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EICHLER INTEGRALS FOR MAASS CUSP FORMS OF
HALF-INTEGRAL WEIGHT

T. MÜHLENBRUCH AND W. RAJI

Abstract. In this paper, we define and discuss Eichler integrals
for Maass cusp forms of half-integral weight on the full modular

group. We discuss nearly periodic functions associated to the

Eichler integrals, introduce period functions for such Maass cusp

forms, and show that the nearly periodic functions and the period

functions are closely related. Those functions are extensions of

the periodic functions and period functions for Maass cusp forms

of weight 0 on the full modular group introduced by Lewis and
Zagier.

1. Introduction

Recall that modular cusp forms of weight k ∈ 2N (for the group SL(2,Z))
are holomorphic functions uh from the upper half-plane H= {z = x+ iy;x, y ∈
R, y > 0} to C, satisfying the uh(z+1) = uh(z) and uh(−1/z) = zkuh(z), and
vanish as y→∞. More details can be found in, for example, [10] and [15].

In the context of the Eichler–Shimura theorem, we attach to each modular
cusp form a polynomial p of degree ≤ k − 2. One way to define it is by the
following integral transformation:

(1.1) p(ζ) :=

∫ i∞

0

(ζ − z)k−2uh(z)dz (ζ ∈C).

This integral transformation goes back to Eichler in [6]. One important prop-
erty is that each period polynomial satisfies the identities

p(ζ) + ζk−2p

(
−1

ζ

)
= 0 and

p(ζ) + (ζ + 1)k−2p

(
−1

ζ + 1

)
+ ζk−2p

(
−ζ − 1

ζ

)
= 0

(1.2)
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for each ζ ∈ C. Some more details on the Eichler–Shimura theorem can be
found in for example, [10, Chapters V and VI], [9, Section 1.1] and [14].

There exists another way to define the period polynomial, involving a vari-
ant of the above integral. Consider the integral transformation

(1.3) fh(ζ) :=

∫ i∞

ζ

(ζ − z)k−2uh(z)dz (ζ ∈H),

defined only on the upper half-plane H. fh is obviously a holomorphic func-
tion; and it easily seen that fh is periodic. The period polynomial p now
appears in the calculation

fh(ζ)− ζk−2fh

(
−1

ζ

)
=

∫ i∞

ζ

(ζ − z)k−2uh(z)dz −
∫ 0

ζ

(ζ − z)k−2uh(z)dz

=

∫ i∞

0

(ζ − z)k−2uh(z)dz = p(ζ) (ζ ∈H).

One important extension of the Eichler–Shimura isomorphism was done
by Lewis and Zagier in [11]. They found a one-to-one correspondence be-
tween Maass cusp forms of weight 0 (for SL(2,Z)) and functions called period
functions.

Part of their main result is the following theorem.

Theorem ([11]). Let s be a complex number with Re(s) = 1
2 . There is an

isomorphism between the following three function spaces:

(1) The space of Maass cusp forms of weight 0 with eigenvalue s(1− s) for
SL(2,Z): Maass cusp forms of weight 0 for SL(2,Z) are real-analytic
functions u : H→ C, satisfying the transformation properties u(z + 1) =
u(z) and u(−1/z) = u(z), are eigenfunctions of the hyperbolic Laplacian
Δ0 =−y2(∂2

x + ∂2
y) with eigenvalue s(1− s), and vanish as y→∞.

(2) The space of holomorphic functions f on C \ R, satisfying f(z + 1) =
f(z) and bounded by |Im(z)|−A for some A > 0, such that the function
f(z)− z−2sf(−1/z) extends holomorphically across the positive real axis
and is bounded by a multiple of min{1, |z|−1} in the right half-plane.

(3) The space of holomorphic solutions ψ : C′ → C of the three-term func-
tional equation

ψ(ζ) = ψ(ζ + 1) + (ζ + 1)2sψ

(
ζ

ζ + 1

)
on C′ =C \R≤0 which satisfy the growth condition

ψ(ζ) =

{
O( 1

|ζ| ) as ζ →∞, Re(ζ > 0) and

O(1) as ζ → 0, Re(ζ > 0).

In analogy to the case of modular cusp forms, Lewis and Zagier also in-
troduce two integral transformations in [11, Chapter II] from Maass cusp
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forms to period functions (which are the functions ψ above) and the periodic
holomorphic functions f on C \R.

In this paper, we extend the integral transformations of [11] to the context
of Maass forms of half-integral weights with a multiplier system. Our main
result is the following theorem.

Theorem 1.1. Let ν be a purely imaginary complex number, i.e. ν ∈ iR,
k ∈ 1

2Z a weight and v a compatible multiplier as defined in Section 2.2.

For each Maass cusp form u of weight k, eigenvalue 1
4 − ν2 and multi-

plier v for SL(2,Z), see Definition 3.1 for details, there exist the following
functions:

(1) A holomorphic function f : C \ R → C, which is nearly periodic, that
is, f(z + 1) = af(z) for some a ∈ C with |a| = 1, such that f(z) −
v
((

0 −1
1 0

))
z2ν−1f(−1/z) extends holomorphically across the positive real

axis and is bounded by a multiple of min{1, |z|−1} in the right half-plane.
(2) A holomorphic solution P : C′ →C of the three-term functional equation

P (ζ) = v

((
1 1
0 1

))−1

P (ζ + 1) + v

((
1 0
1 1

))−1

(ζ + 1)2ν−1P

(
ζ

ζ + 1

)

on C′ which satisfies the growth condition

P (ζ) =

{
O( 1

|ζ| ) as ζ →∞, Re(ζ > 0) and

O(1) as ζ → 0, Re(ζ > 0).

We call such a function P a period function.

The proof of this theorem follows ideas presented above for modular cusp
forms for positive even weight: We use a Maass–Selberg differential form to
define the kernel of integral transformations similarly as (ζ − z)k−2uh(z)dz
is used above. We then describe properties of the determined nearly periodic
functions and period functions, that is, the images of our integral transfor-
mations. Summarizing, we introduce the arrows of the following diagram and
show that the diagram commutes:

Maass cusp forms of half-integer weight

Nearly periodic functions Period functions
�

������������

It is our hope that the results of this paper form a first step towards a
working Eichler–Shimura theory for Maass cusp forms of half-integral weight
(for SL(2,Z)) since we establish one direction of a possible bijection between
Maass cusp forms and period functions. We will discuss this and some other
related questions briefly in Section 9.
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The paper is organized as follows: Section 2 contains the preliminaries, like
defining properly the group SL(2,Z) and its linear fractional transformations,
the multiplier systems and the slash and double-slash notations. In Section 3,
we define the Maass cusp forms for half-integral weight. Section 4 introduces
the R-function and the Maass–Selberg form. Sections 5 and 6, contain the
definitions of the integral transformations from Maass cusp forms to nearly
periodic functions on one hand and to period functions on the other hand.
These sections contain also our main result in a more detailed version. In
Section 7, we collect those results and prove Theorem 1.1. We use Section 8,
to compare and relate our integral transforms to the one appearing in the
setting of the classical modular cusp forms. The remaining Section 9 contains
a short discussion and outlook.

2. Preliminaries

2.1. The matrix group SL(2,Z) and its linear fractional transforma-
tions. Let SL(2,R) denote the group of 2× 2 matrices with real entries and
determinant 1. The subgroup SL(2,Z) ⊂ SL(2,R) denotes the full modular
group, that is the subgroup of matrices with integer entries. It is generated
by

(2.1) S =

(
0 −1
1 0

)
and T =

(
1 1
0 1

)
.

These satisfy

(2.2) S2 = (ST )3 = (−1),

where (−1) ∈ SL(2,Z) is the matrix with −1 on the diagonal and 0 on the
off-diagonal entries. 1 denotes the identity matrix. We denote

(2.3) T ′ := TST =

(
1 0
1 1

)
.

Note that

(2.4) ST =

(
0 −1
1 1

)
and STST = T−1S =

(
−1 −1
1 0

)
.

The group SL(2,R) acts on the upper half-plane H= {z ∈C; Im(z)> 0} and
its boundary PR =R∪{∞} and the lower half-plane H− = {z ∈C; Im(z)< 0}
by fractional linear transformations

(2.5)

(
a b
c d

)
z :=

⎧⎪⎨
⎪⎩

a
c if z =∞,

∞ if z =−d
c with c �= 0, and

az+b
cz+d otherwise.

We also need the following μ-function:

(2.6) μ : SL(2,R)×C→C; μ

((
a b
c d

)
, z

)
:= cz + d.
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Obviously μ satisfies the cocycle-relation

μ(γδ, z) = μ(γ, δz)μ(δ, z)

for every γ, δ ∈ SL(2,R).
Moreover, we have

Im(γz) =
Im(z)

|μ(γ, z)|2 ,
d

dz
γz =

1

(μ(γ, z))2
,

d

dz̄
γz̄ =

1

(μ(γ, z̄))2
and γζ − γz =

ζ − z

μ(γ, ζ)μ(γ, z)

(2.7)

for every γ ∈ SL(2,R).

2.2. Multiplier systems. We call a function v : SL(2,Z)→C�=0 multiplier
or multiplier system compatible with the half-integral weight k if v satisfies

(2.8) v(γδ)eik arg(μ(γδ,z)) = v(γ)v(δ)eik arg(μ(γ,δz))eik arg(μ(δ,z))

for every γ, δ ∈ SL(2,Z) and z ∈H.

Remark 2.1. (1) The range of arg(·) is −π < arg(z)≤ π for all z ∈C �=0.
(2) Condition (2.8) implies that the system of equations

(2.9) f(γz) = v(γ)eik arg(μ(γ,z))f(z)
(
z ∈H, γ ∈ SL(2,Z)

)
,

allows non-zero solutions f : H→C.
(3) We have in particular

(2.10) v
(
(−1)

)
= e−ikπ,

since (2.9) with γ = (−1) implies v((−1))eik arg(−1) = 1, if f does not
vanish everywhere.

2.3. The slash and double-slash notations. We define arbitrary powers
zs with (possibly complex) s by using the standard branch of the logarithm:
zs = |z|seisarg(z) with arg(z) ∈ (−π,π] for every z ∈C �=0.

We introduce the slash and the double-slash notations. Let k ∈ 1
2Z, ν ∈ C

and v be a multiplier. For f : H→C and γ ∈ SL(2,Z), we define(
f |vkγ

)
(z) := e−ik arg(μ(γ,z))v(γ)−1f(γz) and(

f‖vνγ
)
(z) := v(γ)−1

(
μ(γ, z)

)2ν−1
f(γz)

(2.11)

for every z ∈H. For example (2.9), reads as f |vkγ = f .
We define the slash and double-slash notations also for functions f : H− →

C on the lower half-plane, since γz ∈H− in (2.5) for every γ ∈ SL(2,Z) and
z ∈H−.

As slight abuse of notation, we also use the slash notation

(2.12)
(
f |1kγ

)
(z) = e−ik arg(μ(γ,z))f(γz)

for matrices γ ∈ SL(2,R).
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Consider the subset SL(2,Z)+ ⊂ SL(2,Z), containing all matrices γ ∈
SL(2,Z) with only non-negative entries, that is, all

(
a b
c d

)
∈ SL(2,Z) satis-

fying a, b, c, d≥ 0. These matrices have the property that they map the cut-
plane C′ =C \ (−∞,0] into itself: for every z ∈C′ and γ ∈ SL(2,Z)+ we have
γz ∈ C′. The slash and double-slash notations in (2.11) are also well defined
for functions f : C′ →H and all γ ∈ SL(2,Z)+. For given real z, we may even
extend the slash and double-slash notations to certain matrices γ ∈ SL(2,Z)
which satisfy μ(γ, z)> 0 on occasion.

Remark 2.2. The slash notation in (2.11) can be viewed as a group oper-
ation of SL(2,Z) on the space of functions on the upper half-plane. Indeed,
relation (2.8) implies that f |vk(γδ) = (f |vkγ)|vkδ holds.

The double-slash notation in (2.11) is, as the name indicates, an abbrevi-
ation for the given expression. It is not a group operation in general. The
same is true for the slash-notation except in the case mentioned above.

3. Maass cusp forms of half-integral weight and Maass operators

In this section, we define Maass cusp form and useful Maass operators that
will be used later. As usual, we write z = x+ iy for complex z with real part
x and imaginary part y.

Definition 3.1. Let k be a half-integral weight and v : SL(2,Z)→C�=0 a
compatible multiplier system. A Maass cusp form of weight k and multiplier
v for SL(2,Z) is a real-analytic function u : H→C satisfying

(1) u|vkγ = u for every γ ∈ SL(2,Z),
(2) u is an eigenfunction of the Laplace operator Δk with eigenvalue λ, that

is, Δku= λu where

(3.1) Δk =−y2
(
∂2
x + ∂2

y

)
+ iky∂x

with z = x+ iy ∈H,
(3) u satisfies the growth condition u(z) =O(yc) as y→∞ for every c ∈R.

It is known, see, for example [2], that the eigenvalue λ is real. It is conve-
nient to write λ= 1

4 − ν2 with suitable spectral parameter ν ∈R∪ iR.
In the following lemma, we extend the definition of the Maass cusp form to

the lower half-plane by considering the conjugate of the form defined on the
upper half-plane.

Lemma 3.2. Let u be a Maass cusp form of weight k, multiplier system
v and eigenvalue λ. Defining ũ : H− → C; z �→ ũ(z) := u(z̄) for a Maass
cusp form u defines a real-analytic function on the lower half-plane which
satisfies

(1) ũ|v−kγ = ũ for every γ ∈ SL(2,Z),
(2) ũ is an eigenfunction of the Laplace operator Δ−k with eigenvalue λ, and
(3) ũ satisfies the growth condition ũ(z) =O(|y|c) as y→−∞ for every c ∈R.
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Proof. Using the identity arg(ζ̄) =−arg(ζ), ζ ∈ C \ (−∞,0], the transfor-
mation property follows immediately:

ũ(γz) = u(γz̄) = eik arg(μ(γ,z̄))v(γ)u(z̄) = ei(−k) arg(μ(γ,z))v(γ)ũ(z)

for every z ∈H− and γ ∈ SL(2,Z). The substitution y �→ −y (i.e. z �→ z̄) gives

Δ−kũ(z)

=
[
−y2

(
∂2
x + ∂2

y

)
+ i(−k)y∂x

]
u(z̄)

=
[
−(−y)2

(
∂2
x + (−1)2∂2

y

)
+ i(−k)(−y)∂x

]
u(z) (using y �→ −y)

=Δku(z) = λu(z) = λu(z̄) (using y �→ −y)

= λũ(z)

for z ∈ H−. This shows the second property. The growth condition follows
directly from the definition ũ(z) = u(z̄). �

The raising and lowering Maass operators acting on the space of cusp forms
of given weight k, multiplier v, and eigenvalue λ are given by

(3.2) E
±
k =±2iy∂x + 2y∂y ± k.

Equivalently, it is sometimes convenient to write

(3.3) E
+
k = 4iy∂z + k and E

−
k =−4iy∂z̄ − k.

They satisfy the identity

(3.4) E
±
k∓2E

∓
k =−4Δk − k(k∓ 2).

Thus if u : H→C is an eigenfunction of Δk with spectral value ν, i.e. Δku=
( 14 − ν2)u, then u satisfies

(3.5) E
±
k∓2E

∓
k u= (1+ 2ν ∓ k)(−1 + 2ν ± k)u.

The slash notation defined in (2.11) commutes with the Laplace operator,

(3.6) Δk

(
f |vkγ

)
= (Δkf)|vkγ,

and interacts as follows with the Maass-operators

(3.7) E
±
k

(
f |vkγ

)
=
(
E
±
k f

)
|vk±2γ

(
γ ∈ SL(2,Z)

)
for every k ∈R and u real-analytic.

4. The Maass–Selberg differential form and the R-function

We need to define the Maass–Selberg differential form that will be used
later to define the kernel of the associated integrals of the Maass cusp forms.
First, we define what is known as the R-function. It will play an important
role in the construction of the kernel.
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4.1. The R-function. We define h(z) := Im(z) for z ∈H. For k ∈ 1
2Z and

ν ∈ C, it is easy to see that h(z) is real-analytic and positive for z ∈H, and
that h satisfies the differential equations

(4.1) Δkh
1
2−ν =

(
1

4
− ν2

)
h

1
2−ν and E

±
k h

1
2−ν = (1− 2ν ± k)h

1
2−ν .

Define

(4.2) Rk,ν(z, ζ) :=

(√
ζ − z√
ζ − z̄

)−k( |Im(z)|
(ζ − z)(ζ − z̄)

) 1
2−ν

for ζ, z ∈C such that

(4.3) ζ − z, ζ − z̄ /∈R≤0

holds.

Remark 4.1. The square roots
√
ζ − z and

√
ζ − z̄ on the right-hand side

of (4.2) are well defined since we require that ζ − z and ζ − z̄ are in C \R≤0.
The square roots in this situation, interpreted as principal square roots, are
holomorphic.

The R-function has the following properties:

Proposition 4.2. (1) The function

z �→Rk,ν(z, ζ)

is smooth in the real and imaginary part of z if (4.3) holds.
(2) The map

ζ �→Rk,ν(z, ζ)

is holomorphic on C \ {z − r, z − r; r ≥ 0}.
(3) Rk,ν has the form

Rk,ν(z, ζ) = e−ik arg(ζ−z)

(
Im(z)

(ζ − z)(ζ − z̄)

) 1
2−ν

(4.4)

=

(
h

1
2−ν |1k

(
0 1
−1 ζ

))
(z)

for real ζ and z ∈H.
(4) Assume the usual restriction (4.3) for z and ζ. The function

H→C; z �→Rk,ν(z, ζ)

satisfies the differential equations

ΔkRk,ν(·, ζ) =
(
1

4
− ν2

)
Rk,ν(·, ζ) and

E
±
k Rk,ν(·, ζ) = (1− 2ν ± k)Rk±2,ν(·, ζ).

(4.5)
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The function

H− →C; z �→Rk,ν(z, ζ)

satisfies

Δ−kRk,ν(·, ζ) =
(
1

4
− ν2

)
Rk,ν(·, ζ) and

E
±
−kRk,ν(·, ζ) = (1− 2ν ± k)Rk±2,ν(·, ζ).

Proof. (1) For fixed ζ ∈ C, assume that z ∈ C satisfies (4.3). It is then
obvious from (4.2) that the function z �→Rk,ν(z, ζ) is smooth in the real
and the imaginary parts of z. (Observe that the values under the square-
roots are never negative by condition (4.3).)

(2) Fix z ∈C this time. Again, it is obvious from (4.2) that the function ζ �→
Rk,ν(z, ζ) is holomorphic for all ζ ∈C satisfying condition (4.3). Noticing
that ζ satisfies (4.3) is equivalent to the fact that ζ is an element of the
“two-cut plane” C \ (z +R≤0 ∪ z +R≤0). This shows the second part of
the proposition.

(3) The first equality follows by rewriting the right-hand side of (4.2) using
the identity

(4.6)

√
ζ − z√
ζ − z̄

=
ζ − z√

ζ − z
√
ζ − z̄

= eiarg(ζ−z),

which is correct under the given assumptions ζ ∈R and z ∈H. The second
equality follows by the slash notation in (2.12).

(4) We assume real ζ and z ∈H for the moment. Combining the last expres-
sion of Rk,ν(z, ζ) in (4.4) with (3.6) and then with (4.1) gives

ΔkRk,ν(·, ζ) =Δk

(
h

1
2−ν |1k

(
0 1
−1 ζ

))

=
(
Δkh

1
2−ν

)
|1k
(

0 1
−1 ζ

)

=

(
1

4
− ν2

)
h

1
2−ν |1k

(
0 1
−1 ζ

)

=

(
1

4
− ν2

)
Rk,ν(·, ζ).

Analogously, just using (3.7) instead of (3.6) shows that

E
±
k Rk,ν(·, ζ) = (1− 2ν ± k)Rk±2,ν(·, ζ).

Next, using the substitution arguments in the proof of Lemma 3.2
shows that Rk,ν(z, ζ) satisfies the stated properties for z ∈H−.

The last step is to extend ζ from real values to complex values. This
can be done since ζ is just a constant for the differential operators. This
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shows that the stated differential equations hold also for complex ζ as
long as z and ζ satisfy the condition (4.3). �

Remark 4.3. The R-function appeared first in [11], where Lewis and Zagier
introduced

R0,− 1
2
(z, ζ) =

y

(x− ζ)2 + y2
=

i

2

(
1

z − ζ
− 1

z − ζ

)
in [11, p. 211, above (2.6)]. Their notation for the above expression was Rζ(z).

Before we describe the transformation law of Rk,ν(z, ζ), we need one trivial
auxiliary lemma which will allow us to perform a certain factorization in the
proof of the forthcoming Lemma 4.6.

Lemma 4.4. Let z,w ∈C′ and α ∈C be complex numbers satisfying either

(1) z ∈R>0 or
(2) the product zw ∈R>0.

Then the identity (zw)α = zαwα holds.

Proof. (1) Assume that z is real and positive and w ∈ C′. This ensures
arg(w) = arg(zw) ∈ (−π,π). Writing w in its polar coordinates gives

(zw)α =
((
z|w|

)
eiarg(w)

)α
= zα

(
|w|eiarg(w)

)α
= zαwα.

(2) Assume that zw is real and positive and both z,w ∈ C′. This ensures
arg(z) = −arg(w) ∈ (−π,π). Writing z and w in its polar coordinates
gives

(zw)αz−α =
(
|zw|

)α
z−α

=
(
|z|eiarg(z)|w|eiarg(w)

)α(|z|−1e−iarg(z)
)α

=
(
|z|eiarg(z)|w|eiarg(w)

)α(|z|−1e−iarg(z)
)α (

using case (1)
)

=
(
|z|eiarg(z)|w|eiarg(w)|z|−1e−iarg(z)

)α
=
(
|w|eiarg(w)

)α
=wα,

where we used that zw ∈R>0, z
−1 ∈C′ implies(

zwz−1
)α

= (zw)α
(
z−1

)α
as shown above.

The identity (zw)α = zαwα holds in both situations. �

Remark 4.5. It is important that z,w /∈ R<0 in the second case of the
above auxiliary lemma. If z,w are both real and negative, then zw itself
is positive. Due to the choice involved in the argument function, see Re-
mark 2.1, the arguments arg(z) = π and arg(w) = π are not anymore of op-
posite sign: arg(z) �= −arg(w). Hence, the factorization in the proof of the
auxiliary lemma does not work anymore.
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In what follows, we show the transformation law of Rk,ν(ζ, z).

Lemma 4.6. Let γ ∈ SL(2,Z), ζ, z ∈C satisfying (4.3) and μ(γ, ζ), μ(γ, z) ∈
C′ with Re(μ(γ, ζ)) > 0. Moreover, assume that ζ and z satisfy one of the
following three conditions:

(1) μ(γ, ζ) ∈R>0,
(2) ζ ∈H and γz ∈ γζ + iR>0 or
(3) ζ ∈H− and γz̄ ∈ γζ̄ + iR>0.

Then, the function (ζ, z) �→Rk,ν(z, ζ) satisfies the transformation formula

(4.7) Rk,ν(γz, γζ) = eik arg(μ(γ,z))
(
μ(γ, ζ)

)1−2ν
Rk,ν(z, ζ).

Proof. Take γ ∈ SL(2,Z) and ζ, z ∈C satisfying (4.3) and μ(γ, z) ∈C′.
One key observation is the fact that the factorization

(4.8)

(
|Im(γz)|

(γζ − γz)(γζ − γz̄)

) 1
2−ν

=
(
μ(γ, ζ)

)1−2ν
(

|Im(z)|
(ζ − z)(ζ − z̄)

) 1
2−ν

holds if ζ and z satisfy one of the additional assumptions.
First, we assume μ(γ, ζ) ∈ R>0. Using identities in (2.7) and Lemma 4.4

gives

(
|Im(γz)|

(γζ − γz)(γζ − γz̄)

) 1
2−ν

=

( |Im(z)|
μ(γ,z)μ(γ,z̄)

ζ−z
μ(γ,ζ)μ(γ,z)

ζ−z̄
μ(γ,ζ)μ(γ,z̄)

) 1
2−ν

=

(
|Im(z)|

ζ−z
μ(γ,ζ)

ζ−z̄
μ(γ,ζ)

) 1
2−ν

=
(
μ(γ, ζ)

)1−2ν
(

|Im(z)|
(ζ − z)(ζ − z̄)

) 1
2−ν

.

Next, we assume the second case ζ ∈H and γz ∈ γζ + iR>0. In particular,
we have that γζ − γz and also γζ − γz̄ are non-vanishing purely imaginary:

γζ − γz =−it and γζ − γz = it′

for some t, t′ ∈R≥0. We have in fact t′ = t+ 2Re(γζ). Hence, the expression

|Im(γz)|
(γζ − γz)(γζ − γz̄)

=
|Im(γz)|
(−it)it′

=
|Im(γz)|

tt′

is positive. On the other hand, we have

|Im(γz)|
(γζ − γz)(γζ − γz̄)

=

|Im(z)|
μ(γ,z)μ(γ,z̄)

ζ−z
μ(γ,ζ)μ(γ,z)

ζ−z̄
μ(γ,ζ)μ(γ,z̄)

=
|Im(z)|

(ζ − z)(ζ − z̄)

(
μ(γ, ζ)

)2
.
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We may apply Lemma 4.4 to μ(γ, ζ)2 and |Im(z)|
(ζ−z)(ζ−z̄) since the assumption

Re(μ(γ, ζ))> 0 implies |arg(μ(γ, ζ))| ≤ π
2 and hence |arg((μ(γ, ζ))2)|< π:

(
|Im(γz)|

(γζ − γz)(γζ − γz̄)

) 1
2−ν

=

(
|Im(z)|

ζ−z
μ(γ,ζ)

ζ−z̄
μ(γ,ζ)

) 1
2−ν

=
(
μ(γ, ζ)

)1−2ν
(

|Im(z)|
(ζ − z)(ζ − z̄)

) 1
2−ν

.

Finally, we assume the third case ζ ∈ H− and γz ∈ γζ + iR>0. We show
that (4.8) holds by interchanging the role of z and z̄ in the calculation above.

This proves the identity (4.8) for all three cases.
We need also the identity

(4.9)

(√
γζ − γz√
γζ − γz̄

)−k

= eik arg(μ(γ,z))

(√
ζ − z√
ζ − z̄

)−k

.

Indeed, it follows also by applying (2.7) and the assumption μ(γ, z) ∈ C′ as
the following calculation shows:

(√
γζ − γz√
γζ − γz̄

)−k

=

(√
ζ−z

μ(γ,ζ)μ(γ,z)√
ζ−z̄

μ(γ,ζ)μ(γ,z̄)

)−k

=

(√
μ(γ, z̄)√
μ(γ, z)

)−k(√
ζ − z√
ζ − z̄

)−k

= eik arg(μ(γ,z))

(√
ζ − z√
ζ − z̄

)−k

.

We also used (4.6) and that k ∈ 1
2Z is real.

To finally prove the lemma, we combine the identities (4.8) and (4.9). We
have

Rk,ν(γz, γζ)

=

(√
γζ − γz√
γζ − γz̄

)−k( |Im(γz)|
(γζ − γz)(γζ − γz̄)

) 1
2−ν

= eik arg(μ(γ,z))
(
μ(γ, ζ)

)1−2ν
(√

ζ − z√
ζ − z̄

)−k( |Im(z)|
(ζ − z)(ζ − z̄)

) 1
2−ν

= eik arg(μ(γ,z))
(
μ(γ, ζ)

)1−2ν
Rk,ν(z, ζ). �

Remark 4.7. The second assumption on ζ and z in Lemma 4.6 is: ζ ∈H

and γz ∈ γζ + iR>0. This is equivalent to saying that z lies in the open
geodesic ray connecting ζ ∈ H to the cusp γ−1(i∞). The third assumption
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can be rephrased analogously: The third condition is equivalent with saying
that z̄ lies in the geodesic ray connecting ζ̄ ∈H to the cusp γ−1(i∞).

4.2. The Maass–Selberg differential form. We recall differential forms
presented in [12] and observe the action of Maass raising and lowering opera-
tors applied to those differential forms.

Let f, g be real-analytic functions and write again z = x+ iy. We define

(4.10) {f, g}+(z) = f(z)g(z)
dz

y
and {f, g}−(z) = f(z)g(z)

dz̄

y
.

We extend the slash-notation to linear combinations of the differential
forms {f, g}±: We define

{f, g}+|vkγ(z) = e−ik arg(μ(γ,z))v(γ)−1f(γz)g(γz)
d(γz)

Im(γz)
,

{f, g}−|vkγ(z) = e−ik arg(μ(γ,z))v(γ)−1f(γz)g(γz)
d(γz)

Im(γz)
,

(4.11)

and extend it in the obvious way to linear combinations.

Lemma 4.8. Let v be a multiplier and k, q ∈ 1
2Z.

(1) We have for any matrix γ ∈ SL(2,Z) that

(4.12) {f, g}±|vk+q∓2γ =

{
{f |vkγ, g|1qγ}± and

{f |1kγ, g|vqγ}±.
(2) {f, g}± = {g, f}±.

Proof. The last property follows directly from the definition in (4.10).
We prove (4.12) by direct calculation, using the identities in (2.7). For

example, we have

{f, g}+|vk+q−2(z) = v(γ)−1e(−k−q+2)iarg(μ(γ,z))f(γz)g(γz)
d(γz)

Im(γz)

= v(γ)−1e(−k−q)iarg(μ(γ,z))f(γz)g(γz)
dz

Im(z)

=
{
f |vkγ, g|1qγ

}+
(z)

for all z ∈H. The other identities follow analogously. �
Combining the property (4.12) of the 1-forms in (4.10) with Maass opera-

tors, we see that

(4.13)
{
E
±
k

(
f |vkγ

)
, g|1qγ

}±
=
{
E
±
k

(
f |1kγ

)
, g|vqγ

}±
=
{
E
±
k f, g

}±|vk+qγ

for every γ ∈ SL(2,R) and k, q ∈ 1
2Z. We also have the relations{

E
+
k f, g

}+
=−

{
f,E

+
−k g

}+
+ 4i∂z(fg)dz and{

E
−
k f, g

}−
=−

{
f,E

−
−k g

}− − 4i∂z̄(fg)dz̄
(4.14)
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and {
E
−
k f, g

}+
=−

{
f,E

−
−k g

}+ − 4i∂z̄(fg)dz and{
E
+
k f, g

}−
=−

{
f,E

+
−k g

}−
+ 4i∂z(fg)dz̄.

We are now able to define the Maass–Selberg form.

Definition 4.9. Let f, g be real-analytic and k ∈ 1
2Z. We define the

Maass–Selberg form ηk by

(4.15) ηk(f, g) =
{
E
+
k f, g

}+ −
{
f,E

−
−k g

}−
.

Lemma 4.10. Let f, g be real-analytic and k ∈ 1
2Z. The Maass–Selberg form

has the following properties:

(1) We have the equations

(4.16) ηk(f, g) + η−k(g, f) = 4i · d(fg)
and

ηk(f, g)− η−k(g, f) = 4

(
[gfy − fgy] dx+

[
fgx − gfx +

ik

y
fg

]
dy

)
,

where fx denotes ∂xf , fy = ∂yf , gx = ∂xg and gy = ∂yg, respectively.
(2) If there exists a λ ∈R such that f and g satisfy Δkf = λf and Δ−kg = λg,

then the Maass–Selberg form is closed.
(3) We have that

(4.17) ηk(f, g)|v0γ = ηk
(
f |vkγ, g|1−kγ

)
= ηk

(
f |1kγ, g|v−kγ

)
for any multiplier system v.

(4) Let ν ∈C and assume that f and g are eigenfunctions of the operators Δk

and Δ−k, respectively, both with eigenvalue 1
4 − ν2. Then, we have that

ηk+2

(
E
+
k f,E

−
−k g

)
= (1+ 2ν + k)(1− 2ν + k)ηk(f, g)(4.18)

+ 4id
((
E
+
k f

)(
E
−
−k g

))
.

Proof. Recall that ∂z =
1
2∂x − i

2∂y , ∂z̄ =
1
2∂x + i

2∂y , dz = dx+ idy, dz̄ =
dx− idy and df = ∂zf dz+ ∂z̄f dz̄ for any function f smooth in x and y.

(1) We prove the first item via direct computation:

ηk(f, g) + η−k(g, f) =−4i
[
(fgz + gfz)dz + (fgz̄ + gfz̄)dz̄

]
= 4id(fg)

and

ηk(f, g)− η−k(g, f) = 4i

[(
gfz − fgz −

ik

2y
fg

)
dz −

(
gfz̄ − fgz̄ −

ik

2y
fg

)
dz̄

]

= 4

[
(gfy − fgy)dx+

(
fgx − gfx + i

k

y
fg

)
dy

]
,

where we used (3.3) for the Maass operators.
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(2) We want to show that dηk(f, g) = 0 under the given conditions. Since

2ηk(f, g) =
(
ηk(f, g) + η−k(g, f)

)
+
(
ηk(f, g)− η−k(g, f)

)
,

and since we already proved the first part of the lemma, it is enough to
show that ηk(f, g)−η−k(g, f) is closed. We find, after some computation,
that

d
(
ηk(f, g)− η−k(g, f)

)
= [fΔ−kg− gΔkf ]

dx∧ dy

y2
.

(3) This follows directly from (4.13).
(4) It follows directly from the equations in (4.14) that

ηk+2

(
E
+
k f,E

−
−k g

)
= 4id

[(
E
+
k f

)(
E
−
−k g

)]
−
{
E
+
k f,E

+
−k−2E

−
−k g

}+
+
{
E
−
k+2E

+
k f,E

−
−k g

}+
.

We may apply (3.5), since we assume that f and g are eigenfunctions of
the Laplace operators Δk and Δ−k, respectively, with the same eigen-
value. The statement in the lemma follows. �

Remark 4.11. The first three items of Lemma 4.10 are generalizations of
the lemma given in [11, Chapter II, Section 2]. We have that

η0(f, g) = [f, g]

where [·, ·] is defined in [11, Chapter II, Section 2]. Our form {·, ·}± in (4.10)
differs from the form {·, ·} in [11, Chapter II, Section 2, (2.5)], contrary to the
notational resemblance.

Lemma 4.12. Let f and g be smooth functions (in x and y) on H ∪H−

satisfying f(z) = f(z̄) and g(z) = g(z̄).

(1) We can extend the Maass–Selberg form to smooth (in x and y) functions
f, g defined on the lower half-plane.

(2) The Maass–Selberg form satisfies

(4.19) ηk(f, g)(z) = ηk(g, f)(z̄).

Proof. (1) All differentials and other components used in the definition of
the Maass–Selberg-form are well defined for smooth (in x and y) functions
on the lower half-plane H−. Hence, the extension makes sense.

(2) This follows by direct calculations. First, use the relations (4.15), (4.10)
and (3.2) followed by (3.3) to rewrite everything depending on the pair
(z, z̄) respectively, (x, y). Then, use the substitution (z, z̄) �→ (z̄, z) respec-
tively, (x, y) �→ (x,−y). As final step, use the above relations in reverse
order. �

4.3. Everything combined. We will now insert the function Rk,ν into the
Maass–Selberg form and use the form to define nearly periodic functions.
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Lemma 4.13. Let v be a multiplier which is compatible with the half-integral
weight k, ν ∈ C, u a Maass cusp form with weight k multiplier v and eigen-
value 1

4 − ν2. Moreover, let γ ∈ SL(2,Z) and ζ, z ∈ C satisfying the assump-
tions of Lemma 4.6.

It follows that

ηk
(
u,R−k,ν(·, γζ)

)
|v0γ(z) =

(
μ(γ, ζ)

)1−2ν
ηk
(
u,R−k,ν(·, ζ)

)
(z) and

η−k

(
R−k,ν(·, γζ), u

)
|v0γ(z) =

(
μ(γ, ζ)

)1−2ν
η−k

(
R−k,ν(·, ζ), u

)
(z).

(4.20)

Proof. We show the second identity:

η−k

(
R−k,ν(·, γζ), u

)
|v0γ(z)

= η−k

(
R−k,ν(·, γζ)|1−kγ,u|vkγ

)
(z) using (4.17)

= η−k

(
R−k,ν(·, γζ)|1−kγ,u

)
(z)

=
(
μ(γ, ζ)

)1−2ν
ηk
(
R−k,ν(·, ζ), u

)
(z) using (4.7).

The use of the transformation formula (4.7) in the calculation above is allowed
since z and ζ satisfy the assumptions of Lemma 4.6 and since E

+
−kR−k,ν(z, ζ)

appearing in the construction of η±k(R−k,ν(·, ζ), u)(z) satisfies (4.5).
The first identity follows by the same arguments. �

5. Nearly periodic functions

Let u be a Maass cusp form of weight k, multiplier v, and spectral value ν
as defined in and below Definition 3.1.

We define on C \R→C;

(5.1) ζ �→ f(ζ) :=

{∫ i∞
ζ

η−k(R−k,ν(·, ζ), u)(z) if Im(ζ)> 0 and

−
∫ −i∞
ζ

ηk(R−k,ν(·, ζ), ũ)(z) if Im(ζ)< 0,

where ũ(z) = u(z̄) as defined in Lemma 3.2. The path of integration is the
geodesic ray connecting ζ and the cusp i∞ respectively, −i∞ in the upper
respectively, lower half-plane.

Remark 5.1. (1) We have made a choice in Definition 5.1 between inte-
grating over the forms

(1a) − ηk
(
u,R−k,ν(·, ζ)

)
or (1b) η−k

(
R−k,ν(·, ζ), u

)
on H and

(2a) − ηk
(
R−k,ν(·, ζ), ũ

)
or (2b) η−k

(
ũ,R−k,ν(·, ζ)

)
on H−.

We will see later in Remark 6.2 that each choice leads to the same
period function on H prospectively H−. Remark 5.4 compares our choice
to the situation discussed in [11].
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(2) The reason, why we extended Maass cusp forms and the R-function to
the lower half-plane H− and also extended the Maass–Selberg-form ηk to
functions on the lower half-plane, see, for example, Lemma 3.2, Propo-
sition 4.2 and Lemma 4.12 respectively, is the second case of (5.1). We
want to be able to integrate along the geodesic ray ζ − iR>0 connecting
ζ ∈H− and −i∞ in the lower half-plane. In our opinion, this representa-
tion illustrates better how the function f is defined on H− compared to
the (on H− equivalent) integral representation in Lemma 5.3.

Lemma 5.2. For |Re(ν)|< 1
2 , the integration in (5.1) is well-defined along

the geodesic paths connecting ζ to i∞ in H respectively ζ to −i∞ in H−.

Proof. The singularity of Rk,ν(z, ζ) for z → ζ ∈ H respectively z → ζ̄ ∈ H

is of the form (ζ − z)ν−
1
2 respectively, (ζ − z̄)ν−

1
2 . The whole integrand has

at most the same singularity since Rk,ν is an eigenfunction of the Maass
operators, see (4.5). The weight argument arg(ζ − z) has also a well defined
limit. Hence, the integration is well defined for ν values satisfying |Re(ν)|< 1

2 .
�

Lemma 5.3. For ζ ∈H− we have

(5.2) f(ζ) =−
∫ i∞

ζ̄

ηk
(
u,R−k,ν(·, ζ)

)
(z).

Proof. For ζ ∈H− we have

f(ζ) =−
∫ −i∞

ζ

ηk
(
R−k,ν(·, ζ), ũ

)
(z)

=−
∫ −i∞

ζ

ηk
(
u,R−k,ν(·, ζ)

)
(z̄) using (4.19)

=−
∫ i∞

ζ̄

ηk
(
u,R−k,ν(·, ζ)

)
(z),

where we used u(z) = ũ(z̄) for z ∈H in Lemma 3.2. �

Remark 5.4. For k = 0, we can compare the definition of f in (5.1) to
the one in [11, p. 212] since we have η0(f, g) = [f, g], see Remark 4.11. We

find that [11] uses exactly the opposite choice: They use
∫ i∞
ζ

η0(u,R−0,ν(·, ζ))
for ζ ∈ H (compared to

∫ i∞
ζ

η−0(R−0,ν(·, ζ), u) in (5.1)). On the lower half

plane they use −
∫ i∞
ζ̄

η−0(R−0,ν(·, ζ), u) for ζ ∈H− (compared to our integral

−
∫ i∞
ζ̄

η0(u,R−0,ν(·, ζ)) in (5.2)).

In the following lemma, we describe the transformation property of the
function f(ζ).
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Lemma 5.5. Let |Re(ν)|< 1
2 . The function f defined in (5.1) satisfies

f‖vνγ(z) = v(γ)−1
(
μ(γ, ζ)

)2ν−1
f(γζ)(5.3)

=

⎧⎨
⎩
∫ γ−1i∞
ζ

η−k(R−k,ν(·, ζ), u)(z) if ζ ∈H and

−
∫ γ−1i∞
ζ

ηk(u,R−k,ν(·, ζ))(z) if ζ ∈H−

for every ζ ∈H∪H− and γ ∈ SL(2,Z) satisfying Re(μ(γ, ζ))> 0. The path of
integration on the right-hand side is the geodesic ray connecting ζ respectively,
ζ̄ and γ−1(i∞).

Proof. Let ζ ∈H and γ ∈ SL(2,Z) such that Re(μ(γ, ζ))> 0 holds. We get

f(γζ) =

∫ i∞

γζ

η−k

(
R−k,ν(·, γζ), u

)
(z) =

∫ γ−1i∞

ζ

η−k

(
R−k,ν(·, γζ), u

)
(γz)

= v(γ)

∫ γ−1i∞

ζ

η−k

(
R−k,ν(·, γζ), u

)
|v0γ(z).

Now, we would like to apply Lemma 4.13. Therefore, we must check, if all z of
the integration path satisfy the conditions on ζ and z as given in Lemma 4.6.
Remark 4.7 implies that we have to verify if the integration path is the geodesic
ray connecting ζ and γ−1(i∞). This is indeed the case. Hence, the second
condition of Lemma 4.6 is satisfied since we assume Re(μ(γ, ζ)) > 0. Using
the transformation formula (4.20) in Lemma 4.13 gives

f(γζ) = v(γ)

∫ γ−1i∞

ζ

η−k

(
R−k,ν(·, γζ), u

)
|v0γ(z)

= v(γ)
(
μ(γ, ζ)

)1−2ν
∫ γ−1i∞

ζ

η−k

(
R−k,ν(·, ζ), u

)
(z).

The same calculation for ζ ∈H−, using the integral for f in (5.2), gives

v(γ)−1
(
μ(γ, ζ)

)2ν−1
f(γζ) =−

∫ γ−1i∞

ζ

ηk
(
u,R−k,ν(·, ζ)

)
(z). �

Definition 5.6. We call a function g nearly periodic if there exists an
a ∈C with |a|= 1 such that g(z + 1) = ag(z) holds for all z.

We check that f(ζ) is nearly periodic as application of Lemma 5.5: For
ζ ∈H, we find

v(T )−1f(Tζ) =

∫ T−1i∞

ζ

η−k

(
R−k,ν(·, ζ), u

)
(z)

=

∫ i∞

ζ

η−k

(
R−k,ν(·, ζ), u

)
(z)

= f(ζ),
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where we use the invariance of the cusp i∞ under translation and the trivial
fact that Re(μ(T, ζ)) = 1. The same arguments hold for ζ ∈H−. Hence, we
just proved the following lemma.

Lemma 5.7. The function f in defined in (5.1) satisfies

(5.4) v(T )−1f(ζ + 1) = f(ζ) for every ζ ∈C \R.
Written in the double-slash notation (2.11), we have

(5.5) f‖vνT = f on C \R.

Similar to [11, Proposition 2], we continue to prove an algebraic correspon-
dence between f and a solution of a suitable three-term equation on C \R.

Lemma 5.8. Assume that k and ν satisfy e∓πi(2ν−1) �= eπik. Put

(5.6) c�± = 1− eπike±πi(2ν−1).

Then, there exists a bijection between nearly periodic functions f satisfying
(5.4) and solutions P of the three-term equation

P (ζ) = v(T )−1P (ζ + 1) + v
(
T ′)−1

(ζ + 1)2ν−1P

(
ζ

ζ + 1

)
i.e. P‖vν

(
1− T − T ′)(ζ) = 0 for ζ ∈C \R.

(5.7)

The bijection is given by the formulas:

c�±f(ζ) = P (ζ) + v(S)−1ζ2ν−1P (Sζ)
(
Im(ζ)≷ 0

)
(5.8)

= P‖vν(1+ S)(ζ)

and

P (ζ) = f(ζ)− v(S)−1ζ2ν−1f(Sζ) (ζ ∈C \R)(5.9)

= f‖vν(1− S)(ζ).

Remark 5.9. Observe at a formal level that P , as defined in (5.9), satisfies
the three-term functional equation (5.7):

P‖vν
(
1− T − T ′)

= f‖vν(1− S)‖vν(1− T − TST )
(
TST = T ′ by (2.3)

)
= f‖vν(1− S − T + ST − TST + STST )

= f‖vν
(
1− S − T + ST − TST + T−1S

) (
STST = T−1S by (2.4)

)
= f‖vν

(
(1− T ) +

(
T−1S − S

)
+ (ST − TST )

)
= f‖vν(1− T )‖vν

(
1+ T−1S + ST

)
= 0.

However, the calculation is only formal, since the double-slash notation just
hides the weight factors and the multipliers. In general, we do not know
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whether they match since the double-slash notation is not a group action. We
have to check them on each occasion.

Proof of Lemma 5.8. Let z ∈C \R. First, we compute

v(S)−1v(S)−1ζ2ν−1

(
−1

ζ

)2ν−1

.

We have

ζ2ν−1

(
−1

ζ

)2ν−1

= e(2ν−1)i(arg(ζ)+arg(−1
ζ )) = e±πi(2ν−1)

(
Im(ζ)≷ 0

)
since arg(ζ)+arg(− 1

ζ ) =±π for Im(ζ)≷ 0. The choices + and >, respectively

− and < correspond. The consistency relation (2.8) for multipliers implies

v(S)v(S) = e−ikπ.

Hence

(5.10) v(S)−1v(S)−1ζ2ν−1

(
−1

ζ

)2ν−1

= eπike±πi(2ν−1)

holds.
Next, we show that (5.8) and (5.9) are inverses of each other. On one hand,

we have

c�±f(ζ) = P (ζ) + v(S)−1ζ2ν−1P

(
−1

ζ

)

= f(ζ)− v(S)−1ζ2ν−1f

(
−1

ζ

)

+ v(S)−1ζ2ν−1

[
f

(
−1

ζ

)
− v(S)−1

(
−1

ζ

)2ν−1

f(ζ)

]

= f(ζ)

[
1− v(S)−1v(S)−1ζ2ν−1

(
−1

ζ

)2ν−1]
= f(ζ)

[
1− eπike±πi(2ν−1)

] (
for Im(ζ)≷ 0

)
.

On the other hand, we have

c�±P (ζ) = c�±

[
f(ζ)− v(S)−1ζ2ν−1f

(
−1

ζ

)]

= P (ζ) + v(S)−1ζ2ν−1P

(
−1

ζ

)

− v(S)−1ζ2ν−1

[
P

(
−1

ζ

)
+ v(S)−1

(
−1

ζ

)2ν−1

P (ζ)

]
= P (ζ)

[
1− eπike±πi(2ν−1)

] (
for Im(ζ)≷ 0

)
,

using the same argument calculations as above.
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We now show, that f being nearly periodic corresponds to P satisfying the
three-term equation.

Let f be a nearly periodic function satisfying (5.4) and P function given
by (5.9). Then, we find (for ζ ∈H∪H−)

P‖vν
(
1− T − T ′)(ζ)

= P (ζ)− v(T )−1P (Tζ)− v
(
T ′)−1

(ζ + 1)2ν−1P
(
T ′ζ

)
=
(
f(ζ)− v(S)−1ζ2ν−1f(Sζ)

)
− v(T )−1

(
f(Tζ)− v(S)−1(Tζ)2ν−1f(STζ)

)
− v

(
T ′)−1

(ζ + 1)2ν−1

·
(
f
(
T ′ζ

)
− v(S)−1

(
T ′ζ

)2ν−1
f
(
ST ′ζ

))
=
(
f(ζ)− v(T )−1f(Tζ)

)
+
(
v
(
T ′)−1

v(S)−1(ζ + 1)2ν−1
(
T ′ζ

)2ν−1
f(STSTζ)

− v(S)−1ζ2ν−1f(Sζ)
)

+
(
v(T )−1v(S)−1(Tζ)2ν−1f(STζ)− v

(
T ′)−1

(ζ + 1)2ν−1f(TSTζ)
)

(f is nearly periodic and STST = T−1S)

= 0+ v(S)−1ζ2ν−1

·
(
v
(
T ′)−1 1

ζ2ν−1
(ζ + 1)2ν−1

(
T ′ζ

)2ν−1
f
(
T−1Sζ

)
− f(Sζ)

)

+ v(T )v
(
T ′)−1

(ζ + 1)2ν−1

·
(
v
(
T ′)v(T )−2v(S)−1f(STζ)− v(T )−1f(TSTζ)

)
= v(S)−1ζ2ν−1

(
v(T )f

(
T−1Sζ

)
− f(Sζ)

)
+ v(T )v

(
T ′)−1

(ζ + 1)2ν−1
(
f(STζ)− v(T )−1f(TSTζ)

)
= 0.

We used several times multiplier identities based on the consistency relation
(2.8). Hence, P satisfies the three-term equation (5.7).

Conversely, let us assume that the function P satisfies the three-term equa-
tion (5.7) on C\R. We have to show that f attached by (5.8) is indeed nearly
periodic. Applying the three-term equation to P in ζ and STζ = −1

ζ+1 we

obtain:

0 =
(
P‖vν

[
−1+ T + T ′])‖vν [1− ST ](ζ)

=
[
−P (ζ) + P‖vνT (ζ) + P‖vνT ′(ζ)

]
− v(ST )−1(ζ + 1)2ν−1
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·
[
−P

(
−1

ζ + 1

)
+ P‖vνT

(
−1

ζ + 1

)
+ P‖vνT ′

(
−1

ζ + 1

)]

=

[
−P (z) + v(T )−1P (ζ + 1) + v

(
T ′)−1

(ζ + 1)2ν−1P

(
ζ

ζ + 1

)]

− v(ST )−1(ζ + 1)2ν−1

[
−P

(
−1

ζ + 1

)
+ v(T )−1P

(
ζ

ζ + 1

)

+ v
(
T ′)−1

(
−1

ζ + 1
+ 1

)2ν−1

P

( −1
ζ+1

−1
ζ+1 + 1

)]

= −
[
P (ζ) + v(ST )−1v

(
T ′)−1

(ζ + 1)2ν−1

(
ζ

ζ + 1

)2ν−1

P

(
−1

ζ

)]

+

[
v(T )−1P (ζ + 1) + v(ST )−1(ζ + 1)2ν−1P

(
−1

ζ + 1

)]

+

[
v
(
T ′)−1

(ζ + 1)2ν−1P
(
T ′ζ

)
− v(ST )−1v(T )−1(ζ + 1)2ν−1P

(
ζ

ζ + 1

)]

= −
[
P (ζ) + v(S)−1z2ν−1P

(
−1

ζ

)]

+ v(T )−1

[
P (Tζ) + v(S)−1(Tζ)2ν−1P

(
−1

Tζ

)]
+ 0

= − c�±f(ζ) + v(T )−1c�±f(ζ + 1)
(
for Im(ζ)≷ 0

)
,

using again multiplier identities derived from the consistency relation (2.8).
This shows that if P satisfies the three-term equation then f is nearly periodic.

�

6. Period functions

6.1. Period functions by integral transforms. We follow [12, Sec-
tion 2.3], which is an extension of [11, Chapter II, Section 2] to real weights,
and define the following integral transformation of a Maass cusp form.

Definition 6.1. Let ζ ∈ (0,∞) and ν ∈ C, a compatible multiplier v and
a weight k ∈ 1

2Z. Let u be a Maass cusp form of weight k, multiplier v and

eigenvalue 1
4 − ν2.

We associate a function Pk,ν : (0,∞)→C; ζ �→ Pk,ν(ζ) to the cusp form u
by the integral transform

(6.1) Pk,ν(ζ) =

∫ i∞

0

η−k

(
R−k,ν(·, ζ), u

)
(z),

where the path of integration is the upper imaginary axis, i.e., the geodesic
connecting 0 and i∞.
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The integral transform above is well defined, as the following arguments
show. Let ζ ∈ (0,∞) and consider the function R−k,ν(z, ζ). The construc-
tion of R−k(·, ζ) implies polynomial growth for Im(z) → ∞ and Im(z) ↓ 0.
The Maass cusp form u decays quicker than any polynomial at cusps, see

Definition 3.1. Hence, the integral
∫ i∞
0

η−k(R−k,ν(·, ζ), u)(z) is well defined.

Remark 6.2. The definition of Pk,ν in [12, Definition 41] is

Pk,ν(ζ) =

∫ i∞

0

ηk
(
u,R−k,ν(·, ζ)

)
(z)

which seems to differ from the one we use in (6.1). However, u and R−k,ν

are eigenfunctions of Δk and Δ−k, respectively. This implies that the Maass–
Selberg form is closed, see Lemma 4.10, and we have∫ i∞

0

η−k

(
R−k,ν(·, ζ), u

)
(z)

=

∫ i∞

0

ηk
(
u,R−k,ν(·, ζ)

)
(z) +

∫ i∞

0

d
(
u(·)R−k,ν(·, ζ)

)
.

Due to u being cuspidal, and hence vanishing in 0 and i∞, we have∫ i∞

0

d
(
u(·)R−k,ν(·, ζ)

)
= 0.

Hence, the definitions of Pk,ν in (6.1) and in [12, Definition 41] agree. This
also shows that the choice mentioned in Remark 5.1 does not matter for the
period functions.

Lemma 6.3. Let k, v, ν and u be as in Definition 6.1, let ζ ∈ (0,∞) and
γ ∈ SL(2,Z) such that μ(γ, ζ) > 0 and γ(0,∞) ⊂ (0,∞). The function Pk,ν

defined in (6.1) satisfies

(6.2)
(
Pk,ν‖vνγ

)
(ζ) =

∫ γ−1∞

γ−10

η−k

(
R−k,ν(·, ζ), u

)
(z),

where the path of integration is the geodesic connecting γ−10 and γ−1∞.

Proof. We have(
Pk,ν‖vνγ

)
(ζ) = v(γ)−1

(
μ(γζ)

)2ν−1
∫ ∞

0

η−k

(
R−k,ν(·, γζ), u

)
(z)

=

∫ ∞

0

η−k

(
R−k,ν(·, ζ), u

)(
γ−1z

)
using Lemma 4.13

=

∫ γ−1∞

γ−10

η−k

(
R−k,ν(·, ζ), u

)
(z).

The use of Lemma 4.13 is valid since ζ and μ(γ, ζ) are both positive reals.
The path of integration of the last integral is the geodesic connecting γ−10
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and γ−1∞ and lies in the upper left quadrant {z ∈ C;Re(z) ≤ 0, Im(z) ≥ 0}
of C. �

We show next that Pk,ν satisfies the three-term equation on R+.

Lemma 6.4. Let ν, k and v as in Definition 6.1 and u a Maass cusp form
with weight k compatible multiplier v and eigenvalue 1

4 − ν2. The function
Pk,ν satisfies the three-term equation

(6.3) 0 = Pk,ν‖vν
(
1− T − T ′) on (0,∞).

Proof. Let ζ > 0. Lemma 6.3 allows us to write

0 =

(∫ ∞

0

−
∫ ∞

−1

−
∫ −1

0

)
η−k

(
R−k,ν(·, ζ), u

)
(z)

= Pk,ν(ζ)− v(T )−1Pk,ν(Tζ)− v
(
T ′)−1

(ζ + 1)2ν−1Pk,ν

(
T ′ζ

)
= Pk,ν‖vν

(
1− T − T ′)(ζ). �

The next step is to extend Pk,ν(ζ) to the right half plane {ζ ∈C;Re(ζ)> 0}.
Let ζ be in the right half-plane and recall that R−k,ν(z, ζ) is holomorphic in
ζ if Re(z) ≤ 0. Hence, the function Pk,ν(ζ), given by the integral transform
(6.1) extends holomorphically to {ζ ∈C;Re(ζ)> 0}. It is easily checked that

Pk,ν(ζ+1) and Pk,ν(
ζ

ζ+1 ) have also holomorphic extensions to this right half-

plane.
The last step is to extend Pk,ν to the cut plane C′ =C \ (−∞,0]. Assume

Re(ζ) > 0 for the moment. Since the differential form ηk(u,R−k,ν(·, ζ)) is
closed, see Lemma 4.10, we replace vertical path of integration in (6.1) by a
path which connects 0 and i∞ in the upper left quadrant and which passes
to the left of either ζ or ζ̄ . We then may move ζ to any point for which either
ζ or ζ̄ is still right of the new integration path. This procedure extends Pk,ν

to a holomorphic function on C′.
Summarizing we have the following theorem.

Theorem 6.5. Under the assumptions of Definition 6.1, the function Pk,ν

associated to u by (6.1) extends to a holomorphic function on the cut plane
C′ which satisfies the three-term equation (6.3) on R>0. It also satisfies the
growth conditions

(6.4) Pk,ν(ζ) =

{
O(zmax{0,2Re(ν)−1) as Im(z) = 0, ζ ↓ 0 and

O(zmin{0,2Re(ν)−1) as Im(z) = 0, ζ →∞.

Proof. The first part of the proposition follows from the discussion above.
The cusp form u is bounded on H since a cusp form vanishes at all cusps

Q ∪ i∞ and u is real-analytic on H. Also, E
+
k u is bounded since the Maass
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operator maps cusp forms of weight k to cusp forms of weight k+2. Applying
successively (6.1), (4.15), (4.10), (4.5) and (4.4) we find

Pk,ν(ζ)

=

∫ i∞

0

[(
E
+
−kR−k,ν(·, ζ)

)
(z)u(z)

dz

y
−R−k,ν(z, ζ)

(
E
−
k u

)
(z)

dz̄

y

]

=

∫ i∞

0

[
(1− 2ν − k)R2−k,ν(z, ζ)u(z)

dz

y
−R−k,ν(z, ζ)

(
E
−
k u

)
(z)

dz̄

y

]

= i

∫ ∞

0

eik arg(ζ−iy)

(
y

(ζ − iy)(ζ + iy)

) 1
2−ν

×
[
(1− 2ν − k)e2iarg(ζ−iy)u(iy)−

(
E
−
k u

)
(iy)

]dy
y

for ζ > 0. Using the notation f(z) � g(z) for f(z) = O(g(z)), we find the
estimate

∣∣Pk,ν(ζ)
∣∣� ∫ ∞

0

∣∣∣∣ y

ζ2 + y2

∣∣∣∣
1
2−Re(ν)

(6.5)

·max
{∣∣(E−

k u
)
(iy)

∣∣, ∣∣(1− 2ν − k)u(iy)
∣∣}dy

y

for ζ > 0. The integral converges since u and hence u(iy) and (E−
k u)(iy) decay

quickly as y→∞ and as y ↓ 0.
Using the estimate

y

ζ2 + y2
≤ ζ−2y

in (6.5) gives

Pk,ν(ζ) =O
(
ζ2Re(ν)−1

)
for every ζ > 0.

We have

Pk,ν(ζ) =O(1) for every ζ > 0

if we use
y

ζ2 + y2
≤ y−1

in (6.2). This proves the stated growth condition. �

6.2. Period functions and nearly periodic functions. Let us start with
a Maass cusp form u of weight k, multiplier v and spectral value ν as in
Definition 3.1. We associated in Section 5 a nearly periodic function f by the
integral transform (5.1):

C \R→C;

ζ �→ f(ζ) :=

{∫ i∞
ζ

η−k(R−k,ν(·, ζ), u)(z) if ζ ∈H and

−
∫ −i∞
ζ

ηk(R−k,ν(·, ζ), ũ)(z) if ζ ∈H−.

(5.1)
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Then, we attached a period-function P by (5.9):

(5.9) P = f‖vν(1− S)
(
on H∪H−)

which satisfies the three-term equation

(5.7) 0 = P‖vν
(
1− T − T ′) (

on H∪H−).
On the other hand, we have the integral transformation (6.1) from the

Maass cusp form u to the period function Pk,ν :

(6.1) Pk,ν(ζ) =

∫ i∞

0

η−k

(
R−k,ν(·, ζ), u

)
(z) (on R>0)

which satisfies the three-term equation

(6.3) 0 = P‖vν
(
1− T − T ′) (on R>0)

and extends to C′ (Theorem 6.5).
Are both directions compatible? In other words, do we get the same func-

tion P on H ∪H−, regardless of using the intermediate periodic function via
(5.1) and (5.9) of taking the formula (6.1)?

Lemma 6.6. Let k, v, ν and u be as in Definition 6.1 with |Re(ν)|< 1
2 . The

maps

u
(5.1)�−→ f

(5.9)�−→ P and u
(6.1)�−→ Pk,ν

give rise to the same function P = Pk,ν on {ζ ∈C;Re(ζ)> 0, Im(ζ) �= 0}.
Proof. For ζ ∈H with Re(ζ)> 0 in the upper half-plane, we find

Pk,ν(ζ) =

∫ i∞

0

η−k

(
R−k,ν(·, ζ), u

)
(z)

=

∫ i∞

ζ

η−k

(
R−k,ν(·, ζ), u

)
(z) +

∫ ζ

0

η−k

(
R−k,ν(·, ζ), u

)
(z)

=

∫ i∞

ζ

η−k

(
R−k,ν(·, ζ), u

)
(z)−

∫ S−1i∞

ζ

η−k

(
R−k,ν(·, ζ), u

)
(z)

= f(ζ)− v(S)−1ζ2ν−1f(Sζ) using Lemma 5.5

= P (ζ).

A similar calculation holds for ζ ∈H− with Re(ζ)> 0:

Pk,ν(ζ) =−
∫ i∞

0

ηk
(
u,R−k,ν(·, ζ)

)
(z) using Lemma 4.16

=−
∫ i∞

ζ

ηk
(
u,R−k,ν(·, ζ)

)
(z)−

∫ ζ

0

ηk
(
u,R−k,ν(·, ζ)

)
(z)

= f(ζ)− v(S)−1ζ2ν−1f(Sζ) using Lemma 5.5

= P (ζ). �
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Theorem 6.7. The function P given by (5.9) on H∪H− is holomorphic,
extends holomorphically to the cut-plane C′ =C \ (−∞,0], satisfies the three-
term-equation 0 = P‖vν(1− T − T ′) on C′, and satisfies the growth condition
(6.4).

Proof. Lemma 6.6 shows that P agrees on {ζ ∈ C;Re(ζ) > 0, Im(ζ) �= 0}
with Pk,ν given by (6.1). The latter extends holomorphically to C′ and satisfies
the growth condition (6.4) by Proposition 6.5. �

7. Proof of Theorem 1.1

Our main theorem is basically proven in Section 5 and Section 6. We just
have to collect all parts.

The map u �→ f from Maass cusp forms to nearly periodic functions is
defined in (5.1). That f is nearly periodic is shown in Lemma 5.7 and Theo-
rem 6.7 shows the remaining part.

The bijection f ↔ P is due to Lemma 5.8.
The map u �→ Pk,ν from Maass cusp forms to period functions is given in

(6.1). The properties of Pk,ν are described in Theorem 6.5.
Lemma 6.6, cumulating in Theorem 6.7, shows that the period function P

obtained via u
(5.1)�→ f

(5.8)�→ P and via u
(6.1)�→ Pk,ν are the same.

This concludes the proof of Theorem 1.1.

8. Period functions and period polynomials

In the following section, we compare the integral transformation (6.1) and
the classical Eichler integral in (1.1) for holomorphic cusp forms.

Let uh be a modular cusp form of weight k ∈ 2N as defined in the intro-
duction. We attach a Maass cusp form u : H→C to uh by

(8.1) u(z) := Im(z)
k
2 uh(z).

As shown in [13, Section 3.2], u is indeed a Maass cusp form of weight k,
trivial multiplier v ≡ 1 and eigenvalue k

2 (1−
k
2 ). Hence, u has spectral values

ν ∈ {k−1
2 , 1−k

2 }.
The following proposition compares the period functions attached to u and

the period polynomial attached to uh. It is based on [12, Proposition 49].

Proposition 8.1. Let u be the Maass cusp form in (8.1), which is derived
from a modular cusp form uh of weight k ∈ 2N.

(1) The function Pk, 1−k
2

associated to u by (6.1) vanishes everywhere.

(2) The function Pk, k−1
2

associated to u by (6.1) restricted to the right half-

plane {ζ ∈C;Re(ζ)> 0} is a multiple of the period polynomial p associated
to uh by (1.1): Pk, k−1

2
= (2− 2k)p.
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Proof. Since (
k− 1

2

)(
1− k

2

)
=

k

2

(
1− k

2

)
,

we see that k−1
2 and 1−k

2 are spectral values of u. Moreover, E
−
k u = 0 as

shown in [13, Section 3.2].
Let Pk,ν be the period function associated to u via (6.1):

Pk,ν(ζ) =

∫ i∞

0

η−k

(
R−k,ν(·, ζ), u

)
(z).

Using (4.15) and (4.10), we then get

Pk,ν(ζ) =

∫ i∞

0

[(
E+
−kR−k,ν(·, ζ)

)
(z)u(z)

dz

y
−R−k,ν(z, ζ)

(
E−
k u

)
(z)

dz̄

y

]
.

Recalling that E
+
−kR−k,ν = (1− 2ν − k)R2−k,ν in (4.5) and E

−
k u= 0 above,

we find

(8.2) Pk,ν(ζ) = (1− 2ν − k)

∫ i∞

0

R2−k,ν(z, ζ)u(z)
dz

y

for Re(ζ)> 0.
To prove the first part of the proposition, we assume ν = 1−k

2 . Then, the
factor 1− 2ν − k in (8.2) vanishes, implying Pk, 1−k

2
= 0.

To prove the second part of the proposition, we assume ν = k−1
2 . By (4.2),

we have

R2−k, k−1
2
(z, ζ) =

(√
ζ − z√
ζ − z̄

)k−2( |Im(z)|
(ζ − z)(ζ − z̄)

) 2−k
2

(8.3)

= (ζ − z)k−2
∣∣Im(z)

∣∣ 2−k
2

for every ζ and z with ζ − z, ζ − z̄ �=R≤0. Combining this with (8.1) in (8.2)
gives

Pk, k−1
2
(ζ) = (2− 2k)

∫ i∞

0

(ζ − z)k−2uh(z)dz = (2− 2k)p(ζ)

for at least all ζ in the right half-plane. �

Can we also recover the periodic function fh? The answer is given in the
following proposition.

Proposition 8.2. Let u be the Maass cusp form in (8.1), which is derived
from a modular cusp form uh of weight k ∈ 2N.

(1) The integral transformation (5.1) defining f(ζ) for ζ ∈H is well-defined
for both spectral values ν ∈ {1−k

2 , k−1
2 }.

(2) The function f associated to u by (5.1) with weight k and spectral value
ν = 1−k

2 vanishes everywhere.
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(3) The function f associated to u by (5.1) with weight k and spectral value
ν = k−1

2 and restricted to the upper half-plane H is a multiple of fh asso-
ciated to uh by (1.3): f = (2− 2k)fh.

Proof. We follow the arguments of the proof of Proposition 8.1. For ζ ∈H

is the nearly periodic function f associated to u given by (5.1). Using (4.15)
and (4.10), we then get

f(ζ) =

∫ i∞

ζ

[(
E+
−kR−k,ν(·, ζ)

)
(z)u(z)

dz

y
−R−k,ν(z, ζ)

(
E−
k u

)
(z)

dz̄

y

]
.

Recalling E
+
−kR−k,ν = (1− 2ν − k)R2−k,ν in (4.5) and E

−
k u= 0, we find

(8.4) f(ζ) = (1− 2ν − k)

∫ i∞

ζ

R2−k,ν(z, ζ)u(z)
dz

y

for ζ ∈H.
To prove the second part of the proposition, we assume ν = 1−k

2 . Then,
the factor 1− 2ν − k in (8.4) vanishes, implying Pk, 1−k

2
= 0.

To prove the third part of the proposition, we assume ν = k−1
2 . Using (8.3)

and (8.1) in (8.4) gives

f(ζ) = (2− 2k)

∫ i∞

ζ

(ζ − z)k−2uh(z)dz = (2− 2k)fh(ζ)

for every ζ ∈H.
The first part follows also from the above calculations. Even if the cal-

culations above are a priori formal, the well-definiteness of the results show
that the original integral transforms are also well defined. We are just adding
cleverly zeros. �

9. Discussion and outlook

In this paper, we introduced and discussed Eichler integrals attached to
Maass cusp forms of half-integral weight. We also introduced the correspond-
ing period functions. This generalizes on one hand the classical case of period
polynomials and periodic functions associated to holomorphic modular cusp
forms, as shown in Section 8. On the other hand, our results fit neatly with
the also known case of Maass cusp forms of weight 0 and associated periodic
and period functions, discussed in [11].

Obvious remaining questions are:

(1) For half-integral weight, do the period functions (i.e., the space of holo-
morphic solutions of the three-term equation (5.7) which satisfy the
growth condition (6.4)) bijectively correspond to Maass cusp forms? We
only show one direction.

(2) Can we use the introduced period functions to describe a “Eichler–
Shimura-cohomology” for the half-integral or real weight case?
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(3) Does everything also hold for real or complex weights and/or non-cuspidal
forms? For example, can we extend the results to the general Maass wave
forms introduced in [13]?

(4) What can we say about Eichler–Shimura theory of harmonic Maass wave
forms?

(5) How are period functions and L-series related.

The first question is positively answered for Maass cusp forms of weight 0
in [11] and for real weights in [12]. Also, Bruggeman, Lewis and Zagier discuss
recently the case of Maass forms (of weight 0 and of polynomial growth in
the cusps) and is associated group cohomology in [3]. Deitmar and Hilgert
discuss the situation for subgroups of finite index and weight 0 in SL(2,Z)
in [5]. A recent result by Deitmar discusses the situation for Maass wave
forms of higher order in [4].

To our knowledge, the second and third question are still open for general
Maass wave forms with complex weight. Our results extend trivially to the
case of Maass cusp forms with real weight (by just replacing half-integer with
real everywhere). The third question is also positively answered in [8] for
generalized modular forms (introduced in [7]).

The fourth question is answered in [1]. They show an Eichler–Shimura-type
result for harmonic Maass wave forms, see e.g. [1, Theorem 1.2].

The last question is also discussed in [12], generalizing the first part of [11].
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