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LOCALIZATION OF COMPACTNESS OF HANKEL
OPERATORS ON PSEUDOCONVEX DOMAINS

SÖNMEZ ŞAHUTOĞLU

Abstract. We prove the following localization for compactness
of Hankel operators on Bergman spaces. Assume that Ω is a

bounded pseudoconvex domain in C
n, p is a boundary point of

Ω, and B(p, r) is a ball centered at p with radius r so that U =

Ω ∩ B(p, r) is connected. We show that if the Hankel operator

HΩ
φ with symbol φ ∈C1(Ω) is compact on A2(Ω) then HU

RU (φ) is

compact on A2(U) where RU denotes the restriction operator on

U , and A2(Ω) and A2(U) denote the Bergman spaces on Ω and
U , respectively.

Let V be a domain in Cn and A2(V ) denote the Bergman space on V ,
the space of square integrable holomorphic functions on V with respect to
the Lebesgue measure dλ in C

n. Let PV denote the Bergman projection, the
orthogonal projection from L2(V ) onto A2(V ). The Hankel operator, HV

φ ,

with symbol φ ∈ L∞(V ) is defined as HV
φ (f) = φf − PV (φf) for f ∈A2(V ).

A Hankel operator is the commutator [Mφ, P
V ] of a multiplication operator

with the Bergman projection. Such commutators play important roles in some
problems in several complex variables (see, for example, [CD97]).

Compactness is an important concept in analysis. In this paper, we are
interested in the localization of compactness of Hankel operators. More pre-
cisely, we are interested in the following question:

Let Ω be a bounded pseudoconvex domain in C
n, φ ∈ L∞(Ω), and p ∈ bΩ

where bΩ denotes the boundary of Ω. Assume that U = Ω ∩ B(p, r) is con-
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nected, RU denotes the restriction onto U , and HΩ
φ is compact on A2(Ω). Is

HU
RU (φ) compact on A2(U)?

We are not able to answer the question in general. Using the ∂-Neumann
operator, we show that the answer is yes when the symbol is C1 on the
closure of the domain. For more information about the ∂-Neumann problem,
see [CS01], [Str10] and consult [Zhu07] about the theory of Hankel operators
on domains in C.

It would be interesting to know if Theorem 1 below is still true without
the C1 differentiability requirement. We note that in dimension one, regular-
ity of the symbol can be relaxed. For example, one can choose the symbol
to be continuous up to the boundary (see Proposition 1 below). However,
in that case localization is trivial as compactness is not due to localization.
The following proposition is probably known, although we cannot provide a
reference. We therefore include a proof that was suggested in [Str11].

Proposition 1. Let Ω be a bounded domain in C and φ ∈C(Ω). Then the
Hankel operator HΩ

φ is compact on A2(Ω).

The main result of this paper is the following theorem.

Theorem 1. Let Ω be a bounded pseudoconvex domain in C
n, p ∈ bΩ,

and B(p, r) be a ball centered at p with radius r > 0 so that U = Ω ∩B(p, r)
is connected. Assume that φ ∈ C1(Ω) and HΩ

φ is compact on A2(Ω). Then

HU
RU (φ) is compact on A2(U).

We note that in the theorem above no regularity of bΩ is assumed. That
is, the boundary of Ω may be very irregular. Also φ ∈C1(Ω) means that the
function φ and all of its first partial derivatives have continuous extensions
up to the boundary.

Localization is an important technique in analysis. So we believe that such
results can be useful in studying compactness of Hankel operators in connec-
tion to boundary geometry (see, for example, [ÇŞ], [ČŞ09]). This particular
localization can be useful in the following way: when one studies compactness
of Hankel operators in relation to the boundary geometry of a smooth bounded
pseudoconvex domain, usually a local holomorphic change of coordinates is
needed to simplify the boundary geometry while preserving the compactness
of the operator. Theorem 1 guarantees that this is possible when the local
domain is an intersection with a ball and the symbol is sufficiently regular.

The converse of Theorem 1 is known to be true (see, for example, ii in
Proposition 1 in [ČŞ09]). Hence, we have the following corollary.

Corollary 1. Let Ω be a bounded pseudoconvex domain in C
n, φ ∈C1(Ω),

and B(q, r) denote a ball centered at q ∈ bΩ with radius r > 0.
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i. If U =Ω∩B(p, r) is connected for some p ∈ bΩ, r > 0, and HΩ
φ is compact

on A2(Ω) then HU
RU (φ) is compact on A2(U).

ii. Assume that for any p ∈ bΩ there exists r > 0 such that U = Ω ∩ B(p, r)
is connected and HU

RU (φ) is compact on A2(U). Then HΩ
φ is compact on

A2(Ω).

Remark 1. The proof of Theorem 1 shows that the localization of com-
pactness of Hankel operators is still true on the intersection of the domain Ω
with strongly pseudoconvex domains. Whether Theorem 1 holds on the in-
tersection of Ω with domains with compact ∂-Neumann operator is still open.
However, it may not hold on the intersection of Ω with a general pseudoconvex
domain. For example, let U = Ω ∩ V where V is a smooth bounded convex
domain and bV ∩ Ω contains a nontrivial analytic disc D, and φ ∈ C∞(Ω)
such that φ ≡ 0 on bΩ and φ ◦ β is not holomorphic for some holomorphic
mapping β : {z ∈C : |z|< 1}→D. Then one can use the facts that the prod-
uct operator Mφ : A2(Ω)→ L2(Ω) is compact and the Hankel operator HΩ

φ is
a composition of the projection on the orthogonal complement of the Bergman
space with Mφ to show that HΩ

φ is compact. Moreover, since φ◦β is not holo-

morphic for some holomorphic mapping β : {z ∈C : |z|< 1}→D Theorem 2
in [ČŞ09] implies that HU

RU (φ) is not compact (even though, [ČŞ09, Theo-

rem 2] is stated for smooth domains its proof is still valid on U ). Therefore,
HΩ

φ is compact on A2(Ω) while HU
RU (φ) is not compact on A2(U).

In the following examples, we show that boundedness and pseudoconvexity
of the domain are necessary in Theorem 1.

Example 1. This example shows that boundedness of the domain Ω is
necessary. Let us denote D = {z ∈ C : |z| < 1}, Ω = D × C, p = (1,0), and
φ(z,w) = ξ(|w|) where ξ ∈C∞

0 (−1,1) and ξ(0) = 1. Let f ∈A2(Ω) then∫
Ω

∣∣f(z,w)∣∣2 dλ(z,w) = ∫
D

∫
C

∣∣f(z,w)∣∣2 dλ(w)dλ(z)<∞.

Fubini’s theorem implies that the set Γ = {z ∈ D :
∫
C
|f(z,w)|2 dλ(w) =∞}

has measure zero. Hence, f(z,w) = 0 for z /∈ Γ and w ∈ C. This implies
that A2(Ω) = {0} and Hφ = 0. In particular, Hφ is compact. However, since

there is an analytic disc through p in the boundary of U =Ω∩B(p,1) [ČŞ09,
Theorem 1] (see the last sentence in Remark 1) implies that the operator
HU

RU (φ) is not compact on A2(U).

Example 2. This example shows that pseudoconvexity of the domain is
necessary (for more information on pseudoconvexity, see [Kra01], [Ran86]).
In [ÇŞ], Çelik and the author constructed an annulus type domain Ω ⊂ C

3

(that is, Ω = Ω1 \ Ω2 where Ω2 ⊂ Ω1, and Ω1 and Ω2 are smooth bounded
pseudoconvex domains) such that HΩ

φ is compact on A2(Ω) for all φ ∈C(Ω).
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However, they show that there exist p ∈ bΩ, on the inner boundary of Ω,
and r > 0 such that U = Ω ∩ B(p, r) is a convex domain and there exists a
disc through p in the boundary of U . Hence, NU is not compact (see [FS98,
Theorem 1.1]). Furthermore, there exists φ ∈ C∞(U) such that HU

φ is not

compact on A2(U) because, on a convex domain V , the Hankel operator HV
φ

is compact for all φ ∈C∞(V ) if and only if NV is compact (see [FS98]).

Proof of Theorem 1 and Proposition 1

We use the ∂-Neumann problem in the proof of Theorem 1. Let Ω be

a bounded pseudoconvex domain in C
n and �Ω = ∂∂

∗
+ ∂

∗
∂ be defined on

square integrable (0,1)-forms, L2
(0,1)(Ω), where ∂

∗
is the Hilbert space adjoint

of ∂. Kohn [Koh63] and Hörmander [Hör65] showed that (since Ω is a pseudo-
convex domain) � has a solution operator, denoted byNΩ, on L2

(0,1)(Ω). Kohn

[Koh63] also showed that PΩ = I − ∂
∗
NΩ∂. Therefore, HΩ

φ (f) = ∂
∗
NΩ(f∂φ)

for f ∈A2(Ω) and φ ∈ C1(Ω). We note that HΩ
φ (f) is the canonical solution

for ∂u= f∂φ. That is, HΩ
φ (f) is the solution that is orthogonal to A2(Ω) (or

equivalently, it is the solution with the smallest norm in L2(Ω)). We refer the
reader to [CS01], [Str10] and [ČŞ09] (and references therein) for more infor-
mation about the ∂-Neumann problem and compactness of Hankel operators
on Bergman spaces.

We use a series of lemmas for the proof of Theorem 1. We note that the
following lemma is an immediate corollary of [D’A02, Proposition V.2.3] (see
also [Str10, Lemma 4.3]).

Lemma 1. Let T : X → Y be a linear operator between two Hilbert spaces
X and Y . Then T is compact if and only if for every ε > 0 there exist a
compact operator Kε : X → Y so that∥∥T (h)∥∥

Y
≤ ε‖h‖X +

∥∥Kε(h)
∥∥
Y

for h ∈X.

In the proof of Theorem 1, we will need to apply Lemma 1 in the following
set-up.

Lemma 2. Let Ω be a bounded pseudoconvex domain in C
n, φ ∈ C1(Ω),

and Xφ(Ω) be the closure of {f∂φ ∈ L2
(0,1)(Ω) : f ∈A2(Ω)} in L2

(0,1)(Ω). Then

HΩ
φ is compact on A2(Ω) if and only if for every ε > 0 there exists a compact

operator Kε : Xφ(Ω)→ L2(Ω) such that

(1)
∥∥∂∗

NΩ(f∂φ)
∥∥≤ ε‖f∂φ‖+

∥∥Kε(f∂φ)
∥∥ for all f ∈A2(Ω).

Proof. Assume that HΩ
φ is compact on A2(Ω). Then ∂

∗
NΩ is compact on

a dense subset of Xφ(Ω) which implies that it is compact on Xφ(Ω). Then

applying Lemma 1 with T = ∂
∗
NΩ and X = Xφ(Ω) we get the following
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estimate: for every ε > 0 there exists a compact operator Kε : Xφ(Ω)→ L2(Ω)
so that ∥∥∂∗

NΩ(f∂φ)
∥∥ ≤ ε‖f∂φ‖+

∥∥Kε(f∂φ)
∥∥ for f ∈A2(Ω).

On the other hand, if we assume that we have (1) then Lemma 1 implies that

∂
∗
NΩ is a compact operator on Xφ(Ω). Hence, HΩ

φ is compact on A2(Ω).
This completes the proof of Lemma 2. �

The following famous theorem of Hörmander [Hör90, Theorem 4.4.2] will
be used.

Theorem (Hörmander). Let Ω be a pseudoconvex domain in C
n and ψ be

a continuous plurisubharmonic function on Ω. Assume that u=
∑n

j=1 uj dz̄j ∈
L2
(0,1)(Ω, e

−ψ) such that ∂u = 0. Then there exists f ∈ L2(Ω, e−ψ) such that

∂f = u and∫
Ω

|f(z)|2
(1 +

∑n
j=1 |zj |2)2

e−ψ(z) dλ(z)≤
∫
Ω

n∑
j=1

∣∣uj(z)
∣∣2e−ψ(z) dλ(z),

where z = (z1, . . . , zn) ∈C
n.

We include the following standard lemma and its proof for convenience of
the reader.

Lemma 3. Let Ω be a bounded pseudoconvex domain in C
n, B(p, r) be the

ball centered at p ∈ bΩ with radius r, and Ω(p, r) =B(p, r)∩Ω. For ε > 0 and
0< δ < r there exists a bounded operator Eε,δ : A

2(Ω(p, r))→A2(Ω) such that∥∥f −Eε,δ(f)
∥∥
L2(Ω(p,r−δ))

≤ ε‖f‖L2(Ω(p,r−δ)) for f ∈A2
(
Ω(p, r)

)
.

The following proof will use Hörmander’s theorem in a similar fashion as in
the proof of [Jup03, TheoremVI.3] where Jupiter shows that a pseudoconvex
domain in C

n is a Runge domain if and only if it is polynomially convex.

Proof of Lemma 3. The crucial step in the proof is constructing a sequence
of weight functions that will allow us to get the desired norm estimates. To
that end, let us choose positive numbers δ, r1, and r2 so that 0< r− δ = r1 <
r2 < r and define a function ψ as

ψ(z) =−r22 +
n∑

j=1

|zj − pj |2,

where z = (z1, . . . , zn) ∈C
n. Furthermore, we choose a smooth cut-off function

χ ∈C∞
0 (B(p, r)) such that χ≡ 1 in a neighborhood of B(p, r2). We note that

ψ is a continuous plurisubharmonic function on C
n that satisfies the following

crucial property: ψ(z)< 0 for z ∈B(p, r2) and ψ(z)> 0 for z ∈C
n \B(p, r2).

Since ψ is bounded on Ω, the Hilbert spaces L2(Ω) and L2(Ω, e−kψ) are equal
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for all k as sets. Then Hörmander’s theorem implies that for every k there
exists uk ∈ L2(Ω) such that ∂uk = f∂χ with∫

Ω

∣∣uk(z)
∣∣2e−kψ(z) dλ(z)≤C

∫
Ω

∣∣f(z)∣∣2 n∑
j=1

∣∣∣∣∂χ(z)∂z̄j

∣∣∣∣2e−kψ(z) dλ(z),(2)

where C is a positive real number that depends only on Ω. We note that
ψ <−r22 + r21 < 0 on B(p, r1) and ψ is strictly positive on a neighborhood of
the support of the ∂χ. Hence, the right-hand side of (2) goes to zero as k
goes to infinity and we have∫

Ω∩B(p,r1)

∣∣uk(z)
∣∣2 dλ(z) ≤ ∫

Ω

∣∣uk(z)
∣∣2e−kψ(z) dλ(z)(3)

≤ C

∫
Ω

∣∣f(z)∣∣2 n∑
j=1

∣∣∣∣∂χ(z)∂z̄j

∣∣∣∣2e−kψ(z) dλ(z).

Then depending on ε and δ (and using (3)), we can choose Cε,δ > 0 and
k so that ‖uk‖L2(Ω(p,r1)) ≤ ε‖f‖L2(Ω(p,r1)) and ‖uk‖L2(Ω) ≤ Cε,δ‖f‖L2(Ω(p,r)).
Therefore, we can define Eε,δ as Eε,δ(f) = χf − uk. �

Now we are ready to prove Theorem 1.

Proof of Theorem 1. To simplify the notation in this proof, we will denote
the norm ‖ · ‖L2(U) by ‖ · ‖ and the operator HU

RU (φ) by HU
φ . We note that

〈·, ·〉 denotes the inner product on U and A� B means that A≤ cB for some
constant c that is independent of the parameters of interest and its value can
change at every appearance. For f ∈A2(U), we have∥∥HU

φ (f)
∥∥2

=
〈
∂
∗
NU (f∂φ), ∂

∗
NU (f∂φ)

〉
=

〈
f∂φ,NU∂∂

∗
NU (f∂φ)

〉
=

〈
f∂φ,NU (f∂φ)

〉
.

In the last equality above, we used the facts that NU (∂∂
∗
+ ∂

∗
∂) = I and

∂NU∂ = 0. Now we will construct a smooth bounded function λ that has a
large Hessian on the boundary of the ball B(p, r). Let γ : R→R be a smooth,
non-decreasing, convex function such that −1 ≤ γ(t) ≤ 0 for t ≤ 0, γ(0) = 0,
and γ′(0)≥ 2. Furthermore, let us define

ρε(z) =
1

ε

(
−r2 +

n∑
j=1

|zj − pj |2
)

for r, ε > 0 and ψε(z) = γ(ρε(z)). Then one can check that ψε is a smooth
plurisubharmonic function on C

n, such that −1 ≤ ψε(z) ≤ 0 for z ∈ B(p, r).
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Also, by continuity, there exists δ > 0 such that
n∑

j,k=1

∂2ψε(z)

∂zj ∂zk
wjwk ≥

1

ε

n∑
j=1

|wj |2

for z ∈K = B(p, r) \B(p, r− δ) and (w1, . . . ,wn) ∈ Cn. Then (ii) in [Str10,
Corollary 2.13] implies that

1

eε

∫
K∩U

∣∣h(z)∣∣2 dλ(z) ≤ n∑
j,k=1

∫
U

eψε(z)
∂2ψε(z)

∂zj ∂zk
hj(z)hk(z)dλ(z)

≤ ‖∂h‖2 +
∥∥∂∗

h
∥∥2

for h =
∑n

j=1 hjdzj ∈ Dom(∂) ∩ Dom(∂
∗
) ⊂ L2

(0,1)(U). Let χ ∈ C∞(B(p, r))

such that χ ≡ 1 on a neighborhood of bB(p, r), and χ ≡ 0 on B(p, r − δ).
Then ∥∥HU

φ (f)
∥∥2 ≤

∣∣〈f∂φ,χNU (f∂φ)
〉∣∣+ ∣∣〈f∂φ, (1− χ)NU (f∂φ)

〉∣∣
≤ ‖f∂φ‖

∥∥χNU (f∂φ)
∥∥+

∣∣〈(1− χ)f∂φ,NU (f∂φ)
〉∣∣.

Then (4) implies that∥∥χNU (f∂φ)
∥∥2 � ε

(∥∥∂NU (f∂φ)
∥∥2

+
∥∥∂∗

NU (f∂φ)
∥∥2)

� ε‖f‖2

for f ∈A2(U). Let us denote χ1 = 1−χ and choose χ̃ ∈C∞
0 (B(p, r)) such that

0≤ χ̃≤ 1 and χ̃≡ 1 on the support of χ1. Then Lemma 3 implies that there
exists a bounded operator Eε,δ : A

2(U)→ A2(Ω) such that ‖χ̃(RUEε,δ(f)−
f)‖ ≤ ε‖f‖. Since δ depends on ε in the following calculation we will use the
following notation: Eε = Eε,δ , Fε = Eε(f). Let Mε denote the norm of the
operator Eε.

We note that in the following inequalities ∂
∗
Ω and ∂

∗
denote the Hilbert

space adjoints of ∂ on Ω and on U , respectively. A (0,1)-form f is in

the domain of ∂
∗
if there exists a square integrable function g such that

〈f, ∂h〉 = 〈g,h〉 for all h in the domain of ∂. Furthermore, if a (0,1)-form

f =
∑n

j=1 fj dzj is in the domain of ∂
∗
then ∂

∗
f =−

∑n
j=1

∂fj
∂zj

in the sense of

distributions (see Chapter 4.2 in [CS01] for more information). The fact that

∂
∗
N is a solution operator for ∂ (that is, ∂∂

∗
Nf = f if f is a ∂-closed form)

implies that Fε∂φ= ∂(Fεφ) = ∂∂
∗
ΩN

ΩFε∂φ. We will use this equality as well
as the Cauchy–Schwarz inequality to pass from the first line to the second line
below. ∣∣〈χ1(f∂φ),N

U (f∂φ)
〉∣∣

≤
∣∣〈χ1(f − Fε)∂φ,N

U (f∂φ)
〉∣∣+ ∣∣〈χ1Fε∂φ,N

U (f∂φ)
〉∣∣

�
∥∥χ1(f − Fε)

∥∥‖f‖+ ∣∣〈χ1∂∂
∗
ΩN

Ω(Fε∂φ),N
U (f∂φ)

〉∣∣
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�
∥∥χ̃(f − Fε)

∥∥‖f‖+ ∣∣〈∂∗
ΩN

Ω(Fε∂φ), ∂
∗
χ1N

U (f∂φ)
〉∣∣

� ε‖f‖2 + C̃ε

∥∥∂∗
ΩN

Ω(Fε∂φ)
∥∥
L2(Ω)

‖f‖,

where C̃ε is a constant that is independent of f . Now we will use the fact
that HΩ

φ is compact on A2(Ω) and ‖Fε‖L2(Ω)
≤Mε‖f‖L2(U). Lemma 2 implies

that for any ε′ > 0 there exists a compact operator Kε′ on Xφ(Ω) such that∥∥∂∗
ΩN

Ω(Fε∂φ)
∥∥
L2(Ω)

� ε′‖Fε‖L2(Ω) +
∥∥Kε′Π∂φ(Fε)

∥∥
L2(Ω)

,

where Π∂φ : A2(Ω)→Xφ(Ω) denotes the (bounded) multiplication operator

by ∂φ. That is, Π∂φh= h∂φ for h ∈A2(Ω). Therefore, for f ∈A2(U) we have
the following inequality∥∥HU

φ (f)
∥∥2 �

(
ε+

√
ε+ ε′MεC̃ε

)
‖f‖2 + C̃ε‖f‖

∥∥Kε′Π∂φEε(f)
∥∥
L2(Ω)

≤
(
ε+

√
ε+ ε′MεC̃ε + ε′C̃ε

)
‖f‖2

+

(
C̃ε +

C̃ε

ε′

)∥∥Kε′Π∂φEε(f)
∥∥2

L2(Ω)
.

For any 0< ε < 1, there exists ε′ > 0 so that ε+
√
ε+ ε′MεC̃ε ≤ 2

√
ε. Then

the above inequality combined with fact that x2 + y2 ≤ (x+ y)2 for x, y ≥ 0
imply the following: for any 0< ε < 1 there exists a compact operator Kε =

(C̃ε + C̃ε/ε
′)1/2Kε′Π∂φEε such that∥∥HU

φ (f)
∥∥ � ε1/4‖f‖+

∥∥Kε(f)
∥∥ for f ∈A2(U).

Now Lemma 1 implies that HU
φ is compact on A2(U). �

Proof of Proposition 1. Since functions that are smooth up to the bound-
ary of Ω are dense in C(Ω) and the sequence {HΩ

ψn
} converges to HΩ

ψ in the

operator norm whenever {ψn} converges to ψ uniformly on Ω it suffices to
prove that HΩ

ψ is compact whenever ψ ∈C∞(Ω). Let us define

Sψ(f)(z) =− 1

π

∫
Ω

∂ψ

∂ξ
(ξ)f(ξ)

ξ − z
dλ(ξ)

for f ∈ A2(Ω) and z ∈ Ω. We will show that HΩ
ψ is compact on A2(Ω) by

showing that Sψ is a limit of compact operators (in the operator norm) and

Sψ(f) solves ∂u = f∂ψ (because HΩ
ψ = Sψ − PΩSψ). To that end, for ε > 0

let χε be a smooth cut-off function on R such that χε ≡ 1 on a neighborhood
of the origin and χε(t) = 0 for |t| ≥ ε. Then Sψ =Aε

ψ +Bε
ψ where

Aε
ψ(f)(z) = − 1

π

∫
Ω

χε(|ξ − z|)∂ψ
∂ξ

(ξ)f(ξ)

ξ − z
dλ(ξ),

Bε
ψ(f)(z) = − 1

π

∫
Ω

(1− χε(|ξ − z|))∂ψ
∂ξ

(ξ)f(ξ)

ξ − z
dλ(ξ).



LOCALIZATION OF COMPACTNESS OF HANKEL OPERATORS 803

Then the operator Bε
ψ is Hilbert–Schmidt and, in particular, compact because

the kernel

−
(1− χε(|ξ − z|))∂ψ

∂ξ
(ξ)

π(ξ − z)

is square integrable on Ω×Ω.

Next, we will show that Aε
ψ has a small norm. Let f̂ denote the trivial ex-

tension of f . That is, f̂ = f on Ω but f̂ = 0 otherwise. Since ∂ψ

∂ξ
is continuous

on Ω and Ω is bounded, using polar coordinates, we get∣∣Aε
ψ(f)(z)

∣∣ �
∫
C

|χε(|ξ|)f̂(z + ξ)|
|ξ| dλ(ξ) �

∫ 2π

0

∫ ε

0

∣∣f̂(
z + reiθ

)∣∣dr dθ.
Then the Cauchy–Schwarz inequality together with Fubini’s theorem yield
that ∥∥Aε

ψ(f)
∥∥2 � 2πε

∫ 2π

0

∫ ε

0

∫
Ω

∣∣f̂(
z + reiθ

)∣∣2 dλ(z)dr dθ ≤ 4π2ε2‖f‖2.

Hence, ‖Aε
ψ‖� ε and Sψ is a limit (in the operator norm) of a sequence {B1/k

ψ }
of compact operators.

Next, we want to show that ∂Sψ(f) = f∂ψ. Let {fn} be a sequence of

functions that are smooth on Ω and converging to f in L2(Ω). Then the
Cauchy integral with remainder formula (see [CS01, Theorem 2.1.2]) shows
that ∂Sψ(fn) = fn∂ψ. On the other hand, {∂Sψ(fn)} converges weakly to

∂Sψ(f) and {fn∂ψ} converges to f∂ψ in L2(Ω). Therefore, ∂Sψ(f) = f∂ψ
for f ∈A2(Ω). �
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[Hör65] L. Hörmander, L2 estimates and existence theorems for the ∂̄ operator, Acta Math.
113 (1965), 89–152. MR 0179443
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