
Illinois Journal of Mathematics
Volume 57, Number 4, Winter 2013, Pages 1111–1130
S 0019-2082

A SPECTRAL IDENTITY FOR SECOND MOMENTS OF
EISENSTEIN SERIES OF O(n,1)

JOÃO PEDRO BOAVIDA

Abstract. Let H =O(n)×O(1) be an anisotropic subgroup of
G=O(n,1) and let A be the adele ring of k = Q. Consider the

periods

(Eϕ, F )H =

∫
Hk\HA

Eϕ · F ,

of an Eisenstein series Eϕ on G against a form F on H. Relying
on a variant of Levi–Sobolev spaces, we describe certain Poincaré

series as fundamental solutions for the Laplacian, and use them

to establish a spectral identity concerning the second moments
(in F -aspect) of Eϕ.

Introduction

Let k =Q. Consider the form represented by⎛⎝1
id

−1

⎞⎠
(here and elsewhere, omitted entries are zero) with respect to the decom-
position kn+1 = kn ⊕ (k · e−) = (k · e+)⊕ kn−1 ⊕ (k · e−). Let G=O(n+ 1),
H =O(n)×O(1), and Θ =O(n−1), and note that H and Θ are k-anisotropic.

As the form is isotropic, we consider the hyperbolic pair e′ = 1
2e+ − 1

2e−
and e= e+ + e−. Changing coordinates, we see the form is represented by⎛⎝ 1

id
1

⎞⎠
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with respect to (k · e′) ⊕ kn−1 ⊕ (k · e). We use these new coordinates for
the remainder of the Introduction, and observe that while H has no simple
description in these coordinates, Θ can still be identified with O(n− 1).

Write

mλ =

⎛⎝λ
id

λ−1

⎞⎠ and na =

⎛⎝1 a − 1
2aa

t

id −at

1

⎞⎠ .

The parabolic P stabilizing the isotropic line k · e can be written as P =NM ,
with unipotent radical N = {na} and Levi component M = {mλ} · Θ. The
modular function on P is given by δP (mλ) = |λ|n.

Let A be the adele ring of k =Q. At non-archimedean v, choose a maximal
(open) compact Kv . At the archimedean place v =∞, put K∞ =H∞; it is
a maximal compact in G∞. Write K =

∏
Kv ; it is a maximal compact in

GA. Let us recapitulate briefly the most salient points about the spectral
decomposition of (right K-invariant) functions in L2(Gk\GA/K).

The constant term of f ∈ L2(Gk\GA/K) is

cf(g) =

∫
Nk\NA

f(ng)dn.

We say f is a cuspform if cf = 0; the space L2
0(Gk\GA/K) of (right K-

invariant) cuspforms decomposes discretely [18] into joint eigenfunctions of
the center Z (g∞) of the universal enveloping algebra.

The constant term cf is left NAMk-invariant. If ϕ ∈ D(NAMk\GA/K) is
a test function, we have∫

NAMk\GA/K

cf(g)ϕ(g)dg =

∫
NAMk\GA/K

∫
Nk\NA

f(ng)dnϕ(g)dg

=

∫
Pk\GA/K

f(g)ϕ(g)dg

=

∫
Gk\GA/K

f(g)Eϕ(g)dg,

where

Eϕ(g) =
∑

γ∈Pk\Gk

ϕ(γg)

(the sum has finitely many non-zero terms) is a pseudo-Eisenstein series.
Observing that NAMk =MkNA and taking the Iwasawa decomposition GA =
NAMAK into account, we see the right K-invariant functions on NAMk\GA

are the right K ∩MA-invariant functions on Mk\MA.
Recall that M ∼=Θ ×GL(1) and that, because Θ is k-anisotropic, Θk\ΘA

is compact. Let Ψ run over an orthonormal basis of L2(Θk\ΘA/(K ∩ΘA)).
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Let also λ �→ δP (λ)
s be a character of GL(1) (with k =Q, there are no other

characters to account for). Extend

ϕs,Ψ (mλθ) = δP (λ)
s · Ψ(θ) = |λ|ns · Ψ(θ)

by left NA- and right K-invariance, and define the Eisenstein series as the
meromorphic continuation of

Es,Ψ (g) =
∑

γ∈Pk\Gk

ϕs,Ψ (γg)

to all C. (We will not go into the details, but the sum converges if Res > 1 and
does have a meromorphic extension [31].) If Ψ = 1, we write simply ϕs = ϕs,Ψ

and Es =Es,Ψ .
Given a function f in L2(Gk\GA/K), we have [1], [31], [37]

f =
∑
Φ

〈f,Φ〉 ·Φ+
1

4πi

∑
Ψ

∫
Re s= 1

2

〈f,Es,Ψ 〉 ·Es,Ψ ds+
∑
R

〈f,R〉 ·R

with Φ running over an orthonormal basis of L2
0(Gk\GA/K), Ψ over an or-

thonormal basis of L2(Θk\ΘA/(K ∩ΘA)), and R over an orthonormal basis
of residues of Eisenstein series to the right of Re s= 1

2 . (The inner products
are integrals over Gk\GA.)

We choose each component to be a joint eigenvector of Z (g∞). The cor-
responding Plancherel identity is

‖f‖2L2 =
∑
Φ

∣∣〈f,Φ〉∣∣2 + 1

4πi

∑
Ψ

∫
Re s= 1

2

∣∣〈f,Es,Ψ 〉
∣∣2 ds+∑

R

∣∣〈f,R〉
∣∣2.

(We note that the Eisenstein series themselves are not in L2, therefore the
inner product and integral are obtained by isometric extension.)

In what follows, we shorten these formulas to read

(1) f =

∫ ⊕
〈f,Φ〉 ·ΦdΦ and ‖f‖2L2 =

∫ ⊕∣∣〈f,Φ〉∣∣2 dΦ
(when writing thusly, Φ runs over all relevant spectral components).

We may consider the periods

(Φ,F )H =

∫
Hk\HA

Φ · F

of spectral components Φ on G against cuspforms F on H , or even

(Φ)H = (Φ,1)H =

∫
Hk\HA

Φ.

Such periods contain information about the underlying representations. These
same periods (called there global Shintani functions) were used by Katu,
Murase, and Sugano [29], [38] to obtain and study integral expressions for
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standard L-functions of the orthogonal group. And the Gross–Prasad conjec-
ture [19], [20], [21] predicts that a representation of O(n) occurs in a represen-
tation of O(n+1) if and only if the corresponding tensor product L-function is
non-zero on Re s= 1

2 . Ichino and Ikeda [24] discuss further details and broader
context is provided in papers by Gross, Reeder [22], Jacquet, Lapid, Offen,
and/or Rogawski [27], [33], [32], Jiang [28] and Sakellaridis and Venkatesh
[39], [40].

The periods also help study the asymptotics of moments of automorphic L-
functions. Often, the Phragmén–Lindelöf principle yields (so-called) convex
bounds for such asymptotics [4], [26]. Diaconu and Garrett [9], [10] used
a specific spectral identity to first break convexity for the asymptotics of
second moments of automorphic forms in GL(2), over any number field k. In
fact, their strategy produces families of spectral identities, explored in other
papers by them and/or Goldfeld [10], [11], [12] and used by Letang [34]. In
the present paper, we carry out that strategy to obtain a spectral identity for
second moments of Eisenstein series of O(n,1).

Given a function f ∈ L2(Gk\GA/K), the spectral decomposition (1) above
invites us to consider the effect of an operator X ∈ Z (g∞):

Xf =

∫ ⊕
〈f,Φ〉 · λX,Φ ·ΦdΦ and ‖Xf‖2L2 =

∫ ⊕∣∣〈f,Φ〉∣∣2|λX,Φ|2 dΦ,(2)

where λX,Φ is the X-eigenvalue of Φ (if X =Ω, we write simply λΦ = λΩ,Φ).
The conditions for these decompositions to converge (even in the sense of iso-
metric extensions) are most naturally discussed in the context of automorphic
Sobolev spaces. The literature on automorphic Sobolev spaces is scarce; it in-
cludes papers by Bernstein and Reznikov [2], [3], Krötz and Stanton [30] and
Michel and Venkatesh [36], as well as Garrett’s [17] notes and DeCelles’s [8]
very detailed discussion. We discuss them (and their zonal counterparts) in
Sections 1 and 2, following the approach in the author’s dissertation [5].

The automorphic Sobolev spaces we discuss in Section 1 are closures (with
respect to the relevant norms) of the space D(Gk\GA) of global test functions.
Even though we only take into account the eigenvalues of Ω in their definition,
we rely on a global spectral decomposition, and the norms are defined from
integrals over Gk\GA. So we should see these spaces as spaces of global
functions.

A crucial point is that, using a pre-trace kernel, we can obtain an estimate∫ ⊕

|λΦ|<T 2

∣∣Φ(g)∣∣2 � Tn

similar to Weyl’s Law, from which we can characterize an automorphic delta
δA. Then, it is just a matter of using the techniques one habitually uses with
classical Sobolev spaces to obtain fundamental solutions of PDEs.
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By contrast, the zonal Sobolev spaces we discuss in Section 2 are closures
of test functions on K∞\G∞/K∞; these are local (archimedean) functions.
From them, we shall obtain a different construction of the (global) fundamen-
tal solutions just mentioned, which will help us extract some archimedean
information.

In Section 3, we use those techniques to obtain fundamental solutions (fol-
lowing Diaconu and Garrett [9], we call them Poincaré series) for certain
polynomials in Ω. The spectral decomposition of these Poincaré series Pé
involves the periods (Φ)H discussed above. Given an automorphic function
f ⊗ f ′ on G × G, we expand 〈f · f ′,Pé〉G in two distinct ways, yielding an
identity between a spectral expansion (along G) and a moment expansion (in
F -aspect, with F running over an orthonormal basis of cuspforms on H).

In Section 4, we apply those ideas to Eisenstein series. In particular, we
see how the moment expansion involves the second moments of the Eisenstein
series in F -aspect, as well as the periods of Eisenstein series. (Elsewhere [5],
[6], [7], this author has computed these periods at non-archimedean primes.
As discussed there, for the cases used in the present paper, the local factor at
the archimedean place is 1.)

In the Appendix, we explain the regularization used in Section 4.

1. Automorphic Sobolev spaces

In the continuation, we will rely heavily on some L2 Sobolev spaces,
adapted to the automorphic case. Classically, the Sobolev space of order
� is defined as the space of functions whose weak derivatives up to order � are
square-integrable. The topology induced by that family of seminorms (one
for each derivative up to order �) can also be described by a norm obtained
from Plancherel formula. For example, in Rn, we set

‖f‖2H� =

∫
Rn

∣∣f̂(ξ)∣∣2(1 + |ξ|2
)�
dξ.

Under Fourier transform, the Laplacian Δ acts (up to a constant) by multi-
plication by |ξ|2. In the Plancherel identity, the effect of Δ is as described in
(2).

In our case, the effect of the Casimir element Ω of G∞ on the Plancherel
identity is also as in (2). Thus, with inner products obtained from integrals
over Gk\GA (or by isometric extension), we define the automorphic Sobolev
norm by

‖f‖2� =
∫ ⊕∣∣〈f,Φ〉∣∣2(1 + |λΦ|

)�
dΦ

and the automorphic Sobolev space as

(3) H�
auto = closure of D(Gk\GA) with respect to ‖‖�.
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We are specifically interested in the effect of the center Z (g∞) of the univer-
sal enveloping algebra (and the corresponding differential operators), so the
only modification to the usual L2 norm involves only archimedean informa-
tion. However, the norm itself depends on the global automorphic spectral
decomposition.

For � > 0, as usual, H−�
auto is the dual of H�

auto. Let f ∈ D(Gk\GA)∩H−�
auto

and ϕ ∈ D(Gk\GA)∩H�
auto. In the expanded notation, we define 〈f,ϕ〉 by∑

Φ

〈f,Φ〉〈ϕ,Φ〉+ 1

4πi

∑
Ψ

∫
Re s= 1

2

〈f,Es,Ψ 〉〈ϕ,Es,Ψ 〉ds+
∑
R

〈f,R〉〈ϕ,R〉.

From Cauchy–Schwarz–Bunyakowsky, we obtain (now in the compressed no-
tation)

〈f,ϕ〉 =
∫ ⊕

〈f,Φ〉〈ϕ,Φ〉dΦ

�
∫ ⊕∣∣〈f,Φ〉∣∣(1 + |λΦ|

)−�/2 ·
∣∣〈ϕ,Φ〉∣∣(1 + |λΦ|

)�/2
dΦ

�

√∫ ⊕∣∣〈f,Φ〉∣∣2(1 + |λΦ|
)−�

dΦ ·

√∫ ⊕∣∣〈ϕ,Φ〉∣∣2(1 + |λΦ|
)�
dΦ

= ‖f‖−� · ‖ϕ‖�.

Proposition 1. With X =G∞/K∞ and n= dimRX , we have∫ ⊕

|λΦ|<T 2

∣∣Φ(g)∣∣2 � Tn.

(This is unsurprising, in light of Weyl’s Law [13], [25], [35].)

Proof of Proposition 1. We follow Garrett [15], with adjustments to a dif-
ferent group and attempting to avoid tedious computations.

We use the “ball”

B =

{
namλ : max |ai|<

1

T
and | logλ|< 1

T

}
of radius 1/T in P∞. Then BK∞ is a tubular neighborhood of K∞ in G∞.
Considering the action by η = chBK∞ ⊗

⊗
v<∞ chKv , we have

(η · f)(g) =
∫
GA

η(h)f(gh)dh=

∫
GA

η
(
g−1h

)
f(h)dh

=

∫
Gk\GA

∑
γ∈Gk

η
(
g−1γh

)
f(h)dh= 〈ηg, f〉,

where

ηg(h) =
∑
γ∈Gk

η
(
g−1γh

)
.
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If the radius 1/T is sufficiently small, this sum has one single term. (Note
that η is not smooth; such a choice avoids cut-off functions.) Still following
Garrett,

‖ηg‖2 =
∫
Gk\GA

ηg(h)
∑
γ∈Gk

η
(
g−1γh

)
dh=

∫
GA

ηg(h)η
(
g−1h

)
dh

=

∫
GA

∑
γ∈Gk

η
(
g−1γgh

)
η(h)dh.

We are led to

‖ηg‖2 � radiusn =
1

Tn
.

On the other hand, because Φ is right K-invariant and generates an irre-
ducible representation, it must be that

〈ηg,Φ〉= (η ·Φ)(g) =CΦ(g),

where the constant C depends only on η and the archimedean parameters of Φ.
Let s be the archimedean parameter, seen as the parameter of a principal series
representation ϕs at ∞. Then, if namλ ∈ B, k ∈K∞, and s� T (which is
the case if |λΦ|< T 2, as λΦ � s2), we have

ϕs(namλk) = δ(mλ) = |λ|ns < ens/T � 1.

In particular, assume that g lies in a fixed compact and the radius 1/T is
sufficiently small. Then

(η ·Φ)(g) =
∫
GA

η(h)Φ(gh)dh�
∫
GA

η(h)dh ·Φ(g)� radiusn ·Φ(g)

and we see that

C � radiusn =
1

Tn
.

Combining all this information, we conclude

1

Tn
�‖ηg‖2 =

∫ ⊕∣∣〈ηg,Φ〉∣∣2 dΦ≥
∫ ⊕

|λΦ|<T 2

∣∣〈ηg,Φ〉∣∣2 � ∫ ⊕

|λΦ|<T 2

|Φ(g)|2
T 2n

. �

Lemma 2. Let δA be the distribution defined, for right K-invariant f , by∫
Gk\GA

f · δA = f(1).

We have δA ∈H
−n/2−ε
auto , for any ε > 0.

(As the definition of H�
auto depends on the global spectral decomposition,

it is not possible to reduce this to classical lemmas, of which it is a direct
analogue.)
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Proof of Lemma 2. Indeed, let

aN =

∫ ⊕

|λΦ|<N2

∣∣F (1)
∣∣2.

Then ∫ ⊕ |〈δA,Φ〉|2
(1 + |λΦ|)n/2+ε

dΦ�
∑
N≥0

aN+1 − aN
(1 +N)n+2ε

=
∑
N≥0

aN

(
1

Nn+2ε
− 1

(N + 1)n+2ε

)
�

∑
N≥0

aN
Nn+1+ε

�
∑
N≥0

Nn

Nn+1+ε
<∞.

Therefore, in H
−n/2−ε
auto , we have

δA =

∫ ⊕
Φ(1) ·ΦdΦ. �

Proposition 3. If |λΦ−λ| ≥ r > 0 for all Φ, then (Ω−λ) : H�
auto →H�−2

auto

is an isomorphism.

Proof. For λ ∈C and f ∈H�
auto, we have

∥∥(Ω− λ)f
∥∥2
�−2

=

∫ ⊕∣∣〈f,Φ〉(λΦ − λ)
∣∣2(1 + |λΦ|

)�−2
dΦ

�
∫ ⊕∣∣〈f,Φ〉∣∣2(1 + |λΦ|

)�
dΦ= ‖f‖2� ,

showing that (Ω − λ) : H�
auto → H�−2

auto is continuous and injective. On the
other hand, if |λΦ − λ| ≥ r > 0 for all Φ, then

1 + |λΦ| ≤ 1 + |λΦ − λ|+ |λ| � |λΦ − λ|. �

For example, there is a unique solution uA of

(Ω− λ)NuA = δA,

for δA as defined above. In H
2N−n/2−ε
auto , it can be expressed as

(4) uA =

∫ ⊕ Φ(1)

(λΦ − λ)N
·ΦdΦ.
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2. Zonal spherical functions

In this section, we work at the single archimedean place (suppressed). The
facts we need on spherical functions were taken from the monographs by
Helgason [23] and Gangolli and Varadarajan [14]. In this summary, we follow
mostly Helgason, as well as Garrett [15], with adaptations for the rank one
case.

Let X =G∞/K∞, n= dimRX , and Δ be the image of the Casimir element
Ω on X . A smooth function f on K\G/K is a zonal spherical function if it
is an eigenfunction of Δ normalized by f(1) = 1. For any given eigenvalue λ,
there is only one such f .

Recall that we defined

ϕs(namλk) = δP (mλ)
s = |λ|s.

By a theorem of Harish-Chandra, all zonal spherical functions are of the form

ψs(g) =

∫
K

ϕs(kg)dk,

for some s ∈C.
The spherical transform is defined for f ∈ L2(K\G/K) by

f̃(s) =

∫
G

f ·ψ1−s.

The inversion formula (up to a constant) is

f(g) =

∫
Re s= 1

2

f̃(s) · ψs(g)

|c(s)|2 ds,

with corresponding Plancherel identity

‖f‖2L2 =

∫
Re s= 1

2

|f̃(s)|2
|c(s)|2 ds.

(We need to use the Plancherel identity to establish an isometric extension.)
The Harish-Chandra function c(s) is given [23] by the Gindikin–Karpelevič
formula, which, in our case, is

c(s) =
Γ((s− 1

2 )
n−1
2 ) · Γ( 3(n−1)

4 )

Γ((s+ 1
2 )

n−1
2 ) · Γ(n−1

4 )
.

(Helgason’s iλ relates to our s by ρ+ iλ = 2ρs. The positive simple root α
has 〈α,α〉 = n− 1 and multiplicity (n− 1). Therefore, 2ρ = (n− 1)α.) The
main fact we need is that

c(s)� |s|−n−1
2 .

We define the zonal Sobolev norm by

‖f‖2� =
∫
Re s= 1

2

|f̃(s)|2
|c(s)|2

(
1 + |λs|

)�
ds,
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where λs = λψs � |s|2. We define the zonal spherical Sobolev space as

H�
zonal = closure of D(K\G/K) with respect to ‖‖�.

Lemma 4. If δ∞ is the delta distribution centered at 1 ·K, we have δ∞ ∈
H

−n/2−�
zonal , for any ε > 0.

(This is compatible with the outcome for δA, in Lemma 2.)

Proof of Lemma 4. We have

δ̃∞(s) = ψ1−s(1) =

∫
K

ϕ1−s(k)dk = 1.

On the other hand,

(1 + |λs|)−�

|c(s)|2 � |s|−2�

|s|−(n−1)

and the requirement for ∫
Re s= 1

2

(1 + |λs|)−�

|c(s)|2 ds <∞

is 2�− (n− 1)> 1, or � > n/2. �

The spherical expansion of δ∞, valid in H
−n/2−ε
zonal , is

δ∞ =

∫
Re s= 1

2

ψs

|c(s)|2 ds.

Exactly as in Proposition 3, (Δ− λ) : H�
zonal →H�−2

zonal is an isomorphism
provided λ is away from all eigenvalues of Δ (with s lying on Re s = 1

2 this
is not at all an issue). In that case, also as before, there is a solution u∞ of

(Δ− λ)Nu∞ = δ∞. In H
2N−n/2−ε
zonal ,

u∞ =

∫
Re s= 1

2

ψs

(λs − λ)N · |c(s)|2 ds.

3. Poincaré series and spectral identities

We return to the global picture and follow Diaconu and Garrett [9], [10],
[15], [16].

At non-archimedean v, let uv be the characteristic function of Hv ·Kv and
u= u∞ ⊗

⊗
v<∞ uv . Noting that u∞ inherits the left H∞-invariance of δ∞,

we define the Poincaré series

Pé(g) =
∑

γ∈Hk\Gk

u(γg).

(This is a function on Gk\GA, while u∞ is a function on G∞.)
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For brevity, write P (Ω) = (Ω− λ)N . Require P (λΦ)� 0. Note that Pé is
left Gk-invariant and that Ω acts only on the archimedean information. It is
clear that the Poincaré series is a solution of

P (Ω)Pé = δA.

This same solution was shown in Section 1 to be unique in the automorphic
Sobolev space. Therefore, it must be that∑

γ∈Hk\Gk

u(γg) = Pé =

∫ ⊕ Φ(1)

P (λΦ)
·ΦdΦ.

(Unremarkably, Pé has a larger support than δA. The same phenomenon
occurs already with fundamental solutions of Δ in Rn, whose support is all
of Rn, while the support of δ is only {0}.)

On the other hand, let f : Gk\GA → C be an eigenfunction of Ω with
eigenvalue λf �= λ. Then

〈f,Pé〉G =

∫
Gk\GA

f ·Pé =
∫
HA\GA

∫
Hk\HA

f · u

=

∫
HA\GA

(∫
Hk\HA

P (Ω)

P (λf )
f

)
· u=

∫
HA\GA

∫
Hk\HA

f · P (Ω)

P (λf )
u

=
1

P (λf )

∫
HA\GA

∫
Hk\HA

f ·
(
δ∞ ⊗

⊗
v<∞

uv

)
=

1

P (λf )

∫
Hk\HA

f

=
(f)H
P (λf )

.

That is, the Poincaré series can be used to extract information about periods.

In H
2N−n/2−ε
auto , we decompose

Pé =

∫ ⊕
〈Pé,Φ〉 ·ΦdΦ=

∫ ⊕ (Φ)H
P (λΦ)

·ΦdΦ=

∫ ⊕ (Φ)H
P (λΦ)

·ΦdΦ.

Diaconu and Garrett [9] discuss a similar decomposition for G=GL2.

Application to spectral identities. Still following Diaconu and Garrett
[9], consider two chains of inclusions: HΔ ⊆GΔ ⊆G×G and HΔ ⊆H ×H ⊆
G×G, where GΔ denotes the image of G→G×G : g �→ (g, g), and similarly
for HΔ.

Let f ⊗ f ′ be an automorphic function on G × G. The two inclusions
suggest two different evaluations of〈

f · f ′,Pé
〉
G
=

∫
Hk\GA

f · f ′ · u;

a spectral decomposition along GΔ (we will call it the spectral expansion) or
along H ×H (we will call it the moment expansion).
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Decomposing along G (the spectral expansion), we have〈
f · f ′,Pé

〉
G
=

∫ ⊕

Φ on G

〈
f · f ′,Φ

〉
〈Φ,Pé〉(5)

=

∫ ⊕ (Φ)H
P (λΦ)

∫
Gk\GA

f · f ′ ·ΦdΦ,

involving triple products as well as the periods (Φ)H of each component Φ.
Note that f has a discrete decomposition along H . Writing (g · f)(h) =

f(hg):

g · f =
∑
F

(g · f,F )H · F,

with F running over an orthonormal basis of eigenfunctions of Z (h∞). We
obtain the moment expansion:〈

f · f ′,Pé
〉
G
=

∫
Hk\GA

f · f ′ · u=

∫
HA\GA

∫
Hk\HA

f(hg)f ′(hg)u(g)dhdg(6)

=

∫
HA\GA

(g · f, g · f ′)Hu(g)dg

=

∫
HA\GA

∑
F

(
g · f,F

)
H

(
g · f ′, F

)
H
u(g)dg.

Often, it can be rewritten in the form∑
F

(f,F )H
(
f ′, F

)
H
·weight

(
f∞, f ′

∞, F∞
)
,

with the weight depending only on the archimedean parameters. In the next
section, we show the details of such a rewriting when f and f ′ are spherical
Eisenstein series, unramified at non-archimedean places. For applications, one
would need to study its asymptotics.

In sum, we establish the following theorem.

Theorem 5. Let f ⊗ f ′ be an automorphic function on G×G, where f
and f ′ are spherical Eisenstein series, unramified at non-archimedean places.
Then 〈f · f ′,Pé〉G has two expansions: the spectral expansion∫ ⊕

Φ

(Φ)H
P (λΦ)

∫
Gk\GA

f · f ′ ·ΦdΦ

is a decomposition along G, while the moment expansion∑
F

∫
HA\GA

(g · f,F )H
(
g · f ′, F

)
H
u(g)dg

=
∑
F

(f,F )H
(
f ′, F

)
H
·weight

(
f∞, f ′

∞, F∞
)

is a decomposition along H .
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4. Eisenstein series and their second moments

We want to specialize to spherical, unramified, Eisenstein series f = Ea

and f ′ =Eb. Here, a, b ∈C, and Ea and Eb are parametrized as discussed in
the Introduction.

One first obstacle is that f ·f ′ is not in L2(Gk\GA) and it is unclear whether
we can integrate 〈

f · f ′,Pé
〉
G
=

∫
Gk\GA

f · f ′ ·Pé

directly. It is possible to subtract finitely many singular terms from f · f ′ so
that the difference is square-integrable; we discuss that in the Appendix.

The exact choice of singular terms will depend on where a or b lie. For
definiteness, say

F =EaEb +
∑
s

csEs

(with finitely many s occurring) is the regularized expression.
For the spectral expansion, we have, as in (5),

〈F ,Pé〉G =

∫ ⊕

Φ on G

〈F ,Φ〉〈Φ,Pé〉=
∫ ⊕

〈F ,Φ〉 (Φ)H
P (λΦ)

dΦ.

The moment expansion starts as (6),

〈F ,Pé〉G =

∫
Gk\GA

F ·Pé =
∫
Hk\GA

F · u=

∫
HA\GA

∫
Hk\HA

F(hg)dh · u(g)dg,

where the convergence of the inner integral is justified by the compactness
of Hk\HA. Recall that at non-archimedean v we chose uv = chHv·Kv , so we
assume gv ∈Hv ·Kv . Therefore, we can simplify further:

(7) 〈F ,Pé〉G =

∫
H∞\G∞

∫
Hk\HA

F(hg)dhu∞(g)dg.

The inner integral is

(8)

∫
Hk\HA

F(hg)dh=

∫
Hk\HA

Ea(hg)Eb(hg)dh+
∑
s

cs

∫
Hk\HA

Es(hg)dh.

The “main” part. For the EaEb summand, we have, as before,

(9)

∫
Hk\HA

Ea(hg)Eb(hg)dh=
∑
F

(g ·Ea, F )H(g ·Eb, F )H .

We remark that

(g ·Es, F )H =

∫
Hk\HA

Es(hg)F (h)dh=

∫
Θk\HA

ϕs(hg)F (h)dh

=

∫
ΘA\HA

ϕs(hg)

∫
Θk\ΘA

F (θh)dθ dh.
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The function

FΘ(h) =

∫
Θk\ΘA

F (θh)dθ

is a spherical vector in IndHΘ 1, normalized by FΘ(1) = (F )Θ. Therefore, with
η a spherical vector normalized by η(1) = 1, we obtain

(g ·Es, F )H =

∫
ΘA\HA

ϕs(hg)FΘ(h)dh= (F )Θ ·
∫
ΘA\HA

ϕs(hg)η(h)dh.

Recalling that gv ∈Hv ·Kv for non-archimedean v, we see that all but the
archimedean factor are independent of g and

(g ·Es, F )H

=

(∫
Θ∞\H∞

ϕs,∞(hg∞)FΘ(h)dh

)
·
∏
v<∞

(∫
Θv\Hv

ϕs,v(h)FΘ(h)dh

)
.

We abbreviate this as follows:

ψs,F (g∞) =

∫
Θ∞\H∞

ϕs,∞(hg∞)FΘ(h)dh;

(Es, F )′H =
∏
v<∞

∫
Θv\Hv

ϕs,v(h)FΘ(h)dh;

(g ·Es, F )H = ψs,F (g∞)(Es, F )′H .

Combining this with (9), we see that the “main” part of the moment ex-
pansion (7) is

(10)
∑
F

(Ea, F )′H(Eb, F )′H

∫
H∞\G∞

ψa,F (g)ψb,F (g)u∞(g)dg.

Suppress for a moment the ∞ indices, and use G=HP , with measure d(hp) =
dhdp and dp being a right Haar measure. We have∫
H\G

ψa,F · ψb,F · u=

∫
H

∫
H

∫
P

ϕa(hp)FΘ(h) ·ϕb

(
h′p

)
FΘ

(
h′) · u(p)dpdhdh′.

With a nod to Diaconu and Garrett [9], set

Xa,b

(
h,h′)= ∫

P

ϕa(hp)ϕb

(
h′p

)
u∞(p)dp

and conclude∫
H\G

ψa,F ·ψb,F · u=

∫
Θ\H

∫
Θ\H

FΘ(h)FΘ

(
h′)Xa,b

(
h,h′)dhdh′.

Resuming (10), we see that the “main” part of the moment expansion is

(11)
∑
F

(Ea, F )′H(Eb, F )′H

∫
Θ∞\H∞

∫
Θ∞\H∞

FΘ(h)FΘ

(
h′)Xa,b

(
h,h′)dhdh′.
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Recalling that FΘ(h) = (F )ΘηF (h), where ηF is a spherical vector in IndHΘ 1
normalized by ηF (1) = 1, we can make the periods even more apparent.

The “singular” part. For the other summands in (8), we observe that, by
Witt’s lemma, Pk\Gk is the space of isotropic lines in kn+1, on which Hk acts
transitively. As Θ =H ∩ P , we have Pk\Gk =Θk\Hk and∫

Hk\HA

Es(hg)dh =

∫
Hk\HA

∑
γ∈Θk\Hk

ϕs(γhg)dh=

∫
Θk\HA

ϕs(hg)dh

= vol(Θk\ΘA)

∫
ΘA\HA

ϕs(hg)dh.

Normalizing vol(Θk\ΘA) = 1 and recalling that gv ∈ Hv · Kv for non-
archimedean v, we obtain∫

Hk\HA

Es(hg)dh =

(∫
Θ∞\H∞

ϕs,∞(hg∞)dh

)
·
∏
v<∞

(∫
Θv\Hv

ϕs,v(h)dh

)
= ψs(g)(Es)H .

Additionally, because u∞ is a solution of P (Δ)u∞ = (Δ− λ)Nu∞ = δ∞, we
have∫

H∞\G∞

ψs · u∞ =

∫
H∞\G∞

P (Δ)ψs

P (λs)
· u∞

=

∫
H∞\G∞

ψs ·
P (Δ)u∞
P (λs)

=

∫
H∞\G∞

ψs ·
δ∞

P (λs)
=

1

P (λs)
.

Therefore, the “singular” part of the moment expansion (7) becomes∫
H∞\G∞

∑
s

cs(g ·Es,1)H =
∑
s

cs(Es)H

∫
H∞\G∞

ψs · u∞(12)

=
∑
s

cs
(Es)H
P (λs)

.

Combining this with the “main” part (11), we obtain the complete moment
expansion:

Proposition 6. Let

F =EaEb +
∑
s

csEs

be the regularized expression (with finitely many s occurring) for EaEb, and

Xa,b

(
h,h′) = ∫

P∞

ϕa,∞(hp)ϕb,∞
(
h′p

)
u∞(p)dp,

weighta,b,F =
∣∣(F )Θ

∣∣2 ∫
H∞

∫
H∞

ηF (h)ηF
(
h′)Xa,b

(
h,h′)dhdh′,
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where ηF is a spherical vector in IndHΘ 1 normalized by ηF (1) = 1. Then the
moment expansion of 〈F ,Pé〉G is

〈F ,Pé〉G =
∑
F

(Ea, F )′H(Eb, F )′H ·weighta,b,F +
∑
s

cs
(Es)H
P (λs)

.

The actual computation of Xa,b and weighta,b,F can get quite involved, as
illustrated, for example, in the GL(r)×GL(r− 1) case discussed by Diaconu,
Garrett and Goldfeld [12].

Appendix: Regularizing functions not of rapid decay

In the previous section, we needed the spectral expansion of EaEb, and
observed that one difficulty was that the product is not in L2(Gk\GA/K).
However, it is possible to subtract a linear combination of Eisenstein series
(the singular part), so that the difference is an L2 function.

The idea, which I learned from Garrett [15], [16] and he traces to Zagier
[41], uses the constant terms of the Eisenstein series to guide the choice of
singular terms, so as to assure cancellation of non-L2 terms. We articulate
the details in our specific case G=O(n,1).

We saw in the Introduction that M =ΘA, where A= {mλ} ∼=GL(1). We
will always write the elements of P =NΘA in the form p= nθmλ. Because
dndθ d(mλ) is a right invariant measure, dp= δP (mλ)

−1 ·dndθ d(mλ) is a left
invariant measure on P . In the same manner, we always write the elements of
G= PK =NΘAK in the form g = pk = nθmλk, in which case dg = dpdk =
δP (mλ)

−1 · dndθ d(mλ)dk is a Haar measure on G.
Recall now that we can choose a compact C ⊂NAΘA and a real t0 > 0 such

that the Siegel set

S=
{
g = nθmλk : nθ ∈C and δP (mλ)≥ t0

}
satisfies GkS=GA. We assume such a choice was made.

Supposing

f(g)� δP (mλ)
σ

for some real σ, we have∫
Gk\GA

f ≤
∫
S

f �
∫
K

∫ ∞

t0

∫
C

∣∣f(nθmλk)
∣∣ · δP (mλ)

−1 · d(nθ) dλ
λ

dk

�
∫ ∞

t0

δP (mλ)
σ−1 dλ

λ
=

∫ ∞

t0

|λ|n(σ−1)−1 dλ

(in the last step, we used δP (mλ) = |λ|n). This last integral converges when
σ < 1. We have thus shown that f is integrable over Gk\GA provided σ < 1.
For L2 integrability, we need σ < 1

2 .
Recall next that a function f on Pk\GA is of moderate growth if

f(g)� δP (mλ)
σ for some σ > 0



A SPECTRAL IDENTITY FOR EISENSTEIN SERIES OF O(n,1) 1127

and of rapid decay if

f(g)� δP (mλ)
σ for all σ < 0.

From the discussion above, it is apparent that if f is right Gk-invariant and
of rapid decay, then it is integrable over Gk\GA.

We also know [31], [37] that, choosing the normalization vol(Nk\NA) = 1,
the constant term of the Eisenstein series is

cEs(g) = δP (mλ)
s + cs · δP (mλ)

1−s,

where cs is the same constant as in the functional equation

E1−s = c1−s ·Es.

Moreover, it is a standard fact that f − cf is of rapid decay, so we can write

Es(g) = δP (mλ)
s + cs · δP (mλ)

1−s + fn rapid decay.

We return to the case Ea ·Eb with a, b ∈C. Clearly,

Ea(g) ·Eb(g) = δP (mλ)
a+b + ca · δP (mλ)

1−a+b

+ cb · δP (mλ)
a+1−b + ca · cb · δP (mλ)

1−a+1−b

+ fn rapid decay.

As we know that exponents less than 1
2 assure L2 integrability, we usually

can say more.
For example, if Rea > 1 and Re b= 1

2 ,

Ea(g) ·Eb(g) = δP (mλ)
a+b + cb · δP (mλ)

a+1−b + L2 function.

Moreover,

Ea+b(g) = δP (mλ)
a+b + ca+b · δP (mλ)

1−a−b + fn rapid decay

= δP (mλ)
a+b +L2 function.

In the same manner,

Ea+1−b(g) = δP (mλ)
a+1−b + ca+1−b · δP (mλ)

−a+b + fn rapid decay

= δP (mλ)
a+1−b +L2 function.

Therefore,
Ea ·Eb −Ea+b − cb ·Ea+1−b = L2 function.

We may well have more than two singular terms. For example, if Rea =
Re b= 1

2 , we obtain:

Ea(g) ·Eb(g) = δP (mλ)
a+b + ca · δP (mλ)

1−a+b

+ cb · δP (mλ)
a+1−b + ca · cb · δP (mλ)

2−a−b +L2 function.

Here all exponents have real part equal to 1. But the important point is that
if one exponent in

Es(g) = δP (mλ)
s + cs · δP (mλ)

1−s +L2 function
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has real part greater than 1
2 , the other one will have it less than 1

2 . In our
case, we have

Ea+b(g) = δP (mλ)
a+b +L2 function;

E1−a+b(g) = δP (mλ)
1−a+b +L2 function;

Ea+1−b(g) = δP (mλ)
a+1−b +L2 function;

E2−a−b(g) = δP (mλ)
2−a−b +L2 function.

Therefore,

Ea ·Eb −Ea+b − ca ·E1−a+b − cb ·Ea+1−b − ca · cb ·E2−a−b = L2 function.
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