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GEOMETRY OF GRUSHIN SPACES

JANG-MEI WU

Abstract. We compare the Grushin geometry to Euclidean
geometry, through quasisymmetric parametrization, bilipschitz

parametrization and bilipschitz embedding, highlighting the role

of the exponents and the fractal nature of the singular hyper-
planes in Grushin geometry.

1. Introduction

Consider in R
n a system of diagonal vector fields

Xj = λj(x)
∂

∂xj
, j = 1, . . . , n,

where

λ1(x) = 1 and λj(x) =

j−1∏
i=1

|xi|αi , j = 2, . . . , n

and αi ∈ [0,∞). These vector fields induce a metric on R
n

dG(p, q) = inf

{
T ≥ 0: ∃γ : [0, T ]→R

n, with γ(0) = p, γ(T ) = q, and

γ′(t) =
n∑

j=1

bj(t)Xj

(
γ(t)

)
with

∑
bj(t)

2 ≤ 1 a.e.

}
,

the infimum of the time to travel from p to q along absolutely continuous
curves in R

n at unit speed. Since exponents α= (α1, . . . , αn−1) are allowed to
be real, Hörmander’s rank condition may not be satisfied. Nevertheless, dG is

Received October 31, 2014; received in final form January 16, 2015.

2010 Mathematics Subject Classification. Primary 53C17. Secondary 30L05.

21

c©2016 University of Illinois

http://www.ams.org/msc/


22 J.-M. WU

well-defined and equals the Carnot–Carathéodory distance

inf
γ

∫ 1

0

√√√√ n∑
j=1

x′
j(t)

2

λj(t)
2 dt,

where the infimum is taken over all absolutely continuous curves γ : [0,1]→Rn

connecting γ(0) = p to γ(1) = q.
The resulting space G

n
α = (Rn, dG), which is Riemannian outside the hy-

perplanes
∏n−1

1 xj = 0, is called a Grushin space, after the work of Grushin
on the hypoelliptic operators [9]. For geodesics in Grushin spaces and metric
properties, see Bellaic̈he [4] and Franchi and Lanconelli [7].

Grushin spaces are usually regarded as the simplest sub-Riemannian man-
ifolds. Potential theoretic and PDE aspects of Grushin operators have been

extensively investigated. Operators
∑n

1 λ
2
j (x)

∂2

∂x2
j

associated to the vector

fields studied in this note have been the focus in [6], [12], [13], [17], and [18].
Recent solutions of isoperimetric problems on Grushin planes by Monti and
Morbidelli [16] and by Arcozzi and Baldi [3], and the isoperimetric profiles
that they provide have generated new interest in Grushin geometry.

In this note, we compare the Grushin geometry to Euclidean geometry,
highlighting the role of the exponents α= (α1, . . . , αn−1) and the fractal na-
ture of the singular hyperplanes in Grushin geometry. We ask when a Grushin
space G

n
α is quasisymmetric to R

n, when it is bilipschitzly homeomorphic to
R

n, and when G
n
α can be bilipschitzly embedded in R

n+1 in such a way that
the embedded image has controlled quasiconformal geometry in R

n+1.
Our answers to the parametrizability and the embeddability of Gn

α in terms
of the exponents α change abruptly from one range of α to another; they are
based on a variety of theorems on quasiconformal mappings in Euclidean
spaces, in particular, on snowflake embeddings by David and Toro [5] and
quasisymmetric extensions by Tukia and Väisälä [24].

In the embedding question, we emphasize the embeddability into a Eu-
clidean space of the lowest possible dimension. It is known that G

n
α can al-

ways be embedded bilipschitzly into some Euclidean space (Seo [22]). Semmes
[21] has observed that, on the contrary, the first Heisenberg group H when
equipped with its Carnot metric does not admit bilipschitz embedding into
Euclidean spaces, based on Pansu’s Rademacher Differentiation Theorem [19].

In our embedding problem, the image is equipped with the ambient Eu-
clidean metric. On the other hand, a theorem of Le Donne, extending a clas-
sical work of Nash, asserts that every sub-Riemannian manifold of topological
dimension n can be embedded in R

2n+1 path-isometrically [14]. Therefore,
both the Grushin spaces Gn

α and the Heisenberg groups can be so embedded.
We summarize our results in Section 2, and study the Grushin metrics in

Section 3. We show that the Grushin spaces G
n
α are not quasisymmetric to

R
n for a certain range of exponents α in Section 4, and show however that Gn

α
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can be quasisymmetrically parametrized by R
n for some other choices of α in

Section 5. The questions on bilipschitz parametrization of Gn
α by R

n and on
bilipschitz embedding of Gn

α into R
n+1 are reduced to questions of snowflake

embedding in Euclidean spaces in Section 6. Section 7 furnishes the theorems
on Euclidean embedding needed in Section 6.

In what follows, constants will depend at most on n and α; we write a� b
when a/b is bounded above and below by finite positive constants that depend
at most on n and α, unless otherwise mentioned.

2. Summary

An embedding f : X → Y between two metric spaces is said to be η-
quasisymmetric if there is a homeomorphism η : [0,∞)→ [0,∞) so that∣∣f(a)− f(x)

∣∣≤ η(t)
∣∣f(b)− f(x)

∣∣
whenever a, b, x ∈X with |a− x| ≤ t|b− x|, and is said to be L-bilipschitz if
there exists L≥ 1 so that

L−1|a− b| ≤
∣∣f(a)− f(b)

∣∣≤ L|a− b|
for all a, b ∈X . Bilipschitz embeddings are quasisymmetric.

2.1. Dimension 2. In dimension 2, with a slight abuse of notation, we write
G= G2

α for the Grushin plane with exponent α ≥ 0, and observe that when
α= 0, G2

0 =R
2.

The Grushin plane G
2
α is quasisymmetric to R

2 for every α > 0 (Meyerson
[15]).

The Grushin metric dG on G
2
α is Riemannian outside the singular line

{x1 = 0} and it is the 1
1+α -snowflake of the Euclidean metric on {x1 = 0}. So

the Hausdorff dimension of the singular line is 1 + α.
In fact for each α ∈ (0,1), there exists a bilipschitz homeomorphism from

G
2
α onto R

2 that maps the singular line {x1 = 0} onto a von Koch-type
snowflake curve of Hausdorff dimension 1+α; see Corollary 6.3 below. There-
fore, all Grushin planes G2

α,0<α< 1, are bilipschitz to R
2.

When α= 1, the Grushin plane G2
1 is not bilipschitz to R

2. However G2
1 can

be bilipschitzly embedded in R
3, and in such a way that the embedded image

is a quasiplane in R
3. The proof in [27] demonstrates an explicit embedding.

Recall that a quasiplane is the image of R
2 × {0} under a quasiconformal

homeomorphism of R3.
Suppose α is a positive integer. A glance at the metric in [4] confirms

that in the Grushin space G
2
α, every Grushin ball BG((0, b), r) centered on

the singular line {x1 = 0} meets {x1 = 0} on a segment of (1+α)-dimensional
(Hausdorff) Grushin measure � r1+α. Furthermore, the ball BG((0, b), r) con-
tains a smaller Grushin ball of radius at least δ(α)r outside the singular line,
for some constant 0< δ(α)< 1. These facts, combined with a point of density
argument, prevent any bilipschitz embedding of G2

α into R
α.
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By generalizing the construction in [27], Romney and Vellis [20] recently
showed that G

2
α can be bilipschitzly embedded into R

2+�α� for each α > 0,
where 	α
 is the integer part of α.

2.2. Dimension 3. We now give an account of what can be proved in dimen-
sion 3; most of the statements below have higher dimensional counterparts.

Consider in R
3 the vector fields

X1 =
∂

∂x1
, X2 = |x1|α1

∂

∂x2
, X3 = |x1|α1 |x2|α2

∂

∂x3

with exponents α1, α2 ≥ 0, and let G=G
3
α be the Grushin space associated to

α= (α1, α2). We assume the metric estimate (3.2) in the following discussion.
I. Suppose that α1 = 0. Then by (3.2), the Grushin metric

(2.1) dG(x, y)� |x1 − y1|+ |x2 − y2|+min

{
|x3 − y3|

1
1+α2 ,

|x3 − y3|
|x2|α2

}
for all x, y ∈R

3. So as metric spaces, G3
α and R×G

2
α2

are bilipschitzly equiv-
alent.

When 0≤ α2 < 1, G2
α2

is bilipschitz to R
2. Hence G

3
α, a product, is bilips-

chitzly homeomorphic to R
3.

An interesting dichotomy occurs here.
When α2 ≥ 1, G3

α is not even quasisymmetric to R3.
In fact there exist patches on G

3
α which resemble the product of an interval

with a wrinkled surface. A method of Väisälä in [26] may be adapted to show
that when α2 ≥ 1, the wrinkles are too severe to allow these patches to be
quasisymmetrically embedded in R

3; see Theorem 4.1 for details.
II. Suppose that α2 = 0. In this case, the Grushin metric

dG(x, y)� |x1 − y1|+min

{
|x2 − y2|

1
1+α1 ,

|x2 − y2|
|x1|α1

}

+min

{
|x3 − y3|

1
1+α1 ,

|x3 − y3|
|x1|α1

}
,

and the singular plane {x1 = 0} in G
3
α is a snowflake surface which has Haus-

dorff dimension 2(1 + α1).
When α1 ≥ 0, the Grushin space G

3
α is quasisymmetric to R

3; see Theo-
rem 5.1.

When 0 ≤ α1 < 1, the Grushin space G
3
α is bilipschitz homeomorphic to

a codimension one quasiplane Pα in R4; see Theorem 6.4 for a proof. Re-
call that a codimension one quasiplane in R

k is the image of Rk−1 under a
quasiconformal homeomorphism of Rn.

Furthermore, when 0 ≤ α1 < c0, all Grushin spaces G
3
α are bilipschitz to

R
3, where c0 is a constant in (0,1); see Theorem 6.2.
Under the assumption α2 = 0, the singular hyperplane {x1 = 0} is the

product of two snowflakes of the Euclidean line, of equal exponent. Therefore
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questions about parametrizing and embedding Grushin spaces may be reduced
to the existence of quasisymmetric extensions and snowflake embeddings in
Euclidean spaces; results of this kind from [5], [24], [25], and [11] in Euclidean
spaces may then be applied.

III. Suppose that α1 > 0 and α2 ≥ 1. The space G
3
α is not quasisymmetric

to R
3; again see Theorem 4.1

IV. In the case α1 > 0 and 0< α2 < 1, whether G
3
α and R

3 are quasisym-
metrically equivalent remains unknown.

3. Grushin metrics

A comparison between Grushin balls and Euclidean boxes has been formu-
lated by Franchi and Lanconelli in [7]. We recall this connection following the
exposition in [7] (also [8] and [17]). Let Fj : R

n× [0,∞)→ [0,∞) be functions

F1(x, r) = r,

F2(x, r) = rλ2

(
|x1|+ F1(x, r)

)
, . . .

Fj(x, r) = rλj

(
|x1|+ r, |x2|+ F2(x, r), . . . , |xj−1|+ Fj−1(x, r)

)
,

that satisfy a recurrence relation

(3.1) Fj+1(x, r) = Fj(x, r)
(
|xj |+ Fj(x, r)

)αj
, j = 1, . . . , n− 1.

Note that λj depends only on x1, . . . , xj−1. Write

ϕj(x, ·) = Fj(x, ·)−1

for their inverses; also write BG(x, r) for balls in G
n
α, and

Box(x, r) =
{
x+ h : |hj |<Fj(x, r), j = 1, . . . , n

}
for Euclidean boxes.

Theorem 3.1 (Franchi and Lanconelli [7]). There exists a constant C > 1
depending only on n and α such that

Box
(
x,C−1r

)
⊂BG(x, r)⊂Box(x,Cr) for x ∈R

n and r > 0,

and that

C−1dG(x, y)≤
n∑

j=1

ϕj

(
x, |xj − yj |

)
≤CdG(x, y) for x, y ∈R

n.

The proof of Theorem 3.1 in [7] further suggests a short route from x to y:

dG(x, y)� dG
(
x,x+ (y1 − x1)e1

)
+ dG

(
x+ (y1 − x1)e1, x+ (y1 − x1)e1 + (y2 − x2)e2

)
+ · · ·

+ dG
(
x+ (y1 − x1)e1 + · · ·+ (yn−1 − xn−1)en−1, y

)
.
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We deduce an explicit estimate of the Grushin metric from the simple fact:

min
{
t

1
1+a , tξ−a

}
=

{
t

1
1+a , if t≥ ξ1+a,

tξ−a, if t≤ ξ1+a,

for all t, ξ, a > 0.

Lemma 3.2. Fix exponents α = (α1, . . . , αn−1). The inverses ϕj(x, ·) of
Fj(x, ·),1≤ j ≤ n, satisfy a recurrence relation, ϕ1(x, t) = t and

ϕj+1(x, t) = ϕj

(
x, gj(x, t)

)
for 1≤ j ≤ n− 1,

where

gj(x, t) =min
{
t

1
1+αj , t|xj |−αj

}
.

Consequently, the Grushin metric in G=G
3
α satisfies

dG(x, y)� |x1 − y1|+min

{
|x2 − y2|

1
1+α1 ,

|x2 − y2|
|x1|α1

}
(3.2)

+min

{(
min

{
|x3 − y3|

1
1+α2 ,

|x3 − y3|
|x2|α2

}) 1
1+α1

,

min{|x3 − y3|
1

1+α2 , |x3−y3|
|x2|α2

}
|x1|α1

}
.

Proof. Note first that

F1(x, r) = r, F2(x, r) = r
(
|x1|+ r

)α1
,

F3(x, r) = r
(
|x1|+ r

)α1
(
|x2|+ r

(
|x1|+ r

)α1
)α2

, . . . .

Clearly, ϕ1(x, t) = t.
We set t= F2(x, r), and consider the cases r ≥ |x1| and r ≤ |x1| separately.

Straightforward calculation shows that

ϕ2(x, t)�
{
t

1
1+α1 , if t≥ |x1|1+α1 ,

t|x1|−α1 , if t≤ |x1|1+α1 .

Hence,

ϕ2(x, t)�min
{
t

1
1+α1 , t|x1|−α1

}
= g1(x, t).

Set t= F3(x, r) and τ = F2(x, r). The recurrence relation (3.1) yields that
t= τ(|x2|+ τ)α2 and τ = r(|x1|+ r)α1 . Hence,

ϕ3(x, t) = g1(x, τ) = g1
(
x, g2(x, t)

)
= ϕ2

(
x, g2(x, t)

)
.

The recurrence relation in the claim follows by induction.
The metric estimate 3.2 follows then from Theorem 3.1. �
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Remark 3.3. Write

δτ (p) =
(
p1τ, p2τ

1+α1 , . . . , pnτ
∏n−1

1 (1+αj)
)

for p ∈ R
n and τ ≥ 0. The Grushin metric has the dilation property: for all

x, y ∈R
n and τ ≥ 0,

dG
(
δτ (x), δτ (y)

)
= τdG(x, y).

Moreover, the Grushin metric is translation invariant in xn.

The xj -coordinate axis in G
n
α has Hausdorff dimension

∏j−1
0 (1+αi), where

j = 1, . . . , n, and α0 = 0.

4. Quasisymmetric non-parametrization

For certain choices of α, there exists a cube in G
3
α = (R3, dG) that resem-

bles the product of an interval with a patch of wrinkled surface. The wrinkles
on the patch are severe enough to prevent any quasisymmetric embedding
of the cube into R

3. To prove this, we apply a method of Väisälä in [26,
Theorem 4.2], used there to show that the product of an interval and a non-
rectifiable arc of finite diameter can never be quasisymmetrically embedded
in R

2. See also [2, Theorem 4.1].

Theorem 4.1. Suppose that α1 ≥ 0 and α2 ≥ 1. Then the Grushin space
G

3
α is not quasisymmetric to R

3.

Proof. Towards a contradiction, we assume that f : G3
α →R

3 is a quasisym-
metric homeomorphism.

Observe by (3.2) that for any b ∈ R, the Grushin metric on the cube Q=
[1,2]× [0,1]× [b, b+ 1] can be estimated by

(4.1) dG(x, y)� |x1 − y1|+ |x2 − y2|+min

{
|x3 − y3|

1
1+α2 ,

|x3 − y3|
|x2|α2

}
.

Hence, (Q,dG) is bilipschitz to the product of a Euclidean interval and a 2-cell
in G

2
α2
.

Set A= [1,2] and D = [0,1]× [b, b+ 1]. Write

Q=A×D,

and

β =min
{∣∣f(1, z)− f(2, z)

∣∣ : z ∈D
}
.

Given an integer m≥ 10, we subdivide A into 2m intervals Ai = [ai−1, ai],
1≤ i≤ 2m, of equal length; and partitionD into Euclidean rectangles {Dj ,1≤
j ≤N(m)} as follows.

For every 0≤ k ≤m−1, subdivide the strip [2−k−1,2−k]× [b, b+1] inD into
2m−k−1 · 	2m+kα2
 rectangles of side lengths 2−m and 	2m+kα2
−1. Here 	c

is the largest integer less than or equal to c. Subdivide also [0,2−m]× [b, b+1]
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into rectangles of side lengths 2−m and 	2m+mα2
−1. Then, the total number
N(m) of rectangles in this subdivision has magnitude

N(m)�

⎧⎪⎨
⎪⎩
22m, if 0≤ α2 < 1,

22mm, if α2 = 1,

2(1+α2)m, if α2 > 1.

In view of (4.1), each Euclidean box Qij =Ai×Dj contains a Grushin ball
and is contained in another one, both of diameter comparable to 2−m in the
Grushin metric.

Fix for each j a point zj in Dj having distG2
α2
(zj , ∂Dj)� 2−m, and set

βij =
∣∣f(ai, zj)− f(ai−1, zj)

∣∣.
Then, by the quasisymmetry, β3

ij ≤ c1H3(f(Qij)) for some constant c1 de-
pending only on η. By Schwarz’ inequality,

β3 ≤
(

2m∑
i=1

βij

)3

≤ 22m
2m∑
i=1

β3
ij ≤ c12

2mH3

(
f

(
2m⋃
i=1

Qij

))

for each j. Summing over j, we get

β3 ≤ c1N(m)−122mH3
(
f(Q)

)
.

In the case α2 ≥ 1, this leads to a contradiction as m→∞. �
Corollary 4.2. Suppose that α� ≥ 1/(n− �) for some � ∈ [2, n− 1]. Then

the Grushin space G
n
α is not quasisymmetrically equivalent to R

n.

Proof. It follows from Lemma 3.2 that for any b ∈ R, the Grushin metric
on the cube Q= [1,2]�−1 × [0,1]× [1,2]n−�−1 × [b, b+ 1] can be estimated by

dG(x, y)�
�−1∑
j=1

|xj − yj |+ |x� − y�|+
n∑

j=�+1

min

{
|xj − yj |

1
1+α� ,

|xj − yj |
|x�|α�

}
.

The non-existence of quasisymmetric homeomorphism between G
n
α and R

n

can be established following the counting argument in the previous proof. �
Remark 4.3. Other conditions, in terms of α1, . . . , αn−1, that prevent the

quasisymmetric parametrization of Gn
α by R

n may be established by consid-
ering the Grushin metric at other spots in G

n
α. Systematic studies have not

been made.

5. Quasisymmetric parametrization

In this section, we show the existence of quasisymmetric parametrization
for a particular class of Gn

α.

Theorem 5.1. When n ≥ 2, α1 ≥ 0 and αj = 0 for all j ∈ [2, n− 1], the
Grushin space G

n
α is quasisymmetric to R

n.
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The theorem is due to Meyerson [15] in dimension 2.

Proof of Theorem 5.1. Assume as we may that α1 > 0; otherwise G=Rn.
We claim that the higher dimensional analogue of Meyerson’s map

(5.1) H(x) =
(
x1|x1|α1 , x2, . . . , xn

)
maps Gn

α quasisymmetrically onto R
n.

Since αj = 0 for all j ∈ [2, n− 1], the Grushin metric

(5.2) dG(x, y)� |x1 − y1|+
n∑

j=2

min

{
|xj − yj |

1
1+α1 ,

|xj − yj |
|x1|α1

}
.

Set s= dG(x, y) and write s1 +
∑n

j=2 sj for the right-hand side of the above,
with the obvious identifications. Then

s�max{sj : 1≤ j ≤ n}.
It is straightforward to check that∣∣H(x)−H(y)

∣∣�max
{
|x1|x1

∣∣α1− y1
∣∣y1∣∣α1

∣∣, |x2 − y2|, . . . , |xn − yn|
}

�max
{
max

{
s1+α1
j , sj |x1|α1

}
: 1≤ j ≤ n

}
�
{
s1+α1 , if s≥ |x1|,
s|x1|α1 , if s≤ |x1|.

Therefore, H is η-quasisymmetric with η(t) = Cmax{t, t1+α1} and C a
constant depending only on α1. �

Remark 5.2. Recall from Section 2.2 that when α1 = 0 and 0 ≤ α2 < 1,
the Grushin space G

3
α is bilipschitzly equivalent to R×G

2
α2

which is in turn

bilipschitz to R
3.

The following question is left open by Theorems 4.1 and 5.1, and Re-
mark 5.2.

Question 5.3. Is G3
α quasisymmetric to R

3, when α1 > 0 and 0<α2 < 1?

6. Bilipschitz parametrization and embedding

Assume in this section that n≥ 2, α1 > 0, and α= (α1,0, . . . ,0).
The corresponding Grushin operator

∂2

∂x2
1

+

n∑
2

|x1|2α1
∂2

∂x2
j

has been examined in several of the articles mentioned in the Introduction.
The Grushin metric dG associated to this operator has the form

dG(x, y)� |x1 − y1|+
n∑

j=2

min

{
|xj − yj |

1
1+α1 ,

|xj − yj |
|x1|α1

}
.
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In this case, the singular hyperplane {x1 = 0} in G
n
α is the product of n−1

snowflakes of the Euclidean line, of equal exponent. This fact enables us
to reduce the questions about parametrizing and embedding Grushin spaces
to questions on the existence of quasisymmetric extensions and snowflake
embeddings in Euclidean spaces.

6.1. Reduction to snowflake embeddings in Euclidean spaces. For
x= (x1, . . . , xn) ∈R

n, we also write x= (x1, x
′) with x′ = (x2, . . . , xn).

Theorem 6.1. Assume that n ≥ 2, α1 > 0 and α = (α1,0, . . . ,0). Let
H : Gn

α →R
n be the quasisymmetric homeomorphism defined by (5.1), and let

a= α1

1+α1
. Suppose that m≥ n and that φ : Rn →Rm is an η-quasisymmetric

embedding which is (1− a)-snowflake on R
n−1:

(6.1) C−1
∣∣x′−y′

∣∣1−a ≤
∣∣φ(x′)−φ

(
y′
)∣∣≤C

∣∣x′−y′
∣∣1−a

for all x′, y′ ∈R
n−1

and some constant C > 1, and has the property that

|x1|aφ|B(x,|x1|/2) are uniformly bilipschitz for all(6.2)

x ∈R
n \

(
{0} ×R

n−1
)
.

Then the composition φ ◦ H : Gn
α → R

m is a bilipschitz embedding, with a
bilipschitz constant depending only on n,a and η.

Note that the embedded hyperplane φ(Rn−1) has Hausdorff dimension n−1
1−a .

Proof of Theorem 6.1. Constants in the proof may also depend on η.
Note by (6.2) that

(6.3)
∣∣φ(x)− φ(y)

∣∣� (
max

{
|x1|, |y1|

})−a|x− y|
for all x, y ∈R

n with |x− y| ≤max{|x1|, |y1|}/2.
Observe also that

(6.4)
∣∣φ(x)− φ(y)

∣∣� |x− y|1−a

for all x, y ∈R
n with |x− y| ≥max{|x1|, |y1|}/2.

To check (6.4), we assume |x1| ≥ |y1|. In the case |x′ − y′| ≤ 10|x1|, we get
|x− y| � |x1|. From (6.2) and the quasisymmetry, (6.4) follows. In the case
|x′ − y′| > 10|x1|, we have |x − y| � |x′ − y′|. It follows from (6.1) and the
quasisymmetry that∣∣φ(x)− φ(y)

∣∣� ∣∣φ(x)− φ
(
0, y′

)∣∣� ∣∣φ(0, x′)− φ
(
0, y′

)∣∣� |x− y|1−a.

The definition of H in (5.1) yields

|x1|1+α1 =max
{
dist

(
H(x),{0} ×R

n−1
)
,dist

(
H(y),{0} ×R

n−1
)}

.

To prove that φ ◦ H is bilipschitz, we consider four cases based on the
relative locations of x and y in R

n, and assume as we may that |x1| ≥ |y1|.
Since αj = 0 for all j ∈ [2, n − 1], the Grushin metric will be estimated by
(5.2).
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Case I. |x1| > 0, |x1 − y1| ≤ |x1|/4 and |x′ − y′| ≤ |x1|1+α1/4. In this
case, |x1| � |y1|. By (5.2), the Grushin distance dG(x, y) � |x1 − y1| +
|x′ − y′||x1|−α1 . And by (5.1), the Euclidean distance∣∣H(x)−H(y)

∣∣� |x1|α1 |x1 − y1|+
∣∣x′ − y′

∣∣
≤max

{
dist

(
H(x),{0} ×R

n−1
)
,dist

(
H(y),{0} ×R

n−1
)}

/2.

In view of (6.3),∣∣φ ◦H(x)−φ ◦H(y)
∣∣� dist

(
H(x),{0}×R

n−1
) −α1

1+α1

∣∣H(x)−H(y)
∣∣� dG(x, y).

Case II. |x1|> 0, |x1 − y1| ≥ |x1|/4 and |x′ − y′| ≤ |x1|1+α1/4. In this case,

|x1 − y1| � |x1|. So the Grushin distance dG(x, y)� |x1 − y1|+ |x′ − y′|
1

1+α1 �
|x1|. The Euclidean distance∣∣H(x)−H(y)

∣∣� |x1|1+α1 +
∣∣x′ − y′

∣∣� |x1|1+α1

�max
{
dist

(
H(x),{0} ×R

n−1
)
,dist

(
H(y),{0} ×R

n−1
)}

.

Estimates |φ ◦H(x) − φ ◦H(y)| � dG(x, y) may be deduced from (6.3) and
(6.4).

Case III. |x1|> 0 and |x′ − y′| ≥ |x1|1+α1/4. In this case, dG(x, y)� |x′ −
y′|

1
1+α1 and∣∣H(x)−H(y)

∣∣� ∣∣x′ − y′
∣∣

� max
{
dist

(
H(x),{0} ×R

n−1
)
,dist

(
H(y),{0} ×R

n−1
)}

.

Hence by (6.4), |φ ◦H(x)− φ ◦H(y)| � |H(x)−H(y)|
1

1+α1 � dG(x, y).
Case IV. x1 = 0. |φ◦H(x)−φ◦H(y)| � dG(x, y) can be obtained by taking

limits in Case III.
This completes the proof. �

The question on the bilipchitz parametrizability and the bilipschitz embed-
dability of the particular class of Grushin spaces considered in this section has
now been reduced to a problem on the existence, in Euclidean spaces, of the
kind of snowflake embeddings described in Theorem 6.1.

The discussion in the next subsection assumes the theorems on the existence
of Euclidean embedding in Section 7.

6.2. Bilipschitz parametrization and embedding of Grushin spaces.
Assume that n≥ 2, α1 > 0, and α= (α1,0, . . . ,0). Then the Hausdorff dimen-
sion of the Grushin space

(6.5) dimG
n
α =max

{
n, (n− 1)(1 + α1)

}
,

where (n− 1)(1 + α1) is the Hausdorff dimension of the singular hyperplane
{x1 = 0} in G

n
α.
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When α1 =
1

n−1 , every Grushin ball centered on the singular hyperplane

{x1 = 0} of radius r intersects {x1 = 0} on a set of n-dimensional (Hausdorff)
Grushin measure � rn, and it contains a smaller Grushin ball of radius com-
parable to r outside the singular hyperplane. As in Section 2.1, a point of
density argument yields that Gn

α is not bilipschitz homeomorphic to R
n.

Is Gn
α bilipschitz homeomorphic to R

n whenever α1 <
1

n−1 , in other words,
for the full range of α1 allowed by the Hausdorff dimension?

Theorem 6.2. For each integer n≥ 2 there exists 0< c(n)≤ 1
n−1 , such that

if 0<α1 < c(n) and αj = 0 for all j ≥ 2 then G
n
α is bilipschitz homeomorphic

to R
n. When n= 2, c(2) = 1.

Proof. When n= 2, take c(2) = 1. Given 0<α1 < c(2), let f : R2 →R
2 be

the quasiconformal map on R
2 associated to a= α1

1+α1
defined in Section 7.1,

and let H : G2
α1

→R2 be the quasisymmetric map defined by (5.1). It follows

from (7.1), (7.2), and Theorem 6.1 that f ◦ H : G2
α1

→ R2 is a bilipschitz
homeomorphism.

For n ≥ 3, take a1(n,
1

100 ) to be the number chosen in Proposition 7.2

and c(n) = a1(n,
1

100 )(1 − a1(n,
1

100 ))
−1. When 0 < α1 < c(n), a := α1

1+α1
<

a1(n,
1

100 ). Let, in this case, Ψ: Rn →R
n be the quasiconformal map associ-

ated to a in Proposition 7.2, and H : Gn
α →R

n be the map in (5.1). Again by
(7.5), (7.7), and Theorem 6.1, Ψ ◦H : Gn →R

n is bilipschitz. �

Theorem 6.2 is sharp in dimension 2; the proof of Theorem 6.2, using only
the von Koch-type snowflake embedding, is particularly simple. For special
emphasis, we state it again.

Corollary 6.3. For each α1 ∈ (0,1), there exists a bilipschitz homeomor-
phism from the Grushin plane G2

α onto R2 that maps the singular line {x1 = 0}
onto a von Koch-type snowflake curve of Hausdorff dimension 1 + α1. Here
α= (α1).

The existence of bilipschitz embedding of the Grushin plane G2
α into R

3 has
been proved in [27] and [20] for 0<α1 < 2; see the discussion in Section 2.1.

Consider next n≥ 3. In view of (6.5) and for a reason similar to that stated
in the beginning of this subsection, Gn

α can not be bilipschitzly embedded in
Rn+1 when α1 ≥ 2

n−1 .

Can G
n
α be bilipschitzly embedded in R

n+1 as a codimension 1 quasiplane
whenever α1 <

2
n−1? The question asks about the embeddability of Gn

α into an
ambient space of precisely one topological dimension higher, for a full range
of α1 allowed by the Hausdorff dimension of Gn

α, and in such a way that the
embedded image has a controlled quasiconformal geometry.

Recall that the image of Rk−1 under a quasiconformal homeomorphism of
R

k is called a quasiplane in R
k when k ≥ 3, or a quasiline when k = 2.
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Theorem 6.4. For each integer n ≥ 2 there exists 0 < β(n) ≤ 2
n−1 such

that if 0< α1 < β(n) and αj = 0 for all j ≥ 2, then G
n
α is bililipschitz home-

omorphic to a codimension 1 quasiplane in R
n+1. In fact, we have β(2) = 2

and β(3) = 1.

Theorem 6.4 is sharp in dimensions 2 and 3; in other words, the full range
of exponents allowed for bilipschitz embedding may be reached for dimensions
2 and 3. The roles of von Koch-type snowflake embeddings played in both
cases do not seem to extend to higher dimensions.

Proof. The claim in dimension 2 has been proved in [27] and [20].
When n = 3, take β(3) = 1. Given 0 < α1 < β(3), let F be the quasi-

conformal homeomorphism of R4 associated to a= α1

1+α1
in Proposition 7.3,

and φ = F |R3×{0}. Let H : G3
α → R

3 be the map in (5.1). Then it follows

from Proposition 7.3 and Theorem 6.1 that φ ◦ H : G3
α → R

4 is a bilips-
chitz embedding and φ ◦H(G3

α) = F (R3 ×{0}) is a codimension 1 quasiplane
in R

4.
When n ≥ 4, let a2(n) be the constant fixed in Remark 7.6, and set

β(n) = a2(n)/(1 − a2(n)). Given 0 < α1 < β(n), take a := α1

1+α1
< a2(n),

and let F̃ : Rn+1 → R
n+1 be the quasiconformal map associated to a in Re-

mark 7.6. Set φ = F̃ |Rn×{0} and let H : Gn
α → R

n be the map in (5.1).

Again by Remark 7.6 and Theorem 6.1, φ ◦H : Gn
α → R

n+1 is a bilipschitz

embedding and φ ◦H(Gn
α) = F̃ (Rn × {0}) is a codimension 1 quasiplane in

R
n+1. �

7. Snowflake embeddings of Rn−1 in R
n with controlled

quasiconformal geometry

We now discuss snowflake embeddings of Euclidean spaces into low dimen-
sional target spaces. In particular, we establish the existence by applying
known results on mixed-snowflake embeddings, local-snowflake embeddings,
and von Koch-type snowflake embeddings.

7.1. Von Koch snowflake embeddings of R in R
2. We first recall the

construction of a snowflake embedding from R onto an infinite von Koch-type
snowflake curve.

Given 0< a < 1
2 , let γ = γa be the standard von Koch-type snowflake arc

in R
2, homeomorphic to the interval [0,1] and having endpoints (0,0), (1,0),

which consists of four self-similar pieces scaled by the factor

p= 4a−1 ∈
(
1

4
,
1

2

)
,
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and has Hausdorff dimension log 4
log 1/p = 1

1−a . More precisely, fix θ in [0, π/2)

with p+ p cosθ = 1
2 , and define similarities ωi : R

2 →R2 by

ω1(x) = px, ω2(x) =Rθ(px) + pe1,

ω3(x) =R−θ(px) +
1

2
e1 + p sinθe2, ω4(x) = px+ (1− p)e1,

where Rθ and R−θ are the rotations of R2 about the origin 0 by angles θ
and −θ, respectively. The von Koch snowflake arc γa is the unique compact
subset of R2 verifying

γa =

4⋃
i=1

ωi

(
γa

)
.

Let � : [0,1]→ γa be the homeomorphism which maps 0 and 1 to the end-
points (0,0) and (1,0), respectively, and maps, for each fixed k ≥ 1, all subin-
tervals [m−1

4k
, m
4k
], 1 ≤m ≤ 4k, to congruent subarcs of γa. Observe that for

x ∈ [0,1],
�(x) = p−1�(x/4),

and
�(x) = σ ◦ �(1− x),

where σ is the reflection of R2 with respect to the line { 1
2} ×R.

The map � induces a snowflake embedding f : R → R
2 as follows. Set

Q := �( 12 ) =
1
2e1 + p sinθe2, and define for each k ≥ 1, an embedding fk:

[−2 · 4k−1,2 · 4k−1]→R
2 by

fk(x) =Q+ p−k

(
�

(
x

4k
+

1

2

)
−Q

)
.

We claim that �(x+ 1
2 ) =Q+ p−1(�(x4 + 1

2 )−Q) for all x ∈ [−1
2 ,

1
2 ].

When x ∈ [0, 12 ], the claim follows from the facts

�

(
x+

1

2

)
=R−θ ◦ �(x) +Q,

and

�

(
x

4
+

1

2

)
=R−θ ◦ �

(
x

4

)
+Q= pR−θ ◦ �(x) +Q;

when x ∈ [−1
2 ,0], the claim follows from the symmetry,

�

(
x+

1

2

)
= σ ◦ �

(
−x+

1

2

)
and �

(
x

4
+

1

2

)
= σ ◦ �

(
−x

4
+

1

2

)
,

and the previous reasoning.
Now we see that fj(x) = fk(x) for all x ∈ [−2 · 4k−1,2 · 4k−1] and all j ≥ k;

and therefore the sequence (fk) converges to an embedding f : R→R
2. It is

straightforward to check that f is (1− a)-snowflake:

(7.1) C−1|x− y|1−a ≤
∣∣f(x)− f(y)

∣∣≤C|x− y|1−a for all x, y ∈R
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and an absolute constant C > 1, and hence η-quasisymmetric with η(t) =
C2t1−a. We call

f : R→Σa = f(R)

a snowflake embedding.
Identify now R with the line {0} ×R in the plane R2.
Following Ahlfors [1] and Tukia [23], we next extend f to a K-quasi-

conformal homeomorphism, again called f , of R2 which is continuously dif-
ferentiable outside R and whose derivative at x = (x1, x2) ∈ R

2 \ ({0} × R)
satisfies

L−1 |f(x2 + x1)− f(x2 − x1)|
2|x1|

≤ min
|ξ|=1

∣∣Df(x)ξ
∣∣

≤max
|ξ|=1

∣∣Df(x)ξ
∣∣≤ L

|f(x2 + x1)− f(x2 − x1)|
2|x1|

,

where constants K and L depend only on a. It follows from the (1 − a)-
snowflake property on {0} ×R that

(7.2)
∣∣Df(x)ξ

∣∣� |x1|−a for all x ∈R
2 \

(
{0} ×R

)
and |ξ|= 1.

7.2. Snowflake embeddings of R
n−1 in R

n. Snowflake embedding of a
Euclidean space of dimension greater than 1 into a low dimensional target
space is much more difficult than the embedding of a line, even when the
snowflake exponent is close to 1.

We first record a deep theorem of David and Toro [5] on themixed-snowflake
embedding of Rn−1 into R

n. To give a better overview, we also include some
statements that will not be used in the sequel.

In what follows, Rn−1 is identified with the hyperplane {0}×Rn−1 in Rn.

Theorem 7.1. David–Toro [5] For each integer n ≥ 2 there exists 0 <
a(n)< 1

n such that if 0< a< a(n), then there is an embedding ϕ : Rn−1 →R
n

with the (1− a,1)-snowflake property:

(7.3)
1

C
max

{
|x−y|, |x−y|1−a

}
≤
∣∣ϕ(x)−ϕ(y)

∣∣≤Cmax
{
|x−y|, |x−y|1−a

}
for all x, y ∈ R

n−1 and some constant C > 1 depending only on n. The em-
bedding ϕ can be extended to a K-quasiconformal homemorphism Φ of Rn,
which is smooth outside Rn−1 and is equal to the identity far from Rn−1, for
some constant K depending only on n and a.

Furthermore, for every ε > 0 there exists 0 < a1(n, ε) < a(n), so that if
0 < a < a1(n, ε) then Φ may be chosen to have these additional properties:
associated to each ball B = B(x, r) in R

n there exist a number mB > 0 and
an affine map AB of Rn so that

9

10
mB ≤ |DABξ| ≤

11

10
mB for all ξ in R

n with |ξ|= 1,



36 J.-M. WU

and ∣∣Φ(z)−A(z)
∣∣≤ εmBr for all z ∈B;

associated to every B = B(x, r) ⊂ R
n whose center is on R

n−1, there is an
isometry JB of Rn so that Φ

(7.4)
∣∣Φ(z)−mBJB(z)

∣∣≤ εmBr for all z ∈B.

The first statement follows from Theorem 2.10, Corollary 2.19 and Re-
mark 2.25 in David and Toro [5], and the second statement combines
Lemma 13.12, its proof and the discussion thereafter.

Observe by (7.3) that for every B =B(x, r) in R
n with x ∈ {0}×R

n−1 and
0< r < 1, the corresponding scaling factor mB in (7.4) is in fact

mB � r−a;

and by (7.4) that

|x1|aΦ|B(x,|x1|/2) are uniformly bilipschitz for all

x=
(
x1, x

′) ∈R
n \

(
{0} ×R

n−1
)
.

In view of the mixed exponents in (7.3), the embedded image Φ(Rn−1) in
Theorem 7.1 resembles a snowflake hypersurface only in the small scale. We
need however a hypersurface that is also snowflaking in the large scale; in
other words, it must satisfy a global (1− a)-snowflake condition.

These surfaces could possibly be constructed by following the steps in [5].
However, in order to give a rigorous argument, a large number of estimates
in [5] would need to be modified. To avoid a lengthy exposition, we apply a
normal family argument.

Assume at the outset the existence of the number a(n) and the function
a1(n, ·) > 0 in Theorem 7.1. Given a ∈ (0, a(n)), let ϕ and Φ be the map-
pings, associated to a, chosen in the first part of Theorem 7.1. Since Φ is
K-quasiconformal on R

n, it is η-quasisymmetric for some η depending only
on K, therefore only on n and a.

Assume as we may that Φ(0) = 0 and Φ(en) = en. Define for every k ≥ 0

Φk(x) = 2k(1−a)Φ
(
2−kx

)
in R

n;

these mappings are again η-quasisymmetric. Observe from (7.3) that∣∣Φk(en)−Φk(0)
∣∣= 2k(1−a)

∣∣Φ(2−ken
)
−Φ

(
2−k0

)∣∣� 1;

and from the quasisymmetry that for each fixed x ∈R
n,∣∣Φk(x)

∣∣� |x|1−a for all k ≥ ln |x|
ln 2

.

So {Φk : k ≥ 0} is a normal family by Ascoli’s theorem [10]. Hence, a subse-
quence of (Φk) converges uniformly on compact subsets of Rn to a quasisym-
metric homeomorphism Ψ: Rn → R

n, which again has the (1− a)-snowflake
property on {0} ×R

n−1.
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Proposition 7.2. For each n ≥ 2 there exists 0 < a(n) < 1
n so that for

every a ∈ (0, a(n)), there is a K-quasiconformal map Ψ: Rn → R
n which is

(1− a)-snowflake on {0} ×R
n−1:

(7.5)
1

C
|x− y|1−a ≤

∣∣Ψ(x)−Ψ(y)
∣∣≤C|x− y|1−a for all x, y ∈ {0} ×R

n−1,

where constants K > 1 and C > 1 depend at most on n and a.
Moreover, for every ε > 0 there exists a1(n, ε) ∈ (0, a(n)) so that when 0<

a< a1(n, ε), the mapping Ψ may be modified so that it is close to a similarity
on every ball B ⊂R

n centered on R
n−1:

(7.6)
∣∣Ψ(z)−mBJB(z)

∣∣≤ εmBr for all z ∈B,

where JB is an isometry of Rn and mB is a scaling factor, and that

|x1|aΨ|B(x,|x1|/2) are uniformly bilipschitz for all(7.7)

x=
(
x1, x

′) ∈R
n \

(
{0} ×R

n−1
)
.

Given ε > 0, suppose that ϕ and Φ satisfy the additional conditions in the
second part of Theorem 7.1. Then properties (7.6) and (7.7) for Ψ may be
checked by scaling.

7.3. Codimension 2 snowflake embeddings. With more room to place
surfaces, codimension 2 snowflake embedding can be expected to exist for a
larger range of exponents.

We identify R
2 with {0} × R

2 in R
3, and R

3 with R
3 × {0} in R

4. The
unusual identification prepares R4 to place the images of G3

α and the singular
plane {x1 = 0} under H at R3 × {0} and {0} ×R

2 × {0} respectively, and to
select R3 ×{0} as the domain of the mapping φ. Here H and φ are the maps
in Theorem 6.1. Write

P = {0} ×R
2 × {0}.

For embeddings from R
2 into R

4, we have the following.

Proposition 7.3. Given 0< a< 1
2 , let f : R→Σa be the homeomorphism

from R to the von Koch-type snowflake curve Σa defined in Section 7. Then
the product map F : P = {0} ×R×R× {0}→R

2 ×R
2,

F : (0, x2, x3,0) 
→
(
f(x2), f(x3)

)
,

is (1− a)-snowflake on P :

C−1|x− y|1−a ≤
∣∣F (x)− F (y)

∣∣≤C|x− y|1−a for all x, y ∈ P ,

where C > 1 is an absolute constant. Moreover F may be extended to a K-
quasiconformal homeomorphism of R4, which has the property that(
dist(x,P)/2

)a
F |B(x,dist(x,P)/2) are uniformly bilipschitz for all x ∈R

4 \ P ,

and where constant K depends only on a.
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We now sketch the idea in Proposition 7.3.
Products of quasisymmetric maps are rarely quasisymmetric. An exception

is the product of quasisymmetric maps which are snowflake maps of equal
exponent. To extend F : P → R

4 to a quasiconformal homeomorphism of
R

4, a hands-on construction would require much work; we choose to adapt a
local-snowflake embedding theorem from [11].

In two papers by Tukia and Väisälä ([24] and [25]), they study extension
of a quasisymmetric embedding A→ R

n, defined on a subset A of Rn, to a
quasiconformal homeomorphism of R

n. Their existence theorems apply to
quasisymmetric embeddings that are locally uniformly close to similarities;
the closeness is measured by a gauge conditioned on the source A. Their
theorems further require the set A in the source to be either very flat or very
thick (in order for the data on A to be carried over to Whitney-type sets in
R

n \A) and to satisfy a form of boundedness (in order for the extension to
behave properly at infinity).

‘Close to similarities’ leads naturally to the idea of factoring the von Koch-
type snowflake embedding f in Proposition 7.3 into maps of small distortion,
f = fk ◦ · · · ◦ f2 ◦ f1. (In dimension 3 or higher, such factorization is known
only for some quasiconformal maps.) After the factorization, methods of
Tukia and Väisälä [24, Theorem 5.4] may be applied to extend (fj , fj) : R

2 →
R

4,1≤ j ≤ k, to quasiconformal maps Fj of R4. Finally, the extensions may
be reassembled into Fk ◦ · · · ◦ F2 ◦ F1.

Observe however that factors (fj , fj), with the exception of (f1, f1), are
defined on intermediate snowflake surfaces which cannot be confined within a
bounded distance from {0}×R

2 ×{0}. This gives rise to a stability problem
in the extension process. We bypass this issue, instead appealing to [11],
in which a local-snowflake counterpart has been proved following factoring-
extending-reassembling. Equivariance, replacing boundedness, can be used to
stabilize the extension.

To this end, we define an equivariant extension of the canonical map
� : [0,1]→ γa from Section 7.1 by

(7.8) g(x) =
(
	x
,0

)
+ �

(
x− 	x


)
for x ∈R,

where 	x
 is the largest integer less than or equal to x. Now the image

Γa = g(R) =
⋃
n∈Z

(
γa + ne1

)
is an equivariant snowflake curve contained in [−2,2]×R

2 × [−2,2].

Proposition 7.4 ([11, Proposition 6.1]). Given 0< a< 1
2 , let g : R→ Γa be

the homeomorphism in (7.8). Then the product map G : {0}×R×R×{0}→
R

2 ×R
2 defined by

G : (0, x2, x3,0) 
→
(
g(x2), g(x3)

)
,
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has a local-snowflake property on P :

C−1|x− y|1−a ≤
∣∣G(x)−G(y)

∣∣≤C|x− y|1−a for all x, y ∈ P , |x− y| ≤ 1,

and an absolute constant C > 1. The map G can be extended to a quasiconfor-
mal homeomorphism of R4 that is PL outside P and whose almost-everywhere
derivative at x ∈R4 \ P satisfies∣∣DG(x)ξ

∣∣� dist(x,P)−a for all |ξ|= 1.

This proposition is essentially Proposition 6.1 in [11]; to compare, the map
G here corresponds to H−1 in [11]. A very long, final step in the proof
of Proposition 6.1 in [11] is to ensure the extension is smooth outside the
hyperplane in the source; smoothness is not needed here in Proposition 7.4.

Proposition 7.3 follows from Proposition 7.4 by a normal family argument,
in the same way that was applied in the proof of Proposition 7.2. We leave
the details to the reader. This completes our discussion on Proposition 7.4.

Remark 7.5. The method of taking the product of two snowflake maps
on R to produce, for each d ∈ (2,4), a quasiconformal map G on R

4 which is
snowflake on R2 with dimG(R2) = d, is special when the target is of dimen-
sion 4. It yields less precise results when the target has higher dimension.

When taking the product of more than two snowflake maps, the codimen-
sion of the embedded image has to increase. In order to keep the codimension
at 2, only two snowflake maps may be used; our procedure below requires the
exponents of both maps to remain very close to 1.

Remark 7.6. Assume that n ≥ 4 and 0 < a < a(n − 1), where a(n − 1)
is the constant fixed in Proposition 7.2. Let Ψ: {0} × R

n−2 → R
n−1 be the

(1−a)-snowflake embedding chosen in Proposition 7.2, and f : R→Σa be the

(1− a)-snowflake map in Section 7.1. Thus the product F̃ : ({0} × R
n−2)×

(R× {0})→R
n−1 ×R

2,

F̃ : (0, x2, . . . , xn,0) 
→
(
Ψ(0, x2, . . . , xn−1), f(xn)

)
,

is also (1− a)-snowflake.
Before applying the method of Tukia and Väisälä in [24, Theorem 5.4] to

extend F̃ to a quasiconformal map of Rn+1, we need to show that the map F̃
is s-quasisymmetric (a quantitative way of measuring closeness to similarities
locally uniformly) for some s < s(n); here s(n) may be considered as a gauge
used to guarantee the extendability from R

n−1 to R
n+1.

It is straightforward to check the s-quasisymmetry when the snowflake
exponent is sufficiently close to 1. As a consequence, there exists a2(n) ∈
(0, a(n − 1)) such that if 0 < a < a2(n) then F̃ can be extended to a K-
quasiconformal map on R

n+1 for some constant K > 1 depending only on n
and a. Moreover the extension, again called F̃ , produced following Tukia and
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Väisälä’s procedure is PL outside {0}×R
n−1×{0}, and its almost-everywhere

derivative at x ∈R
n+1 \ ({0} ×R

n−1 × {0}) satisfies∣∣DF̃ (x)ξ
∣∣� dist

(
x,{0} ×R

n−1 × {0}
)−a

for all |ξ|= 1.

Papers [24] and [25] present a variety of theorems and counterexamples
on extendability of bilipschitz and quasisymmetric maps which are defined
on subsets of Euclidean spaces. The definition of s-quasisymmetry can be
found in [24, p. 155] and [25, p. 241]; the extension procedure relevant to
Remark 7.6 is explained in detail in [24, Theorem 5.4].
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