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SOME SPECIAL CASES OF THE
EISENBUD–GREEN–HARRIS CONJECTURE

RI-XIANG CHEN

Abstract. In this paper, we prove some special cases of the
Eisenbud–Green–Harris Conjecture, which characterizes the Hil-
bert functions of homogeneous ideals containing a regular se-
quence in the polynomial ring.

1. Introduction

Throughout this paper, S = k[x1, x2, . . . , xn] denotes the polynomial ring
in n variables over a field k with the ordering on the variables x1 > · · · >
xn. Given any homogeneous ideal I in S, Macaulay [Ma] proved that there
exists a lex ideal L with the same Hilbert function. As a generalization of
Macaulay’s theorem, [CL] and [CR] proved that if I ⊂ S is a homogeneous
ideal containing xa1

1 , xa2
2 , . . . , xar

r for some integers 2≤ a1 ≤ a2 ≤ · · · ≤ ar and
1≤ r ≤ n, then there exists a lex ideal L⊂ S such that L+ (xa1

1 , xa2
2 , . . . , xar

r )
has the same Hilbert function as I . Here, L + (xa1

1 , xa2
2 , . . . , xar

r ) is called
a lex-plus-powers ideal in S. (Note: this is not the same definition as in
[FR].) Since xa1

1 , xa2
2 , . . . , xar

r is a regular sequence, it is natural to ask what
happens if I ⊂ S is a homogeneous ideal containing a regular sequence of forms
f1, f2, . . . , fr of degrees a1, a2, . . . , ar. Here, f1, f2, . . . , fr are not necessarily
monomials or minimal generators of I .

Conjecture 1.1 (Eisenbud–Green–Harris [EGH]). If I ⊂ S is a homo-
geneous ideal containing a regular sequence of forms f1, f2, . . . , fr of degrees
a1, a2, . . . , ar where 2 ≤ a1 ≤ a2 ≤ · · · ≤ ar and 1 ≤ r ≤ n, then there exists
a homogeneous ideal in S containing xa1

1 , xa2
2 , . . . , xar

r with the same Hilbert
function.

The above conjecture is called the EGH Conjecture. By the results of
[CL] and [CR], the EGH Conjecture can be stated in the following equivalent
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form: If I ⊂ S is a homogeneous ideal containing a regular sequence of forms
f1, f2, . . . , fr of degrees a1, a2, . . . , ar, then there exists a lex-plus-powers ideal
L+ (xa1

1 , xa2
2 , . . . , xar

r ) in S with the same Hilbert function.
The following are some known cases of the EGH Conjecture.

Theorem 1.2 (Mermin [Me]). If I ⊂ S is a homogeneous ideal containing
a regular sequence of monomials m1,m2, . . . ,mr of degrees a1, a2, . . . , ar, then
there exists a lex-plus-powers ideal L+ (xa1

1 , xa2
2 , . . . , xar

r ) in S with the same
Hilbert function.

Note that the above theorem is trivial if r = n.

Theorem 1.3 (Cooper [Co1]). Let k be an algebraically closed field of
characteristic zero. The EGH Conjecture holds if I ⊂ S = k[x1, x2, x3] has
minimal generators which are all in the same degree and two of the minimal
generators form a regular sequence in k[x1, x2].

Cooper [Co2] also studied the conjecture for some cases with r = n= 3 in
a geometric setting.

In [CM, Propositions 9], Caviglia and Maclagan proved that if the EGH
Conjecture holds for all regular sequences of length n, then it holds for all
regular sequences of length r ≤ n. So the rest of the paper will always assume
r = n.

Definition 1.4 (Caviglia–Maclagan [CM]). Fix integers 2 ≤ a1 ≤ a2 ≤
· · · ≤ an and let d be a nonnegative integer. We say that EGH(d) holds if
for any homogeneous ideal I ⊂ S containing a regular sequence of forms of
degrees a1, a2, . . . , an, there exists an homogeneous ideal J ⊂ S containing
xa1
1 , xa2

2 , . . . , xan
n such that dimk Id = dimk Jd and dimk Id+1 = dimk Jd+1.

Note that given any nonnegative integer d, there is a lex-plus-powers ideal
J = L + (xa1

1 , xa2
2 , . . . , xan

n ) such that dimk Id = dimk Jd. Then the results
of [CL] and [CR] imply that EGH(d) holds if and only if dimk Id+1 ≥
dimk{S1Jd+(xa1

1 , xa2
2 , . . . , xan

n )d+1}. It follows that the EGH Conjecture holds
if and only if EGH(d) holds for all nonnegative integers d. In addition, we
only need to check if EGH(d) holds for d <

∑n
i=1(ai − 1) because Id = Sd for

d >
∑n

i=1(ai − 1).

Lemma 1.5 (Caviglia–Maclagan [CM]). Fix integers 2≤ a1 ≤ a2 ≤ · · · ≤ an
and set N =

∑n
i=1(ai − 1). Then for any 0≤ d≤N − 1, EGH(d) holds if and

only if EGH(N − 1− d) holds.

Theorem 1.6 (Caviglia–Maclagan [CM]). Fix integers 2≤ a1 ≤ a2 ≤ · · · ≤
an. If ai >

∑i−1
j=1(aj − 1) for all 2≤ i≤ n then the EGH Conjecture holds.

An immediate consequence of the above theorem is that the EGH Conjec-
ture holds for n= 2. Indeed, if 2≤ a1 ≤ a2 then a2 > a1 − 1. The n= 2 case
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was also obtained by Richert [Ri]. In [Co2], Cooper proved the n= 2 case in
a geometric setting.

Francisco [Fr] proved the following almost complete intersection case.

Theorem 1.7 (Francisco [Fr]). Fix integers 2 ≤ a1 ≤ a2 ≤ · · · ≤ an and
let d be an integer such that d ≥ a1. Let I ⊂ S be a homogeneous ideal
minimally generated by forms f1, . . . , fn, g where f1, . . . , fn is a regular se-
quence, deg fi = ai and deg g = d. Let J = (xa1

1 , xa2
2 , . . . , xan

n ,m), where m is
the greatest monomial in lex order in degree d not in (xa1

1 , xa2
2 , . . . , xan

n ). Then
dimk Id+1 ≥ dimk Jd+1.

In this paper, we will focus on the case a1 = a2 = · · ·= an = 2. The EGH
Conjecture was originally stated in this case [EGH]. Richert [Ri] says that he
verified the EGH Conjecture for a1 = a2 = · · · = an = 2 and n ≤ 5, but this
result was not published. In [Co2], Cooper proved the a1 = a2 = · · ·= an = 2
and n≤ 3 case in a geometric setting. Herzog and Popescu [HP] proved that
if k is a field of characteristic zero and I is minimally generated by generic
quadratic forms, then the EGH Conjecture holds.

In Section 2 of this paper, we first prove the EGH Conjecture for a1 =
a2 = · · ·= an = 2 and 2≤ n≤ 4 (Theorem 2.2) by proving EGH(1) and using
Lemma 1.5 of Caviglia and Maclagan. Then we show that the EGH Conjecture
holds in two other simple cases.

In Section 3, we will prove the almost complete intersection case (Theo-
rem 1.7 of [Fr]) for a1 = a2 = · · ·= an = 2 by using two different methods.

2. Some cases of the EGH Conjecture

The following proposition implies that EGH(1) holds for the case a1 = · · ·=
an = 2.

Proposition 2.1. Let I = (f1, . . . , fn, g1, . . . , gm) be an ideal in S, where
f1, . . . , fn is a regular sequence of 2-forms and g1, . . . , gm are linearly indepen-
dent 1-forms over k with 1≤m≤ n. Set J = (x2

1, x
2
2, . . . , x

2
n, x1, . . . , xm)⊂ S.

Then

dimk I2 ≥ dimk J2.

Proof. Since J2 = (x1, . . . , xm)2 ⊕ span{x2
m+1, . . . , x

2
n}, it follows that

dimk J2 = dimk(x1, . . . , xm)2 + (n−m).

Without the loss of generality, we can assume that g1 = x1, . . . , gm = xm in
which case I = (x1, . . . , xm, f1, . . . , fn). Hence,

dimk I2 = dimk(x1, . . . , xm)2 +dimk

(
I/(x1, . . . , xm)

)
2
.

Set t = dimk(I/(x1, . . . , xm))2. Then there exists 1 ≤ i1 < · · · < it ≤ n
such that f̄i1 , . . . , f̄it form a basis of the k-vector space (I/(x1, . . . , xm))2.
Thus we have I = (x1, . . . , xm, fi1 , . . . , fit) which implies that ht(I)≤m+ t.
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Since f1, . . . , fn is a regular sequence it follows that ht(f1, . . . , fn) = n. But
(f1, . . . , fn)⊂ I ⊂ (x1, . . . , xn) and ht(x1, . . . , xn) = n, and thus ht(I) = n which
implies n≤m+ t and so t≥ n−m. Hence, dimk I2 ≥ dimk J2 and the theorem
is proved. �

Theorem 2.2. If a1 = a2 = · · · = an = 2 and 2 ≤ n ≤ 4 then the EGH
Conjecture holds.

Proof. Let N =
∑n

i=1(ai−1). Note that EGH(0) always holds trivially and
EGH(1) holds by Proposition 2.1, so we only need to show that EGH(2), . . . ,
EGH(N − 1) hold.

If n= 2, then N − 1 = 1 and there is nothing to prove.
If n = 3, then N − 1 = 2. By Lemma 1.5, EGH(2) holds if and only if

EGH(0) holds. So EGH(2) holds.
If n = 4, then N − 1 = 3. By Lemma 1.5, EGH(3) holds if and only if

EGH(0) holds; EGH(2) holds if and only if EGH(1) holds. Therefore, EGH(2)
and EGH(3) hold. �

Note that if we want to show the cases n= 5 and n= 6 then EGH(2) needs
to be proved directly which is not as simple as Proposition 2.1.

The EGH Conjecture also holds in the following two simple cases where
regular sequences have nice structures.

Proposition 2.3. Let f1, . . . , fn be a regular sequence of 2-forms in S
and I be a homogeneous ideal in S containing f1, . . . , fn. Then the EGH
Conjecture holds in the following two cases:

(1) f1 = l21, . . . , fn = l2n, where li =
∑n

j=1 aijxj for 1 ≤ i ≤ n, aij ∈ k and

det(aij) �= 0;
(2) for 1≤ i≤ n, fi =

∑
m∈S2

ai,mm, where the sum is over all monomials m

in S2, ai,m ∈ k and ai,m = 0 for m<lex x
2
i .

Proof. (1) Note that the k-algebra map F : S −→ S defined by F (xi) = li
for 1 ≤ i ≤ n is a graded isomorphism. So Hilbert functions are preserved
under F−1. It follows that the EGH Conjecture holds in this case.

(2) First, we claim that ai,x2
i
�= 0 for all 1≤ i≤ n. Indeed, if not, then let

j be the smallest integer such that aj,x2
j
= 0. If j = 1 then f1 = 0 which is

a contradiction. Hence, j > 1. Since ai,m = 0 for m<lex x2
i , it follows that

(f1, . . . , fj)⊆ (x1, . . . , xj−1), so that

(f1, . . . , fn)⊆ (x1, . . . , xj−1, fj+1, . . . , fn).

Since f1, . . . , fn is a regular sequence, we have that ht(f1, . . . , fn) = n. Hence,
ht(x1, . . . , xj−1, fj+1, . . . , fn) = n, but (x1, . . . , xj−1, fj+1, . . . , fn) is generated
by n−1 elements and so its height cannot be n. Thus, we have a contradiction
and the claim is proved.
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Now we consider the initial ideal in<rlex
(f1, . . . , fn) with respect to the re-

verse lex order such that xn > · · · > x1. With this monomial order, by the
above claim it is easy to see that in<rlex

fi = x2
i . Thus, in<rlex

(f1, . . . , fn) =
(x2

1, . . . , x
2
n). Given any homogeneous ideal I containing f1, . . . , fn, since

in<rlex
(I) contains in<rlex

(f1, . . . , fn) = (x2
1, . . . , x

2
n) and in<rlex

(I) has the same
Hilbert function as I , it follows that I has the same Hilbert function as a
monomial ideal containing x2

1, . . . , x
2
n. So the EGH Conjecture holds in this

case. �

Remark 2.4. The above proposition is actually an easy consequence of
the fact that the Hilbert function is preserved under GL(n,k) actions on the
variables or by taking initial ideas. In part (2) of the above proposition, if
we replace “lex” by “reverse lex”, or replace “m <lex x2

i ” by “m >lex x2
i ”,

then the result still holds. However, in general, f1, . . . , fn do not satisfy the
assumptions in the above proposition.

By part (2) of the above proposition, the EGH Conjecture in the case of
a1 = · · ·= an = 2 can be stated in the following equivalent form: If I ⊂ S is
a homogeneous ideal containing a regular sequence of n 2-forms, then there
exists a homogeneous ideal in S containing f1, . . . , fn with the same Hilbert
function, where f1, . . . , fn are some 2-forms satisfying part (2) of the above
proposition.

3. Almost complete intersections

This section proves Theorem 1.7 for the case a1 = · · ·= an = 2. We will give
two proofs which are different from the proof given by Francisco in [Fr]. The
key ingredient of any proof of the EGH Conjecture should be about the use of
the assumption that f1, f2, . . . , fn is a regular sequence in S. So before proving
Theorem 3.4, we look at some lemmas about regular sequences. The following
lemma is a special case of Proposition 7 in [CM], which was originally proved
in [DGO].

Lemma 3.1 (Davis–Geramita–Orecchia [DGO]). Let f1, . . . , fn be a regular
sequence of 2-forms in S. Let I be a homogeneous ideal containing f1, . . . , fn.
Then for all 0≤ d≤ n, we have

dimk

(
S/(f1, . . . , fn)

)
d
= dimk(S/I)d +dimk

(
S/

(
(f1, . . . , fn) : I

))
n−d

,

or equivalently,

dimk

(
I/(f1, . . . , fn)

)
d
= dimk

(
S/

(
(f1, . . . , fn) : I

))
n−d

.

Lemma 3.2. Let I be an ideal in S minimally generated by some 2-forms.
If the height of I is r ≥ 1, that is, ht(I) = r, then I contains a regular sequence
f1, . . . , fr of 2-forms.
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Proof. Let s be the maximal integer such that I contains a regular sequence
f1, . . . , fs of 2-forms. Then it is easy to see that s≥ 1 and we have

s= ht(f1, . . . , fs)≤ ht(I) = r.

Hence, it suffices to show that s= r.
To prove this by contradiction, we assume s < r. Then ht(f1, . . . , fs) =

s < r. Let P1, . . . , Pl be the prime divisors of the ideal (f1, . . . , fs). Since
S is Cohen–Macaulay, we have ht(Pi) = s for 1 ≤ i ≤ l. If I ⊆ P1 ∪ · · · ∪ Pl,
then there exists i such that I ⊆ Pi, which implies ht(I)≤ ht(Pi) = s < r; but
ht(I) = r, and thus I is not contained in P1 ∪ · · · ∪ Pl. Since I is generated
by 2-forms, it follows that there exists a 2-form fs+1 in I such that fs+1 /∈
P1 ∪ · · · ∪ Pl. Thus, fs+1 is a nonzero-divisor of S/(f1, . . . , fs). Therefore, I
contains a regular sequence f1, . . . , fs, fs+1 of 2-forms, which contradicts the
definition of s. So s= r and the lemma is proved. �

Lemma 3.3. If f1, . . . , fn is a regular sequence of 2-forms in S and g1f1 +
g2f2 + · · · + gnfn = 0 for some q-forms g1, g2, . . . , gn, then g1, g2, . . . , gn ∈
(f1, . . . , fn)q . More precisely, we have q ≥ 2 and there exists a skew-symmetric
n× n matrix A of (q− 2)-forms such that(

g1 g2 · · · gn
)
=
(
f1 f2 · · · fn

)
A.

Proof. Let K(f1, . . . , fn) be the Koszul complex with e1, . . . , en the ba-
sis in homological degree 1. Since f1, . . . , fn is a regular sequence, we have
H1(K(f1, . . . , fn)) = 0. Thus, if g1f1+ · · ·+gnfn = 0 then there exists (q−2)-
forms hij for 1≤ i < j ≤ n such that

g1e1 + · · ·+ gnen =
∑

1≤i<j≤n

hij(fjei − fiej).

Comparing the coefficients of e1, . . . , en, we get(
g1 g2 · · · gn

)
=
(
f1 f2 · · · fn

)
A,

where A is a skew-symmetric matrix with the (i, j)th entry given by −hij for
i < j. �

Theorem 3.4. Let I ⊂ S be a homogeneous ideal minimally generated by
a regular sequence of 2-forms f1, . . . , fn and a d-form g with d≥ 2. Let J =
(x2

1, x
2
2, . . . , x

2
n,m), where m is the greatest monomial in lex order in degree d

not in (x2
1, x

2
2, . . . , x

2
n). Then dimk Id+1 ≥ dimk Jd+1.

We will prove this theorem by two different methods. The first method
uses Lemma 3.1 and Lemma 3.2.

Proof of Theorem 3.4. Note that (f1, . . . , fn)n+1 = (x2
1, . . . , x

2
n)n+1 = Sn+1,

hence d≤ n. Since the d= n case is trivial, we will assume that 2≤ d≤ n− 1.
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It is easy to see that m= x1 · · ·xd and so dimk Jd+1 = dimk(x
2
1, . . . , x

2
n)d+1 +

n− d. On the other hand,

dimk Id+1 = dimk(f1, . . . , fn)d+1 + n− dimk

(
(f1, . . . , fn)d+1 ∩ S1 span{g}

)
.

Let r = dimk((f1, . . . , fn)d+1 ∩ S1 span{g})≤ n. Since dimk(x
2
1, . . . , x

2
n)d+1 =

dimk(f1, . . . , fn)d+1 we need only to show r ≤ d.
To prove this by contradiction, we assume that r > d. Then without the

loss of generality, we can assume that x1g, . . . , xrg ∈ (f1, . . . , fn)d+1. Then we
have x1, . . . , xr ∈ ((f1, . . . , fn) : I). Note that

S

(x1, . . . , xr, f1, . . . , fn)
∼= k[xr+1, . . . , xn]

(f̄1, . . . , f̄n)
,

where f̄1, . . . , f̄n are the images of f1, . . . , fn in the quotient ring S/
(x1, . . . , xr) ∼= k[xr+1, . . . , xn]. Since k[xr+1, . . . , xn]/(f̄1, . . . , f̄n) has dimen-
sion zero, we have ht(f̄1, . . . , f̄n) = n− r. Hence, by Lemma 3.2, (f̄1, . . . , f̄n)
contains a regular sequence g1, . . . , gn−r of 2-forms in the polynomial ring
k[xr+1, . . . , xn]. Thus, for all i≥ 0,

dimk

(
k[xr+1, . . . , xn]/(f̄1, . . . , f̄n)

)
i
≤
(
n− r

i

)
.

Therefore, by Lemma 3.1, we have

1 = dimk

(
I/(f1, . . . , fn)

)
d

= dimk

(
S/

(
(f1, . . . , fn) : I

))
n−d

≤ dimk

(
S/(x1, . . . , xr, f1, . . . , fn)

)
n−d

= dimk

(
k[xr+1, . . . , xn]/(f̄1, . . . , f̄n)

)
n−d

≤
(
n− r

n− d

)

= 0, since r > d.

So we get a contradiction and r ≤ d. �

The following proof of Theorem 3.4 uses Lemma 3.3.

Proof of Theorem 3.4. As in the previous proof, we can assume 2 ≤ d ≤
n− 1.

First, we consider the case d= 2 and n≥ 3. Now J = (x2
1, x

2
2, . . . , x

2
n, x1x2)

and dimk J3 = dimk(x
2
1, . . . , x

2
n)3 + n− 2. On the other hand,

dimk I3 = dimk(f1, . . . , fn)3 + n− dimk

(
(f1, . . . , fn)3 ∩ S1 span{g}

)
.

Since dimk(x
2
1, . . . , x

2
n)3 = dimk(f1, . . . , fn)3 we need only to show that

dimk

(
(f1, . . . , fn)3 ∩ S1 span{g}

)
≤ 2.
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To prove this by contradiction, we assume that

dimk

(
(f1, . . . , fn)3 ∩ S1 span{g}

)
≥ 3.

Then without the loss of generality we can assume that

x1g = �f · �p1,
x2g = �f · �p2,
x3g = �f · �p3,

where �f is the row vector
(
f1, f2, . . . , fn

)
and �p1, �p2, �p3 are some column vectors

of 1-forms. Hence, we have

g
(
x1 x2 x3

)
= �f ·

(
�p1 �p2 �p3

)
.

Since

(
x1 x2 x3

)⎛⎝ x2 x3 0
−x1 0 x3

0 −x1 −x2

⎞
⎠= 0,

it follows that

�f ·
(
�p1 �p2 �p3

)⎛⎝ x2 x3 0
−x1 0 x3

0 −x1 −x2

⎞
⎠

= �f ·
(
x2�p1 − x1�p2 x3�p1 − x1�p3 x3�p2 − x2�p3

)
= 0.

(For simplicity, on the right hand side of the above two formulas we use 0 to
denote the zero matrix. This notation will be used in the rest of the proof.) By
Lemma 3.3 there are skew-symmetric n× n matrices A12,A13,A23 of scalars
such that(

x2�p1 − x1�p2 x3�p1 − x1�p3 x3�p2 − x2�p3
)
=
(
A12

�f T A13
�f T A23

�f T
)
.

Since ⎛
⎝ x2 x3 0
−x1 0 x3

0 −x1 −x2

⎞
⎠

⎛
⎝ x3

−x2

x1

⎞
⎠= 0,

it follows that

(
A12

�f T A13
�f T A23

�f T
)⎛⎝ x3

−x2

x1

⎞
⎠= 0,

so that (x3A12 − x2A13 + x1A23)�f
T = 0. Since x3A12 − x2A13 + x1A23 is

an n× n matrix of 1-forms, it follows from Lemma 3.3 that x3A12 − x2A13 +
x1A23 = 0 and then A12 =A13 =A23 = 0. Thus, x2�p1−x1�p2 = 0 which implies

that every entry of the vector �p1 can be divided by x1. So g = �f · (�p1/x1) and
then g ∈ (f1, . . . , fn)2 which contradicts the assumption that I is minimally
generated by f1, . . . , fn, g. So we have proved the case d= 2.



SOME SPECIAL CASES OF THE EISENBUD–GREEN–HARRIS CONJECTURE 669

Now we consider the case d = 3 and n ≥ 4. In this case, we have J =
(x2

1, . . . , x
2
n, x1x2x3) and dimk J4 = dimk(x

2
1, . . . , x

2
n)4 + n − 3. On the other

hand,

dimk I4 = dimk(f1, . . . , fn)4 + n− dimk

(
(f1, . . . , fn)4 ∩ S1 span{g}

)
.

Since dimk(x
2
1, . . . , x

2
n)4 = dimk(f1, . . . , fn)4 we need only to show that

dimk

(
(f1, . . . , fn)4 ∩ S1 span{g}

)
≤ 3.

We prove this by contradiction and assume that

dimk

(
(f1, . . . , fn)4 ∩ S1 span{g}

)
≥ 4.

Then without the loss of generality we can assume that

x1g = �f · �p1,
x2g = �f · �p2,
x3g = �f · �p3,
x4g = �f · �p4,

where �f is the row vector
(
f1, f2, . . . , fn

)
and �p1, �p2, �p3, �p4 are some column

vectors of 2-forms. Hence we have

g
(
x1 x2 x3 x4

)
= �f ·

(
�p1 �p2 �p3 �p4

)
.

Since

(
x1 x2 x3 x4

)
⎛
⎜⎜⎝

x2 x3 x4 0 0 0
−x1 0 0 x3 x4 0
0 −x1 0 −x2 0 x4

0 0 −x1 0 −x2 −x3

⎞
⎟⎟⎠= 0,

it follows that

�f ·
(
�p1 �p2 �p3 �p4

)
⎛
⎜⎜⎝

x2 x3 x4 0 0 0
−x1 0 0 x3 x4 0
0 −x1 0 −x2 0 x4

0 0 −x1 0 −x2 −x3

⎞
⎟⎟⎠

= �f ·
(
x2�p1 − x1�p2 · · · x4�p3 − x3�p4

)
= 0.

By Lemma 3.3, there are skew-symmetric n× n matrices A12,A13, . . . ,A34 of
1-forms such that

(
x2�p1 − x1�p2 · · · x4�p3 − x3�p4

)
=
(
A12

�f T · · · A34
�f T

)
.
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Since

⎛
⎜⎜⎝

x2 x3 x4 0 0 0
−x1 0 0 x3 x4 0
0 −x1 0 −x2 0 x4

0 0 −x1 0 −x2 −x3

⎞
⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

x3 x4 0 0
−x2 0 x4 0
0 −x2 −x3 0
x1 0 0 x4

0 x1 0 −x3

0 0 x1 x2

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0,

it follows that

(
A12

�f T · · · A34
�f T

)
⎛
⎜⎜⎜⎜⎜⎜⎝

x3 x4 0 0
−x2 0 x4 0
0 −x2 −x3 0
x1 0 0 x4

0 x1 0 −x3

0 0 x1 x2

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0.

That is,

(
(x3A12 − x2A13 + x1A23)�f

T · · · (x4A23 − x3A24 + x2A34)�f
T
)
= 0.

By Lemma 3.3, there are skew-symmetric n× n matrices B123,1, . . . ,B123,n,

. . . ,B234,n of scalars such that

x3A12 − x2A13 + x1A23 =

⎛
⎜⎝

�fB123,1

...
�fB123,n

⎞
⎟⎠ ,

x4A12 − x2A14 + x1A24 =

⎛
⎜⎝

�fB124,1

...
�fB124,n

⎞
⎟⎠ ,

x4A13 − x3A14 + x1A34 =

⎛
⎜⎝

�fB134,1

...
�fB134,n

⎞
⎟⎠ ,

x4A23 − x3A24 + x2A34 =

⎛
⎜⎝

�fB234,1

...
�fB234,n

⎞
⎟⎠ .



SOME SPECIAL CASES OF THE EISENBUD–GREEN–HARRIS CONJECTURE 671

Since ⎛
⎜⎜⎜⎜⎜⎜⎝

x3 x4 0 0
−x2 0 x4 0
0 −x2 −x3 0
x1 0 0 x4

0 x1 0 −x3

0 0 x1 x2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎝

x4

−x3

x2

−x1

⎞
⎟⎟⎠= 0,

it follows that for any 1≤ i≤ n,

�f(x4B123,i − x3B124,i + x2B134,i − x1B234,i) = 0.

Since x4B123,i − x3B124,i + x2B134,i − x1B234,i is an n× n matrix of 1-forms,
it follows from Lemma 3.3 that

x4B123,i − x3B124,i + x2B134,i − x1B234,i = 0,

and then B123,1 = · · ·= B234,n = 0. Thus, x3A12 − x2A13 + x1A23 = 0 which
implies that every entry of the matrix x2A13 − x1A23 can be divided by x3.
Let A′

13 and A′
23 be the skew-symmetric matrices of 1-forms obtained from

A13 and A23 by keeping only the terms containing x3. Then we have

A12 =
1

x3
(x2A13 − x1A23)(1)

=
1

x3

(
x2A

′
13 − x1A

′
23

)

= x2
A′

13

x3
− x1

A′
23

x3
.

Thus,

x2�p1 − x1�p2 =A12
�f T =

(
x2

A′
13

x3
− x1

A′
23

x3

)
�f T ,

and hence,

x1

(
�p2 −

A′
23

x3

�f T

)
= x2

(
�p1 −

A′
13

x3

�f T

)
,

so that every entry of the vector �p1 − A′
13

x3

�f T can be divided by x1. Note

that
A′

13

x3
is an n × n skew-symmetric matrix of scalars, which implies that

�f
A′

13

x3

�f T = 0. So we have x1g = �f · (�p1 − A′
13

x3

�f T ) and then g = �f · 1
x1
(�p1 −

A′
13

x3

�f T ) ∈ (f1, . . . , fn)3 which contradicts the assumption that I is minimally
generated by f1, . . . , fn, g. So we have proved the case d= 3.

Proceeding in the same way, we can prove the theorem for all 2≤ d≤ n− 1
and we are done. �

Remark 3.5. In [Fr], Francisco proved Theorem 1.7 which is more general
than Theorem 3.4. We will compare Francisco’s proof with the above two
proofs.
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(1) In Francisco’s proof, S/((f1, . . . , fn) : I) and S/((x2
1, . . . , x

2
n) : J) were

compared. They are both Artinian and have the same regularity. Hence,
to study their Hilbert functions, one compares the degrees of the genera-
tors of ((f1, . . . , fn) : I) and ((x2

1, . . . , x
2
n) : J). In our first proof, we also

considered the ring S/((f1, . . . , fn) : I). Instead of studying the genera-
tors of ((f1, . . . , fn) : I), we used Lemma 3.1 to look at a specific degree of
S/((f1, . . . , fn) : I). Our second proof was done in S and we didn’t look
at S/((f1, . . . , fn) : I) at all.

(2) Our second proof actually uses the minimal free resolution (Koszul com-
plex) of S/(x1, x2, . . . , xi). This is because we add only one polynomial
g in degree d. If we add two or more polynomials in degree d, things
get very complicated and the second proof does not generalize. Our first
proof also depends heavily on adding just one polynomial g. If we add
two or more polynomials in degree d, then ((f1, . . . , fn) : I) will not always
contain as many variables as in our first proof. Francisco’s proof relies on
adding one polynomial g as well. In his proof, he didn’t use Lemma 3.1
to relate the Hilbert function of S/I with that of S/((f1, . . . , fn) : I). In-
stead, he used the canonical short exact sequence induced by multiplying
by g, which will not work if two or more polynomials are added. After
Francisco’s work [Fr] on almost complete intersections, one tries to un-
derstand what happens if two or more polynomials are added. The above
two proofs may help to shed some light on this direction. (For example,
Proposition 3.7.)

After proving Theorem 3.4, it is natural to consider the following problem,
which is a special case of the EGH Conjecture.

Problem 3.6. Let f1, . . . , fn be a regular sequence of 2-forms in S with
n≥ 3. Let g,h ∈ S be 2-forms such that dimk(f1, . . . , fn, g, h)2 = n+ 2. Is it
true that dimk(f1, . . . , fn, g, h)3 ≥ dimk(x

2
1, . . . , x

2
n, x1x2, x1x3)3 = n2+2n−5?

From Section 2, we know that it is true if 3≤ n≤ 4, or if f1, . . . , fn satisfy
the assumptions of Proposition 2.3. From [HP], we know that it is true if
g and h are generic 2-forms and Char(k) = 0. By Theorem 3.4, we see that
dimk((f1, . . . , fn)3∩S1 span{g}) can only be 0, 1 or 2. In the next proposition,
we study the case dimk((f1, . . . , fn)3∩S1 span{g}) = 2 by using a combination
of techniques used in the two proofs of Theorem 3.4.

Proposition 3.7. Let f1, . . . , fn be a regular sequence of 2-forms in S
with n ≥ 3. Let g,h be 2-forms such that dimk(f1, . . . , fn, g, h)2 = n + 2. If
dimk((f1, . . . , fn)3 ∩ S1 span{g}) = 2, then

dimk(f1, . . . , fn, g, h)3 ≥ n2 + 2n− 5.



SOME SPECIAL CASES OF THE EISENBUD–GREEN–HARRIS CONJECTURE 673

Proof. Since dimk((f1, . . . , fn)3∩S1 span{g}) = 2, there exist linearly inde-
pendent 1-forms l1 and l2 such that

l1g = �f · �p1,
l2g = �f · �p2,

where �f is the row vector
(
f1, f2, . . . , fn

)
and �p1, �p2 are some column vectors

of 1-forms.
To prove the claim by contradiction, we assume dimk(f1, . . . , fn, g, h)3 <

n2 + 2n− 5. Since

dimk(f1, . . . , fn, g, h)3

= dimk(f1, . . . , fn, g)3 + n− dimk

(
(f1, . . . , fn, g)3 ∩ S1 span{h}

)
=
(
dimk(f1, . . . , fn)3 + n− 2

)
+ n− dimk

(
(f1, . . . , fn, g)3 ∩ S1 span{h}

)
= n2 + 2n− 2− dimk

(
(f1, . . . , fn, g)3 ∩ S1 span{h}

)
,

it follows that dimk((f1, . . . , fn, g)3 ∩ S1 span{h}) ≥ 4. Without the loss of
generality, we can assume that

x1h = l3g+ �f · �p3,
x2h = l4g+ �f · �p4,
x3h = l5g+ �f · �p5,
x4h = l6g+ �f · �p6,

where l3, l4, l5, l6 are some 1-forms and �p3, �p4, �p5, �p6 are some column vectors

of 1-forms. Multiplying the above 4 equations by l1, because l1g = �f · �p1, we
get that

x1(l1h), x2(l1h), x3(l1h), x4(l1h) ∈ (f1, . . . , fn)4.

By the second proof of Theorem 3.4, we conclude that l1h ∈ (f1, . . . , fn)3.
Similarly, we have l2h ∈ (f1, . . . , fn)3. Thus,

l1, l2 ∈
(
(f1, . . . , fn) : (f1, . . . , fn, g, h)

)
.

Without the loss of generality, we can assume that l1 = x1 and l2 = x2. There-
fore, similar to the first proof of Theorem 3.4, we have

2 = dimk

(
(f1, . . . , fn, g, h)/(f1, . . . , fn)

)
2

= dimk

(
S/

(
(f1, . . . , fn) : (f1, . . . , fn, g, h)

))
n−2

≤ dimk

(
S/(x1, x2, f1, . . . , fn)

)
n−2

= dimk

(
k[x3, . . . , xn]/(f̄1, . . . , f̄n)

)
n−2

≤
(
n− 2

n− 2

)

= 1,
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which is a contradiction. So dimk(f1, . . . , fn, g, h)3 ≥ n2 + 2n− 5 and we are
done. �

Remark 3.8. The key point of the above proof is that there exist two 1-
forms l1 and l2 such that l1, l2 ∈ ((f1, . . . , fn) : (f1, . . . , fn, g, h)), which is not
the case if

dimk

(
(f1, . . . , fn)3 ∩ S1 span{g}

)
�= 2

and

dimk

(
(f1, . . . , fn)3 ∩ S1 span{h}

)
�= 2.

It would be interesting to study the other two cases of Problem 3.6.

We end this section by looking at two criteria and one example about
regular sequences. Here we do not assume that f1, f2, . . . , fn are of degree
2. One simple criterion for f1, f2, . . . , fn being a regular sequence in S is the
following:

f1, f2, . . . , fn is a regular sequence ⇐⇒Rad(f1, . . . , fn) = (x1, . . . , xn).

The other criterion follows easily from [Mt, Corollary on p. 161], which says:
f1, . . . , fn is a regular sequence in S if and only if the following condition
holds:

if g1f1 + · · ·+ gnfn = 0 for some g1, . . . , gn ∈ S, then g1, . . . , gn ∈ (f1, . . . , fn).

In general, given homogeneous polynomials f1, . . . , fn of degree 2 in S, it is
hard to check by hand whether f1, . . . , fn form a regular sequence, although
generically f1, . . . , fn form a regular sequence. The following example gives a
characterization of a special class of regular sequences.

Example 3.9. Let f1 = x1l1, . . . , fn = xnln be a sequence of homogeneous
polynomials in S, where li =

∑n
j=1 aijxj with aij ∈ k and i = 1, . . . , n. Let

A be the n × n matrix (aij). For any 1 ≤ r ≤ n and 1 ≤ i1 < · · · < ir ≤ n,
let A[i1, . . . , ir] be the submatrix of A formed by rows i1, . . . , ir and columns
i1, . . . , ir. By looking at the primary decomposition of the ideal (f1, . . . , fn),
we see that f1, . . . , fn is a regular sequence if and only if det(A[i1, . . . , ir]) �= 0
for all 1≤ r ≤ n and 1≤ i1 < · · ·< ir ≤ n. It would be interesting to know if
the EGH Conjecture holds in this special case.

Acknowledgments. The author is very grateful to the referees for their
valuable suggestions.
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