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CONDITION R AND HOLOMORPHIC MAPPINGS OF
DOMAINS WITH GENERIC CORNERS

DEBRAJ CHAKRABARTI AND KAUSHAL VERMA

Abstract. A piecewise smooth domain is said to have generic
corners if the corners are generic CR manifolds. It is shown that a

biholomorphic mapping from a piecewise smooth pseudoconvex

domain with generic corners in complex Euclidean space that

satisfies Condition R to another domain extends as a smooth dif-
feomorphism of the respective closures if and only if the target

domain is also piecewise smooth with generic corners and satis-
fies Condition R. Further it is shown that a proper map from a

domain with generic corners satisfying Condition R to a prod-
uct domain of the same dimension extends continuously to the

closure of the source domain in such a way that the extension is

smooth on the smooth part of the boundary. In particular, the

existence of such a proper mapping forces the smooth part of the
boundary of the source to be Levi degenerate.

1. Introduction

The question of continuous or smooth extension to the boundary of holo-
morphic maps is of central importance in complex analysis. One significance
of such extension lies in the fact that it reduces the difficult problem of clas-
sification of domains in C

n, n≥ 2 up to biholomorphism, or the more general
problem of deciding the existence of a proper map between two given domains,
to the problem of study of CR invariants of the boundary hypersurfaces. Af-
ter the fundamental result in this direction of Fefferman [18] giving smooth
extension up to the boundary of a biholomorphic map between strictly pseu-
doconvex domains, there were obtained far reaching generalizations to proper
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maps between smoothly bounded pseudoconvex domains (e.g., [9], [4], [5], [6],
[8], [16]). In these investigations, the hypothesis on the source domain D
of the proper map is that it satisfies Condition R: the Bergman projection,
the orthogonal projection from the Hilbert space L2(D) of square integrable
functions to the closed subspace H(D) of holomorphic square integrable func-
tions, maps a function smooth up to the boundary to a holomorphic function
smooth up to the boundary.

In this note we consider a class of piecewise smooth domains to which the
techniques of Bell–Catlin–Diederich–Fornaess–Ligocka et al. mentioned above
extend in a natural way. By definition, a piecewise smooth domain is an in-
tersection of finitely many smoothly bounded domains in which all possible
boundary intersections are transverse. The class of domains we will be consid-
ering are the domains with generic corners defined below. Such domains have
been considered by various authors (see [2], [19], [25]). In [25], Webster con-
sidered holomorphic mappings defined on domains with real analytic generic
corners, and a reflection principle for such corners was developed. These ideas
were subsequently developed by Forstnerič (see [19]). A crucial estimate of
Bell for holomorphic functions on smooth domains was generalized by Bar-
rett to this class of domains (see [2], and Lemma 2.1 below). In a previous
article ([13]) we considered the extension of proper mappings of equidimen-
sional products of smoothly bounded domains. These products are examples
of domains with generic corners, and here we generalize some of the results of
[13] to the wider class. We now formally define these domains:

Definition 1.1. Let Ω be a bounded domain in Cn that may be written

as an intersection
⋂N

j=1Ωj of smooth domains such that

(i) all intersections of the boundaries bΩj are transverse.
(ii) for each subset S ⊂ {1, . . . ,N} the intersection BS =

⋂
j∈S bΩj , if non-

empty, is a CR manifold of CR-dimension n− |S|.
We call such a domain a domain with generic corners.

Our first result is the following theorem.

Theorem 1.2. Suppose that D ⊂ C
n is a pseudoconvex domain with

generic corners which satisfies Condition R. If G ⊂ C
n is a domain and

f : D→G is a biholomorphic map, then the following are equivalent:

(1) f extends as a C∞-smooth diffeomorphism from D to G.
(2) G is a domain with generic corners and satisfies Condition R.

Therefore the property of a domain that it satisfies Condition R and has
generic corners is invariant under holomorphic maps smooth up to the bound-
ary. As a result, the classification of domains in this class is reduced to the
study of the boundaries. In Section 3, we consider some examples of domains
satisfying the hypotheses of Theorem 1.2. These are also the hypotheses on
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the source domain D in Theorem 1.3 below. In a future work, we will consider
further examples of this class of domains.

For a domain Ω with generic corners, let bΩsng ⊂ bΩ consist of all those
points that lie on the intersection of two or more boundaries bΩj and set
bΩreg = bΩ \ bΩsng.

Theorem 1.3. Let D ⊂C
n be a pseudoconvex domain with generic corners

and G = G1 × G2 × · · · × Gk ⊂ C
n a product domain where each Gj ⊂ C

μj

is smoothly bounded and μ1 + μ2 + · · · + μk = n. Assume that D satisfies
Condition R and let f : D → G be a proper holomorphic mapping. Then f
admits a continuous extension to D in such a way that the extension is C∞

smooth on bDreg.

It is possible to prove continuous extension of holomorphic maps between
piecewise smooth domains under hypotheses different from those used in
Theorems 1.2 and 1.3. Piecewise smooth pseudoconvex domains that ad-
mit plurisubharmonic peak points on their boundaries were considered by
Berteloot ([10]) and Hölder continuity at the boundary for proper holomorphic
mappings between such domains was established. A similar result that relied
on estimates for the Carathéodory metric on strictly pseudoconvex piecewise
smooth domains was proved by Range ([23]).

One interesting question that Theorem 1.3 leaves unresolved is whether
we can conclude from the hypotheses if the source D itself has a product
structure, that is, if there is a biholomorphic map F : D → F (D) onto a
product domain F (D)⊂Cn, where F extends to a diffeomorphism from D to

F (D). It would be interesting to know if this indeed is the case.

2. Bell operator

Let Ω be a domain with generic corners in C
n and let N and Ωj have the

same meaning as in Definition 1.1. Suppose that rj (where j = 1, . . . ,N ) is
a defining function of the domain Ωj , that is, rj is a smooth function on C

n

such that Ωj = {rj < 0} and drj is non-zero at each point of bΩj . Then the
conditions (i) and (ii) in Definition 1.1 may be rephrased as follows: for each
point p such that

rj1(p) = rj2(p) = · · ·= rjk(p) = 0

we have

drj1(p)∧ drj2(p)∧ · · · ∧ drjk(p) �= 0

and also

(2.1) ∂rj1(p)∧ ∂rj2(p)∧ · · · ∧ ∂rjk(p) �= 0.

Lemma 2.1 (cf. Barrett [1], [2]). Let s = (s1, . . . , sN ) be a tuple of non-
negative integers. There is a linear differential operator Φs with smooth coef-
ficients defined on Ω such that for all f ∈ C∞(Ω),
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(i) PΦsf = Pf and

(ii) |Φsf(z)| ≤C‖f‖C|s|d(z)s, where |s|=
∑N

j=1 sj and

d(z)s = d1(z)
s1 · · ·dN (z)sN ,

where dj(z) is the distance from the point z to bΩj .

Proof. Thanks to (2.1), near each p ∈ C
n we can find N vector fields

T
(p)
1 , . . . , T

(p)
N of type (0,1) such that T

(p)
j rk ≡ δjk in a neighborhood of p

when rj(p) = rk(p) = 0. By a partition of unity argument, we obtain vector
fields Tj , j = 1, . . . ,N on C

n of type (0,1) such that Tjrk ≡ δjk on a neigh-
borhood Ujk of bΩj ∩ bΩk. (Note that if j = k, this means that Tjrj ≡ 1 near
bΩj .)

For a subset S ⊂ {1, . . . ,N}, let

US =
⋂

j,k∈S

Ujk

∖ ⋃
�/∈S

bΩ�.

Then the family {US}, as S runs over all possible subsets of {1,2, . . . ,N}
including the empty set, is an open cover of Cn. Let {χS} be a partition of
unity subordinate to this cover. Let

〈f, g〉=
∫
Ω

fg dV

denote the standard inner product on L2(Ω), where dV denotes Lebesgue
measure on Cn. Let T ∗

j denote the formal adjoint of the operator Tj with
respect to this inner product structure. Integration by parts shows that
T ∗
j =−(Tj +divTj), and is therefore also a first order operator with smooth

coefficients. For f ∈ C∞(Ω), we define the operator Φs by

Φsf =
∑

S⊂{1,...,N}

(∏
j∈S

r
sj
j

sj !

)(∏
j∈S

(
T ∗
j

)sj)
(χSf).

Then Φs is a linear differential operator of order |s|.
Note that for each S ⊂ {1, . . . ,N}, the smooth function χS vanishes to

infinite order along the set
⋃

�/∈S bΩ�, and therefore, for any multi-index α=
(α1, . . . , α2n), if D

α is the partial derivative operator

Dα =

n∏
j=1

(
∂

∂xj

)α2j−1
(

∂

∂yj

)α2j

,

and σj is a non-negative integer for each j /∈ S, we have an elementary estimate∣∣DαχS(z)
∣∣ ≤Cσ,α

∏
j /∈S

(
dj(z)

)σj
,
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where Cσ,α is a constant independent of z. Therefore, we have∣∣∣∣∏
j∈S

(
T ∗
j

)sj(
χSf(z)

)∣∣∣∣ ≤CS‖f‖C|s|

∏
�/∈S

(
d�(z)

)s� .
Since rj is comparable to dj for each j, we have that∣∣Φsf(z)

∣∣ ≤C‖f‖C|s|

∑
S⊂{1,...,N}

(∏
j∈S

(
dj(z)

)sj · ∏
�/∈S

(
d�(z)

)s�),

which proves part (ii) of the lemma.
To prove part (i), it suffices to show that for h ∈ L2(Ω) and f ∈ C∞(Ω) we

have 〈
h,PΦsf

〉
= 〈h,Pf〉.

Since P is the (self-adjoint) orthogonal projection from L2(Ω) onto H(Ω) =
O(Ω)∩L2(Ω), this is equivalent to〈

g,Φsf
〉
= 〈g, f〉,

where g ∈H(Ω). Now we have,

〈
g,Φsf

〉
=

∑
S⊂{1,...,N}

〈
g,

(∏
j∈S

r
sj
j

sj !

)(∏
j∈S

(
T ∗
j

)sj)
(χSf)

〉
(2.2)

=
∑

S⊂{1,...,N}

〈∏
j∈S

r
sj
j

sj !
g,

(∏
j∈S

(
T ∗
j

)sj)
(χSf)

〉
.

For ε > 0, let 〈·, ·〉Ωε denote the standard L2-inner product on the domain

Ωε =
{
z ∈C

n : rj(z)<−ε,1≤ j ≤N
}
.

Fix S ⊂ {1, . . . ,N}, and first suppose that S �= ∅. Denote by j0 the smallest
element of S. Then we have, integrating by parts:〈∏

j∈S

r
sj
j

sj !
g,

(∏
j∈S

(
T ∗
j

)sj)
(χSf)

〉
Ωε

(2.3)

=

〈
Tj0

(∏
j∈S

r
sj
j

sj !
g

)
,

((
T ∗
j0

)s0−1 ·
∏

j∈S\{j0}

(
T ∗
j

)sj)
(χSf)

〉
Ωε

−
N∑

k=1

∫
bΩε

k

(∏
j∈S

r
sj
j

sj !
g

)

·
((

T ∗
j0

)s0−1 ·
∏

j∈S\{j0}

(
T ∗
j

)sj)
(χSf) ·

Tj0rk
|drk|

dS,

where bΩε
k = {rk = −ε}. In the boundary term, only the summand corre-

sponding to k = j0 is non-zero, since by construction, Tj0rk = δkj0 in US . Us-
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ing the Cauchy–Schwarz inequality, and the fact that f ∈ C∞(Ω), the square
of the absolute-value of the boundary term may be estimated to be less than
or equal to the quantity

C

∫
bΩε

j0

(∏
j∈S

r
sj
j

sj !

)2

|g|2 dS ≤C ′ε2
∫
bΩε

j0

|g|2 dS,

with C and C ′ independent of ε. Since g ∈ L2(Ω), we can find a sequence
εi → 0 such that

∫
bΩ

εi
j0

|g|2 dS = o(ε−1
i ). Taking a limit as εi → 0 in (2.3), we

have〈∏
j∈S

r
sj
j

sj !
g,

(∏
j∈S

(
T ∗
j

)sj)
(χSf)

〉

= lim
i→∞

〈∏
j∈S

r
sj
j

sj !
g,

(∏
j∈S

(
T ∗
j

)sj)
(χSf)

〉
Ωεi

=

〈
Tj0

(∏
j∈S

r
sj
j

sj !
g

)
,

((
T ∗
j0

)s0−1 ·
∏

j∈S\{j0}

(
T ∗
j

)sj)
(χSf)

〉

=

〈
r
sj0−1
j0

(sj0 − 1)!
·

∏
j∈S\{j0}

r
sj
j

sj !
g,

((
T ∗
j0

)s0−1 ·
∏

j∈S\{j0}

(
T ∗
j

)sj)
(χSf)

〉
,

where in the last line we have used the facts that Tj0g = 0, and Tj0rj = δjj0 .
Repeating the above process s0 − 1 times more, we conclude that the above
expression is equal to〈 ∏

j∈S\{j0}

r
sj
j

sj !
g,

( ∏
j∈S\{j0}

(
T ∗
j

)sj)
(χSf)

〉
,

and applying the same process to the smallest element of S \ {j0} and contin-
uing till we are left with the empty set of indices, we conclude that〈∏

j∈S

r
sj
j

sj !
g,

(∏
j∈S

(
T ∗
j

)sj)
(χSf)

〉
= 〈g,χSf〉.

We note that the term corresponding to S = ∅ in (2.2) is simply 〈g,χ∅f〉, and
therefore we can rewrite (2.2) as:〈

g,Φsf
〉
=

∑
S⊂{1,...,N}

〈g,χSf〉

=

〈
g,

( ∑
S⊂{1,...,N}

χS

)
f

〉

= 〈g, f〉,
since {χS} is a partition of unity. This proves the result. �
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Let KΩ denote the Bergman kernel of a domain Ω. If P : L2(Ω)→H(Ω)⊂
L2(Ω) denotes the Bergman projection on Ω, KΩ is characterized by the
property that for each f ∈ L2(Ω) we have

Pf(w) =

∫
Ω

KΩ(w,z)f(z)dV (z),

where dV is Lebesgue measure. It is well known that KΩ(w,z) is holomorphic
in w, antiholomorphic in z and satisfies the Hermitian symmetry KΩ(w,z) =

KΩ(z,w). Lemma 2.1 leads to the following characterization of Condition R
on a domain with generic corners.

Proposition 2.2 (cf. [7], [1]). A domain Ω with generic corners satisfies
Condition R if and only if for each multi-index α, there are constants C and
m depending only on the domain Ω such that

(2.4)

∣∣∣∣ ∂α

∂wα
KΩ(w,z)

∣∣∣∣ ≤C dist(z, bΩ)−m

for all (w,z) ∈Ω×Ω.

Proof. The method of proof given in [7] may be applied with appropriate
minor modification. The crucial point here is the existence of the operator
Φs. �

3. Some examples

We now consider examples of domains D in C
n for which the hypotheses

of Theorem 1.2 hold, that is, D has generic corners, is pseudoconvex and
satisfies Condition R. Note that if D satisfies the hypotheses of Theorem 1.2,
it follows from Theorem 1.2 that so does F (D), where F : D → F (D) is a
biholomorphic map extending smoothly to D. If n = 1, the only domains
with generic corners are the smoothly bounded ones. For n ≥ 2, there do
exist domains with generic corners in Cn. However, many interesting piecewise
smooth domains do not have generic corners, e.g., the intersection of two balls
in C

2 (see [3]).
For smoothly bounded domains, Condition R is a consequence of global

regularity estimates on the ∂-Neumann operator (see [14], [24] for details). In-
deed it suffices to know that the ∂-Neumann operator is compact on the space
L2
0,1(D) of square integrable (0,1)-forms. However, as [17] already shows, this

strategy is unlikely to succeed with general piecewise smooth domains. The
question of establishing Condition R on such domains therefore merits deeper
study. However there are a few cases where Condition R can be established
on a domain with generic corners by elementary means.
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3.1. Products. We first show that the hypotheses of Theorem 1.2 propagate
to products.

Proposition 3.1. For j = 1, . . . , k, let Dj � C
nj be a domain with generic

corners which satisfies Condition R. Let n=
∑k

j=1 nj , and let D be the domain
in C

n given as D = D1 ×D2 × · · · ×Dk. Then D has generic corners and
satisfies Condition R.

In [12], [11], the following was proved: if D1 ⊂C
n1 ,D2 ⊂C

n2 are bounded
pseudoconvex domains (no assumption of generic corners on the boundary)
such that each of them satisfies Condition R, then so does their product. Here
on the other hand there is no assumption of pseudoconvexity.

Note also that combining this proposition and Theorem 1.2 we recapture
the famous observation of Poincaré: the ball and bidisc in C

2 are not biholo-
morphically equivalent.

Proof of Proposition 3.1. By an induction argument, it is sufficient to
prove this for k = 2. Assume that as in Definition 1.1 we are given repre-

sentations D1 =
⋂N

j=1Gj and D2 =
⋂M

�=1Hk. We then have

D1 ×D2 =
(
D2 ×C

n2
)
∩

(
C

n1 ×D2

)
=

(
N⋂
j=1

(
Gj ×C

n2
))

∩
(

M⋂
�=1

(
C

n1 ×H�

))
,

which is a representation of D1 ×D2 as an intersection of smoothly bounded
domains. Since D1,D2 have generic corners, it is easy to verify that the
corners of the product are CR manifolds of the right CR dimension.

Denote by Kj the Bergman kernel of Dj . The derivatives of Kj satisfy the
estimate (2.4), since Dj satisfies Condition R. Thanks to [21, Theorem 6.1.11]
the Bergman kernel K of the product D1 ×D2 can be represented K1 ⊗K2,
that is, for z = (z1, z2) ∈D1 ×D2 and w = (w1,w2) ∈D1 ×D2, we have

K(w,z) =K1(w1, z1) ·K2(w2, z2).

Then it follows that the derivatives of K satisfy the estimate (2.4), and it
follows that D satisfies Condition R. �

3.2. Domains with circular symmetry. Recall that a domain D ⊂ C
n

is said to be circular if it is invariant under the natural action of the circle
group, that is, if for each z ∈D and each real number θ, we have that eiθz ∈D.
Clearly, the boundary bD of D has the same circular symmetry. Further, if
D has piecewise smooth boundary, it is clear that every stratum is invariant
under the circle group. Further, we call a domain complete circular if for each
z ∈D, and for each complex number λ in the closed unit disc (i.e., if |λ| ≤ 1),
we have λz ∈D.
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For a piecewise smooth domain D, by a face we mean a connected compo-

nent of bDreg. If D is represented as the intersection
⋂N

j=1Dj , where each Dj

is smoothly bounded and all intersections of the boundaries are transverse,
then it is clear that each face is a connected component of bDj ∩D for some j.
The following result, extending a classical argument of Boas and Bell, gives
simple examples of domains with generic corners satisfying Condition R:

Proposition 3.2 (cf. [7, Theorem 2′]). Let D ⊂C
n be a bounded complete

circular domain with generic corners such that for each ζ ∈ bD, the radial line
from the origin to ζ meets each face of bD that passes through ζ transversely.
Then D satisfies Condition R.

We begin by noting a symmetry property of the Bergman kernel of a cir-
cular domain.

Lemma 3.3. Let K denote the Bergman kernel of a circular domain D,
where 0 ∈D. Then if λ is a complex number and z,w ∈D are such that the
points λw,λz are in D, then we have

K(λw, z) =K(w,λz).

Proof. We claim that there is an orthonormal basis {ηj}∞j=1 of the Bergman
space H(D) whose elements are homogeneous polynomials. Indeed, it is well-
known that any holomorphic function on the circular domain D can be ex-
panded in a series of the form f(z) =

∑∞
k=1Pk(z), where each Pk is a homoge-

nous polynomial and the series converges uniformly on compact subsets of D
(see, e.g., [22]). Choosing a basis of the space of homogeneous polynomials of
degree d, and taking the union as d ranges over the non-negative integers, we
obtain a family of homogeneous polynomials whose span is dense in L2(Ω).
Further, if P and Q are homogeneous polynomials of degrees p and q respec-
tively, they are orthogonal in L2(D) if p �= q. Indeed, if θ is a real number
such that ei(p−q)θ �= 1, we have using the change of variables formula and the
fact that the unitary transformation z �→ eiθz has real Jacobian determinant
identically equal to 1,∫

D

P (z)Q(z)dV (z) =

∫
D

P
(
eiθw

)
Q

(
eiθw

)
dV (w)

= ei(p−q)θ

∫
D

P (z)Q(z)dV (z).

Consequently, if the Gram–Schmidt process is applied to the spanning family
of homogeneous polynomials, it yields the orthonormal sequence {ηj}, and the

Bergman kernel is then represented as K(w,z) =
∑∞

j=1 ηj(w)ηj(z). Recalling
that each ηj is homogenous of some degree, the result follows. �
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We also note the two useful properties of the Bergman kernel: the Cauchy–
Schwarz inequality

(3.1)
∣∣K(w,z)

∣∣ ≤ (
K(w,w)K(z, z)

) 1
2 ,

and the fact that on any bounded domain D

(3.2) K(z, z)≤ (const)d(z)−n−1,

obtained by comparing the Bergman kernel of D with that of a ball centered
at z and radius d(z).

From now on, let D be complete circular. Then for a point w ∈ D, we
can define the radial boundary distance ρ(w) in the following way. Let w∗ be
the unique point on the boundary bD which is collinear with 0 and w. We
define ρ(w) = |w∗ −w|. We also denote d(w) = dist(w, bD), and call this the
standard boundary distance. We will be interested in domains in which there
is a constant C > 1 such that

(3.3) ρ(w)≤Cd(w).

Since we always have d(w)≤ ρ(w) we will say that on such domains the radial
and standard boundary distances are comparable. We first note that this
property holds on the domains considered in Proposition 3.2.

Lemma 3.4. Let D be a piecewise smooth complete circular domain such
that for each ζ ∈ bD, the radial line from 0 to ζ meets each face of bD which
passes through ζ transversally. Then the standard and the radial distance are
comparable on D.

Proof. Let bD be smooth, and fix a tubular neighborhood U of bD in D.
For a point z in U denote by ẑ the unique point on bD closest to z, and by z∗

the point where the radial line from 0 to z meets bD. From the transversality
of the line zz∗ to bD, it follows that the angle between zz∗ and zẑ is bounded
away from π

2 , and the result follows in this case.
Assuming now that there are at least two faces, it is sufficient to prove (3.3)

for z in some neighborhood U of bD in D. Let U be the union of Uj , where
each Uj is a tubular neighborhood of bDj , where the domain D is represented

as an intersection
⋂N

j=1Dj . Let ρj(z) represent the radial distance from z to

the boundary bDj , and dj(z) = dist(z, bDj). Then if z ∈ Uj , we have ρj(z)≤
Cdj(z), where C may be taken independent of j. But ρ(z)≤ ρj(z)≤ Cdj(z)
for each z in Uj . If a point z in U belongs to more than one Uj , it follows
that we must have ρ(z) ≤ Cmindj(z) = Cd(z) where the minimum is taken
over all j such that the point z belongs to Uj . The result is proved. �

The proof is now completed by the following lemma, and an appeal to
Proposition 2.2.
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Lemma 3.5. Let D be a bounded complete circular domain in C
n. If the

standard and radial boundary distances on D are comparable (i.e., (3.3) holds),
then D satisfies the estimate (2.4).

Proof. Without loss of generality we can assume that the diameter of D is
less than or equal to one, since (2.4) holds on a domain if and only if it holds
on any dilation. We proceed as in [7]. We fix once for all z ∈D. We consider
two cases. First, assume that w ∈D is such that |w|> 1

2d(0).

We choose a number 0< δ < d(0)
4 such that

4δ

d(0)− 4δ
<

1

2
ρ(z).

The number δ exists since x �→ 4x
d(0)−4x is increasing on [0, d(0)4 ). Let λ =

(1− 2δ
|w| )

−1. For future, use we note that

ρ(λz) = ρ(z)− (λ− 1)|z|(3.4)

= ρ(z)− 2δ

|w| − 2δ
|z|

≥ ρ(z)− 2δ
δ(0)
2 − 2δ

>
1

2
ρ(z),

where the last line follows from the choice of δ. By Lemma 3.3,

K(w,z) =K
(
λ−1w,λz

)
(3.5)

=K(t, λz),

where t= (1− 2δ
|w| )w, and therefore we have that ρ(t)≥ 2δ. Noting that we

are considering such w ∈D as |w|> d(0)
2 , we see that | ∂α

∂wα (
1
|w| )|, and therefore

| ∂α

∂wα (
wj

|w| )| are bounded (the latter for each j). It follows that for any multi-

index α with |α| ≥ 2, we have that | ∂α

∂wα tj | ≤Cδ, and that | ∂α

∂wαλ| ≤Cδ, where
here and in the sequel the constant C depends on α but is independent of z

(and therefore δ) and w (with |w| > d(0)
2 ), but C may have different values

at different occurrences. Using the alternative representation of K(w,z) in
(3.5), and the repeated use of the chain and the product rule (i.e., the Faa di

Bruno formula), one may compute an expression for ∂α

∂wαK(w,z), in terms of
the t and z-derivatives of K(t, z) and the w derivatives of t and λ. It follows
that

(3.6)

∣∣∣∣ ∂α

∂wα
K(w,z)

∣∣∣∣ ≤Cδ ·
∑

β+γ≤α

∣∣∣∣ ∂β

∂tβ
∂γ

∂zγ
K(t, λz)

∣∣∣∣,
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since higher powers of δ may be absorbed into δ itself (since δ < 1
4 ). Now,

thanks to the comparability of the standard and radial distances to the bound-
ary, we see that there is a polydisc of polyradius C(δ, δ, . . . , δ) with center at
t = (1 − 2δ

|w| )w and located within {ζ ∈ D : ρ(ζ) > δ}. Recalling that K is

holomorphic in the first and antiholomorphic in the second argument, and
applying the Cauchy estimates in both arguments to this polydisc we con-
clude:∣∣∣∣ ∂β

∂tβ
∂γ

∂zγ
K(t, λz)

∣∣∣∣ ≤ C

δ|β|+|γ| sup
ρ(t)>δ

√
K(t, t)

√
K(λz,λz) using (3.1)

≤ C

δ|β|+|γ| δ
−n+1

2 ρ(λz)−
n+1
2 using (3.2)

≤ C

δ|β|+|γ| δ
−n+1

2 ρ(z)−
n+1
2 using (3.4)

≤ C

d(z)|β|+|γ|+n+1
.

Combining this with (3.5), we conclude that∣∣∣∣ ∂α

∂wα
K(w,z)

∣∣∣∣ ≤ C

d(z)|α|+n
,

for w such that |w|> d(0)
2 .

We now consider a w ∈D such that |w| ≤ d(0)
2 . Then there is an η indepen-

dent of w such that ρ(w)> η. By the comparability of ρ and d, we conclude
that there is an ε > 0 such that the polydisc centered at w and of radius ε
is contained in the set {ζ ∈D : d(ζ)> ε}. (Note that ε depends only on d(0)
and the constant C in (3.3).) Applying the Cauchy estimates to this polydisc
we see that ∣∣∣∣ ∂α

∂wα
K(w,z)

∣∣∣∣ ≤ C

ε|α|
sup

d(w)>ε

∣∣K(w,z)
∣∣

≤C
√
K(z, z) sup

d(w)>ε

√∣∣K(w,w)
∣∣

≤Cd(z)−
(n+1)

2 ε−
(n+1)

2 ,

therefore the estimate (2.4) is established and the result is proved. �

4. Hopf lemma on domains with generic corners

Let D ⊂ C
n be a smoothly bounded domain and φ : D → [−∞,0) a

plurisubharmonic exhaustion function. The Hopf lemma asserts that |φ(z)|
decays to zero near the boundary bD at least at the rate of dist(z, bD), that
is,

(4.1)
∣∣φ(z)∣∣ � dist(z, bD)
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for all z ∈D. For a given proper holomorphic mapping f : D → G, this es-
timate plays a useful role in controlling the ratio dist(f(z), bG)/dist(z, bD)η

for some η > 0. Thus, we are interested in obtaining (4.1) on non-smooth
domains as well. For piecewise smooth domains, this was done in [10], [23]
by showing that each point sufficiently close to the boundary lies in a cone of
uniform aperture with vertex on the boundary. In other words, a planar sector
of uniform aperture containing a given point near the boundary was shown to
exist. On a product domain G, it is evident that a sector whose aperture angle
is π/2, that is, a quadrant, can be fitted at each boundary point. Therefore,
the techniques of [10] show that a negative plurisubharmonic exhaustion φ on
a product domain satisfies ∣∣φ(z)∣∣ � dist(z, bG)2

for all z ∈ G. A different approach was used in [13] for product domains
wherein a disc that satisfies certain uniform geometric properties was used
instead of a sector. Similar ideas can be applied to domains with generic
corners as well which yield a better growth estimate.

Proposition 4.1. Let Ω ⊂ C
n be a domain with generic corners. Let

φ : Ω→ [−∞,0) be a plurisubharmonic exhaustion. Then∣∣φ(z)∣∣ � dist(z, bD)

for all z ∈Ω.

We first recall some geometric conditions on an analytic disc from [13] that
are sufficient to prove (4.1). Let D ⊂ C

n be a bounded domain and take a
tubular neighborhood U of bD. The domain U ∩D whose boundary consists
of two disjoint components, namely bD and B = bU ∩D will be relevant to
us. Suppose that there is a constant θ = θ(D) ∈ (0,2π) and points κ(z) ∈
B,ζ(z) ∈ bD (both possibly non-unique) for every z ∈ U ∩D such that the
following hold:

(i) The points ζ(z), z, κ(z) are collinear and z lies between ζ(z) and κ(z).
(ii) ζ(z) is the nearest point to z on bD which means that |ζ(z) − z| =

dist(z, bD).
(iii) The affine analytic disc αz : Δ(0,1)→C

n given by

αz(λ) = κ(z) + λ
(
ζ(z)− κ(z)

)
lies in D.

(iv) There exists a neighborhood of ∂Ω in C
n, say V which is compactly

contained in U such that the portion of the boundary of αz(Δ(0,1)),
that is, αz(bΔ(0,1)) that lies in D \ V subtends an angle of at least
θ = θ(D)> 0 at the centre κ(z). Note that αz(0) = κ(z) and αz(1) = ζ(z).

In short, these properties allow the existence of an analytic disc passing
through a given point p near bD and also containing p∗, a nearest point to p
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on bD, whose centre is at a uniform distance away from bD and such that a
uniform piece of its boundary is also uniformly away from bD. We say that it
is possible to roll an analytic disc in D if these properties hold. Theorem 4.4
in [13] shows that the Hopf lemma holds on a domain if it is possible to roll
an analytic disc in it.

Proof of Proposition 4.1. It suffices to show that it is possible to roll an
analytic disc in a domain Ω with generic corners as in Definition 1.1. Fix a
point p ∈ bΩ and let S ⊂ {1,2, . . . ,N} be such that

p ∈BS =
⋂
j∈S

bΩj .

Without loss of generality we may assume that S = {1,2, . . . , k} where k ≤N .
Then

r1(p) = r2(p) = · · ·= rk(p) = 0

and (2.1) holds. Thanks to this transversality condition, we may choose co-
ordinates in a neighborhood U around p = 0 so that the defining functions
become

rj(z) = 2Rezj + φj(z),

where φj ∈ C∞(U) and dφj(0) = 0 for all 1 ≤ j ≤ k. The smoothness of
each rj implies that for a given point z ∈ U there is a unique point z∗j on
{rj = 0}= bΩj ∩U such that

τj = dist(z, bΩj ∩U) =
∣∣z − z∗j

∣∣
for all 1≤ j ≤ k. The analytic disc

ζ �→ z + ζτj
(
∂rj

(
z∗j

))
for |ζ| < 1 is centered at z and is contained in {rj < 0} = Ωj ∩ U . Thus,
through a given point z ∈Ω∩U there are k analytic discs which approximately
point in the direction of the coordinate axes z1, z2, . . . , zk. This observation
will allow us to choose the right direction for the disc αz(λ) as in (iii) above.
Let C > 0 be such that

(4.2) C−1
∣∣rj(z)∣∣ ≤ dist(z, bΩj ∩U)≤C

∣∣rj(z)∣∣
for all z ∈ Ω ∩ U and 1 ≤ j ≤ k. Furthermore, since dφj(0) = 0 we may also
assume that |dφj(z)| ≤ 1/2C for all z ∈Ω∩U . For ε > 0, let

Ωε =
{
z ∈ U : rj(z)<−ε,1≤ j ≤ k

}
.

Pick z ∈ U ∩Ω and note that the nearest point to it (which is possibly non-
unique) on bΩ ∩ U lies on one or possibly more of the boundaries bΩj ∩ U =
{rj = 0}. For the sake of definiteness, assume that it lies on bΩ1∩U = {r1(z) =
0} and denote it by ζ(z). Extend the real inner normal l to the smooth real
hypersurface {r1(z) = 0} at ζ(z) till it intersects bΩε ∩ U . Denote this point
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of intersection by κ(z). Note that |κ(z)− ζ(z)|= dist(κ(z),{r1(z) = 0}∩U)≥
ε/C by (4.2). The affine analytic disc

αz(λ) = κ(z) + λ
(
ζ(z)− κ(z)

)
defined for |ζ|< 1 is evidently contained in {r1 < 0}∩U . For 1< j ≤ k observe
that ∣∣rj(αz(λ)

)
− rj

(
κ(z)

)∣∣ = ∣∣λ(
ζ(z)− κ(z)

)
· drj(z̃)

∣∣
for some z̃ = z̃(λ) ∈Ω∩U . Again (4.2) shows that |κ(z)− ζ(z)| ≤Cε and by
construction we have |drj(z̃)| ≤ 1/2C. Combining these estimates shows that

rj
(
αz(λ)

)
≤ rj

(
κ(z)

)
+ ε/2≤−ε+ ε/2 =−ε/2.

Thus, the analytic disc αz(λ) is contained in {r1 < 0} ∩ U and stays at a
uniform distance from the other hypersurfaces {rj = 0} ∩U where 1< j ≤ k.
Let V = {z ∈ U : |rj(z)| < ε/2,1≤ j ≤ k}—this is a neighborhood of bΩ ∩ U
of uniform width ε/2. The smoothness of r1 shows that there is a uniform
portion of bαz(λ) that lies in (Ω ∩ U) \ {r1 > −ε/2}. The arguments given
above show that the closure of αz(λ) lies in (Ω ∩ U) \ {rj >−ε/2,1< j ≤ k}
and hence a uniform portion of bαz(λ) lies in (Ω∩U)\V . These estimates are
uniform for all z ∈Ω∩U and hence for all z near bΩ by compactness. Hence,
it is possible to roll an analytic disc in Ω. �

5. Proper maps of domains with generic corners

5.1. Distortion estimate on domains with generic corners. We now
generalize some well-known properties of proper maps of smoothly bounded
pseudoconvex domains to domains with generic corners. In these results, D
and G are pseudoconvex domains with generic corners, and f : D → G is a
proper holomorphic mapping. Let Z = {f(z) : detf ′(z) = 0} ⊂G be the set
of critical values of f . Then Z is a codimension one subvariety in G, and on
G \Z, we can define locally well-defined holomorphic branches F1, F2, . . . , Fm

of f−1. The following consequence of the Hopf lemma is well-known in the
case of smoothly bounded domains.

Proposition 5.1. There exists a δ ∈ (0,1) such that

dist(z, bD)1/δ � dist
(
f(z), bG

)
� dist(z, bD)δ

for all z ∈D.

Proof. We begin by noting that if Ω is a pseudoconvex domain with generic
corners, then there is a negative strictly plurisubharmonic exhaustion � of Ω
which decays to zero at the boundary no faster than a power of the distance
to the boundary, that is, for some 0< η < 1 and all z ∈Ω we have∣∣�(z)∣∣ � dist(z, bΩ)η.

This follows directly (even for Lipschitz Ω) from [20]. We can also deduce
it from the fact that if as in Definition 1.1, the domain Ω is represented as
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an intersection
⋂N

j=1Ωj of smoothly bounded pseudoconvex domains, then

by famous results of Diederich and Fornaess [15], each Ωj admits a bounded
plurisubharmonic exhaustion �j satisfying |�j(z)| � dist(z, bΩj)

ηj for some
ηj ∈ (0,1) and for each z ∈Ωj . We can simply take �=max1≤j≤N �j .

Therefore, let �D and �G be bounded plurisubharmonic exhaustions on D
and G such that for some η, τ ∈ (0,1) and∣∣�D(z)

∣∣ � dist(z, bD)η

for all z ∈D, and ∣∣�G(w)∣∣ � dist(z, bG)τ

for all w ∈G. Then �G ◦ f is a negative plurisubharmonic exhaustion on D
and satisfies

−�G ◦ f(z) =
∣∣�G ◦ f(z)

∣∣ � dist(z, bD)

for all z ∈D by the Hopf lemma. Thus we get

dist(z, bD) � −�G ◦ f(z) � dist
(
f(z), bG

)τ
which is the left-hand side inequality in the proposition.

Recall that F1, . . . , Fm denote the branches of the inverse mapping f−1,
which are locally well-defined on G \ Z, where Z is the set of critical values
of the mapping F . Then

ψ =max{�D ◦ Fj : 1≤ j ≤m}
is a bounded continuous plurisubharmonic function on G \ Z which extends
to a plurisubharmonic exhaustion on G. Therefore, for each 1 ≤ j ≤m and
w ∈G, we have

−�D ◦ Fj(w)≥−ψ(w) =
∣∣ψ(w)∣∣ � dist(w, bG),

where the last inequality follows from the Hopf lemma. Rewriting this as∣∣�D(z)
∣∣ =−�D(z) � dist

(
f(z), bG

)
and combining with the rate of decay of �D near bD we get

dist
(
f(z), bG

)
� dist(z, bD)η

for all z ∈D which completes the proof. �

5.2. Smoothness of the Jacobian up to the boundary. We now note
that the following lemma, well-known for smoothly bounded domains, con-
tinues to hold for domains with generic corners. For a domain Ω in C

n, we
denote by H∞(Ω) the space O(Ω) ∩ C∞(Ω) of holomorphic functions on Ω
which are smooth up to the boundary of Ω.

Lemma 5.2. Suppose that D satisfies Condition R, and let u= det(f ′) be
the Jacobian determinant of the mapping f . If h ∈H∞(G), we have

u · (h ◦ f) ∈H∞(D).
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Proof. We adapt the classical proof from [5]. Let � be a given positive
integer. We need to show that u · (h ◦ f) ∈ C�(D). Denote by P and Q the
Bergman projections on the domains D and G, respectively. Now, thanks to
the classical transformation formula for the Bergman projection, we have for
each g ∈ L2(G) that

P
(
u · (g ◦ f)

)
= u ·

(
Q(g) ◦ f

)
.

For an N -tuple s = (s1, . . . , sN ) of positive integers, let Φs be the operator
on G as constructed in Lemma 2.1, and set gs =Φsh. Then Qgs = h, and we
have

u · (h ◦ f) = P
(
u · (gs ◦ f)

)
.

Since D satisfies Condition R, it follows that there is an integer k such that
P maps Ck(D) into C�(D). Therefore, to prove the result, it suffices to show
that there is a tuple s such that u · (gs ◦ f) ∈ Ck(D). It will be sufficient to
show that derivatives of order k + 1 of the function u · (gs ◦ f) on D are all
bounded.

Denote the map f in components as f = (f1, . . . , fn), where each fj is
complex valued on D. Note that each fj is bounded. Consequently, we have
the Cauchy estimates ∣∣Dαfj(z)

∣∣ � dist(z, bD)−|α|

and ∣∣Dαu(z)
∣∣ � dist(z, bD)−|α|−n.

We will take the tuple s be to of the form s = (σ, . . . , σ), that is, all N en-
tries are equal to the same positive integer σ. If Nσ > |α|, and w ∈ G, by
Lemma 2.1 we have an estimate∣∣Dα

(
gs(w)

)∣∣ � dist(w, bG)Nσ−|α|.

Note that we have

Dα(gs ◦ f)(z) =
∑

Dβgs
(
f(z)

)
Dδ1fi1D

δ2fi2 · · ·Dδpfip ,

where the sum extends over all tuples 1≤ i1, . . . , ip ≤ n, and multi-indices β,
δ1, . . . , δp with |β| ≤ |α| and |δ1| + · · · + |δp| = |α|. Therefore, we have the
estimate ∣∣Dα(gs ◦ f)(z)

∣∣ � dist
(
f(z), bG

)Nσ−|α| · dist(z, bD)−(|α|+1)

� dist(z, bD)δ(Nσ−|α|) · dist(z, bD)−(|α|+1)

� dist(z, bD)δNσ−(1+δ)|α|−1,

where in the second line, the right half of the distortion estimate from Propo-
sition 5.1 has been used. It follows that by taking σ to be sufficiently large,
we can make the function Dα(gs ◦ f) vanish to arbitrarily high order on the
boundary bD. Using the Cauchy estimates on the derivatives of u, and the
Leibniz rule for the derivative of a product it now follows that by taking σ
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sufficiently large, we can ensure that for any multi-index α, the derivative
Dα(u · (gs ◦ f)) is bounded on D. Consequently there is an N -tuple s such
that u · (gs ◦ f) ∈ Ck(D), and our result is proved. �

5.3. Smoothness to the boundary of symmetric functions of the
inverse branches.

Proposition 5.3. If G is as in Theorem 1.3, that is, G is a product of
smoothly bounded domains, then for h ∈ H∞(D), an elementary symmetric
function of h ◦ F1, h ◦ F2, . . . , h ◦ Fm (defined on G \Z) extends to a function
in H∞(G).

Proof. For smoothly bounded domains D and G, this is a classical result of
Bell (see [5]). It was shown in [13, Proposition 5.3] that the same arguments,
with minor modifications work when each of D and G is a product of smoothly
bounded domains. We note here that the proof given in [13] actually works in
the more general situation when D is merely a domain with generic corners
and is not necessarily a product. �

6. Proof of Theorem 1.2

1⇒2. Since f maps bD diffeomorphically to bG, it follows that G must
have piecewise smooth boundary. Since the map f is CR on each of the
manifolds constituting bD, it follows that G is a domain with generic cor-
ners.

Let g = f−1, and let KG(z,w) and KD(Z,W ) denote the Bergman kernels
on the domains G and D respectively. Since by hypothesis, D satisfies Con-
dition R, it follows from Proposition 2.2 that for each multi-index α, there is
an mα such that we have an estimate∣∣∣∣

(
∂

∂W

)α

KD(W,Z)

∣∣∣∣ � dist(Z, bD)−mα ,

valid for all (W,Z) ∈ D × D. The kernels KD and KG are related by the
classical formula ([5] or [21, Proposition 6.1.7])

KG(w,z) = detg′(w)KD

(
g(w), g(z)

)
detg′(z).

Therefore(
∂

∂w

)α

KG(w,z) =

((
∂

∂w

)α

detg′(w)KD

(
g(w), g(z)

))
· detg′(z).

Since g is smooth up to the boundary,

(6.1)
∣∣detg′(z)∣∣ � 1.
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Again, since g is smooth up to the boundary, by repeated application of
the chain rule and the product rule we obtain∣∣∣∣

(
∂

∂w

)α(
detg′(w)KD

(
g(w), g(z)

))∣∣∣∣
�

∑
|β|≤|α|

∣∣∣∣
(

∂

∂W

)β

KD

(
g(w), g(z)

)∣∣∣∣
�

∑
|β|≤|α|

dist
(
g(z), bD

)−mβ

� dist
(
g(z), bD

)−M
(M being the largest of the mβ ’s)

� dist(z, bG)−
M
δ ,

where in the last line we have used Proposition 5.1. Combining this with
(6.1), and invoking Proposition 2.2 our result follows.

2⇒1. Taking h ≡ 1 in Lemma 5.2, we see that u ∈ C∞(D). Applying the
lemma again to the mapping f−1 : G → D, we obtain that det((f−1)′) ∈
C∞(G). But this implies that u−1 ∈ C∞(D). It therefore follows that for
each holomorphic h on G such that h ∈ C∞(G), we have that h ◦ f ∈ C∞(D).
Taking h to be the coordinate functions z �→ zj from D to C, we see that each
component of f extends smoothly to the boundary, and the result is proved.

7. Proof of Theorem 1.3

The proof of Theorem 1.3 is for most part identical to the first part of the
argument for the proof of [13, Theorem 1.1], where it is further assumed that
D is also a product domain. We review the main steps of the proof below,
noting in each step that the hypothesis of product structure is not really
used in the proof of continuous extension to the boundary. (It does become
relevant in the latter part of the proof of [13, Theorem 1.1], i.e., Lemma 5.7
onward.) What is important is that D is piecewise smooth, pseudoconvex,
satisfies Condition R, and there is a Bell operator on D.

As in Lemma 5.2, let u= det(f ′) be the Jacobian determinant of the map
f : D → G. We claim that u vanishes to at most finite order at each point
of ∂D. For smoothly bounded domains, the proof can be found in [6], [9]. It
was shown in [13, Lemma 5.5] that essentially the same argument continues
to work for the piecewise smooth domains considered here.

From this, as in [13, Lemma 5.6], it follows that f extends to a continuous
map from D to G. The key ingredient here is the weak division result [16,
Lemma 10] which states the following: On a smoothly bounded domain Ω⊂
Cn, let u ∈ H∞(Ω) be a function that does not vanish to infinite order at
any point on bΩ. If h is a bounded holomorphic function on Ω such that
u · hN ∈ H∞(Ω) for all N ≥ 1, then h is continuous on Ω. To prove that h
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is continuous at p ∈ bΩ, the only geometric requirement is the existence of a
complex line through p that enters Ω near p and which is transverse to bΩ
near p. This condition is clearly satisfied at all points of bDreg while at the
generic corners such a complex line may be chosen to be transverse to the
tangent cone to bΩ at such points. Thus the proof of [13, Lemma 5.6] carries
over to the case of domains with generic corners. To show that f is smooth
at all points of bDreg, the finite order vanishing of u at the boundary can
be combined with the strong form of the division theorem (which is a local
statement) as in [8] or [16]. This completes the proof of Theorem 1.3.
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