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KOLMOGOROV OPERATOR AND FOKKER–PLANCK
EQUATION ASSOCIATED TO A STOCHASTIC BURGERS

EQUATION DRIVEN BY LÉVY NOISE

BING HU, XIAOBIN SUN AND YINGCHAO XIE

Abstract. In this paper, we consider a stochastic Burgers equa-
tion driven by Lévy noise and study the transition semigroup

of the solution to the initial value problem for the equation in

the space of continuous functions weighted by a proper poten-
tial. We show that the infinitesimal generator is the closure of

the Kolmogorov operator associated to the equation in a suitable

topology. We also prove existence and uniqueness results for the
associated Fokker–Planck equation.

1. Introduction and preliminaries

This paper is concerned with a stochastic Burgers equation driven by Lévy
noise on [0,1]. The classical Burgers equation describes the interaction be-
tween the diffusion part and the non-linear inertial part in fluid flow. Through
the celebrated Hopf–Cole transformation [15], the equation can be trans-
formed into a linear (heat) equation so the interaction can be expressed in
an explicit expression in the solution. But this method no longer works in
most of the random force cases. In recent years, many people have been inter-
ested in studying Burgers turbulence in the presence of random forces. Most
works are with white noise, for example, [1], [2], [3], [4], [5], [6], [7], [16], [12],
[13], [14], [17], [18], [19], [21] and references therein. As far as we know, there
are only a few articles dealing with the case of non-white noise, see [11], [22],
[23] for the Lévy noise.
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The aim of the present paper is to extend the results of [18] for stochastic
Burgers equation driven by Wiener noise to the equation driven by Lévy
noise. That is, we will investigate the transition semigroup of the solution
in the space of continuous functions weighted by a proper potential and we
show that the infinitesimal generator is the closure of the Kolmogorov operator
associated to the equation in a suitable topology. Moreover, we prove existence
and uniqueness results for the associated Fokker–Planck equation.

The paper is organized as follows. In the rest of this section, we give pre-
liminaries and an estimate of the solution in order to define the transition
semigroup and the infinitesimal generator. In the next section, we sketch the
proof of the estimate of the solution. In Section 3, we study properties of
the transition semigroup in Cb,V (L

6). In Section 4, we study an approxi-
mate equation and prove a-priori estimates for the derivative of the transition
semigroup in the space of continuous functions. Section 5, the final section,
is devoted to the proof of the main results. Due to the appearance of Lévy
noise, the methods for the equation driven only by Gaussian noise no longer
work. We will use the techniques for studying linear SPDE and stochastic
Navier–Stokes equation driven by Lévy noise developed in [8], [9], [10], [24].

Let (Ω,F ,P) be a complete probability space equipped with a filtration
{Ft, t ≥ 0} satisfying the usual conditions of completeness and right conti-
nuity, and let N(dt, dz) be a Poisson random measure with intensity mea-
sure λ(dz)dt on R

+ × U , where λ(dz) is a σ-finite measure on a measurable

space (U,B(U)). We denote by Ñ(dt, dz) the compensated Poisson measure
N(dt, dz)−λ(dz)dt. Suppose Wt is a Q-Wiener process (the precise definition
will be given later) and that Wt and N(dt, dz) are independent.

Denote by | · |Lp the usual norm of the space Lp(0,1), p≥ 1, and by | · |∞ the
usual supremum norm of L∞(0,1). We consider the separable Hilbert space
H =̂ L2(0,1) (the inner product denoted by 〈·, ·〉). As usual, for k ∈ N, p≥ 1,
W k,p(0,1) is the Sobolev space of all functions in Lp(0,1) whose derivatives
of order up to k belong to Lp(0,1), Hk(0,1) =̂W k,2(0,1) and H

1
0(0,1) is the

subspace of H
1(0,1) of all functions whose trace at 0 and 1 vanishes. We

define an unbounded self-adjoint operator A by

Ax=Δx=
∂2

∂ξ2
x, x ∈D(A) =H

2(0,1)∩H
1
0(0,1).

Note that the operator A is the infinitesimal generator of a strongly contin-
uous semigroup in H, which we denote by etA, t≥ 0. Moreover, the semigroup
etA can be extended to Lp(0,1) (p > 1),

(1.1)
∣∣etAx∣∣

Lp ≤ eγpt|x|Lp , x ∈ Lp(0,1),

where γp = 2p−1(p−1)π2. Note that the usual Sobolev spaceW k,p(0,1) can be
extended to W s,p(0,1), for s ∈ R, then by [18], etA (t≥ 0) have the smooth-
ing properties: for any s1, s2 ∈ R with s1 ≤ s2, r ≥ 1, etA : W s1,r(0,1) →
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W s2,r(0,1) and there exists a constant C1 depending on s1, s2, r such that

(1.2)
∣∣etAz∣∣

W s2,r(0,1)
≤C1

(
1 + t(s1−s2)/2

)
|z|W s1,r(0,1), z ∈W s1,r(0,1).

For α > 0, (−A)α is the power of the operator −A, and | · |α is the norm of
D((−A)α/2) which is equivalent to the norm of H

α(0,1) =̂ Wα,2(0,1). We
have | · |0 = | · |H. Then,

ek(ξ) =
√
2 sin(kπξ), ξ ∈ [0,1], k ∈N

are eigenfunctions of A with eigenvalue λk =−k2π2. The Q-Wiener process
Wt is given by

Wt =

∞∑
k=1

√
αkβ

k
t ek, t≥ 0,

where αk satisfies Qek = αkek and {βk}k∈N is a sequence of mutually indepen-
dent standard Brownian motions on the stochastic basis (Ω,F , (Ft)t≥0,P).

Put

b(x) =
1

2
Dξ

(
x2

)
, b′(x, y, z) =

∫ 1

0

x(ξ)Dξy(ξ)z(ξ)dξ.

Then for any x, y ∈H
1
0(0,1),

b′(x,x, y) =−1

2
b′(x, y,x), b′(x, y, y) = 0

and there exists a constant C > 0 such that∣∣b(x)∣∣
H
≤ C|x|2

H1 ,
∣∣b(x)∣∣

H−1 ≤C|x|H|x|H1 ,∣∣b(x)− b(y)
∣∣
H
≤ C|x− y|H1

(
|x|H1 + |y|H1

)
and ∣∣b(x)− b(y)

∣∣
H−1 ≤

C

2
|x− y|H

(
|x|H1 + |y|H1

)
.

In this paper, we shall study the following stochastic Burgers equation
driven by Lévy noise:

(1.3)

{
dXt = (AXt + b(Xt))dt+ dWt +

∫
U
f(Xt−, u)Ñ(dt, du),

X0 = x, x ∈H.

We fix a sequence of measurable subsets Um of U with Um ↑ U and
λ(Um)<∞. Suppose that f(·, ·) : H × U → H is measurable and satisfies
f maps Lp(0,1)×U to Lp(0,1) for all p≥ 1 and that there exists a constant
Kk > 0 such that, for fixed p≥ 1 and positive integer k,

(H1)
∫
U
|f(0, u)|kLpλ(du)<∞;

(H2)
∫
U
|f(x,u)− f(y,u)|kLpλ(du)≤Kk|x− y|kLp ,∀x, y ∈ Lp(0,1);

(H3) sup|x|Lp≤C

∫
Uc

m
|f(x,u)|kLpλ(du)→ 0, as m→∞, ∀C > 0;
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(H4) f(·, ·) is second order differentiable with respect to the first variable and
satisfies

Cf := max
{
C−1,1

f ,C
−3/4,1
f ,C1

f ,C
2
f

}
<∞,

where

Cα,1
f = sup

x∈H

∫
U

∣∣Df(x,u)
∣∣2
L (Hα,Hα)

λ(du),

C1
f = sup

x∈H

∫
U

∣∣Df(x,u)
∣∣4
L (H,H)

λ(du),

C2
f = sup

x∈H

∫
U

∣∣D2f(x,u)
∣∣2
L (H,L (H,H))

λ(du)

L (H,H) is the space of continuous linear operators from H to H.

It’s obvious that (H1) and (H2) imply there exists a constant C > 0 such
that ∫

U

∣∣f(x,u)∣∣k
Lpλ(du)≤C

(
1 + |x|kLp

)
.

Remark 1.1. An example of f satisfying (H1)–(H4) is the following. Let
λ(·) be a finite measure with

∫
U
|u|kUλ(du)<∞ for any positive integer k. By

simple computation, the conditions (H1)–(H4) hold for f(x,u) = x|u|U .

If E is a topological space and E′ is a Banach space with norm | · |E′ , we de-
note by Cb(E,E′) the Banach space of bounded continuous E′-valued function
ϕ on E endowed with the supremum norm ‖ϕ‖Cb(E,E′) := supx∈E |ϕ(x)|E′ .
For E′ = R, we denote Cb(E) =̂ Cb(E,R). If E = H, we simply denote by
‖ · ‖0 the supremum norm of Cb(H). We also denote by Cb,1(H) the Banach
space of all continuous functions on H with norm

‖f‖0,1 := sup
x∈H

∣∣f(x)(1 + |x|H
)−1∣∣.

The set C1
b (H) is the space of all ϕ ∈ Cb(H) which are Fréchet differentiable

with differential Dϕ ∈ Cb(H,H). If E is a Banach space, M (E) denotes the
space of all Borel finite measures on E. If μ ∈ M (E), we denote by |μ|TV

the total variation measure of μ. We shall denote by MV (L
6(0,1)) the set of

all μ ∈ M (L6(0,1)) such that
∫
L6(0,1)

V (x)|μ|TV(dx)<∞, where V (·)≥ 0 is

a function on L6(0,1).
Suppose that E is a topological space. A sequence {ϕn}n∈N ⊂Cb(E) is said

to be π-convergent to a function ϕ ∈ Cb(E) if limn→∞ϕn(x) = ϕ(x) (x ∈ E)
and supn∈N ‖ϕn‖0 <∞. An m-indexed sequence {ϕn1,...,nm}(n1,...,nm)∈Nm ⊂
Cb(E) is said to be π-convergent to ϕ ∈ Cb(E), if for i ∈ {1,2, . . . ,m − 1},
there exists an i-indexed sequence {ϕn1,...,ni}(n1,...,ni)∈Ni ⊂Cb(E) such that

lim
ni+1→∞

ϕn1,...,ni+1

π
= ϕn1,...,ni , i ∈ {1,2, . . . ,m− 1}
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and limn1→∞ϕn1

π
= ϕ. We shall write

lim
n1→∞

· · · lim
nm→∞

ϕn1,...,nm

π
= ϕ

or ϕn
π→ ϕ as n→∞, when the sequence has one index.

Using a method similar to that used in [18], [11] and [8], one can prove
that (1.3) has a unique mild solution X ∈D([0,∞);Lp(0,1)), the space of all
Lp(0,1)-valued càdlàg functions. In fact, for finite intensity measures we can
argue as in [11], and for σ-finite intensity measures we can use the argument
in [8] used for dealing with the Navier–Stokes equation. The corresponding
transition semigroup Pt, t≥ 0 is given by

(1.4) Ptϕ(x) = E
[
ϕ
(
Xt(x)

)]
, t≥ 0, ϕ ∈Cb(H), x ∈H.

We will prove the following.

Theorem 1.1. Under the conditions (H1)–(H3), for p≥ 2, k ≥ 1 and T > 0,
there exists a constant Cp,k,T > 0 such that

E

[
sup
t≤T

∣∣Xt(x)
∣∣k
Lp

]
≤Cp,k,T

(
1 + |x|kLp

)
,

where Cp,k,T is of the form of C1(p, k)e
C2(p,k)T for some constants C1(p, k),

C2(p, k)> 0.

Theorem 1.1 shows that the semigroup Pt is can be extended to spaces of
real valued continuous functions with polynomial growth. In particular, for
p= 6, Pt acts on the space Cb,V (L

6) of all continuous functions ϕ ∈ L6(0,1)
such that the function |ϕ(x)|/(1+V (x)) is bounded, where V (x) = |x|8L6 |x|2L4

(x ∈ L6(0,1)). The space Cb,V (L
6), endowed with the norm

‖ϕ‖0,V := sup
x∈L6(0,1)

|ϕ(x)|
1 + V (x)

,

is a Banach space.
As the case in [18], (Pt)t≥0 is not strongly continuous on Cb,V (L

6) (nei-
ther on Cb(H)). However, it is strongly continuous with respect to weaker
topologies. We follow here the π-convergence approach, suggested in [18] and
[20]. Pt can be also studied in other frameworks, for instance with respect to
uniform convergence on compact sets, see Corollary 3.1 below.

Now, we define the infinitesimal generator of (Pt)t≥0 by setting

(1.5) K ϕ(x) = lim
t→0+

Ptϕ(x)−ϕ(x)

t
, ϕ ∈ D

(
K ,Cb,V

(
L6

))
, x ∈ L6(0,1)

with D(K ,Cb,V (L
6)) = {ϕ ∈ Cb,V (L

6) : ∃g ∈ Cb,V (L
6), limt→0+(Ptϕ(x) −

ϕ(x))/t= g(x),∀x ∈ L6, supt∈(0,1) ‖Ptϕ−ϕ‖0,V /t <∞}.



172 B. HU, X. SUN AND Y. XIE

The Kolmogorov operator associated to (1.3) is formally given by

K0ϕ(x) =
1

2
Tr

[
D2ϕ(x)Q

]
+
〈
x,ADϕ(x)

〉
− 1

2

〈
DξDϕ(x), x⊗2

〉
(1.6)

+

∫
U

[
ϕ
(
x+ f(x,u)

)
− ϕ(x)−

〈
Dϕ(x), f(x,u)

〉]
λ(du),

where ϕ : L6(0,1)→R is a suitable function.
Let EA(H) be the linear span of ϕh(x) =̂ ei〈h,x〉, h ∈ D(A). The main pur-

pose of this paper is to show that (K ,D(K ,Cb,V (L
6))) is the closure of K0

defined on EA(H) with respect to π-convergence. In other words, EA(H) is a
core for (K ,D(K ,Cb,V (L

6))) and K ϕ=K0ϕ,∀ϕ ∈ EA(H).
Apart from the interest to better understand the operator K0, the main

motivation is to solve the Fokker–Planck equation, for any Borel measure μ
on H, {

d
dtμt = K ∗

0 μt, t≥ 0,

μ0 = μ.

2. Estimates of the solution

We will prove Theorem 1.1 and give some estimates of the solution
in this section. In this paper, for simplicity, values of the constants
C,Cp,Ck,Cp,k,Cp,T ,Cp,k,T > 0 may be different from line to line.

For α≥ 0, let Zα
t =

∫ t

0
e(t−s)(A−α) dWs be the solution of the equation

dZα
t = (A− α)Zα

t dt+ dWt, Zα
0 = 0.

The following result is proved in [4].

Lemma 2.1. Let q ≥ 1, ε ∈ (0,1/4), δ ∈ (0,1). Then there exists a random
variable Kε,δ,q such that, for all α > 0 and t≥ 0,∣∣Zα

t

∣∣
Lq ≤ α− 1

4+ε
(
1 + tδ

)
Kε,δ,q,

and E(Kk
ε,δ,q)<+∞ for k ≥ 1.

We define the stochastic convolution

WA(t) =

∫ t

0

e(t−s)A dWs =

∞∑
k=1

α
1/2
k ek

∫ t

0

e(t−s)A dβk
s .

Let X be the solution of (1.3) and Yt(x) =̂Xt(x)−WA(t). Then we can
write (1.3) as

(2.1)

⎧⎪⎨⎪⎩
Yt(x) = etAx+ 1

2

∫ t

0
e(t−s)ADξ(Ys(x) +WA(s))

2 ds

+
∫ t

0

∫
U
e(t−s)Af(Ys−(x) +WA(s), u)Ñ(ds, du),

Y (0, x) = x, x ∈H.

Xt(x) is called a mild solution of (1.3) if Yt(x) =Xt(x)−WA(t) satisfies (2.1)
P-a.s.
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Proof of Theorem 1.1. Put Y α
t (x) =Xt(x)−Zα

t . We have

dY α
t =

(
AY α

t + b
(
Y α
t +Zα

t

)
+ αZα

t

)
dt+

∫
U

f
(
Y α
t− +Zα

t , u
)
Ñ(dt, du),

Y α
0 = x.

Put ϕ(x) =̂ |x|kLp , then we have Dϕ(x)(·) = k|x|k−p
Lp 〈|x|p−2x, IH(·)〉, where

IH(·) is the identity transformation on H. By Itô’s formula and integrating
by parts, one has

ϕ
(
Y α
t (x)

)
(2.2)

= |x|kLp +

∫ t

0

〈
Dϕ

(
Y α
s−(x)

)
, dYs

〉
+Nϕ

t

= |x|kLp + k

∫ t

0

∣∣Y α
s

∣∣k−p

Lp

〈∣∣Y α
s

∣∣p−2
Ys,AY

α
s + b

(
Y α
s +Zα

s

)
+ αZα

s

〉
ds

+ k

∫ t

0

∫
U

∣∣Y α
s−

∣∣k−p

Lp

〈∣∣Y α
s−

∣∣p−2
Y α
s−, f

(
Y α
s− +Zα

s , u
)〉
Ñ(ds, du) +Nϕ

t

= |x|kLp + k

∫ t

0

∣∣Y α
s

∣∣k−p

Lp

[
(1− p)

(〈∣∣Y α
s

∣∣p−2
,
∣∣DξY

α
s

∣∣2〉
+
〈∣∣Y α

s

∣∣p−2
Y α
s DξY

α
s ,Zα

s

〉)
+ (1− p)/2

〈∣∣Y α
s

∣∣p−2
DξY

α
s ,

∣∣Zα
s

∣∣2〉+ α
〈∣∣Y α

s

∣∣p−2
Y α
s ,Zα

s

〉]
ds

+ k

∫ t

0

∫
U

|Ys−|k−p
Lp

〈∣∣Y α
s−

∣∣p−2
Y α
s−f

(
Y α
s− +Zα

s , u
)〉
Ñ(ds, du) +Nϕ

t ,

where Nϕ
t =

∫ t

0

∫
U
[ϕ(Y α

s− + f(Xs−, u)) − ϕ(Y α
s−) − 〈Dϕ(Y α

s−), f(Xs−, u)〉]×
N(ds, du).

By ||Y α
s |p/2|H = |Y α

s |p/2Lp , Poincaré inequality and the interpolatory estimate

|x|β ≤ |x|
γ−β
γ−α
α |x|

β−α
γ−α
γ , α < β < γ,

one has 〈∣∣Y α
s

∣∣p−2
Y α
s DξY

α
s ,Zα

s

〉
(2.3)

≤
∣∣∣∣Y α

s

∣∣p/2∣∣
L4

∣∣∣∣Y α
s

∣∣p/2−1
DξY

α
s

∣∣
H

∣∣Zα
s

∣∣
L4

≤C
∣∣∣∣Y α

s

∣∣p/2∣∣
H

1
4

∣∣∣∣Y α
s

∣∣p/2−1
DξY

α
s

∣∣
H

∣∣Zα
s

∣∣
L4

≤C
∣∣∣∣Y α

s

∣∣p/2∣∣3/4
H

∣∣∣∣Y α
s

∣∣p/2∣∣1/4
H1

∣∣∣∣Y α
s

∣∣p/2−1
DξY

α
s

∣∣
H

∣∣Zα
s

∣∣
L4

≤C
∣∣Y α

s

∣∣(3p)/8
Lp

∣∣∣∣Y α
s

∣∣p/2−1
DξY

α
s

∣∣5/4
H

∣∣Zα
s

∣∣
L4

≤ 1

4

∣∣∣∣Y α
s

∣∣p/2−1
DξY

α
s

∣∣2
H
+C

∣∣Zα
s

∣∣8/3
L4

∣∣Y α
s

∣∣p
Lp .
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Hölder’s inequality and the Agmon estimate |x|L∞ ≤ |x|1/2
H

|x|1/2
H1 imply〈∣∣Y α

s

∣∣p−2
DξY

α
s ,

∣∣Zα
s

∣∣2〉(2.4)

≤
∣∣∣∣Y α

s

∣∣p/2−1∣∣
L∞

∣∣∣∣Y α
s

∣∣p/2−1
DξY

α
s

∣∣
H

∣∣Zα
s

∣∣2
L4

≤
(∣∣∣∣Y α

s

∣∣p/2∣∣1/2
H

∣∣∣∣Y α
s

∣∣p/2∣∣1/2
H1

)(p−2)/p∣∣∣∣Y α
s

∣∣p/2−1
DξY

α
s

∣∣
H

∣∣Zα
s

∣∣2
L4

≤C
∣∣Y α

s

∣∣(p−2)/4

Lp

∣∣∣∣Y α
s

∣∣p/2−1
DξY

α
s

∣∣(3p−2)/(2p)

H

∣∣Zα
s

∣∣2
L4

≤ 1

2

∣∣∣∣Y α
s

∣∣p/2−1
DξY

α
s

∣∣2
H
+Cp

(∣∣Zα
s

∣∣8
L4 + 1

)(∣∣Y α
s

∣∣p
Lp + 1

)
and

(2.5) α
〈∣∣Y α

s

∣∣p−2
Y α
s ,Zα

s

〉
≤ α

∣∣Y α
s

∣∣p−1

Lp

∣∣Zα
s

∣∣
Lp ≤Cp

∣∣Zα
s

∣∣
Lp

(∣∣Y α
s

∣∣p
Lp + αp

)
.

(2.2)–(2.5) yield

E sup
t≤T

∣∣Y α
t

∣∣k
Lp +

k(p− 1)

2
E

∫ T

0

∣∣Y α
s

∣∣k−p

Lp

∣∣∣∣Y α
s

∣∣p/2−1
DξY

α
s

∣∣2
H
ds(2.6)

≤ |x|kLp + kCpE

∫ T

0

|Ys|k−p
Lp

[(∣∣Zα
s

∣∣8/3
L4 +

∣∣Zα
s

∣∣8
L4 +

∣∣Zα
s

∣∣
Lp + 1

)∣∣Y α
s

∣∣p
Lp

+ αp
∣∣Zα

s

∣∣
Lp +

∣∣Zα
s

∣∣8
L4 + 1

]
ds

+E

∫ T

0

∫
U

[
k
∣∣Y α

s

∣∣k−1

Lp

∣∣f(Xs, u)
∣∣
Lp

+
∣∣ϕ(Y α

s + f(Xs, u)
)
−ϕ

(
Y α
s

)∣∣]λ(du)ds.
By Hölder’s inequality and Young’s inequality (assuming from now on for
simplicity that p≥ 4), one obtains

E

∫ T

0

∫
U

∣∣ϕ(Y α
s + f(Xs, u)

)
−ϕ

(
Y α
s

)∣∣λ(du)ds(2.7)

= E

∫ T

0

∫
U

∣∣∣∣∫ 1

0

〈
Dϕ

(
Y α
s + ηf(Xs, u)

)
, f(Xs, u)

〉
dη

∣∣∣∣λ(du)ds
≤ kE

∫ T

0

∫
U

∣∣∣∣∫ 1

0

∣∣Y α
s + ηf(Xs, u)

∣∣k−1

Lp

∣∣f(Xs, u)
∣∣
Lp dη

∣∣∣∣λ(du)ds
≤CE

∫ T

0

∫
U

[∣∣Y α
s

∣∣k−1

Lp

∣∣f(Xs, u)
∣∣
Lp +

∣∣f(Xs, u)
∣∣k
Lp

]
λ(du)ds

≤CkE

∫ T

0

[∣∣Y α
s

∣∣k
Lp +

∣∣Y α
s

∣∣k−1

Lp

∣∣Zα
s

∣∣
Lp +

∣∣Zα
s

∣∣k
Lp + 1

]
ds.
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(2.6) and (2.7) yield

E sup
t≤T

∣∣Y α
t

∣∣k
Lp +

k(p− 1)

2
E

∫ T

0

∣∣Y α
s

∣∣k−p

Lp

∣∣∣∣Y α
s

∣∣p/2−1
DξYs

∣∣2
H
ds

≤ |x|kLp +Cp,kE

∫ T

0

[∣∣Y α
s

∣∣k
Lp

∣∣Zα
s

∣∣8
Lp +

∣∣Y α
s

∣∣k
Lp +

∣∣Zα
s

∣∣k
Lp

+
∣∣Zα

s

∣∣8
Lp + αp

∣∣Zα
s

∣∣
Lp

]
ds+Cp,kT.

Choosing α = [(1 + T )
1
2K 1

4− 1
8∨k , 12 ,p

]8∨k, Lemma 2.1 implies that

supt≤T |Zα
s |8∨k

Lp ≤ 1. Hence, we have

E sup
t≤T

∣∣Y α
t

∣∣k
Lp +

k(p− 1)

2
E

∫ T

0

∣∣Y α
s

∣∣k−p

Lp

∣∣∣∣Y α
s

∣∣p/2−1
DξY

α
s

∣∣2
H
ds

≤ |x|kLp +Cp,k

∫ T

0

E sup
s≤t

∣∣Y α
s

∣∣k
Lp dt+Cp,kTEα

p +Cp,kT.

Since T < eT for any T ≥ 0, there exists Cp,k > 0 such that

E sup
t≤T

∣∣Y α
t

∣∣k
Lp ≤ |x|kLp +Cp,k

∫ T

0

E sup
s≤t

∣∣Y α
s

∣∣k
Lp dt+Cp,ke

Cp,kT .

Gronwall’s inequality yields

E sup
t≤T

∣∣Y α
t

∣∣k
Lp ≤Cp,k

(
1 + |x|kLp

)
eCp,kT .

The proof is now complete. �
Put θT = supt≤T |WA(t)|∞ for T > 0. We have θT <∞, P-a.s.

Proposition 2.1. Suppose that (H1)–(H3) hold and x ∈ Lp(0,1) for p≥ 2,
we have that for T > 0,

lim
|h|Lp→0

E sup
t≤T

∣∣Xt(x)−Xt(x+ h)
∣∣
Lp = 0

or equivalently,

lim
|h|Lp→0

E sup
t≤T

∣∣Yt(x)− Yt(x+ h)
∣∣
Lp = 0.

Proof. For n≥ 1, put

τn = inf
{
t > 0, sup

|h|Lp<ε

sup
s≤t

∣∣Ys(x) + Ys(x+ h) + 2WA(s)
∣∣
Lp ≥ n

}
.

(2.1) implies that there exists a constant Cp > 0 such that

E sup
t≤T∧τn

∣∣Yt(x)− Yt(x+ h)
∣∣
Lp(2.8)

≤Cp|h|Lp +
1

2
E sup

t≤T∧τn

∫ t

0

∣∣e(t−s)ADξ

((
Ys(x)− Ys(x+ h)

)
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×
(
Ys(x) + Ys(x+ h) + 2WA(s)

))∣∣
Lp ds

+CpE

∫ T∧τn

0

∫
U

∣∣f(Ys−(x) +WA(s), u
)

− f
(
Ys−(x+ h) +WA(s), u

)∣∣
Lpλ(du)ds.

Put Γ(t) = 1 + t−
1
2− 1

2p . Sobolev’s embedding theorem, Hölder’s inequality
and (1.2) imply

1

2
E sup

t≤T∧τn

∫ t

0

∣∣e(t−s)ADξ

((
Ys(x)− Ys(x+ h)

)
(2.9)

×
(
Ys(x) + Ys(x+ h) + 2WA(s)

))∣∣
Lp ds

≤CE sup
t≤T∧τn

∫ t

0

∣∣e(t−s)ADξ

((
Ys(x)− Ys(x+ h)

)
×
(
Ys(x) + Ys(x+ h) + 2WA(s)

))∣∣
W

1
p
,
p
2
ds

≤CE sup
t≤T∧τn

∫ t

0

Γ(t− s)
∣∣Dξ

((
Ys(x)− Ys(x+ h)

)
×
(
Ys(x) + Ys(x+ h) + 2WA(s)

))∣∣
W−1,

p
2
ds

≤CE sup
t≤T∧τn

∫ t

0

Γ(t− s)
∣∣(Ys(x)− Ys(x+ h)

)
×
(
Ys(x) + Ys(x+ h) + 2WA(s)

)∣∣
L

p
2
ds

≤CE sup
t≤T∧τn

∫ t

0

Γ(t− s)
∣∣(Ys(x)− Ys(x+ h)

)∣∣
Lp

×
∣∣(Ys(x) + Ys(x+ h) + 2WA(s)

)∣∣
Lp ds

≤CE

∫ T

0

nΓ(T − s) sup
s′≤s∧τn

∣∣Ys′(x)− Ys′(x+ h)
∣∣
Lp ds.

(2.8) and (2.9) imply

E sup
t≤T∧τn

∣∣Yt(x)− Yt(x+ h)
∣∣
Lp

≤Cp|h|Lp + nC

∫ T

0

Γ(T − s)E sup
s′≤s∧τn

∣∣Ys′(x)− Ys′(x+ h)
∣∣
Lp ds

+CpE

∫ T

0

∫
U

I{s≤T∧τn}
∣∣f(Ys(x) +WA(s), u

)
− f

(
Ys(x+ h) +WA(s), u

)∣∣
Lpλ(du)ds

≤Cp|h|Lp +

∫ T

0

[
nCΓ(T − s) +CpK1

]
E sup

s′≤s∧τn

∣∣Ys′(x)− Ys′(x+ h)
∣∣
Lp ds.
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From Gronwall’s inequality,

E sup
t≤T∧τn

∣∣Yt(x)− Yt(x+ h)
∣∣
Lp ≤Cpe

nC( 2p
p−1T

p−1
2p +T )+CpK1T |h|Lp .

This yields

lim
|h|Lp→0

E sup
t≤T∧τn

∣∣Yt(x)− Yt(x+ h)
∣∣
Lp = 0.

This and Theorem 1.1 show that this proposition is true. �

3. The transition semigroup in Cb,V (L
6)

In this section, we will study properties of semigroup (Pt)t≥0 in the space
Cb,V (L

6).

Theorem 3.1. Under the conditions of Proposition 2.1, it holds that for
ϕ ∈Cb,V (L

6)

lim
ε→0

sup
|h|L6<ε,t∈[0,T ]

∣∣Ptϕ(x+ h)− Ptϕ(x)
∣∣= 0.

Proof. For ϕ ∈C1
b (H), one has that, for t≤ T ,∣∣Eϕ(Xt(x+ h)

)
−Eϕ

(
Xt(x)

)∣∣
≤ E sup

t≤T

∣∣∣∣∫ 1

0

〈
Dϕ

(
η
(
Xt(x+ h) + (1− η)Xt(x)

))
,Xt(x+ h)−Xt(x)

〉
dη

∣∣∣∣
≤ sup

x∈H

∣∣Dϕ(x)
∣∣
H
E sup

t≤T

∣∣Xt(x+ h)−Xt(x)
∣∣
L6 → 0, as |h|L6 → 0.

The density of C1
b (H) in Cb,V (L

6) implies that, for ε > 0, there exists ϕε ∈
C1

b (H) such that ‖ϕε −ϕ‖0,V < ε. Hence, we have

lim
|h|L6→0

E sup
t≤T

∣∣ϕ(X(t, x+ h)
)
−ϕ

(
Xt(x)

)∣∣
≤ lim

|h|L6→0

[
E sup

t≤T

∣∣ϕ(X(t, x+ h)
)
−ϕε

(
X(t, x+ h)

)∣∣
+E sup

t≤T

∣∣ϕε

(
X(t, x+ h)

)
−ϕε

(
Xt(x)

)∣∣+E sup
t≤T

∣∣ϕε

(
Xt(x)

)
−ϕ

(
Xt(x)

)∣∣]
≤ lim

|h|L6→0

[
εE sup

t≤T

(
1 + V

(
X(t, x+ h)

))
+ εE sup

t≤T

(
1 + V

(
Xt(x)

))]
≤ (2 +CT,x)ε.

This yields

lim
|h|L6→0

E sup
t≤T

∣∣ϕ(X(t, x+ h)
)
−ϕ

(
Xt(x)

)∣∣= 0.

The proof is now complete. �
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Theorem 3.1 shows that Pt maps Cb,V (L
6) into itself.

Theorem 3.2. (1.4) defines a semigroup (Pt)t≥0 on Cb,V (L
6) and there

exist constants c0 ≥ 1,w0 ∈ R and a family of probability measures {μt(x, ·),
t≥ 0, x ∈ L6(0,1)} ⊂ MV (L

6(0,1)) such that

(i) Pt ∈ L (Cb,V (L
6)) and ‖Pt‖L (Cb,V (L6)) ≤ c0e

w0t.

(ii) Ptϕ(x) =
∫
H
ϕ(y)μt(x,dy) for any t≥ 0, ϕ ∈Cb,V (L

6) and x ∈ L6(0,1).

(iii) For ϕ ∈Cb,V (L
6) and x ∈ L6(0,1), Ptϕ(x) is continuous with respect to t.

(iv) PtPs = Pt+s for any t, s≥ 0 and P0 = I .

(v) Suppose that {ϕ,ϕn, n≥ 1} ⊂Cb,V (L
6) satisfy ϕn/(1+ V )

π→ ϕ/(1+ V ).
We have

lim
n→∞

Ptϕn

1 + V

π
=

Ptϕ

1 + V
, t≥ 0.

Proof. (i) For any ϕ ∈ Cb,V (L
6), we can find {ϕn}n∈N ⊂ Cb(L

6(0,1)) such
that |ϕn| ≤ |ϕ| (n≥ 1) and ϕn(x)→ ϕ(x),∀x ∈ L6(0,1). Theorem 1.1 implies

EV
(
Xt(x)

)
≤

(
E
∣∣Xt(x)

∣∣16
L6

) 1
2
(
E
∣∣Xt(x)

∣∣4
L4

) 1
2(3.1)

≤ CeCt
(
1 + |x|16L6

) 1
2
(
1 + |x|4L4

) 1
2

≤ CeCt
(
1 + |x|8L6

)(
1 + |x|2L4

)
≤ CeCt

(
1 + V (x)

)
.

Using the dominated convergence theorem, we can define

Ptϕ(x) = lim
n→∞

Ptϕn(x) = lim
n→∞

Eϕn

(
Xt(x)

)
.

For any ϕ ∈ Cb,V (L
6), Theorem 3.1 yields that the function Ptϕ(x) on

L6(0,1) is continuous. By (3.1) and∣∣Ptϕ(x)
∣∣≤ ‖ϕ‖0,V E

(
1 + V

(
Xt(x)

))
≤CeCt‖ϕ‖0,V

(
1 + V (x)

)
,

we obtain that (i) holds.
(ii) For ϕ ∈Cb,V (L

6), we take (ϕn)n≥1 ⊂Cb(L
6(0,1)) with |ϕn| ≤ |ϕ| and

lim
n→∞

ϕn

1 + V

π
=

ϕ

1 + V
.

Let μt(x, ·) be the image measure of Xt(x) in H. Then the representation (ii)
holds for any ϕn, that is,

Ptϕn(x) =

∫
H

ϕn(y)μt(x,dy), x ∈H.

Theorem 1.1 yields Xt(x) ∈ L6(0,1), P-a.s. for x ∈ L6(0,1). Hence, μt(x, ·)
can be seen as a probability measure on L6(0,1). The dominated convergence
theorem implies the result.
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(iii) Indeed, for ϕ ∈ C2
b (L

6(0,1)) with Dϕ ∈ C1
b (L

6(0,1),D(A)), by using
Itô’s formula and taking expectation, one has

Eϕ
(
Xt(x)

)
= ϕ(x) +E

∫ t

0

[〈
ADϕ(Xs),Xs

〉
+
〈
Dϕ(Xs), bXs

〉
+

1

2
Tr

[
D2ϕ(Xs)Q

]]
ds

+E

∫ t

0

∫
U

[
ϕ
(
Xs + f(Xs, u)

)
−ϕ(Xs)−

〈
Dϕ(Xs), f(Xs, u)

〉]
λ(du)ds.

It is obvious that Ptϕ(x) = Eϕ(Xt(x)) is continuous with respect to t. Thus,
for any ϕ ∈Cb,V (L

6), the function Ptϕ(x) is continuous with respect to t.
(iv) Take ϕ ∈ Cb,V (L

6) and consider a sequence (ϕn)n≥1 ⊂ Cb(L
6(0,1))

such that (1 + V )−1ϕn
π
= (1 + V )−1ϕ as n→∞. By the Markov property of

the process Xt(x), (iv) holds for all ϕn. Then, by (ii) we find

Pt+sϕ

1 + V

π
= lim

n→∞
Pt+sϕn

1 + V
= lim

n→∞
PtPsϕn

1 + V

π
=

PtPsϕ

1 + V
.

(v) Since (ii) holds and μt(x,dy) ∈ MV (L
6(0,1)), the result follows by the

dominated convergence theorem. �

Theorem 3.3. Let Xt(x) be the mild solution of (1.3) and (Pt)t≥0 be the
associated transition semigroups on Cb,V (L

6). Let (K ,D(K ,Cb,V (L
6))) be

the infinitesimal generator defined by (1.5). Then:

(i) For ϕ ∈ D(K ,Cb,V (L
6)), Ptϕ ∈ D(K ,Cb,V (L

6)) and K Ptϕ = PtK ϕ,
t≥ 0.

(ii) For ϕ ∈ D(K ,Cb,V (L
6)) and x ∈ L6(0,1), the function Ptϕ(x) is con-

tinuously differentiable on R+ and

d

dt
Ptϕ(x) = PtK ϕ(x).

(iii) For ϕ ∈Cb,V (L
6), the function

∫ t

0
Psϕ(x)ds ∈D(K ,Cb,V (L

6)) and

K

(∫ t

0

Psϕds

)
= Ptϕ−ϕ.

(iv) For λ > w0, w0 is the constant in Theorem 3.2, the linear operator
R(λ,K ) on Cb,V (L

6) defined by

R(λ,K )f(x) =

∫ ∞

0

e−λtPtf(x)dt, f ∈Cb,V

(
L6

)
, x ∈ L6(0,1)

satisfies R(λ,K ) ∈ L (Cb,V (L
6)),∥∥R(λ,K )

∥∥
L (Cb,V (L6))

≤ c0
λ−w0

,
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R(λ,K )f ∈ D(K ,Cb,V (L
6)) for f ∈Cb,V (L

6) and

(λI −K )R(λ,K )f = f.

R(λ,K ) is called the resolvent of K at λ.

Proof. (i) For ϕ ∈ D(K ,Cb,V (L
6)), then supt∈(0,1) ‖Ptϕ − ϕ‖0,V /t < ∞.

By Theorem 3.2(i), we have Ptϕ ∈Cb,V (L
6) and

sup
h∈(0,1)

∥∥Ph(Ptϕ)− Ptϕ
∥∥
0,V

/h≤ c0e
w0t sup

h∈(0,1)

‖Phϕ−ϕ‖0,V /h <∞.

The dominated convergence theorem yields

lim
h→0+

Ph(Ptϕ)(x)− Ptϕ(x)

h
= lim

h→0+
Pt

(
Phϕ− ϕ

h

)
(x) = PtK ϕ(x).

Thus, Ptϕ ∈ D(K ,Cb,V (L
6)) and K Ptϕ= PtK ϕ, t≥ 0.

(ii) It is obvious from the proof of (i).

(iii) For ϕ ∈ Cb,V (L
6), we first check

∫ t

0
Psϕ(x)ds ∈ Cb,V (L

6). For x ∈
L6(0,1), Theorem 3.2 implies∣∣∣∣∫ t

0

Psϕ(x)ds

∣∣∣∣≤ c0
(
1 + V (x)

)
‖ϕ‖0,V

∫ t

0

ew0s ds,

that is,

sup
x∈L6

1

1 + V (x)

∣∣∣∣∫ t

0

Psϕ(x)ds

∣∣∣∣<∞.

It’s easy to prove that x �→
∫ t

0
Psϕ(x)ds is continuous by Theorem 3.1. This

means
∫ t

0
Psϕ(x)ds ∈Cb,V (L

6). Next, Theorem 3.2(i) implies

lim
h→0+

Ph

∫ t

0
Psϕ(x)ds−

∫ t

0
Psϕ(x)ds

h

= lim
h→0+

∫ t

0
Ph+sϕ(x)ds−

∫ t

0
Psϕ(x)ds

h

= lim
h→0+

∫ t+h

t
Psϕ(x)ds−

∫ h

0
Psϕ(x)ds

h

= Ptϕ(x)−ϕ(x)

and

sup
h∈(0,1)

∥∥∥∥Ph

∫ t

0
Psϕds−

∫ t

0
Psϕds

h

∥∥∥∥
0,V

= sup
h∈(0,1)

∥∥∥∥
∫ t+h

t
Psϕds−

∫ h

0
Psϕds

h

∥∥∥∥
0,V

≤C‖ϕ‖0,V .
Thus,

∫ t

0
Psϕ(x)ds ∈ D(K ,Cb,V (L

6)) and K (
∫ t

0
Psϕds) = Ptϕ−ϕ.
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(iv) For f ∈Cb,V (L
6), we have∣∣R(λ,K )f(x)

∣∣ ≤ (
1 + V (x)

)∫ ∞

0

e−λt‖Ptf‖0,V dt

≤ c0
(
1 + V (x)

)∫ ∞

0

e−λtew0t‖f‖0,V dt

and it is easy to obtain that x �→
∫∞
0

e−λtPtf(x)dt is continuous by Theo-

rem 3.1. These yield R(λ,K ) ∈ L (Cb,V (L
6)) and∥∥R(λ,K )

∥∥
L (Cb,V (L6))

≤ c0
λ−w0

.

It is easy to compute

1

h

∫ ∞

0

e−λt
[
Ph+tf(x)− Ptf(x)

]
dt

=
eλh

h

∫ ∞

0

e−λtPtf(x)dt−
eλh

h

∫ h

0

e−λtPtf(x)dt−
1

h

∫ ∞

0

e−λtPtf(x)dt

=
eλh − 1

h

∫ ∞

0

e−λtPtf(x)dt−
eλh

h

∫ h

0

e−λtPtf(x)dt.

Then, we get

lim
h→0+

PhR(λ,K )f(x)−R(λ,K )f(x)

h

= lim
h→0+

1

h

∫ ∞

0

e−λt
[
Ph+tf(x)− Ptf(x)

]
dt

= λR(λ,K )f(x)− f(x).

At the same time, we have

sup
h∈(0,1)

∥∥∥∥PhR(λ,K )f −R(λ,K )f

h

∥∥∥∥
0,V

= sup
h∈(0,1)

∥∥∥∥eλh − 1

h

∫ ∞

0

e−λtPtf dt−
eλh

h

∫ h

0

e−λtPtf dt

∥∥∥∥
0,V

≤C‖f‖0,V <∞.

Thus, R(λ,K )f ∈ D(K ,Cb,V (L
6)) and (λI −K )R(λ,K )f = f . �

In the following, we shall show that the semigroup (Pt)t≥0 is strongly con-
tinuous with respect to another weak convergence.

Theorem 3.4. Suppose that the conditions (H1)–(H3) hold. For p≥ 2 and
compact set K ⊂ Lp(0,1), it holds

lim
t→0+

sup
x∈K

E
∣∣Xt(x)− x

∣∣
Lp = 0.
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Proof. For any fixed T > 0, we have that, for any x ∈ Lp(0,1) and 0< t < T ,

E
∣∣Xt(x)− x

∣∣
Lp(3.2)

≤
∣∣etAx− x

∣∣
Lp +E

∣∣WA(t)
∣∣
Lp

+
1

2
E

∫ t

0

∣∣e(t−s)ADξ

(
Ys(x) +WA(s)

)2∣∣
Lp ds

+ 2E

∫ t

0

∫
U

∣∣e(t−s)Af
((
Ys−(x) +WA(s)

)
, u
)∣∣

Lpλ(du)ds.

Theorem 1.1 and (1.2) yield

E

∫ t

0

∣∣e(t−s)ADξ

(
Ys(x) +WA(s)

)2∣∣
Lp ds(3.3)

≤C

∫ t

0

(
1 + (t− s)−1/2−1/2p

)
E
∣∣(Xs(x)

)2∣∣
L

p
2
ds

≤C

(
t+

2pt
p−1
2p

p− 1

)
sup
s≤t

E
∣∣Xs(x)

∣∣2
Lp

≤CeCt
(
t+ 2pt

p−1
2p

)(
1 + |x|2Lp

)
.

Also by Theorem 1.1 and (1.1), we obtain

E

∫ t

0

∫
U

∣∣e(t−s)Af
(
Xs(x), u

)∣∣
Lpλ(du)ds(3.4)

≤CE

∫ t

0

∫
U

∣∣f(Xs(x), u
)∣∣

Lpλ(du)ds

≤C

∫ t

0

(
E
∣∣Xs(x)

∣∣
Lp + 1

)
ds≤CteCt

(
1 + |x|Lp

)
+Ct.

Finally, since |etAx− x|Lp → 0 uniformly on compact subsets of Lp(0,1) and
E|WA(t)|Lp → 0 as t→ 0+, we can easily get the result by (3.2)–(3.4). �

Thanks to Theorem 3.4 we have the following.

Corollary 3.1. (Pt)t≥0 is a strongly continuous semigroup in the mixed
topology of Cb,V (L

6). That is, for ϕ ∈ Cb,V (L
6), a compact set K ⊂ L6(0,1)

and T > 0, we have supt∈[0,T ] ‖Ptϕ‖0,V <∞ and

lim
t→0+

sup
x∈K

∣∣Ptϕ(x)−ϕ(x)
∣∣= 0.

4. The approximate problem

Now we first consider the semigroup

Rtϕ(x) = E
[
ϕ
(
Zt(x)

)]
, t≥ 0, ϕ ∈Cb(H), x ∈H,
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where Zt(x) = etAx+WA(t) is the mild solution of the stochastic linear equa-
tion

dZt =AZt dt+ dWt, t≥ 0, Z0(x) = x ∈H.

It is well known that, for p, k ≥ 1, T > 0, there exists a constant Cp,k,T > 0
such that

(4.1) E sup
t∈[0,t]

∣∣Zt(x)
∣∣k
Lp ≤Cp,k,T

(
1 + |x|kLp

)
.

This implies that (Rt)t≥0 can be extended to a semigroup in the space Cb,1(H).
Define an operator by

Lϕ(x) = lim
t→0+

Rtϕ(x)−ϕ(x)

t
, ϕ ∈ D

(
L ,Cb,1(H)

)
, x ∈H

with D(L ,Cb,1(H)) = {ϕ ∈ Cb,1(H) : ∃g ∈ Cb,1(H), limt→0+(Rtϕ(x)− ϕ(x))/
t= g(x),∀x ∈H and supt∈(0,1) ‖Rtϕ−ϕ‖0,1/t <∞}. We have

Rte
i〈·,h〉(x) = ei〈e

tAx,h〉− 1
2 〈Qth,h〉, t≥ 0, x, h ∈H

and that EA(H) is stable for (Rt)t≥0, where Qtx=
∫ t

0
esAQesAxds.

Denote by L0 the OU operator

L0ϕ(x) =
1

2
Tr

[
D2ϕ(x)Q

]
+
〈
x,ADϕ(x)

〉
, ϕ ∈ EA(H), x ∈H.

For ϕ= ei〈x,h〉, it is easy to prove L0ϕ ∈Cb,1(H).
We have ϕ ∈D(L ,Cb,1(H)) and Lϕ(x) =L0ϕ(x) for ϕ ∈ EA(H) and x ∈H

(see [7] and [18]). This means that EA(H) is a π-core for (L ,D(L ,Cb,1(H)))
and, for ϕ ∈ D(L ,Cb,1(H)), there exists m ∈ N and an m-indexed sequence
(ϕn1,...,nm)n1,...,nm∈N ⊂ EA(H) such that

lim
n1→∞

· · · lim
nm→∞

ϕn1,...,nm

1 + | · |H
π
=

ϕ

1 + | · |H
,

lim
n1→∞

· · · lim
nm→∞

L0ϕn1,...,nm

1 + | · |H
π
=

Lϕ

1 + | · |H
.

If ϕ ∈ D(L ,Cb,1(H))∩C1
b (H), we can further get

lim
n1→∞

. . . lim
nm→∞

〈Dϕn1,...,nm , h〉 π
= 〈Dϕ,h〉, h ∈H.

For T > 0, (4.1) yields that there exists CT > 0 such that

E

[
sup
t≤T

V
(
Zt(x)

)]
≤CT

(
1 + V (x)

)
.

This shows that Rt acts on Cb,V (L
6).

Put D(LV ,Cb,V (L
6)) = {ϕ ∈ Cb,V (L

6) : ∃g ∈ Cb,V (L
6), limt→0+(Rtϕ(x)−

ϕ(x))/t= g(x),∀x ∈ L6(0,1) and supt∈(0,1) ‖Rtϕ−ϕ‖0,V /t <∞} and

LV ϕ(x) = lim
t→0+

Rtϕ(x)−ϕ(x)

t
, ϕ ∈ D

(
LV ,Cb,V

(
L6

))
, x ∈ L6(0,1).
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Then (LV ,D(LV ,Cb,V (L
6))) is the infinitesimal generator of Rt on Cb,V (L

6),
EA(H) ⊂ D(LV ,Cb,V (L

6)) and LV ϕ(x) = Lϕ(x) = L0ϕ(x) for ϕ ∈ EA(H)
and x ∈ L6(0,1).

In the following, we consider some approximate equations. For m≥ 1, de-
noted by Tm the projection operator from H to the linear space Hm generated
by {ei, i= 1, . . . ,m}.

For m ∈ N, set bm(x) = Tmb(Tmx), x ∈ H and Wm
t = TmWt. We consider

the approximate equation

(4.2)

⎧⎪⎨⎪⎩
dXm

t = (AXm
t + bm(Xm

t ))dt+ dWm
t

+
∫
U
Tmf(TmXm

t−, u)Ñ(dt, du),

Xm
0 = x, x ∈Hm,

whose solution is denoted by Xm
t (x) and

Xm
t (x) = etAx+

1

2

∫ t

0

e(t−s)ATmDξ

(
TmXm

s (x)
)2

ds+

∫ t

0

e(t−s)A dWm
s

+

∫ t

0

∫
U

e(t−s)ATmf
(
TmXm

s−(x), u
)
Ñ(ds, du).

Put Wm
A (t) =

∫ t

0
e(t−s)A dWm

s and Y m
t (x) =Xm

t (x)−Wm
A (t). Then we have

Y m
t (x) = etAx+

1

2

∫ t

0

e(t−s)ATmDξ

(
TmY m

s (x) +Wm
A (s)

)2
ds

+

∫ t

0

∫
U

e(t−s)ATmf
(
Tm

(
Y m
s−(x) +Wm

A (s), u
))
Ñ(ds, du).

Since 〈bm(x), x〉= 〈Tmb(Tm(x)), x〉= 〈b(Tm(x)), Tmx〉= 0, all the above theo-
rems and propositions hold uniformly on m and we have the following result.

Theorem 4.1. Suppose that (H1)–(H4) hold. For p≥ 2, x ∈ Lp(0,1), (4.2)
has a unique solution Xm ∈ Lp(0,1). Moreover,

(4.3) lim
m→∞

E sup
t≤T

∣∣Xm
t (x)−Xt(x)

∣∣
Lp = 0, T > 0.

Proof. We only prove that (4.3) is true. For k ≥ 1, set

τk := inf
{
t > 0, sup

s≤t

∣∣Xs(x)
∣∣
Lp ≥ k

}
.

Then (τk)k≥1 is a sequence of stopping times with τk ↑∞ as k ↑∞. For m≥ 1,
one has ∣∣Y m

t (x)− Yt(x)
∣∣
Lp(4.4)

≤ 1

2

∫ t

0

∣∣e(t−s)A
[
TmDξ

(
TmY m

s (x) +Wm
A (s)

)2
−Dξ

(
Ys(x) +WA(s)

)2]∣∣
Lp ds
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+

∣∣∣∣∫ t

0

∫
U

e(t−s)A
[
Tmf

(
Tm

(
Y m
s−(x) +Wm

A (s)
)
, u
)

− f
(
Ys−(x) +WA(s), u

)]
Ñ(ds, du)

∣∣∣∣
Lp

and ∫ t

0

∣∣e(t−s)A
[
TmDξ

(
TmY m

s (x) +Wm
A (s)

)2
(4.5)

−Dξ

(
Ys(x) +WA(s)

)2]∣∣
Lp ds

≤C

∫ t

0

Γ(t− s)
∣∣(TmY m

s (x) +Wm
A (s)

)2 − (
Ys(x) +WA(s)

)2∣∣
L

p
2
ds

+

∫ t

0

∣∣e(t−s)A
[
TmDξ

(
Ys(x) +WA(s)

)2
−Dξ

(
Ys(x) +WA(s)

)2]∣∣
Lp ds

≤C

∫ t

0

Γ(t− s)
(∣∣TmY m

s (x)− Ys(x)
∣∣
Lp +

∣∣Wm
A (s)−WA(s)

∣∣
Lp

)
×
∣∣TmY m

s (x) +Wm
A (s) + Ys(x) +WA(s)

∣∣
Lp ds

+

∫ t

0

∣∣e(t−s)A
[
TmDξ

(
Ys(x) +WA(s)

)2
−Dξ

(
Ys(x) +WA(s)

)2]∣∣
Lp ds.

By Theorem 1.1, we have

sup
t≤T∧τk

∫ t

0

∣∣e(t−s)ADξ

(
Xs(x)

)2∣∣
Lp ds≤ C sup

t≤T∧τk

∫ t

0

Γ(t− s)
∣∣(Xs(x)

)2∣∣
L

p
2
ds

≤ CT sup
t≤T

∣∣(Yt(x) +WA(t)
)∣∣2

Lp <∞ a.s.

This implies

lim
m→∞

E sup
t≤T∧τk

∫ t

0

∣∣Tme(t−s)ADξ

(
Ys(x) +WA(s)

)2
(4.6)

− e(t−s)ADξ

(
Ys(x) +WA(s)

)2∣∣
Lp ds= 0

and

(4.7) lim
m→∞

E sup
s≤T

∣∣Wm
A (s)−WA(s)

∣∣
Lp = 0.
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On the other hand,

E sup
t≤T∧τk

∣∣∣∣∫ t

0

∫
U

e(t−s)A
[
Tmf

(
Tm

(
Y m
s−(x) +Wm

A (s)
)
, u
)

(4.8)

− f
(
Ys−(x) +WA(s), u

)]
Ñ(ds, du)

∣∣∣∣
Lp

≤CE

∫ T∧τk

0

∫
U

∣∣Tm

[
f
(
Tm

(
Y m
s (x) +Wm

A (s)
)
, u
)

− f
(
Ys(x) +WA(s), u

)]∣∣
Lpλ(du)ds

+CE

∫ T

0

∫
U

∣∣(I − Tm)f
(
Ys(x) +WA(s), u

)∣∣
Lpλ(du)ds

≤CE

∫ T

0

∣∣Y m
s∧τk

(x)− Ys∧τk(x)
∣∣
Lp ds

+CTE sup
s≤T

∣∣TmY m
s (x)− Y m

s (x)
∣∣
Lp

+CTE sup
s≤T

∣∣Wm
A (s)−WA(s)

∣∣
Lp

+CE

∫ T

0

∫
U

∣∣(I − Tm)f
(
Ys(x) +WA(s), u

)∣∣
Lpλ(du)ds.

The conditions (H1) and (H2) yield

(4.9) lim
m→∞

E

∫ T

0

∫
U

∣∣(I − Tm)f
(
Ys−(x) +WA(s), u

)∣∣
Lpλ(du)ds= 0.

By using

sup
s≤T

∣∣TmY m
s (x)− Y m

s (x)
∣∣
Lp

= sup
s≤T

∣∣esA(x− xm
)∣∣

Lp ≤ eγpT
∣∣x− xm

∣∣
Lp → 0, m→∞

and Gronwall’s inequality, (4.6)–(4.9) imply that, for k ≥ 1,

(4.10) lim
m→∞

E sup
t≤T∧τk

∣∣Y m
t (x)− Yt(x)

∣∣
Lp = 0.

Finally, since

E sup
t≤T

∣∣Y m
t (x)− Yt(x)

∣∣
Lp

≤ E sup
t≤T∧τk

∣∣Y m
t (x)− Yt(x)

∣∣
Lp

+
(
P (τk < T )

) 1
2
E

[
sup
t≤T

∣∣Y m
t (x)− Yt(x)

∣∣2
Lp

] 1
2

≤ E sup
t≤T∧τk

∣∣Y m
t (x)− Yt(x)

∣∣
Lp
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+ P

[
sup
s≤T

∣∣Xs(x)
∣∣
Lp ≥ k

] 1
2

E

[
sup
t≤T

∣∣Xm
t (x)−Xt(x)

∣∣2
Lp

] 1
2

≤ E sup
t≤T∧τk

∣∣Y m
t (x)− Yt(x)

∣∣
Lp +

1

k
E sup

s≤T

∣∣Xs(x)
∣∣2
Lp .

First, let k→∞ and then let m→∞ Theorem 1.1 and (4.10) show that (4.3)
is valid. �

We denote by Pm
t the transition semigroup

Pm
t ϕ(x) = E

[
ϕ
(
Xm

t (x)
)]
, t≥ 0, ϕ ∈Cb,V

(
L6

)
, x ∈ L6(0,1).

By a standard argument, we have

lim
m→∞

Pm
t ϕ

1 + V

π
=

Ptϕ

1 + V
, t≥ 0.

For m ≥ 1, we can define the infinitesimal generator (Km,D(Km,
Cb,V (L

6))) of the semigroup (Pm
t )t≥0 as (1.5). It is clear that all results

in Section 3 hold for (Pm
t )t≥0 and (Km,D(Km,Cb,V (L

6))).
In the following, we shall give a-priori estimates.
As the case in [18], a-priori estimates on DPtϕ for DxXt(x) cannot be

applied here. As the authors did in [18] and [20], we consider a Kolmogorov
operator with an additional potential term, for c > 0 sufficiently large,

K ′
0ϕ(x) = K0ϕ(x)− c|x|4L4ϕ(x), ϕ ∈ EA(H).

By the Feynman–Kac formula, we have the corresponding semigroup

Stϕ(x) = E
[
e−c

∫ t
0
|Xs(x)|4L4 dsϕ

(
Xt(x)

)]
, t≥ 0.

Now, consider the following equation

dX̃t = K ′
0 X̃t dt+ c| · |4L4X̃t dt, X̃0 = ϕ.

Since St is the corresponding semigroup of K ′
0 , there exists an unique mild

solution

X̃t = Stϕ+ c

∫ t

0

St−s

(
| · |4L4Psϕ

)
ds.

Hence, Ptϕ is the solution of the Kolmogorov backward equation

dPtϕ

dt
= K0Ptϕ= K ′

0 Ptϕ+ c| · |4L4Ptϕ.

This yields

Ptϕ= Stϕ+ c

∫ t

0

St−s

(
| · |4L4Psϕ

)
ds.

In order to get the estimate for DPtϕ, it is sufficient to estimate DStϕ by
the above formula. To do this, we mainly follow the method developed in [4]
for the Wiener case. We intend to extend it to the jump case. Because the
proof is more involved, we need to check several crucial Propositions in [4] in
jump case. The detailed steps are described below.
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For h ∈H, consider the following equation⎧⎪⎨⎪⎩
dηht (x) = (Aηht (x) + b̄(Xt(x))η

h
t (x))dt

+
∫
U
Df(X(t−, x), u) · ηh(t−, x)Ñ(dt, du),

ηh(0, x) = h,

where b̄(Xt(x))η
h
t (x) = Dξ(Xt(x)η

h
t (x)). We can prove that there exists a

unique solution ηht (x) for this equation as in [9].

Lemma 4.1. Under the hypotheses (H1)–(H4), for any α=−3/4,−1, there
exists c= c(α)> 0 such that

Ee−c
∫ t
0
|Xs(x)|8/3L4 ds

∣∣ηht (x)∣∣2α +
1

2
E

∫ t

0

e−c
∫ s
0
|X(τ,x)|8/3

L4 dτ
∣∣ηhs (x)∣∣21+α

ds

≤ eCf t|h|2α.

Proof. We only prove the case of α = −3/4, for α = −1 is similar. Itô’s
formula yields

∣∣(−A)
α
2 ηht (x)

∣∣2
H
+ 2

∫ t

0

∣∣ηhs (x)∣∣21+α
ds(4.11)

≤
∣∣(−A)

α
2 h

∣∣2
H
+ 2

∫ t

0

∣∣Xs(x)
∣∣
L4

∣∣ηhs (x)∣∣L4

∣∣ηhs (x)∣∣1+2α
ds

+ 2

∫ t

0

∫
U

〈
(−A)αηhs−(x),Df

(
X(t−, x), u

)
ηhs−(x)

〉
Ñ(ds, du)

+

∫ t

0

∫
U

〈
Df

(
Xs−(x), u

)
ηhs−(x),

(−A)αDf
(
Xs−(x), u

)
, ηhs−(x)

〉
N(ds, du).

By H
1
4 (0,1)⊂ L4(0,1) and interpolation, one has∣∣ηht (x)∣∣L4 ≤C

∣∣ηht (x)∣∣ 1
4

≤C
∣∣ηht (x)∣∣3/4+α

α

∣∣ηht (x)∣∣1/4−α

1+α

and ∣∣ηht (x)∣∣1+2α
≤C

∣∣ηht (x)∣∣−α

α

∣∣ηht (x)∣∣1+α

1+α
.

These yield that there exists a constant Cα > 0 such that∣∣Xt(x)
∣∣
L4

∣∣ηht (x)∣∣L4

∣∣ηht (x)∣∣1+2α
(4.12)

≤C
∣∣Xt(x)

∣∣
L4

∣∣ηht (x)∣∣3/4α

∣∣ηht (x)∣∣5/41+α

≤Cα

∣∣Xt(x)
∣∣8/3
L4

∣∣ηht (x)∣∣2α + 1/2
∣∣ηht (x)∣∣21+α

.
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Using Itô’s formula for e−c(α)
∫ t
0
|Xs(x)|8/3L4 ds|ηht (x)|2α with c(α) � 2Cα, (4.11)

and (4.12) imply

Ee−c(α)
∫ t
0
|Xs(x)|8/3L4 ds

∣∣ηht (x)∣∣2α +E

∫ t

0

e−c(α)
∫ s
0
|X(τ,x)|8/3

L4 dτ
∣∣ηhs (x)∣∣21+α

ds

≤ |h|2α +E

∫ t

0

∫
U

e−c(α)
∫ s
0
|X(τ,x)|8/3

L4 dτ
∣∣Df

(
Xs−(x), u

)
ηhs (x)

∣∣2
α
λ(du)ds

≤ |h|2α +CfE

∫ t

0

e−c(α)
∫ s
0
|X(τ,x)|8/3

L4 dτ
∣∣ηhs (x)∣∣2α ds.

Gronwall’s inequality shows that the result with α=−3/4 holds. �

Lemma 4.2. For any ϕ ∈Cb(H), Stϕ is differentiable in any direction h ∈H

and

DStϕ(x)h

= E

[
ϕ
(
Xt(x)

)
e−c

∫ t
0
|Xs(x)|4L4 ds

∫ t

0

〈
ηhs (x), dWs

〉]
− 4cE

[
ϕ
(
Xt(x)

)
e−c

∫ t
0
|Xs(x)|4L4 ds

∫ t

0

(
1− s

t

)〈
X3

s (x), η
h
s (x)

〉
ds

]
.

Proof. For fixed t > 0, ϕ ∈ Cb(H), define u(t, x) = Ee−c
∫ t
0
|Xs(x)|4L4 ds ×

ϕ(Xt(x)), 0≤ s≤ t. Itô’s formula yields

e−c
∫ t
0
|Xr(x)|4L4 drϕ

(
Xt(x)

)
= u(t, x) +

∫ t

0

[
Dsu

(
t− s,Xs(x)

)
+K ′

0 u
(
t− s,Xs(x)

)]
e−c

∫ s
0
|Xr(x)|4L4 dr ds

+

∫ t

0

∫
U

[
e−c

∫ s
0
|Xr(x)|4L4 dr

(
u
(
t− s,Xs(x) + f

(
Xs−(x), u

))
− u

(
t− s,Xs−(x)

))]
Ñ(ds, du)

+

∫ t

0

〈
Dxu

(
t− s,Xs(x)

)
e−c

∫ s
0
|Xr(x)|4L4 dr, dWs

〉
= u(t, x) +

∫ t

0

〈
Dxu

(
t− s,Xs(x)

)
e−c

∫ s
0
|Xr(x)|4L4 dr, dWs

〉
+

∫ t

0

∫
U

[
e−c

∫ s
0
|Xr(x)|4L4 dr

(
u
(
t− s,Xs(x) + f

(
Xs−(x), u

))
− u

(
t− s,Xs−(x)

))]
Ñ(ds, du).
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Multiplying this identity by
∫ t

0
〈ηhs (x), dWs〉 and taking the expectation, we

obtain

E

[
ϕ
(
Xt(x)

)
e−c

∫ t
0
|Xs(x)|4L4 ds

∫ t

0

〈
ηhs (x), dWs

〉]
= E

∫ t

0

〈
Dxu

(
t− s,Xs(x)

)
, ηhs (x)

〉
e−c

∫ s
0
|Xr(x)|4L4 dr ds.

On the other hand, since

Dh
x

[
e−c

∫ s
0
|Xr(x)|4L4 dru

(
t− s,Xs(x)

)]
=−4ce−c

∫ s
0
|Xr(x)|4L4 dru

(
t− s,Xs(x)

)∫ s

0

〈
X3

r (x), η
h
r (x)

〉
dr

+
〈
Dxu

(
t− s,Xs(x)

)
, ηhs (x)

〉
e−c

∫ s
0
|Xr(x)|4L4 dr,

we obtain

E

[
ϕ
(
Xt(x)

)
e−c

∫ t
0
|Xs(x)|4L4 ds

∫ t

0

〈
ηhs (x), dWs

〉]
= E

∫ t

0

Dh
x

[
e−c

∫ s
0
|Xr(x)|4L4 dru

(
t− s,Xs(x)

)]
ds

+ 4cE

∫ t

0

e−c
∫ s
0
|Xr(x)|4L4 dr

∫ s

0

〈
X3

r (x), η
h
r (x)

〉
dru

(
t− s,Xs(x)

)
ds

=

∫ t

0

DhStϕ(x)ds

+E

[
ϕ
(
Xt(x)

)
e−c

∫ t
0
|Xr(x)|4L4 dr

∫ t

0

∫ s

0

〈
X3

r (x), η
h
r (x)

〉
dr ds

]
= tDhStϕ(x)

+ 4cE

[
ϕ
(
Xt(x)

)
e−c

∫ t
0
|Xr(x)|4L4 dr

∫ t

0

(
1− s

t

)〈
X3

s (x), η
h
s (x)

〉
ds

]
,

which implies the result. �

Lemma 4.3. Let c be sufficiently large. For any ϕ with ‖ϕ‖0,L4,k :=

supx∈L4
|ϕ(x)|

1+|x|k
L4

<∞, there is a constant C > 0 such that

∣∣DStϕ(x)
∣∣
3/4

≤CeCt
(
1 + t−7/8

)(
|x|L4 + 1

)k‖ϕ‖0,L4,k, x ∈ L4, t > 0.

Proof. Following the proof of Lemma 3.2 in [4], we can easily obtain the
desired result by Lemmas 4.1 and 4.2. Since the proof is almost the same as
that of Lemma 3.2 in [4], we omit it here. �
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Lemma 4.4. For c being sufficiently large and for ϕ ∈ C1
b (H) with

supx∈H |Dϕ(x)|1 ≤Cϕ, there exists a constant C > 0 such that∣∣DStϕ(x)
∣∣
1
≤Cϕ +C‖ϕ‖0

(
|x|L6 + 1

)3
eCt.

Proof. By Hölder’s inequality, Theorem 1.1 and Lemma 4.1 with α=−1,
we have

DStϕ(x)h = E
[
e−c

∫ t
0
|Xs(x)|4L4 dsDϕ

(
Xt(x)

)
· ηhs (x)

]
− 4cE

[
e−c

∫ t
0
|Xr(x)|4L4 dr

∫ t

0

〈
X3

r (x), η
h
r (x)

〉
drϕ

(
Xt(x)

)]
≤ CϕE

[
e−c

∫ t
0
|Xs(x)|4L4 ds

∣∣ηhs (x)∣∣−1

]
+C‖ϕ‖0E

[
sup

t∈[0,T ]

∣∣Xt(x)
∣∣3
L6

∫ t

0

e−c
∫ s
0
|Xr(x)|4L4 dr

∣∣ηhs (x)∣∣ds]
≤

(
Cϕ +C‖ϕ‖0

(
|x|L6 + 1

)3)
eCt|h|−1.

This implies the result. �

Lemma 4.5. Assume ϕ ∈ C1
b (H) and supx∈H |Dϕ(x)|1 ≤ Cϕ. Then there

exists a constant C > 0 such that∣∣DPtϕ(x)
∣∣
3/4

≤Cϕ +C‖ϕ‖0eCt
(
|x|L6 + 1

)4
.

Proof. Let h ∈H, we have

DPtϕ(x)h=DStϕ(x)h+ c

∫ t

0

DSt−s

(
| · |4L4Psϕ

)
(x)hds,

where we choose c such that Lemmas 4.3 and 4.4 hold. The inequality∥∥| · |4L4Psϕ
∥∥
0,L4,4

= sup
x∈H

|x|4L4 |Psϕ(x)|
1 + |x|4L4

≤ ‖ϕ‖0,

implies∣∣DPtϕ(x)h
∣∣ ≤ (

Cϕ +C‖ϕ‖0
(
|x|L6 + 1

)3
eCt

)
|h|−1

+C‖ϕ‖0
∫ t

0

eC(t−s)
(
1 + (t− s)−7/8

)(
|x|L4 + 1

)4
ds|h|−3/4,

which gives the result. �

Now, we are going to extend Proposition 3.6 in [4] to the jump case.

Proposition 4.1. Under the conditions (H1)–(H4), there exists w1 > 0
such that, for m ∈ N, t > 0 and ϕ ∈ C1

b (H) with Dϕ ∈ Cb(H,H1(0,1)), we
have DPm

t ϕ(x) ∈H
1(0,1) and∣∣DPm

t ϕ(x)
∣∣
H1(0,1)

≤
(
‖Dϕ‖Cb(H,H1(0,1)) +w1‖ϕ‖0

)(
1 + |x|L6

)8
ew1t.
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Proof. Let h ∈H, we have

DPtϕ(x)h =DStϕ(x)h+ c

∫ t

0

DSt−s

(
| · |4L4Psϕ

)
(x)hds

=DStϕ(x)h+ 4c

∫ t

0

E
[
e−c

∫ t−s
0

|Xr(x)|4L4 dr
〈
X3(t− s,x), ηht−s(x)

〉
× Psϕ

(
Xt−s(x)

)]
ds

+ c

∫ t

0

E
[
e−c

∫ t−s
0

|Xr(x)|4L4 dr
∣∣Xt−s(x)

∣∣4
L4

×DPsϕ
(
Xt−s(x)

)
· ηht−s(x)

]
ds

− 4c2
∫ t

0

E

[
e−c

∫ t−s
0

|Xr(x)|4L4 dr
∣∣Xt−s(x)

∣∣4
L4Psϕ

(
Xt−s(x)

)
×
∫ t−s

0

〈
X3(r, x), ηhr (x)

〉
dr

]
ds

=̂ J1 + J2 + J3 + J4.

By Lemma 4.4, we get∣∣DStϕ(x)
∣∣
1
≤ ‖Dϕ‖Cb(H,H1(0,1)) +C‖ϕ‖0

(
|x|L6 + 1

)3
eCt.

Theorem 1.1 and Lemma 4.1 with α=−1 give

|J2| ≤ 4c‖ϕ‖0E
(

sup
t∈[0,T ]

∣∣Xt(x)
∣∣3
L6

∫ t

0

e−c
∫ t−s
0

|Xr(x)|4L4 dr
∣∣ηht−s(x)

∣∣ds)

≤ C‖ϕ‖0
(
|x|L6 + 1

)3(
E

∫ t

0

e−2c
∫ t−s
0

|Xr(x)|4L4 dr
∣∣ηht−s(x)

∣∣2 ds)1/2

≤ C‖ϕ‖0
(
|x|L6 + 1

)3
eCt|h|−1.

Set D(Xt−s(x), ϕ) = ‖Dϕ‖Cb(H,H1(0,1)) + C‖ϕ‖0esC(|Xt−s(x)|L6 + 1)4. By
Lemma 4.5, Lemma 4.1 and | · |−3/4 ≤C| · |0, one has

|J3| ≤ cE

(∫ t

0

e−c
∫ t−s
0

|Xr(x)|4L4 dr
∣∣Xt−s(x)

∣∣4
L4

×D
(
Xt−s(x), ϕ

)∣∣ηht−s(x)
∣∣
−3/4

ds

)
≤ CE

(∫ t

0

e−c
∫ t−s
0

|Xr(x)|4L4 dr
∣∣Xt−s(x)

∣∣4
L4

×D
(
Xt−s(x), ϕ

)∣∣ηht−s(x)
∣∣
0
ds

)
≤

(
‖Dϕ‖Cb(H,H1(0,1)) +C‖ϕ‖0

)(
|x|L6 + 1

)8
eCt|h|−1.
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J4 can be treated similarly as J2 and we can easily obtain

|J4| ≤C‖ϕ‖0
(
|x|L6 + 1

)8
eCt|h|−1.

Hence, we deduce that there exits a constant w1 > 0 such that∣∣DPtϕ(x)h
∣∣≤ (

‖Dϕ‖Cb(H,H1(0,1)) +w1‖ϕ‖0
)(
|x|L6 + 1

)8
ew1t|h|−1.

The conclusion holds for DPtϕ(x). We can then easily obtain that the con-
clusion also holds uniformly on DPm

t ϕ(x). �

The following two results are essential for the proof of our main results.

Proposition 4.2. Take λ > w0 ∨ w1, where w0 and w1 are the same as
in Theorem 3.2 and Proposition 4.1 respectively. For g ∈ EA(H) and m≥ 1,
define

ϕ(x) =

∫ ∞

0

e−λtPm
t g(x)dt, x ∈ L6(0,1).

Then (i) ϕ is continuous, bounded and Fréchet differentiable and Dϕ ∈
C(L6(0,1),H1(0,1)). Moreover, it holds∣∣Dϕ(x)

∣∣
H1(0,1)

≤ 1

λ−w1

(
‖Dg‖Cb(H,H1(0,1)) +w1‖g‖0

)(
1 + |x|L6

)8
.

(ii) For ϕ ∈ D(LV ,Cb,V (L
6))∩D(Km,Cb,V (L

6)) and x ∈ L6(0,1),

Kmϕ(x) = LV ϕ(x)−
1

2

〈
DξTmDϕ(x), (Tmx)⊗2

〉
(4.13)

− 1

2
Tr

[
D2ϕ(x)(I − Tm)Q

]
+

∫
U

[
ϕ
(
x+ Tmf(Tmx,u)

)
−ϕ(x)

−
〈
Dϕ(x), Tmf(Tmx,u)

〉]
λ(du).

Proof. (i) The proof is the same as that of Proposition 11 of [18].
(ii) Theorems 3.2 and 3.3 imply ϕ=R(λ,Km)g and ϕ ∈ D(Km,Cb,V (L

6)).
Then we only need to show ϕ ∈ D(LV ,Cb,V (L

6)).
(a) Let Xm

t be the solution of (4.2). By using Itô’s formula and taking
expectation, we have

Eϕ(Xm
t (x))−ϕ(x)

t
=

1

t
E

∫ t

0

〈
Dϕ

(
Xm

s

)
,AXm

s + bmXm
s

〉
ds(4.14)

+
1

2t
E

∫ t

0

Tr
(
D2ϕ

(
Xm

s

)
TmQ

)
ds

+
1

t
E

∫ t

0

∫
U

[
ϕ
(
Xm

s + Tmf
(
Xm

s , u
))

− ϕ
(
Xm

s

)
−
〈
Dϕ

(
Xm

s

)
, Tmf

(
Xm

s , u
)〉]

λ(du)ds.
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We shall prove the existence of the limit of each term in the right-hand side
of (4.14).

By (1.1) and the definition of mild solution, one has that, for 0 ≤ s ≤ T
and x ∈ D(A)∩L6(0,1),∣∣AXm

s (x)
∣∣
H

(4.15)

≤
∣∣AesAx∣∣

H
+

∣∣∣∣A[
1

2

∫ s

0

e(s−τ)ATmDξ

(
TmXm

τ (x)
)2

dτ +Wm
A (s)

+

∫ s

0

∫
U

e(s−τ)ATmf
(
TmXm

τ−(x), u
)
Ñ(dτ, du)

]∣∣∣∣
Hm

≤ esγ2 |Ax|H + |λm|
∣∣∣∣∫ s

0

e(s−τ)ATmDξ

(
TmXm

τ (x)
)2

dτ +Wm
A (s)

+

∫ s

0

∫
U

e(s−τ)ATmf
(
TmXm

τ−(x), u
)
Ñ(dτ, du)

∣∣∣∣
Hm

≤ esγ2 |Ax|H + |λm| ·
∣∣Xm

s (x)− esAx
∣∣
H

≤ eγ2T |Ax|H + |λm|
(∣∣Xm

s (x)
∣∣
L2 + eγ2T |x|H

)
and

(4.16)
∣∣bmXm

s

∣∣
Hm

≤C
∣∣TmXm

s

∣∣2
H1 ≤C|λm|

∣∣TmXm
s

∣∣2
Hm

≤C|λm|
∣∣Xm

s

∣∣2
H
.

Similarly, one also has∣∣A(Xm
s (x)−Xm

s′ (x)
)∣∣

H
(4.17)

≤
∣∣(esA − es

′A
)
Ax

∣∣
H
+ |λm|

∣∣Xm
s (x)−Xm

s′ (x)
∣∣
H

+ |λm|
∣∣(esA − es

′A
)
x
∣∣
H

and ∣∣bmXm
s − bmXm

s′
∣∣
H

(4.18)

≤C
∣∣TmXm

s − TmXm
s′
∣∣
H1

(∣∣TmXm
s

∣∣
H1 +

∣∣TmXm
s′
∣∣
H1

)
≤C|λm|

∣∣Xm
s −Xm

s′
∣∣
H

(∣∣Xm
s

∣∣
H
+
∣∣Xm

s′
∣∣
H

)
.

Itô’s formula implies that, for s > s′ ≥ 0,∣∣Xm
s −Xm

s′
∣∣2
H

(4.19)

= 2

∫ s

s′

〈
Xm

τ −Xm
s′ , bm

(
Xm

τ

)〉
dτ

+ 2

∫ s

s′

∫
U

〈
Xm

τ− −Xm
s′ , Tmf

(
Xm

τ−, u
)〉
Ñ(dτ, du)

+

∫ s

s′

∫
U

∣∣Tmf
(
TmXm

τ−, u
)∣∣2

H
N(dτ, du).
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It is well known that

E
∣∣Wm

A (s)−Wm
A (s′)

∣∣2
H
→ 0, s→ s′.(4.20)

By (4.19) and (4.20), one has

E
∣∣Xm

s −Xm
s′
∣∣2
H
→ 0, s→ s′.(4.21)

Similarly, we can prove

E
∣∣Xm

s −Xm
s′
∣∣4
H
→ 0, s→ s′.(4.22)

By Proposition 4.2(i), for g(x) = ei〈x,h〉 with h ∈H
1(0,1), we have∣∣Dϕ

(
Xm

s

)
−Dϕ

(
Xm

s′
)∣∣

H1(0,1)

≤ 1

λ−w1

[∥∥Dg
(
·+Xm

s −Xm
s′
)
−Dg(·)

∥∥
Cb(H,H1(0,1))

+C
∥∥g(·+Xm

s −Xm
s′
)
− g(·)

∥∥
0

][
1 +

∣∣Xm
s′
∣∣
L6

]8
=

1

λ−w1

[
sup
x∈H

∣∣ei〈x+Xm
s −Xm

s′ ,h〉h− ei〈x,h〉h
∣∣
H1(0,1)

+C sup
x∈H

∣∣ei〈x+Xm
s −Xm

s′ ,h〉 − ei〈x,h〉
∣∣][1 + ∣∣Xm

s′
∣∣
L6

]8
≤ 1

λ−w1

(
|h|2

H1(0,1)

∣∣Xm
s −Xm

s′
∣∣
H−1(0,1)

+C|h|H1(0,1)

∣∣Xm
s −Xm

s′
∣∣
H−1(0,1)

)(
1 +

∣∣Xm
s′
∣∣
L6

)8
≤C

(
|h|2

H1(0,1)

∣∣Xm
s −Xm

s′
∣∣
H
+ |h|H1(0,1)

∣∣Xm
s −Xm

s′
∣∣
H

)(
1 +

∣∣Xm
s′
∣∣
L6

)8
.

Theorem 1.1 and (4.22) show

E
∣∣Dϕ

(
Xm

s

)
−Dϕ

(
Xm

s′
)∣∣2

H
(4.23)

≤ E
∣∣Dϕ

(
Xm

s

)
−Dϕ

(
Xm

s′
)∣∣2

H1(0,1)

≤CE
[∣∣Xm

s −Xm
s′
∣∣2
H−1(0,1)

(
1 +

∣∣Xm
s′
∣∣
L6

)16]
≤C

[
E
∣∣Xm

s −Xm
s′
∣∣4
H

]1/2[
E
(
1 +

∣∣Xm
s′
∣∣
L6

)32]1/2 → 0, s→ s′.

By Theorem 1.1 and (4.15)–(4.23), we have∣∣E〈Dϕ
(
Xm

s

)
,AXm

s + bmXm
s

〉
−E

〈
Dϕ

(
Xm

s′
)
,AXm

s′ + bmXm
s′
〉∣∣(4.24)

≤ E
(∣∣Dϕ

(
Xm

s

)
−Dϕ

(
Xm

s′
)∣∣

H

∣∣AXm
s + bmXm

s

∣∣
H

)
+E

(∣∣Dϕ
(
Xm

s′
)∣∣

H1

∣∣A(
Xm

s −Xm
s′
)
+ bmXm

s − bmXm
s′
∣∣
H−1

)
≤C

[
E
∣∣Dϕ

(
Xm

s

)
−Dϕ

(
Xm

s′
)∣∣2

H

]1/2[
E
(∣∣AXm

s

∣∣2
H
+
∣∣bmXm

s

∣∣2
H

)]1/2
+
(
E
∣∣Dϕ

(
Xm

s′
)∣∣2

H1

)1/2[
E
(
2
∣∣A(

Xm
s −Xm

s′
)∣∣2

H−1

+ 2
∣∣bmXm

s − bmXm
s′
∣∣2
H−1

)]1/2 → 0, s→ s′.
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(4.24) yields

(4.25) lim
t→0+

1

t
E

∫ t

0

〈
Dϕ

(
Xm

s

)
,AXm

s + bmXm
s

〉
ds=

〈
Dϕ(x),Ax+ bmx

〉
.

For k, l ∈H, we have

E
[
D2g

(
Xm

t (x)
)
(k, l)

]
= −E

(
ei〈X

m
t (x),h〉〈h, ηkm,t(x)

〉〈
h, ηlm,t(x)

〉)
+ iE

[
ei〈X

m
t (x),h〉〈h, ζk,lm,t(x)

〉]
,

where ηkm,t(x) =DXm
t (x)k is the solution of the equation⎧⎪⎨⎪⎩

dηkm,t(x) =Aηkm,t(x)dt+Dξ(X
m
t (x)ηkm,t(x))dt

+
∫
U
DTmf(Xm

t−(x), u)η
k
m,t−(x)Ñ(dt, du),

ηkm,0(x) = 〈k,x〉

and ζk,lm,t(x) =D2Xm
t (x)(k, l) is the solution of the equation⎧⎪⎪⎪⎨⎪⎪⎪⎩

dζk,lm,t(x) =Aζk,lm,t(x)dt+Dξ(η
k
m,t(x) · ηlm,t(x) +Xm

t (x)ζk,lm,t(x))dt

+
∫
U
[DTmf(Xm

t−(x), u)ζ
k,l
m,t−(x) +D2Tmf(Xm

t−(x), u)

× (ηkm,t−(x), η
k
m,t−(x))]Ñ(dt, du),

ζk,lm,0(x) = 0.

By Itô’s formula and Gronwall’s inequality, we can prove that E[iei〈X
m
t (·),h〉〈h,

ζk,lm,t(·)〉] and E(−ei〈X
m
t (·),h〉〈h, ηkm,t(·)〉〈h, ηlm,t(·)〉) are continuous in H. Hence,

we have that

Tr
[
D2ϕ(·)TmQ

]
=

m∑
k=1

〈
D2ϕ(·)Qek, ek

〉
=

m∑
k=1

∫ ∞

0

e−λt
〈
D2Pm

t g(·)Qek, ek
〉
dt

implies

(4.26) lim
t→0+

1

2t
E

∫ t

0

Tr
(
D2ϕ

(
Xm

s

)
TmQ

)
ds=

1

2
Tr

[
D2ϕ(x)TmQ

]
.

For 0≤ s < s′, the conditions (H1) and (H2) show∣∣∣∣E∫
U

[〈
Dϕ

(
Xm

s

)
, Tmf

(
Xm

s , u
)〉

−
〈
Dϕ

(
Xm

s′
)
, Tmf

(
Xm

s′ , u
)〉]

λ(du)

∣∣∣∣
≤ E

∫
U

[∣∣〈Dϕ
(
Xm

s

)
−Dϕ

(
Xm

s′
)
, Tmf

(
Xm

s , u
)〉∣∣

−
∣∣〈Dϕ

(
Xm

s′
)
, Tmf

(
Xm

s , u
)
− Tmf

(
Xm

s′ , u
)〉∣∣]λ(du)

≤CE
∣∣Dϕ

(
Xm

s

)
−Dϕ

(
Xm

s′
)∣∣

H

(
1 +

∣∣Xm
s

∣∣
H

)
+CE

∣∣Dϕ
(
Xm

s′
)∣∣

H

∣∣Xm
s −Xm

s′
∣∣
H

≤C
(
E
∣∣Dϕ

(
Xm

s

)
−Dϕ

(
Xm

s′
)∣∣2

H

)1/2(
E
(
1 +

∣∣Xm
s

∣∣2
H

))1/2
+C

(
E
∣∣Dϕ

(
Xm

s′
)∣∣2

H

)1/2(
E
∣∣Xm

s −Xm
s′
∣∣2
H

)1/2
,
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which goes to 0 as s→ s′ by (4.21) and (4.23). Notice that

ϕ
(
Xm

s + Tmf
(
Xm

s , u
))

− ϕ
(
Xm

s

)
=

〈∫ 1

0

Dϕ
(
Xm

s + νTmf
(
Xm

s , u
))

dν,Tmf
(
Xm

s , u
)〉

.

As the above, we can easily obtain∣∣∣∣E∫
U

[
ϕ
(
Xm

s + Tmf
(
Xm

s , u
))

−ϕ
(
Xm

s

)
−ϕ

(
Xm

s′ + Tmf
(
Xm

s′ , u
))

−ϕ
(
Xm

s′
)]
λ(du)

∣∣∣∣→ 0

as s→ s′. Therefore, we obtain

lim
t→0+

1

t
E

∫ t

0

∫
U

[
ϕ
(
Xm

s + Tmf
(
Xm

s , u
))

−ϕ
(
Xm

s

)
(4.27)

−
〈
Dϕ

(
Xm

s

)
, Tmf

(
Xm

s , u
)〉]

λ(du)ds

=

∫
U

[
ϕ
(
x+ Tmf(Tmx,u)

)
−ϕ(x)−

〈
Dϕ(x), Tmf(Tmx,u)

〉]
λ(du).

(4.14) and (4.25)–(4.27) show for x ∈D(A)∩L6(0,1),

Kmϕ(x) =
〈
Dϕ(x),Ax+ bmx

〉
+

1

2
Tr

[
TmQD2ϕ(x)

]
+

∫
U

ϕ
(
x+ Tmf(Tmx,u)

)
−ϕ(x)−

〈
Dϕ(x), Tmf(Tmx,u)

〉
λ(du).

(b) In the following, we will prove ϕ ∈D(LV ,Cb,V (L
6)) and

(4.28) LV ϕ(x) =
〈
Dϕ(x),Ax

〉
+

1

2
Tr

[
QD2ϕ(x)

]
, x ∈ D(A)∩L6(0,1).

This yields

Kmϕ(x)

= LV ϕ(x) +
〈
Dϕ(x), bm(x)

〉
− 1

2
Tr

[
(I − Tm)QD2ϕ(x)

]
+

∫
U

[
ϕ
(
x+ Tmf(Tmx,u)

)
−ϕ(x)−

〈
Dϕ(x), Tmf(Tmx,u)

〉]
λ(du).

For the proof of ϕ ∈ D(LV ,Cb,V (L
6(0,1))), we have to show the existence

of the derivative d
dtRtϕ(x) at t= 0 and supt∈(0,1) ‖Rtϕ−ϕ‖0,V /t <+∞, where

Rtϕ(x) = E[ϕ(Zt(x))].
Because the operator A is unbounded, we now consider the approximate

problem {
dZn

t =AnZ
n
t dt+

√
QdWt, t > 0,

Zn
0 = x,



198 B. HU, X. SUN AND Y. XIE

where An, n ≥ 1 are the Yosida approximations of A. Clearly the problem
above has a unique solution Zn

t (x).
Put Rn

t ϕ(x) = E[ϕ(Zn
t (x))]. Itô’s formula yields

d

dt
Rn

t ϕ(x)

∣∣∣∣
t=0

= lim
t→0+

Rn
t ϕ(x)−ϕ(x)

t
=
〈
Anx,Dϕ(x)

〉
+

1

2

[
TrQD2ϕ(x)

]
.

Proposition 7.5 of [6] implies that

lim
n→∞

Zn
t (x) = Zt(x), P-a.s.

uniformly in t ∈ [0, T ]. This shows

lim
n→∞

d

dt
Rn

t ϕ(x)

∣∣∣∣
t=0

=
d

dt
Rtϕ(x)

∣∣∣∣
t=0

.

Thus, it follows that (4.28) holds. supt∈(0,1) ‖Rtϕ(x)−ϕ(x)‖0,V /t <∞ can

be verified by (1.1) and Theorem 1.1. Then ϕ ∈ D(LV ,Cb,V (L
6)) and (4.13)

is established. �

Proposition 4.3. Fixed m ∈N, f ∈ EA(H), let ϕ be as in Proposition 4.2.
There exist k ∈ N and a k-indexed sequence {ϕn1,...,nk

}(n1,...,nk)∈Nk ⊂ EA(H)
such that

lim
n1→∞

· · · lim
nk→∞

ϕn1,...,nk

1 + V

π
=

ϕ

1 + V
,

lim
n1→∞

· · · lim
nk→∞

L0ϕn1,...,nk

1 + V

π
=

Lϕ

1 + V
,

lim
n1→∞

· · · lim
nk→∞

〈DξDϕn1,...,nk
, h〉

1 + | · |8L6

π
=

〈DξDϕ,h〉
1 + | · |8L6

, h ∈H.

Proof. The idea of the proof comes from Proposition 12 of [18]. But for
the function

ψp(x) =̂
(
1 + p−1

∣∣ep−1Ax
∣∣8
L6

)−1
ϕ
(
ep

−1Ax
)
, x ∈H, p ∈N,

we need the inequality

(4.29)
∣∣〈Dψp(x), h

〉∣∣≤C
(
Cp(λ−w1)

−1 + 8‖ϕ‖0
)(
1 + p1/2

)
|h|H,

for constants Cp > 0 and C > 0. This inequality is different from that in [18].
Note that ψp(x) is Fréchet differentiable with respect to x ∈ H and its

differential Dψp : H → H is bounded continuous. Therefore, Dψp ∈ C1
b (H).

Indeed, from Sobolev’s embedding theorem, the interpolatory inequality and
(1.2), we have∣∣etAh∣∣

L6 ≤
∣∣etAh∣∣

H
1
3
≤
∣∣etAh∣∣

H1 ≤C
(
1 + t−1/2

)
|h|H.
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Hence, we obtain that there exists a constant Cg > 0 such that

∣∣〈Dψp(x), h
〉∣∣ ≤ p|Dϕ(ep

−1Ax)|H|ep
−1Ah|H

p+ |ep−1Ax|8L6

+
8p‖ϕ‖0|ep

−1Ax|7L6 |ep
−1Ah|L6

(p+ |ep−1Ax|8L6)2

≤
(

pCg(1 + |ep−1Ax|8L6)

(p+ |ep−1Ax|8L6)(λ−w1)
+

8p‖ϕ‖0|ep
−1Ax|7L6

(p+ |ep−1Ax|8L6)2

)∣∣ep−1Ah
∣∣
L6

≤
(
pCg(λ−w1)

−1 + 8‖ϕ‖0
)
C
(
1 + p1/2

)
|h|H.

This is (4.29). The rest of the proof is the same as did in [18]. We omit it
here. �

5. Main results

We are ready to prove our main results.

Theorem 5.1. Suppose that the conditions (H1)–(H4) hold.

(i) The operator (K ,D(K ,Cb,V (L
6))) is the extension of K0, and for any

ϕ ∈ EA(H) we have ϕ ∈ D(K ,Cb,V (L
6)) and K ϕ= K0ϕ.

(ii) EA(H) is a π-core for (K ,D(K ,Cb,V (L
6))), that is, for any

ϕ ∈ D(K ,Cb,V (L
6)) there exist m and an m-indexed sequence

{ϕn1,...,nk
}(n1,...,nk)∈Nk ⊂ EA(H) such that

lim
n1→∞

· · · lim
nm→∞

ϕn1,...,nm

1 + V

π
=

ϕ

1 + V
,

lim
n1→∞

· · · lim
nm→∞

K0ϕn1,...,nm

1 + V

π
=

K ϕ

1 + V
.

Proof. (i) For h ∈ D(A), it is sufficient to show the claim for ϕ(x) =
ei〈x,h〉, x ∈ L6(0,1). By using Itô formula and taking expectation, we have

Eϕ(Xt(x))−ϕ(x)

t
(5.1)

=
1

t
E

∫ t

0

〈
ADϕ(Xs),Xs

〉
ds+

1

t
E

∫ t

0

〈
Dϕ(Xs), bXs

〉
ds

+
1

2t
E

∫ t

0

Tr
[
D2ϕ(Xs)Q

]
ds

+
1

t
E

∫ t

0

∫
U

[
ϕ
(
Xs + f(Xs, u)

)
−ϕ(Xs)

−
〈
Dϕ(Xs), f(Xs, u)

〉]
λ(du)ds.

Now, we shall prove that the expectation and the integral can be ex-
changed, E〈ADϕ(Xs),Xs〉, E〈Dϕ(Xs), bXs〉, ETr[D2ϕ(Xs)Q] and E[ϕ(Xs +
f(Xs, u))−ϕ(Xs)− 〈Dϕ(Xs), f(Xs, u)〉] are continuous with respect to s.
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Since |iei〈Xs,h〉〈Ah,Xs〉| ≤ |Ah|H|Xs|H, Theorem 1.1 and Fubini’s theorem
imply that, for 0≤ t≤ T ,∣∣∣∣1t

∫ t

0

Eiei〈Xs,h〉〈Ah,Xs〉ds
∣∣∣∣≤ |Ah|HE sup

s≤T
|Xs|H ≤Ch,T

(
1 + V (x)

)
.

By Theorem 1.1 and Proposition 2.1, one obtains∣∣E〈ADϕ(Xs),Xs

〉
−E

〈
ADϕ(Xs′),Xs′

〉∣∣(5.2)

≤ E
∣∣ei〈Xs,h〉〈Ah,Xs〉 − ei〈Xs′ ,h〉〈Ah,Xs〉

∣∣
+E

∣∣ei〈Xs′ ,h〉〈Ah,Xs〉 − ei〈Xs′ ,h〉〈Ah,Xs′〉
∣∣

≤
(
E
∣∣ei〈Xs,h〉 − ei〈Xs′ ,h〉

∣∣2)1/2(E∣∣〈Ah,Xs〉
∣∣2)1/2 +E

∣∣〈Ah,Xs −Xs′〉
∣∣

=

[
E

∣∣∣∣∫ 1

0

〈
ihei〈ηXs+(1−η)Xs′ ,h〉,Xs −Xs′

〉
dη

∣∣∣∣2]1/2(E∣∣〈Ah,Xs〉
∣∣2)1/2

+ |Ah|HE|Xs −Xs′ |H
≤ |h|H|Ah|H

(
E|Xs −Xs′ |2H

)1/2(
E|Xs|2H

)1/2
+ |Ah|HE|Xs −Xs′ |H → 0, s→ s′.

We can similarly deal with the other terms on the right side of (5.1) as we
just did in (5.2) for the first term. Thus we have

lim
t→0+

Eϕ(Xt(x))−ϕ(x)

t

=
〈
ADϕ(x), x

〉
+

1

2
Tr

[
D2ϕ(x)Q

]
+
〈
Dϕ(x), b(x)

〉
+

∫
U

ϕ
(
x+ f(x,u)

)
−ϕ(x)−

〈
Dϕ(x), f(x,u)

〉
λ(du),

and supt∈(0,1) ‖Eϕ(Xt(x))−ϕ(x)‖0,V /t <∞.

(ii) The proof is similar to that of Lemma 3 in [18]. The term with f can
be dealt with similarly as the term of b(·). This completes the proof. �

Remark 5.1. Theorem 5.1 shows that we can easily obtain that (λI −
K0)(EA(H)) is dense with respect to the π-convergence in Cb,V (L

6). In fact,
from Theorem 5.1, one has that EA(H) is dense in D(K ,Cb,V (L

6)), this yields
that it is dense in Cb,V (L

6). Since λI − K : D(K ,Cb,V (L
6))→ Cb,V (L

6) is
bijective, we have that there exists ψ ∈ D(K ,Cb,V (L

6)) such that

ϕ= (λI −K )ψ

for any ϕ ∈Cb,V (L
6). And there exists {ψn}n∈N ⊂ EA(H) such that

ψn

1 + V

π→ ψ

1 + V
,

K0ψn

1 + V

π→ K ψ

1 + V
.
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These show
(λI −K0)ψn

1 + V

π→ (λI −K )ψ

1 + V
= ϕ.

By Theorem 5.1, we have that Pt can act on Cb(L
6(0,1)). Hence, the

infinitesimal generator can be defined by

K ϕ(x) = lim
t→0+

Ptϕ(x)−ϕ(x)

t
, ϕ ∈ D

(
K ,Cb

(
L6(0,1)

))
, x ∈ L6(0,1)

with D(K ,Cb(L
6(0,1))) = {ϕ ∈ Cb(L

6(0,1)) : ∃g ∈ Cb(L
6(0,1)),

limt→0+ Ptϕ(x)−ϕ(x)/t = g(x),∀x ∈ L6(0,1), and supt∈(0,1) ‖Ptϕ−ϕ‖0/t <
∞}.

Theorem 5.2. The family of linear maps P ∗
t : (Cb(L

6(0,1)))∗ → (Cb(L
6(0,

1)))∗, t ≥ 0, defined by the formula, for t ≥ 0, F ∈ (Cb(L
6(0,1)))∗, ϕ ∈

Cb(L
6(0,1)),

(5.3) Cb(L6(0,1))

〈
ϕ,P ∗

t F
〉
(Cb(L6(0,1)))∗

= Cb(L6(0,1))〈Ptϕ,F 〉(Cb(L6(0,1)))∗ ,

is a linear operator semigroup of on (Cb(L
6(0,1)))∗ which is stable on

M (L6(0,1)). Moreover, for any μ ∈M (L6(0,1)) there exists an unique family
of measures {μt, t≥ 0} ⊂ M (L6(0,1)) such that∫ T

0

|μt|TV

(
L6(0,1)

)
dt <∞, T > 0,(5.4) ∫

L6(0,1)

ϕ(x)μt(dx)−
∫
L6(0,1)

ϕ(x)μ(dx) =

∫ t

0

∫
L6(0,1)

K ϕ(x)μs(dx)ds,(5.5)

for any ϕ ∈ D(K ,Cb(L
6(0,1))), t≥ 0. Finally, the solution of (5.5) satisfying

(5.4) is given by P ∗
t μ, t≥ 0.

The proof is the same as the Theorem 6 in [18], so it is omitted.
By Theorem 3.2 and Theorem 3.3, we can extend Theorem 5.2 to the space

Cb,V (L
6).

Theorem 5.3. Let (Pt)t≥0 be the semigroup defined by equation (1.4) and
the infinitesimal generator (K ,D(K ,Cb,V (L

6))) is given by equation (1.5).
Then, the formula 〈

ϕ,P ∗
t F

〉
σ(Cb,V (L6(0,1)),(Cb,V (L6(0,1)))∗)

= 〈Ptϕ,F 〉σ(Cb,V (L6(0,1)),(Cb,V (L6(0,1)))∗)

defines a linear continuous operator semigroup P ∗
t on (Cb,V (L

6(0,1)))∗, which
is stable on MV (L

6(0,1)). Moreover, for μ ∈ MV (L
6(0,1)) there exists an

unique family of measures {μt, t≥ 0} ⊂ MV (L
6(0,1)) such that, for any t≥ 0,

ϕ ∈ D(K ,Cb,V (L
6(0,1))), (5.5) holds and

(5.6)

∫ T

0

∫
L6(0,1)

(
1 + V (x)

)
|μt|TV(dx)dt <∞, ∀T > 0.
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The solution of (5.5) satisfying (5.6) is given by (P ∗
t μ)t≥0.

Proof. These are consequence of the essential propositions and theorems
above. We give here a sketch of the proof. We mainly prove that the P ∗

t μ is
the unique solution of (5.5) satisfying (5.6).

Existence: Fixed μ ∈ MV (L
6(0,1)), we now show that for any ϕ ∈

D(K ,Cb,V (L
6(0,1))) the function

R+ →R, s �→
∫
L6(0,1)

Psϕ(x)μ(dx)

is differentiable and the differential is given by

s �→
∫
L6(0,1)

K ϕ(x)P ∗
s μ(dx).

By (1.5) we have,

lim
h→0+

1

h

∫
L6(0,1)

[
Ps+hϕ(x)− Psϕ(x)

]
μ(dx)

= lim
h→0+

∫
L6(0,1)

Phϕ(x)−ϕ(x)

h
P ∗
s μ(dx)

=

∫
L6(0,1)

K ϕ(x)P ∗
s μ(dx).

Since K ϕ ∈Cb,V (L
6(0,1)), we have∫

L6(0,1)

K ϕ(x)P ∗
s μ(dx) =

∫
L6(0,1)

PsK ϕ(x)μ(dx).

Theorem 3.3 shows that this is a continuous function of s. By the fundamental
theorem of calculus it follows that (P ∗

t μ)t≥0 solves (5.5) satisfying (5.6).
Uniqueness: Assume that {μt, t ≥ 0} ⊂ MV (L

6(0,1)) satisfies (5.5) and
(5.6). It is straightforward to show that D(K ,Cb(L

6(0,1))) ⊂ D(K ,
Cb,V (L

6(0,1))). Then (5.5) holds for any ϕ ∈ D(K ,Cb(L
6(0,1))). It is also

obvious (5.6) implies (5.4). Then, Theorem 5.2 yields μt = P ∗
t μ for any

t≥ 0. �

Theorem 5.4. For any μ ∈MV (L
6(0,1)) there exists an unique family of

measures {μt, t ≥ 0} ⊂ MV (L
6(0,1)) satisfying (5.6) and the Fokker–Planck

equation

(5.7)

∫
L6(0,1)

ϕ(x)μt(dx)−
∫
L6(0,1)

ϕ(x)μ(dx) =

∫ t

0

∫
L6(0,1)

K0ϕ(x)μs(dx)ds

for any ϕ ∈ EA(H), t ≥ 0. The solution is given by P ∗
t μ, t ≥ 0, where

P ∗
t : (Cb,V (L

6))∗ → (Cb,V (L
6))∗ is the adjoint operator of Pt, t≥ 0.
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Proof. Existence: Fix μ ∈ MV (L
6(0,1)). Theorem 5.3 implies that

(P ∗
t μ)t≥0 satisfies (5.6). On the other hand, by Theorem 5.1 we have

EA(H) ⊂ D(K ,Cb,V (L
6(0,1))) and K ϕ = K0ϕ for any ϕ ∈ EA(H). It fol-

lows that (5.5) holds for any t≥ 0, ϕ ∈ EA(H). Then, P ∗
t μ, t≥ 0 is solution of

(5.7) satisfying (5.6).
Uniqueness: Assume that {μt, t ≥ 0} ⊂ MV (L

6(0,1)) fulfilling (5.7) with
(5.6). For ϕ ∈ Cb,V (L

6), Theorem 5.1 yields that there exist m ∈ N and an
m-indexed sequence {ϕn1,...,nm}(n1,...,nm)∈Nm ⊂ EA(H) such that

lim
n1→∞

· · · lim
nm→∞

ϕn1,...,nm

1 + V

π
=

ϕ

1 + V
,

lim
n1→∞

· · · lim
nm→∞

K0ϕn1,...,nm

1 + V

π
=

K ϕ

1 + V
.

Since {μ,μt, t ≥ 0} ⊂ MV (L
6(0,1)), the dominated convergence theorem

shows

lim
n1→∞

· · · lim
nm→∞

(∫
L6(0,1)

ϕn1,...,nm(x)μt(dx)−
∫
L6(0,1)

ϕn1,...,nm(x)μ(dx)

)
=

∫
L6(0,1)

ϕ(x)μt(dx)−
∫
L6(0,1)

ϕ(x)μ(dx)

and for any s ∈ [0, t],

lim
n1→∞

· · · lim
nm→∞

∫
L6(0,1)

K0ϕn1,...,nm(x)μs(dx) =

∫
L6(0,1)

K ϕ(x)μs(dx).

By using (5.6) and the dominated convergence theorem, we have

lim
n1→∞

· · · lim
nm→∞

∫ t

0

(∫
L6(0,1)

K0ϕn1,...,nm(x)μs(dx)

)
ds

=

∫ t

0

(∫
L6(0,1)

K ϕ(x)μs(dx)

)
ds.

This means that {μt, t ≥ 0} is the solution of (5.5) satisfying (5.6). Theo-
rem 5.3 shows the uniqueness of the solution. Hence, μt must coincide with
P ∗
t μ, t≥ 0. �
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