set
E±(Γ) denotes the set of all edges e including their “inverses” e, while by
E+(Γ) we mean a section (sometimes called an orientation) of the quotient
map e �→ {e, e} on E±(Γ).

An edge path γ in Γ is a (possibly infinite) sequence γ = · · ·ei−1eiei+1 · · ·
of edges ei ∈ E±(Γ) where the initial vertex of any ei must agree with the
terminal vertex of ei+1. Such an edge path γ is reduced if it doesn’t contain
any backtracking subpath γ′, that is, γ′ is a finite sub-edge-path which has
coinciding initial and terminal vertex, and which is contractible relative to its
endpoints. If a finite edge path γ is not reduced, then it is always homotopic
rel. endpoints in Γ to a reduced edge path [γ], and this homotopy can be
expressed as iterative contraction of backtracking subpaths.

The combinatorial length |γ| of a finite edge path γ is equal to the number
of edges traversed by γ, and γ is trivial if |γ|= 0.

A graph map is a map f : Γ→ Γ′ between graphs which maps vertices to
vertices and edges e to (not necessarily reduced) edge paths f(e). If f has
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no contracted edges, that is, none of the image paths f(e) is trivial, then f
induces a differential Df :E±(Γ)→E±(Γ′) which maps e to the initial edge
of f(e).

Two edges e and e′ with same initial vertex v form a turn (e, e′) at v, and
the map Df induces a map D2f : (e, e′) �→ (Df(e),Df(e′)) from the turns of
Γ to the turns of Γ′. The turn (e, e′) is degenerate if we have e= e′ in E±(Γ).

We say that an edge path γ = · · ·ei−1eiei+1 · · · crosses over (or uses) a turn
(e, e′) if for some index i one has ei = e and ei+1 = e′.

To every graph map f : Γ→ Γ′ there is associated a non-negative transi-
tion matrix M(f) = (me′,e)e′∈E+(Γ′),e∈E+(Γ), where the coefficient me′,e is the
number of times that the (possibly unreduced) edge path f(e) crosses over
the edge e′ or the inversely oriented edge e′ (both occurrences counted posi-
tively!). It follows directly from the definition that for any two graph maps
f : Γ→ Γ′ and g : Γ′ → Γ′′ one has:

M(g ◦ f) =M(g)M(f).

Recall that a non-negative square matrixM is primitive if there is a positive
power M t with positive coefficients only.

An automorphism ϕ ∈Out(FN ) is called irreducible with irreducible powers
(iwip) or fully irreducible if there is no proper free factor of FN which is fixed
up to conjugacy by any positive power of ϕ.

A graph map f : Γ → Γ is called expanding if for every edge e ∈ E±(Γ)
there is an exponent t ≥ 1 such that |f t(e)| ≥ 2. If f represents an iwip
automorphism, then, up to passing to a quotient graph through contracting
f -invariant subtrees in Γ, the map f must be expanding.

3. Gate structures for graphs

Definition 3.1. (1) A gate structure Gv at a vertex v of a graph Γ is a
partition of the edges e ∈E±(Γ) with initial vertex v into equivalence classes,
called gates.

(2) A gate structure G on Γ is the collection of gate structures Gv for
every vertex v of Γ. A graph Γ together with a gate structure G on Γ has
been termed a train track in [18].

(3) Two edges e, e′ ∈ E±(Γ) with same initial vertex v form a legal turn
(e, e′) (with respect to G) if e and e′ belong to distinct gates. Otherwise, the
turn (e, e′) is called illegal.

(4) A (finite or infinite) edge path γ = · · ·ei−1eiei+1 · · · in Γ is called legal
(with respect to G), if all of the turns (ei, ei+1) over which γ crosses are legal.

These notions, introduced in [18] and in a similar fashion elsewhere ([1],
[10], [11], . . . ), have been inspired by the fundamental paper [3], where the
gate structure G=G(f) is defined through a train track map f : Γ→ Γ, as
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explained below in Definition 3.8 and Remark 3.10. There are other natu-
ral occurrences of gate structures, for example, given by an edge-isometric

FN -equivariant map from the universal cover Γ̃ to an R-tree T , see [18].

Definition 3.2. Let Γ and Γ′ be graphs equipped with gate structures G
and G′ respectively. A graph map f : Γ→ Γ′ is called a train track morphism
if the following two conditions hold:

(1) f has no contracted edges.
(2) f has the train track property: it maps legal paths to legal paths.

Remark 3.3. The reader can verify directly that condition (2) of Defini-
tion 3.2 is equivalent to the following two more local conditions:

(2′a) the map D2f (see Section 2) maps legal turns to legal turns, and
(2′b) for every edge e of Γ the edge path f(e) is legal.

Remark 3.4. (a) It follows directly from Definition 3.2 that the compo-
sition g ◦ f of two train track morphisms f : Γ → Γ′ and g : Γ′ → Γ′′, with
respect to the same gate structure on Γ′, is again a train track morphism.

(b) In particular, in the special case Γ′ =Γ and G′ =G we note that for any
edge e and any integer t≥ 0 the edge path f t(e) is legal and hence reduced.

Remark 3.5. If Γ is equipped with two gate structures G1 and G2, such
that every gate of G2 is contained in a gate of G1, then G2 is finer than (or
a refinement of) G1, while G1 is coarser than G2.

Any train track morphism f : Γ→ Γ′ stays a train track morphism if the
gate structure of Γ is replaced by a coarser one, or the gate structure of Γ′ by
a finer one.

In order to pinpoint certain subtleties which will trouble us later, we define:

Definition 3.6. (a) Let Γ and Γ′ be graphs equipped with gate structures
G and G′, respectively. A graph map f : Γ → Γ′ is called a gate structure
morphism if the following two conditions hold:

(1) f has no contracted edges.
(2) The induced map Df (see Section 2) maps all edges in any gate of G

to a common image gate of G′. In other words: f induces a well defined map
fG :G→G′.

(b) If f is not necessarily a gate structure morphism on all of Γ, but induces
a well defined map fGv :Gv →G′

f(v) on the gates at a given vertex v of Γ,

we say that f is a local gate structure morphism at v.

We’d like to alert the reader that the notions of “train track morphisms”
and “gate structure morphisms” are sort of perpendicular to each other, as
neither of them implies the other: A gate structure morphism is a train track
morphism f if and only if the induced map fG is injective and the image of
every edge is legal. On the other hand, a general train track morphism may



1092 T. COULBOIS AND M. LUSTIG

be quite far from being a gate structure morphism, as the identity map which
passes from given gates structure to a strict refinement (compare Remark 3.5)
shows. However, for the special case of graph self-maps we have the following
observation which will turn out to be often quite useful.

Lemma 3.7. Let the graph self-map f : Γ→ Γ be a train track morphism
with respect to some gate structure G on Γ.

Then at every f -periodic vertex v of Γ the induced map D2f maps legal
to legal and illegal to illegal turns. In particular, f induces a well defined
bijective map from the gates at v to the gates at f(v). In other words:

For every periodic vertex v the map f induces a local gate structure mor-
phism fGv :Gv →Gf(v) which is bijective.

Proof. Since f has the train track property, the induced map Df maps
edges in distinct gates to edges in distinct gates. Thus, for every vertex v
of Γ the number of gates at f(v) must be larger or equal to the number of
gates at v. Furthermore, if the two numbers are equal, it follows directly
that edges in any given gate must be mapped by Df to edges that also lie all
in a common gate. This implies directly the claimed statement for periodic
vertices of a train track self-morphism. �

The most important special case of graph maps, and also the source of
the notion of “gates”, is the case of a self-map f : Γ→ Γ. It turns out that
self-maps which don’t even have the train track property define already a gate
structure on Γ.

Definition 3.8. Let f : Γ → Γ be a graph self-map with no contracted
edges. The intrinsic gate structure G =G(f) is defined by declaring edges
e, e′ with same initial vertex to belong to the same gate if and only if some
power of f maps e and e′ to edge paths which have non-trivial initial subpaths
in common.

Remark 3.9. (1) This definition has built in that f preserves the gates of
the gate structure G(f):

(a) edges in distinct gates at a common vertex are mapped into distinct
gates and,

(b) all edges in a given gate are mapped into the same gate.

In other words: The graph self-map f is a gate structure morphism with
respect to G(f), and the induced map fG(f) is injective.

(2) Hence, by Remark 3.3, in order to check whether f is a train track
morphism with respect to G(f), we only need to check that for every edge e
the edge path f(e) is legal.

Remark 3.10. (1) Recall that a classical train track map as introduced by
Bestvina and Handel [3] is a graph self-map f : Γ→ Γ which has the property
that for any edge e and any integer t≥ 1 the edge path f t(e) is reduced.
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We have already noted in Remark 3.4(b) that any train track self-morphism
f : Γ→ Γ, with respect to any gate structure G on Γ, is such a classical train
track map.

Conversely, it follows directly from the above definitions that every classical
train track map is a train track morphism with respect to the intrinsic gate
structure G(f).

(2) However, the reader should be warned that for any classical train track
map f as above, in addition to G(f) there may well be other gate struc-
tures G, with respect to which f is also a train track morphism: For example,
every positive automorphism is represented by a train track morphism on the
rose with respect to the gate structure at the sole vertex which consists only
of the “positive” and of the “negative” gates.

(3) On the other hand, it follows directly from the above definitions that
any other such gate structure G must be coarser than G(f), so that G(f) is
indeed the finest gate structure with respect to which the train track map f
is a train track morphism.

The following turns out to be a useful notion for the sequel. In order to
properly state it we recall from Lemma 3.7 that any train track self-map f
which fixes a vertex v induces a well-defined bijection fGv on the set of gates
at that vertex.

Definition 3.11. A train track morphism f : Γ→ Γ with respect to some
gate structure G is called gate-stable if f fixes every vertex of Γ, and at every
vertex f fixes also every gate of G.

We notice directly that every train track self-morphism which acts period-
ically on every vertex possesses a positive power that is gate-stable.

We say that a path γ crosses over a gate turn (gi,gj) if γ contains the
subpath e · e′ with e ∈ gi and e′ ∈ gj .

Definition 3.12. Let f : Γ→ Γ be a train track morphism with respect to
some gate structure G on Γ.

(a) For every vertex v of Γ, we define the gate-Whitehead-graph WhvG(f)
to be the graph with the set Gv of gates at v as vertex set, and with a (non-
oriented) edge connecting gi to gj if for some t≥ 1 and some edge e ∈E±(Γ)
the path f t(e) crosses over v entering through gi and leaving through gj .

(b) A vertex v in Γ is essential if it is periodic and if there are at least
three gates at v. The gate index at v is defined as

indG(v) :=
g(v)

2
− 1,

where g(v) denotes the number of gates at v.
(c) The gate index list for f is the list of gate indices of G(f) at essential

vertices. We usually order such a list as decreasing sequence of its values.
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For graph self-maps the Whitehead graphs at the vertices (in various di-
alects) have been used previously (e.g., see [3], [11], [12], [14], [18]).

Proposition 3.13. Let f and g be train track morphisms of a graph Γ
with respect to the gate structure G :=G(f). If g induces an automorphism
of π1(Γ) and is gate-stable, then for every vertex v of Γ the graph WhvG(f) is
a subgraph of both, WhvG(f ◦ g) and WhvG(g ◦ f).

Proof. We first use the hypothesis G=G(f) to deduce (see Remark 3.9(1))
that f is a gate structure morphism and hence induces a map fG :G→G.
Hence, there is a well-defined map D2

Gf on the gate turns of Γ, given by
D2

Gf(gi,gj) := (fG(gi), fG(gj)).
For any vertex v of Γ it follows from the definition of the gate-Whitehead-

graph that in WhvG(f) two “vertices” gi and gj are connected by an edge if
and only if one of the following occurs:

(a) For some edge e ∈ E±(Γ) the path f(e) crosses over the gate turn
(gi,gj).

(b) For some t≥ 1 the map D2
Gf t maps one of the gate turns crossed over

by some f(e) to the gate turn (gi,gj).

From the hypothesis that g is a homotopy equivalence and our convention
that graphs don’t have valence 1 vertices, we deduce that each edge e appears
in the image g(e′) of some edge e′. It follows that all gate turns (gi,gj) crossed
over by the path f(e) are also crossed over by the path f ◦ g(e′). Since g is
gate-stable, the maps gG and D2

Gg are well defined, and D2
Gg acts as the

identity on the set of gate turns. This implies both, that g ◦ f(e) crosses
over the same gate turns as f(e), and that the above property (b) for f is
equivalent to property (b) for f ◦ g or g ◦ f .

This shows that, for every vertex v of Γ, in the graph WhvG(f) two “ver-
tices” gi and gj are connected by an edge only if the same “vertices” are also
connected by an edge in WhvG(f ◦ g) and in WhvG(g ◦ f). �

4. In the absence of INPs

The notion of an INP is a classical concept, going back to [3]. Originally,
“INP” was an abbreviation for “indivisible Nielsen path”; however, through
frequent use it has become mainly an acronym, and as such we treat it here.

Definition 4.1. Let f : Γ→ Γ be a train track morphism with respect to
some gate structure G on Γ. A reduced path η in Γ is called a periodic INP
if η = γ−1 ◦ γ′, where the two branches γ and γ′ are non-trivial legal paths,
and f t(η) is homotopic relative endpoints to η, for some t≥ 1.

The reader should be alerted that the endpoints of a periodic INP η may
well not be vertices of Γ (although this can be readily achieved by subdivid-
ing edges and their iterated f -images, which is a finite procedure since the
endpoints of η are by definition f -periodic).
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The importance of the gate-Whitehead-graph (see Definition 3.12) for
a train track map is underlined by the following “irreducibility criterion”
from [12]. We quote here only a simplified version which is used below in
Section 6.

Proposition 4.2 ([12, Proposition 5.1]). Let f : Γ → Γ be a train track
representative of ϕ ∈Out(FN ). Assume furthermore:

(1) The transition matrix M(f) is primitive.
(2) The gate-Whitehead-graph WhvG(f)(f) for f at every vertex v of Γ is

connected.
(3) There is no periodic INP for f in Γ.

Then ϕ is iwip (= fully irreducible).

A “partial converse” of this result is given by the following.

Proposition 4.3 ([12, Proposition 5.1]). Let f : Γ → Γ be a train track
representative of some iwip automorphism ϕ ∈ Out(FN ). Assume that f is
expanding and that there is no periodic INP for f .

Then f must satisfy conditions (1) and (2) from Proposition 4.2.

Remark 4.4. Since the connectedness of the gate-Whitehead-graph for f
at every vertex is a direct consequence of the connectedness of the classical
Whitehead graph of f at v, one can obtain Proposition 4.3 also as direct
consequence of the classical known irreducibility criterion (see [13]).

Alternatively, the reader may prefer to go for a direct proof of Proposi-
tion 4.3 according to the following lines: If M(f) is not primitive, then the
transition matrix M(f t) of a positive power of f must be reducible, so that
there is an f t-invariant subgraph of Γ, which by expansiveness of f must have
as fundamental group a proper free factor of FN .

Similarly, if WhvG(f)(f) is not connected for some vertex v of Γ, then we
can introduce “invisible edges” to blow up that vertex and thus again find,
as complement of the invisible edges, an invariant subgraph with a proper
free factor of FN as fundamental group. (More details regarding the blow-up
technology of vertices by means of invisible edges can be found in the proof
of [12, Proposition 5.1], or in the description before Lemma 6.6 of [14].)

5. Long turns

Recall that every graph map f : Γ→ Γ′ which induces an isomorphism on
π1Γ (i.e., f is a homotopy equivalence) possesses a cancellation bound which
can be expressed topologically as a bounded backtracking constant of any lift

f̃ : Γ̃→ Γ̃′ to the universal coverings (see [8]): There exists a constant C(f)≥ 0

such that for any reduced edge path γ in Γ̃ the unreduced image path f̃(γ) is

contained in the C(f)-neighborhood of the reduced path [f̃(γ)], for the metric

on Γ̃′ defined by combinatorial path length (see Section 2). It is known (see
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[2], [8]) for homotopy equivalences f that the combinatorial volume of f(Γ),
that is, the total length of the edge paths f(ei) for all ei ∈ E+(Γ), is such a
cancellation bound.

Definition 5.1. Let Γ and Γ′ be graphs equipped with gate structures,
and let f : Γ→ Γ′ be a train track morphism.

(1) A long turn (γ, γ′) in Γ is given by two non-trivial legal edge paths γ
and γ′ with common initial vertex of Γ and distinct first edges.

(2) A long turn (γ, γ′) is called illegal if the initial edges of γ and γ′ form
an illegal turn (in the sense of Definition 3.1(3)). Otherwise (γ, γ′) is called
legal.

(3) A long turn (γ1, γ
′
1) in Γ′ is called the f -image of the long turn (γ, γ′)

in Γ, denoted by

fLT
(
γ, γ′) := (

γ1, γ
′
1

)
,

if f(γ) = γ0 ◦ γ1 and f(γ′) = γ′
0 ◦ γ′

1 such that γ0 = γ′
0 is the maximal common

initial subpath of f(γ) and f(γ′), and γ1 and γ′
1 are non-trivial paths.

A long turn which possesses an f -image is called an f -long turn. Otherwise
we call it f -degenerate.

Note that a turn (e, e′) in the classical sense of Definition 3.1(3) is in par-
ticular a long turn, except in the particular case where it is degenerate, that
is, e= e′.

Remark 5.2. We note that the existence of a cancellation bound C(f) for
a train track morphism f : Γ→ Γ′ together with the “no contracted edges”
assumption in Definition 3.2 imply that every long turn (γ, γ′) with |γ|, |γ′| ≥
C(f) + 1 is f -long.

We now want to consider the composition g◦f of two train track morphisms
f : Γ→ Γ′ and g : Γ′ → Γ′′. We observe:

(1) If a long turn (γ1, γ2) in Γ is f -degenerate, then f(γ1) is an initial
subpath of f(γ2) (or conversely), and hence, since γ1, γ2 as well as their
images are legal, g ◦ f(γ1) is an initial subpath of g ◦ f(γ2) (or conversely), so
that (γ1, γ2) is also (g ◦ f)-degenerate.

(2) Similarly, if (γ1, γ2) is f -long, but its f -image long turn (γ′
1, γ

′
2) is g-

degenerate, it follows that (γ1, γ2) is also (g ◦ f)-degenerate.
(3) On the other hand, if (γ1, γ2) is f -long and its f -image long turn (γ′

1, γ
′
2)

is g-long, then we see directly that (γ1, γ2) is also (g ◦ f)-long, and that its
(g ◦ f)-image coincides with the g-image of (γ′

1, γ
′
2).

We summarize in the following lemma.

Lemma 5.3. Let f : Γ→ Γ′ and g : Γ′ → Γ′′ be two train track morphisms
(with respect to the same gate structure on Γ′).
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A long turn (γ1, γ2) in Γ is (g ◦ f)-long if and only if (γ1, γ2) is f -long and
its f -image long turn fLT(γ1, γ2) is g-long. In this case one has:

(g ◦ f)LT(γ1, γ2) = gLT
(
fLT(γ1, γ2)

)
.

Remark 5.4. If a long turn (γ, γ′) in Γ is legal, then it is f -long for every
train track morphism f : Γ→ Γ′, and the f -image is again legal (indeed, the
common initial subpath γ0 = γ′

0 from part (3) of Definition 5.1 is in this case
trivial).

On the other hand, for an illegal f -long turn the f -image can be either
legal or illegal; both cases do occur.

Remark 5.5. (1) Any long turn (γ′
1, γ

′
2) in Γ is called a subturn of a long

turn (γ1, γ2) if each γ′
i is an initial subpath of γi, for i = 1,2. If both long

turns, (γ1, γ2) and (γ′
1, γ

′
2), are f -long for some train track map f , then their

f -images are either both legal or both illegal. Hence, in order to test legality
of the f -image of any long turn, it suffices to calculate the f -image of the
shortest f -long subturn of the given long turn.

(2) If the length of a long turn (γ1, γ2), defined as min{|γ1|, |γ2|}, satisfies
min{|γ1|, |γ2|} ≥ C ≥ 0, then we will denote below the subturn (γ′

1, γ
′
2) of

(γ1, γ2) with |γ′
1|= |γ′

2|=C by:

(γ1, γ2)†C :=
(
γ′
1, γ

′
2

)
.

We also denote the set of all long turns (γ1, γ2) in Γ with branch length |γ1|=
|γ2|=C by LTC(Γ).

Definition 5.6. A train track morphism f : Γ→ Γ′ is called legalizing if
every illegal f -long turn has legal f -image.

It follows from Remarks 5.2 and 5.5 that a train track map f with cancel-
lation bound C(f) is legalizing if and only if every long turn built from legal
paths of length C(f) + 1 has legal f -image. Indeed, it follows from Corol-
lary 6.5 below that many (or even “most”) train track representatives of iwip
automorphisms are legalizing.

Remark 5.7. The reader should be warned that in the (frequently occur-
ring) case that a graph map f : Γ→ Γ′ is a train track morphism with respect
to a gate structure G on Γ and simultaneously with respect to a coarser gate
structure G0, then f may well be legalizing with respect to G but not with
respect to G0.

We should perhaps point out here that although every legalizing train track
morphism maps every path γ with a single illegal turn to a legal path [f(γ)]
(after reduction!), the same does not at all follow for a path γ with more
than one illegal turn. The only conclusion one can draw is that the number of
illegal turns in the reduced image path [f(γ)] is at most half times the number
of illegal turns in γ plus 1.



1098 T. COULBOIS AND M. LUSTIG

This notion of a “legalizing map” is robust and easy to handle, as is illus-
trated by following:

Proposition 5.8. Let f : Γ1 → Γ2 and g : Γ2 → Γ3 be two train track mor-
phisms. If either f or g is legalizing, then the composition g ◦ f is a legalizing
train track morphism.

Proof. This follows directly from Lemma 5.3, together with the observation
in Remark 5.4 that for any train track morphism and any legal long turn the
image long turn is always legal. �

The following observation will be used crucially in the next section.

Lemma 5.9. (a) Let g : Γ→ Γ be a train track morphism with respect to
some gate structure G, and assume that g is both, legalizing and gate-stable.
Then the gate structure G is equal to the intrinsic gate structure of g:

G=G(g).

(b) Moreover, if f : Γ → Γ is another train track morphism with respect
to G, then the intrinsic gate structure G(f ◦ g) of the composition f ◦ g is
equal G.

Proof. (a) From the hypothesis that g is legalizing we know that the g-
image of every g-long illegal turn (γ, γ′) is a legal long turn. But since g is
gate-stable, the initial edges of g(γ) and g(γ′) must lie in the same gate, so
that they cannot form a legal turn. Hence, they must belong to the common
initial subpath of g(γ) and g(γ′) and thus indeed be identical.

Since this is true for any illegal turn, all legal paths exiting from the same
gate must have g-images with coinciding initial edge. This proves that the
gate structure G is finer than or equal to G(g). The converse is true for
any self-map g that is a train track morphism with respect to a given gate
structure G, see Remark 3.10(3).

(b) Since f is a train track morphism and hence has no contracted edges, the
above proved fact, that Dg maps all edges in any given gate to a single edge,
is inherited by D(f ◦ g). Hence, the arguments from the previous paragraph
are also true for f ◦ g instead of g, so that we obtain G(f ◦ g) =G. �

Remark 5.10. (1) Note that the proof of the last lemma stays valid if
the hypothesis “g gate-stable” is replaced by the weaker assumption ”g gate
structure morphism” (see Definition 3.6). In particular, by Lemma 3.7 it
suffices to assume that all vertices of Γ are periodic under the map g.

(2) Note also that there is a delicacy in Statement (b) of the last lemma:
The analogous statement for the composition g ◦ f is in general wrong, unless
one assumes that f is a gate structure morphism.
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6. Legalizing maps for iwip automorphisms

We will now concentrate on the situation of a classical train track map
f : Γ→ Γ, which is a train track morphism with respect to the intrinsic gate
structure G(f) on Γ, see Remark 3.10. We assume furthermore that f is a
homotopy equivalence so that it possesses a cancellation bound C(f), and
that it satisfies the following expansion property:

Definition 6.1. For any constant K ≥ 1 a train track morphism f : Γ→ Γ′

is called strongly K-expanding if every legal edge path γ in Γ of length |γ| ≥K
has f -image which is strictly longer:∣∣f(γ)∣∣≥ |γ|+ 1.

Remark 6.2. Expanding train track morphisms (see Section 2) are not
necessarily strongly K-expanding for some K ≥ 1 (and conversely), but it fol-
lows directly from the definitions that every expanding train track morphism
has a positive power which is strongly 1-expanding.

We define the minimal stretching factor λK
min(f) of f for legal paths of

length ≥K by:

λK
min(f) := min

{
|f(γ)|
|γ|

∣∣∣∣ γ legal of length |γ| ≥K

}
.

We will now derive from any cancellation bound C(f) ≥ 0 of a strongly
K-expanding train track morphism f : Γ→ Γ an expansion bound C(f)+ ≥ 0:

Lemma 6.3. Let f : Γ→ Γ be a train track map which possesses a cancel-
lation bound C(f) and is strongly K-expanding for some K ≥ 1. We define:

C(f)+ := max

(
K,

C(f)

λK
min(f)− 1

)
.

Let C ≥C(f)+ be an integer. Then the map f induces a map

fLTC : LTC(Γ)→ LTC(Γ),
(
γ, γ′) �→ fLT

(
γ, γ′)†C .

Proof. From the definition of the minimal stretching factor λK
min(f), it fol-

lows that every legal path γ of length |γ| ≥ C(f)+ ≥K is mapped by f to
a legal path of length |f(γ)| ≥ |γ| + C(f). Hence, it follows from the defi-
nition of a cancellation bound C(f) that any long turn (γ, γ′) ∈ LTC(Γ) is
f -long, and that its image long turn fLT(γ, γ′) has length ≥C. Thus, setting

(γ, γ′) �→ fLTC (γ, γ′)†C defines indeed a well-defined map fLTC : LTC(Γ) →
LTC(Γ). �

Proposition 6.4. Let f : Γ→ Γ be a train track map which possesses a
cancellation bound C(f) and is strongly K-expanding for some K ≥ 1. Let
C ≥C(f)+.
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Then for any fLTC -periodic illegal long turn (γ, γ′) ∈ LTC(Γ) the concate-
nation γ ◦ γ′ contains a periodic INP as subpath. Conversely, every periodic
INP in Γ can be prolonged on both sides so that the two legal branches give
an fLTC -periodic illegal long turn in LTC(Γ).

Proof. We know from Lemma 6.3 that f induces a well -defined map fLTC

on the long turns in LTC(Γ). Assume now that for some integer t≥ 1 the long
turn (γ, γ′) ∈ LTC(Γ) is illegal and fixed by (fLTC )t. Then γ is a subpath of
f t(γ), and γ′ is a subpath of f t(γ′). Thus, on both legal paths γ and γ′ there
must be a fixed point, which by the illegality of the turn must be different
from the initial vertex of both, γ and γ′. We can define η to be the path
crossing over the illegal turn and connecting those two fixed points. Then
[f t(η)] = η, and since η crosses over precisely one illegal turn, it follows that
it is a periodic INP.

Conversely, it follows from a standard calculation that the legal branches of
any periodic INP η can not be longer than C(f)+. Thus they can be prolonged
by legal paths so that this prolongation gives a long turn (γ, γ′) ∈ LTC(Γ).
Let now the integer t≥ 1 be such that [f t(η)] = η. We consider the iterates
of (γ, γ′) under f t and note that they all contain η as subpath, in such a way
that the illegal turn on η coincides with the illegal turn formed by (γ, γ′) (and
thus also by all of its f t-iterates). Since LTC(Γ) is finite, eventually some
such iterate fkt(γ, γ′) will be (fLTC )t-periodic. This shows the “converse”
direction of the claim. �

Corollary 6.5. Let f : Γ→ Γ be an expanding train track map that rep-
resents an automorphism of FN . Then precisely one of the following is true:

(a) The map f possesses a periodic INP, or
(b) every sufficiently high power of f is legalizing for G(f).

Proof. Since f represents an automorphism, it possesses a cancellation
bound. Since f is expanding, any sufficiently large power of f will be strongly
K-expanding for K = 1 (see Remark 6.2). Thus Proposition 6.4 applies, so
that, in case that f does not possess a periodic INP, we can deduce that there
is no illegal f -periodic long turn (γ, γ′) ∈ LTC(Γ), for C as in Proposition 6.4.

It follows that after applying f iteratively at least k0 := cardLTC(Γ) times,
any long turn (γ, γ′) ∈ LTC(Γ) must have become legal. Since it stays legal
under further iteration of f (see Remark 5.4), every fk with k ≥ k0 must be
legalizing.

Clearly both (a) and (b) can not hold simultaneously. Thus, we have proved
the desired dichotomy. �

One can derive from the last proof that the lower bound for the exponent
of f needed in statement (b) of Corollary 6.5 can be efficiently calculated from
the train track map f with not much effort. It turns out that it only depends
on the cancellation bound C(f) and on the rank N of the free group FN .
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Proof of Theorem 1.1. Since g is assumed to be a train track morphism
with respect to the gate structure G(f), then so must be f ◦ g. Since g
induces an automorphism on π1Γ, so does f ◦ g, so that f ◦ g is a train track
morphism which represents an automorphism of FN .

Recall from Section 2 that the transition matrix of f ◦ g is obtained as
product M(f ◦ g) = M(f) ·M(g). Hence, M(f ◦ g) inherits positivity from
the assumed positivity of M(f). Thus, in particular M(f ◦ g) is primitive.

As g is gate-stable and legalizing for G(f), by Lemma 5.9 the intrinsic gate
structure G(f ◦ g) is equal to G(f).

By hypothesis, f represents an iwip automorphism. From Proposition 4.3,
we know that for any vertex v the graph WhvG(f) is connected. As g is gate-
stable, by Proposition 3.13 the gate-Whitehead-graph WhvG(f ◦ g) must also
be connected.

We now observe from Proposition 5.8 that the composed map f ◦ g must
be legalizing, which implies by Corollary 6.5 that there are no periodic INPs
for f ◦ g.

Thus the conditions (1), (2) and (3) of Proposition 4.2 are all satisfied for
the map f ◦ g, which hence must induce an iwip automorphism. Corollary 8.5
concludes the proof. �

Remark 6.6. (1) We see from the above proof that the hypotheses in
Theorem 1.1 can be weakened somewhat: In the proof, it is never used that
the automorphism represented by f is iwip. It suffices to assume that M(f)
is positive, and that the gate-Whitehead-graph at every periodic vertex is
connected.

(2) We also don’t use the fact that the gate structure on Γ is equal to G(f).
It suffices to assume that f and g are train track morphisms with respect to
some fixed gate structure G, if in statement (3) of Theorem 1.1 the list of
gate indices at the f -periodic vertices of Γ is computed with respect to the
gate structure G (see Definition 3.12). This is a consequence of Lemma 5.9.

(3) A careful analysis of the above proof and its various ingredients, shows
that the statement of Theorem 1.1 is valid as well for the map g ◦ f in place
of f ◦ g, if one assumes in addition that f is a gate structure morphism (see
Remark 5.10(2)).

We’d like to remark here that part (2) of the previous remark gives the
possibility to produce, from a given train track map f with a fine gate struc-
ture, through properly choosing the legalizing “perturbation map” g, a variety
of train track maps f ◦ g with coarser gate structures and thus, via part (3)
of Theorem 1.1, with smaller index lists than f . A useful technology for
the deliberate production of such perturbation maps is described in the next
section.

We conclude this section by passing to a larger set of product maps.
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Corollary 6.7. Let Γ be a graph equipped with a gate structure G, and
for any index i of some index set I let fi : Γ→ Γ be a train track morphism
with respect to G. Assume that each fi satisfies the following properties:

(1) The intrinsic gate structure satisfies G(fi) =G.
(2) The transition matrix M(fi) is positive.
(3) For any vertex v of Γ the graph WhvG(fi) is connected.
(4) There is no periodic INP for fi in Γ.
(5) The map fi is gate stable.

Then there exist exponents mi ≥ 1 such that the properties (2)–(5) hold for
every element in the monoid generated by the fmi

i , that is, for any product

f = f
mi1

i1
f
mi2

i2
· · ·fmis

is

of the fmi

i (but not their inverses!). Furthermore, any such map f represents
an iwip automorphism, the map f is legalizing, and the index list of f is equal
to the list of gate indices of G at the vertices of Γ with 3 or more gates.

Proof. By Corollary 6.5, there exist exponents mi ≥ 1 such that each of
the maps fmi

i is legalizing. Furthermore, conditions (2), (3) and (4) ensure
via Proposition 4.2 that fi represents an iwip automorphism of FN . Con-
ditions (2), (3) and (5) are inherited by products, if they are satisfied by
every factor. The same is true for the property “legalizing”, which implies
condition (4). By Lemma 5.9 condition (1), is a consequence of condition (5)
together with the property “legalizing”.

Hence, all conditions for the factors f and g in Theorem 1.1 are satisfied
for any of the maps fmi

i as well as for any product f as above. Thus the
conclusion (3) of Theorem 1.1 hold as well for f , which proves the last assertion
in the statement of Corollary 6.7. �

The above corollary admits a natural extension to a more involved situa-
tion, where one considers simultaneously several graphs Γk with gate struc-
tures Gk, as well as maps fi : Γk → Γk′ which induce bijections on the vertices
with 3 or more gates, as well as bijections on the set of their adjacent gates.
This leads one directly to consider “strata” in Outer space, in analogy to
strata in Teichmüller space as defined by fixing the indices of the singularities
of quadratic differentials, see [19].

7. Legalizing factory

In this section, we reduce the construction of a legalizing train track mor-
phism to the construction of a family of “elementary” train track morphisms
that each legalizes only a single illegal turn.

Proposition 7.1. Let Γ be a graph equipped with a gate structure G.
Assume that there exists an integer L≥ 1 which satisfies:
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(1) For each illegal long turn t= (γ, γ′) of branch length L there exists a
train track morphism gt : Γ→ Γ such that t is gt-long and mapped by gLTt to
a legal long turn.

(2) There exists a train track morphism h : Γ → Γ which is strongly K-
expanding for some K ≥ 1.

We assume furthermore that each of the above maps gt and h has a can-
cellation bound C(gt) or C(h) respectively (which is true if they induce au-
tomorphisms of π1(Γ)). Then there exists a legalizing train track morphism
g : Γ→ Γ which is obtained as a composition of the gt and h.

Proof. For each of the illegal long turns t of G with branch length L set
g′t := h◦gt, and observe that g′t is strongly K-expanding and inherits a cancel-
lation bound C(g′t) from h and gt. Moreover, as h is a train track morphism,
it maps legal turns to legal turns, so that by hypothesis (1) the long turn t is
g′t-long and mapped by g′t to a legal long turn.

Let C be the maximum of L and of all the constants C(g′t)
+, as defined in

Lemma 6.3 for any of the maps g′t via the cancellation bounds C(g′t) and the

above constant K. Then each g′t induces a well defined map g′t
LTC on the set

of long turns LTC(Γ).
We can now build iteratively the legalizing train track morphisms we are

looking for: Let g0 be the identity map and LTill
C (g0)⊂ LTC(Γ) be the finite

set of illegal long turns in Γ of branch length C. We define iteratively graph
maps gk : Γ→ Γ and nested subsets

LTill
C (gk)� LTill

C (gk−1)� · · ·� LTill
C (g0)

by considering any turn t∗ in LTill
C (gk). From the iterative definition of

LTill
C (gk), it follows that t∗ is mapped by gLTC

k to long a turn (of branch

length C) which is illegal. Let t be the subturn of gLTC

k (t∗) of branch length
L ≤ C, which is of course also illegal. We set gk+1 := g′t ◦ gk, and define

LTill
C (gk+1) to be the set of illegal long turns in Γ of branch length C that are

mapped by gLTC

k+1 to an illegal long turn. Note that g′t was defined so that t∗

is mapped by gLTk+1 to a long turn that contains the legal long turn g′LTt (t) as

subturn and is therefore legal. Recall that if a long turn is mapped by gLTC

k

to a legal long turn, then, as g′t is a train track morphism, it is also mapped

by gLTC

k+1 to a legal long turn. In other words, LTill
C (gk+1)� LTill

C (gk).

From the finiteness of LTill
C (g0), we deduce that after finitely many steps

one gets gn with LTill
C (gn) = ∅, which is equivalent to stating that g = gn is

legalizing. �

8. Stable indices, branching indices and gate indices

The content of this section is well known to the experts, or in close prox-
imity of well known facts; we assemble them here for the convenience of the
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reader. We will use some standard tools from R-trees and Outer space tech-
nology. For background and terminology, the reader may consult [18]; further
detail can be found in [7] or [20]. We follow here mostly the original source [8].

For every expanding train track map f : Γ→ Γ there exists a non-negative
real eigenvector �v of the transition matrix M(f) which has real eigenvalue
λ > 1, and any such �v determines an R-tree T = T (�v) (which in some cases
is called the forward limit tree and can be considered as boundary point of
Outer space CVN ).

The tree T = T (�v) is obtained by choosing an arbitrary lift f̃ : Γ̃→ Γ̃ of the

train track map f to the universal covering Γ̃, and by defining T to be the

metric space associated to the pseudo-metric d∞ on Γ̃ which is the limit for t→
∞ of the decreasing sequence of pseudo-metrics dt(x, y) :=

1
λt d�v(f̃

t(x), f̃ t(y)).

Here the pseudo-metric d�v on Γ̃ is defined through lifting the �v-edge-lengths
of Γ that are explicitly given by the coefficients of the eigenvector �v.

As a consequence, one obtains a canonical FN -equivariant map i : Γ̃→ T
which is edge-isometric with respect to the pseudo-metric d�v , that is, every

edge e of Γ̃ is mapped by i isometrically to its image i(e) ⊂ T . The map f̃
also induces directly a homothety H : T → T with stretching factor λ, and
one obtains the following “commutative diagram”:

(8.1) H ◦ i= i ◦ f̃ .
The map i maps legal paths in Γ̃ isometrically to segments in T . On the other

hand, any path η̃ in Γ̃ which is the lift of a periodic INP in Γ is folded by i
completely to a single segment, which is the isometric image of any of the two
legal branches of η̃.

It follows from standard train track arguments (see, for example, Section 3
of [14]) that for any path γ in Γ a sufficiently high f -iterate f t(γ) is homotopic
rel. endpoints to a pseudo-legal path, that is, a legal concatenation of legal

paths and periodic INPs. It follows that for any two points x, y ∈ Γ̃ one has

i(x) = i(y) if and only if after iterating f̃ sufficiently many times the geodesic

path γ̃ in the tree Γ̃ which joins f̃ t(x) to f̃ t(y) is a legal concatenation of legal
subpaths and lifts of periodic INPs, where the legal subpaths only use edges
with d�v-length 0. In particular, we see that the absence of INPs for f implies
directly that the FN -action on T is free, if all the exponents of the eigenvector
�v are positive. The latter is known if the transition matrix M(f) is primitive,
and hence always true if the expanding train track map f represents an iwip
automorphism. Furthermore, the North–South result of the ϕ-action on the
closure of CVN proved in [16] yields the following.

Proposition 8.1. For any iwip automorphism ϕ the forward limit tree T =
T (�v) is well defined up to uniform rescaling of the metric, and in particular
does not depend on the expanding train track representative f : Γ→ Γ and its
primitive transition matrix M(f) with Perron–Frobenius eigenvector �v.
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If Γ doesn’t contain any non-trivial loop which is a legal concatenation of
periodic INPs, then the FN -action on T by isometries is free. This conclusion
is in particular true if there is no periodic INP in Γ.

As a direct consequence of the above described construction of T from Γ̃
by means of the eigenvector �v one has the following fact, which is well known
to the experts (see [8], [11], [18], or, for much detail, Section 7 of [14]). Recall
that a direction at a point P ∈ T is a connected component of T \ {P}.

Proposition 8.2. Let f : Γ→ Γ be an expanding train track map, and let
�v be an eigenvector of M(f) with eigenvalue λ > 1. Assume that �v has only
positive coefficients, and let T = T (�v) the corresponding forward limit tree.

(1) If there is no periodic INP for f , then the map i restricts to an

FN -equivariant bijection iV between essential vertices vk of Γ̃ (i.e., lifts of
f -periodic vertices of Γ with 3 or more gates) on one hand, and branch points
i(vk) of T on the other. This bijection extends to a canonical bijection between
the gates at any vk and the directions at i(vk) (where a gate gj is mapped to

the direction that contains the open segments i(
◦
ei) for any edge ei in gj).

(2) [Not used in the sequel.] If f possesses periodic INPs, then the end-
points (assumed to have been made into vertices) of any such periodic INP η
have to be considered as equivalent, and for these endpoints one has to identify
those two gates which contain the two branches of η. Then we get the precisely
analogous statement as in the “no INP” case (1), except that the preimage of
a branch point in T will now be the lift of an f -periodic equivalence class of
vertices in Γ with (after the above identification) 3 or more gates.

If X is a topological space, provided with a left action of a group G by
homeomorphisms, we say that a map F :X →X represents an automorphism
Φ ∈Aut(G) if for all x ∈X and all g ∈G one has:

Φ(g) · F (x) = F (g · x).

This applies in particular to the special case where X is the universal covering
of the quotient space X/G with π1(X) =G, and F induces a homeomorphism
f :X/G→X/G. In this case, if F represents Φ, then f induces on π1(X) =G
the outer automorphism ϕ defined by Φ.

It follows from the equality (8.1) and the FN -equivariance of the map i

that any lift f̃ of the train track map f represents the same automorphism
Φ ∈Aut(FN ) as the associated homothety H : T → T , where Φ induces (by a
the previous paragraph) the outer automorphims ϕ that is represented by the
train track map f . Since the stretching factor of H satisfies λ > 1, it follows
that H has precisely one fixed point Q which is either contained in T , or it
lies in the metric completion T of T (where we use the canonical extension of
H to T ).
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Let now Φ′ ∈ Aut(FN ) be a second lift of ϕ, and assume that Φ′ is iso-
gredient to Φ, that is, Φ′ = ιw ◦Φ ◦ ιw−1 = ιw ◦ ιΦ(w)−1 ◦Φ for some w ∈ FN ,

where ιv : FN → FN denotes the conjugation u �→ vuv−1. Assume furthermore

that the lift f̃ ′ : Γ̃→ Γ̃ of f and the homothety H ′ : T → T both represent the

automorphism Φ′. Then we obtain f̃ ′ = wf̃w−1 and H ′ = wHw−1, and thus
deduce for the fixed point Q′ of H ′ the equality Q′ =wQ.

Conversely, if H ′ = uH is the homothety of T which represent some lift
Φ′ = iuΦ of ϕ, then, if H ′(Q) =Q, the action of u on T must fix the point Q.
Thus, if the FN -action on T is free, then one deduces u= 1.

As a consequence, one gets a natural injective map from the isogredience
classes of lifts Φk of ϕ into the set of FN -orbits of points in T , given by the
fixed point Qk of the associated homothety Hk : T → T that represents Φk.

In [8, Theorem 2.1(3) and Proposition 4.4], the following has been proved
(we only cite the easy case where Stab(Q) is trivial).

Proposition 8.3. Let ϕ ∈Out(FN ) be an iwip automorphism, and let T =
T (�v) be the forward limit tree of ϕ, given as above by some eigenvector �v with
eigenvalue λ > 1 of the transition matrix M(f) of a train track representative
f : Γ→ Γ of ϕ. We assume that there is no periodic INP in Γ, so that the
FN -action on T is free.

Let H : T → T be the homothety (with stretching factor λ) that represents
some lift Φ ∈ Aut(FN ) of ϕ, and assume Φ has index Ind(Φ)> 0. Then the
fixed point Q of H is contained in T , and Q is a branch point of T . There is
a natural injection iQ from the set of attracting fixed points of Φ on ∂FN to
the set of directions at Q ∈ T . The image of iQ is precisely the set of those
directions that are fixed by H .

From the last sentence of this proposition, we see that replacing ϕ (and
hence also Φ and H) by a positive power will increase the image set of the map
iQ. From Gaboriau and Levitt [9] finiteness result, one knows that for any T
with free FN -action every branch point has only finitely many directions, so
that a suitable positive power of H will indeed fix every direction of T at Q.

The same finiteness result [9] also implies that there are only finitely many
FN -orbits of branch points in T . Thus, through possibly replacing ϕ by a
further positive power we can assume that the associated homothety H of T
fixes every FN -orbit of branch points of T . Thus for any branch point Q′ of
T there is a suitable element u ∈ FN such that the homothety H ′ = uH has
Q′ as fixed point (pick u such that H(Q′) = u−1Q′). Now we “perturb” Φ

and f̃ correspondingly to obtain Φ′ = ιu ◦Φ and f̃ ′ = uf̃ , and, if need be, we
pass to another common positive power, so that the homothety H ′ fixes every
direction of T at Q′. As a consequence, the map iQ′ from Proposition 8.3
becomes a bijection between the attracting fixed points of Φ′ on ∂FN and the
directions of T at Q′.

Thus, we obtain the following proposition.
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Proposition 8.4. Let ϕ ∈Out(FN ) be an iwip automorphism that has an
expanding train track representative f : Γ→ Γ without periodic INPs, and let
T be its forward limit tree.

Then, for some integer t ≥ 1, there exists a natural bijection between on
one hand the isogredience classes of representatives Φk of ϕt which satisfy
indΦk ≥ 1

2 , and on the other hand the FN -orbits FN ·Qk of branch points Qk

of T .
This correspondence extends further to a bijection between the set of at-

tractors for the induced Φk-action on ∂FN , and the set of directions of T
at Qk.

The assertion remains valid if the integer t is replaced by any positive in-
teger t′ = kt ∈N.

Recall from the Introduction that the stable index list of an automor-
phism ϕ ∈ Out(FN ) without non-trivial periodic conjugacy classes is given

by the maximal (decreasing) list of indices ind(Φk) =
a(Φk)

2 − 1 for repre-
sentatives Φk ∈ Aut(FN ) of a suitable positive power of ϕ that are pairwise
non-isogredient, where a(Φk) denotes the number of attractors of Φk on ∂FN .

Thus Proposition 8.4 shows that for an iwip automorphism ϕ, assumed
to have an expanding train track representative f : Γ→ Γ without periodic
INPs, the stable index list of ϕ agrees with the branching index list of T ,

i.e. the maximal (decreasing) sequence of values ind(Qk) :=
b(Qk)

2 − 1 for
branch points Qk in distinct FN -orbits, where b(Qk) denotes the number of
directions of T at Qk. On the other hand, we obtain directly from part (1) of
Proposition 8.2 that the branching index list of T agrees with the gate index
list for the map f : Γ→ Γ, as defined in Definition 3.12. Thus we obtain the
following corollary.

Corollary 8.5. Let ϕ ∈ Out(FN ) be an iwip automorphism, and let f :
Γ→ Γ be an expanding train track map which represents ϕ and which doesn’t
have any periodic INP.

Then the stable index list of the automorphism ϕ agrees with the gate index
list of the map f .

In fact, we see from the details of the above correspondences that, after rais-
ing ϕ and f to a suitable common positive power, there is a natural bijection
between the essential vertices of f and the isogredience classes of ϕ, which for
any essential vertex vk and any representative Φk of the corresponding isogre-
dience class extends further to a bijection between the attracting fixed points
of Φk on ∂FN and the gates at vk. This last bijection can be seen concretely
by considering the unique eigenray ρ defined by any gate at vk, its lift to

an eigenray ρ̃ of a (suitably chosen) lift f̃k of f for the universal covering Γ̃,
and the image i(ρ̃) ∈ T , which is an eigenray of the associated homothety
Hk which represents Φk. Under the canonical FN -equivariant identification
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∂FN = ∂Γ̃, the ray ρ̃ represents an attractor of the Φk-action on ∂FN , and
conversely, every attractor for Φk comes from such an eigenray.
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