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BOUNDS FOR SECTIONAL GENERA OF VARIETIES
INVARIANT UNDER PFAFF FIELDS

MAURÍCIO CORRÊA JR. AND MARCOS JARDIM

Abstract. We establish an upper bound for the sectional genus
of varieties which are invariant under Pfaff fields on projective
spaces.

1. Introduction

In [20], P. Painlevé asked the following question: “Is it possible to rec-
ognize the genus of the general solution of an algebraic differential equation
in two variables which has a rational first integral?” In [16], Lins Neto has
constructed families of foliations with fixed degree and local analytic type of
the singularities where foliations with rational first integral of arbitrarily large
degree appear. In other words, such families show that Painlevé’s question
has a negative answer.

However, one can obtain an affirmative answer to Painlevé’s question pro-
vided some additional hypotheses are made. The problem of bounding the
genus of an invariant curve in terms of the degree of a foliation on P

n has been
considered by several authors, see for instance [6], [8]. In [3], Campillo, Car-
nicer and de la Fuente showed that if C is a reduced curve which is invariant
by a one-dimensional foliation F on P

n then

(1)
2pa(C)− 2

deg(C)
≤ deg(F)− 1 + a,

where pa(C) is the arithmetic genus of C and a is an integer obtained from
the concrete problem of imposing singularities to projective hypersurfaces.
For instance, if C has only nodal singularities then a= 0, and thus formula
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344 M. CORRÊA JR. AND M. JARDIM

(1) follows from [11]. This bound has been improved by Esteves and Kleiman
in [8].

Painlevé’s question is related to the problem posed by Poincaré in [23] of
bounding the degree of algebraic solutions of an algebraic differential equa-
tion on the complex plane. Nowadays, this problem is known as Poincaré’s
Problem. Many mathematicians have been working on it and on some of its
generalizations, see, for instance, the papers by Cerveau and Lins Neto [6],
Carnicer [4], Pereira [21], Soares [24], Brunella and Mendes [2], Esteves and
Kleiman [8], Cavalier and Lehmann [5], and Zamora [28].

In [8], Esteves and Kleiman extended Jouanolou’s work on algebraic Pfaff
systems on a nonsingular scheme V . Essentially, an algebraic Pfaff system is
a singular distribution. More precisely, an algebraic Pfaff system of rank r
on a nonsingular scheme X of pure dimension n is, according to Jouanolou
[13, pp. 136–138], a nonzero map u : E →Ω1

X where E is a locally free sheaf
of constant rank r with 1≤ r ≤ n− 1. Esteves and Kleiman introduced the
notion of a Pfaff field on V , which is a nontrivial sheaf map η : Ωk

V → L,
where L is a invertible sheaf on V , and the integer 1≤ k ≤ n− 1 is called the
rank of η. A subvariety X ⊂ V is said to be invariant under η if the map η
factors through the natural map Ωk

V |X →Ωk
X . A Pfaff system on V induces,

via exterior powers and the perfect pairing of differential forms, a Pfaff field
on V . However, the converse is not true; see [8, Section 3] for more details.

In this paper, we establish new upper bounds for the sectional genera of
nonsingular projective varieties which are invariant under Pfaff fields on P

n.
First, we use the hypothesis of stability(in the sense of Mumford–Takemoto)

of the tangent bundle of X to establish an upper bound for the sectional genus
in terms of the degree and the rank of a Pfaff field.

More precisely, our first main result is the following. Let g(X,OX(1)) de-
note the sectional genus of X with respect to the line bundle OX(1) associated
to the hyperplane section.

Theorem 1. Let X be a nonsingular projective variety of dimension m
which is invariant under a Pfaff field F of rank k on P

n; assume that m≥ k.
If the tangent bundle ΘX is stable, then

(2)
2g(X,OX(1))− 2

deg(X)
≤ deg(F)− k(

m−1
k−1

) +m− 1.

To the best of our knowledge, this is the first time that the stability of the
tangent bundle is used to obtain such bounds. Notice that the left-hand side
of inequality (2) does not change when we take generic linear sections Pl ⊂ P

n,
while the right-hand side gets larger, and so the bound becomes worse. This
means that the above result is a truly higher dimensional one.

Examples of projective varieties with stable tangent bundle are Calabi–Yau
[27], Fano [9], [12], [22], [25] and complete intersection [22], [26] varieties.
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In the critical case when the rank of Pfaff field F is equal to the dimension
of the invariant variety X , we show that one can substitute for the stability
condition the conditions of X being Gorenstein and smooth in codimension
1, that is, codim(Sing(X),X)≥ 2.

Theorem 2. Let X ⊂ P
n be a Gorenstein projective variety nonsingular in

codimension 1, which is invariant under a Pfaff field F on P
n whose rank is

equal to the dimension of X . Then

(3)
2g(X,OX(1))− 2

deg(X)
≤ deg(F)− 1.

This generalizes a bound obtained by Campillo, Carnicer and de la Fuente
in [3, Theorem 4.1(a)]. As an application, we improve upon a bound obtained
by Cruz and Esteves [7, Corollary 4.5], see Section 5.

This note is organized as follows. First, in order to make this presentation
as self-contained as possible, we provide all the necessary definitions in Sec-
tion 2. The proofs of our main results along with some further consequences
are given in Sections 4 and 3.

2. Background material

We work over the field of complex numbers. Let (X,L) be a Gorenstein
projective variety X of dimension n equipped with a very ample line bundle
L; recall that, since X is Gorenstein, the canonical divisor KX is a Cartier
divisor.

Definition 1. The sectional genus of X with respect to L, denoted
g(X,L), is defined by the formula:

2g(X,L)− 2 =
(
KX +

(
dim(X)− 1

)
L
)
·Ldim(X)−1.

This quantity has the following geometric interpretation. Suppose thatX is
nonsingular, and let H1, . . . ,Hn−1 be general elements in the linear system |L|.
By Bertini’s Theorem, the curve Xn−1 =H1∩· · ·∩Hn−1 is nonsingular. Then
g(X,L) coincides with the geometric genus of Xn−1, see [10, Remark 2.5].

Definition 2. Let (V,L) be a nonsingular polarized algebraic variety.

A Pfaff field F of rank k on V is a nonzero global section of
∧k

ΘV ⊗ N ,
where ΘV is the tangent bundle and N is a line bundle, where 0 < k < n.
The degree of F with respect to L is defined by the formula degL(F) =
degL(N) + k degL(L), where the degree of a line bundle N relative to L is
given by degL(N) =N ·Ldim(V )−1.

Since the ambient space is nonsingular, our definition is equivalent to the

one introduced in [8, Section 3]. In fact, since
∧k

ΘV ⊗N �Hom(Ωk
V ,N)�

Hom(N∗,
∧k

ΘV ), a Pfaff field can also be regarded either as a map ξF : N∗ →∧k
ΘV or as a map ξ∨F : Ωk

V → N . The present definition emphasizes the
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existence of a global section of
∧k

ΘV ⊗N , which will play a central role in
our arguments.

Definition 3. The singular set of F is given by

Sing(F) =
{
x ∈ V ; ξF (x) is not injective

}
=

{
x ∈ V ; ξ∨F (x) is not surjective

}
.

For instance, a Pfaff field of rank k on P
n is a section of

∧k
ΘPn ⊗OPn(s),

and degOPn (1)(F) = s+ k.

More generally, if Pic(V )� Z and L :=OV (1) is the positive generator of

Pic(V ), then a Pfaff field of rank k on V is a section of
∧k

ΘV ⊗OV (s), for
some s ∈ Z. Thus, degL(F) = (s+ k)deg(V ), where deg(V ) = degL(L). If we
define dF := s+ k, we have degL(F) = dF · deg(V ).

Alternatively, a Pfaff field can also be defined as a global section of Ωn−k
V ⊗

N ′, where N ′ =N ⊗K−1
V . If V is nonsingular, this definition is equivalent to

the one above.
Let X ⊂ V be a closed subscheme of dimension larger than or equal to the

rank of a Pfaff field F . Following [8, Section 3], we introduce the following
definition.

Definition 4. We say X is invariant under F if X 
⊂ Sing(F) and there
exists a morphism of sheaves φ : Ωk

X →N |X such that the following diagram

Ωk
V |X

ξ∨F |X
N |X

Ωk
X

φ

commutes.

Applying the functor Hom(·,OX) to the above diagram, we get the follow-
ing commutative diagram:

N∗|X

φ∨
ξF |X

(Ωk
X)∨

∧k
ΘV |X .

Therefore, X is invariant under F if ξF |X induces a nonzero global section of
(Ωk

X)∨ ⊗N |X .
Our two main results are concerned only with the case when V = P

n; but
we would like to conclude this section with two general propositions.

Let E be a torsion-free sheaf on V . The ratio μL(E) = degL(E)/rk(E) is
called the slope of E, where degL(E) = degL((Λ

rE)∨∨) and r = rk(E). Recall
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that E is semistable (in the sense of Mumford–Takemoto) if every torsion-
free subsheaf E′ of E satisfies μL(E

′) ≤ μL(E). Furthermore, E is stable if
the strict inequality is satisfied for proper subsheaves. Further details can be
found in [14, Sections V.6 and V.7].

Proposition 5. If ΘV is stable, then the following inequality holds:

degL(F)≥ rk(F)

(
degL(V ) +

degL(KV )

dim(V )

)
.

If V = P
n the above inequality becomes deg(F) ≥ 0. Bott’s formula [19,

page 8] implies the existence of a rank k Pfaff field of degree 0 for each k,
hence in this case the bound given above is sharp.

Proof of Proposition 5. The stability of ΘV implies that
∧k

ΘV is semi-
stable with slope equal to kμL(ΘV ) [1, Corollary 1.6]. As observed above,

a Pfaff field F of rank k induces a map ξF : N∗ →
∧k

ΘV , so from the semista-

bility of
∧k

ΘV we conclude that −degL(N) ≤ kμL(ΘV ) = −k degL(KV )/
dim(V ). The stated inequality follows easily. �

If D is a divisor on an algebraic variety V with Pic(V )� Z, then OV (D) =
OV (dD), for some dD ∈ Z. In this case, we denote κ(V ) = dKV

.

Proposition 6. Let V be a n-dimensional nonsingular algebraic variety
with Pic(V )� Z. Let X be a k-dimensional nonsingular complete intersection
of hypersurfaces D1, . . . ,Dn−k on V . If X is invariant under a Pfaff field F
of rank k on V , then

dD1 + · · ·+ dDn−k
≤ dF − k− κ(V ).

Proof. Since X is invariant by F we have that H0(X,
∧k

ΘX ⊗OV (dF −
k)|X) 
= {0}, then deg(

∧k
ΘX ⊗OV (dF − k)|X)≥ 0. Let OV (Di) be the line

bundle associated to the hypersurface Di, i= 1, . . . , n− k. We have the fol-
lowing adjunction formula

k∧
ΘX =

n∧
ΘV |X ⊗OV (−D1)|X ⊗ · · · ⊗OV (−Dn−k)|X .

Therefore
∧k

ΘX =OV (−κ(V )− dD1 − · · · − dDn−k
)|X , thus

deg
(
OV

(
dF − k− κ(V )− dD1 − · · · − dDn−k

)
|X

)
= deg

( k∧
ΘX ⊗OV (dF − k)|X

)
≥ 0. �
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3. Proof of Theorem 1

We recall that the stability of ΘX implies that
∧k

ΘX is semistable. Since

X is invariant under F , we can conclude that H0(X,
∧k

ΘX ⊗OX(d− k)) 
=
{0}, with d= deg(F). It then follows from the semistability of

∧k
ΘX that∧k

ΘX ⊗OX(d− k) is also semistable, thus

(4) deg

( k∧
ΘX ⊗OX(d− k)

)
≥ 0.

On the other hand, note that

(5) deg

( k∧
ΘX

)
=−

(
dim(X)− 1

k− 1

)
deg(KX).

Let i : X → P
n be the embedding, and set, as usual, OX(1) = i∗OPn(1). Now,

we consider the following difference, using (5):(
2g

(
X,OX(1)

)
− 2

)
−
[
OX(d− k)(

m−1
k−1

) + (m− 1)OX(1)

]
· OX(1)m−1

=−
(
−KX +

OX(d− k)(
m−1
k−1

) )
· OX(1)m−1 =−deg(

∧k
ΘX ⊗OX(d− k))(

m−1
k−1

) .

It follows from (4) that the difference must be less than or equal to zero,
hence

2g
(
X,OX(1)

)
− 2 ≤

[
OX(d− k)(

m−1
k−1

) + (m− 1)OX(1)

]
· OX(1)m−1

≤ deg(X)

(
d− k(
m−1
k−1

) +m− 1

)
.

This completes the proof of Theorem 1.
Let us now consider applications of Theorem 1 to a few particular cases.

First, specializing to the case when the invariant variety is Fano with Picard
number one, i.e., deg(KX)< 0 and ρ(X) = rank(NS(X)) = 1, where NS(X) is
the Néron–Severi group of X .

Corollary 7. Let X be a nonsingular Fano variety, with Picard number
one, and let OX(1) :=K−1

X . If X is invariant under a Pfaff field F of rank
k = dim(X), then

degK−1
X

(X)≤ kk
(
deg(F) + 2

)k
,

where degK−1
X

(X) is the degree of X with respect to the anticanonical polar-

ization.

Proof. Indeed, in this case we have

2g
(
X,K−1

X

)
− 2 = (k− 2)degK−1

X
(X).
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Thus, it follows from Theorem 1 that k ≤ deg(F) + 1. On the other hand, it
follows from [18] that d(X)≤ k+ 1 and degK−1

X
(X)≤ (d(X)k)k, where d(X)

is the least positive integer d for which X can be covered by rational curves
of (anticanonical) degree at most d, see [18, Section 1.3]. �

Finally, we also consider the case when the invariant variety is Calabi–Yau,
that is, KX = 0.

Corollary 8. If X is Calabi–Yau and invariant by F , then rk(F) ≤
deg(F).

In other words, Pfaff fields of small degree do not admit invariant Calabi–
Yau varieties.

4. Proof of Theorem 2

First, let us briefly recall the construction of the so-called canonical map
γX : Ωk

X → ωX , where ωX is the dualizing sheaf of X , as it was done in [7,
Section 3].

Let X be a reduced projective variety of pure dimension k, and let X1, . . . ,
Xs be its irreducible components. For each i= 1, . . . , s, consider Kunz’s sheaf
ω̃Xi of regular differential forms of Xi, see [15]. By definition, the canonical
map γX is the composition

Ωk
X

τ̃−→
⊕s

i=1Ω
k
Xi

(γ1,...,γs)−→
⊕s

i=1 ω̃Xi

(ζ1,...,ζs)−→
⊕s

i=1 ωXi

τ−→ ωX ,

where τ̃ and τ are the maps induced by restriction, for each i= 1, . . . , s the
map γi : Ω

k
Xi

→ ω̃Xi is the canonical class of Xi, constructed by Lipman in
[17], which is an isomorphism on the nonsingular locus of Xi. Moreover,
ζi : ω̃Xi → ωXi is a isomorphism on Xi, since it follows from [17, Theorem
0.2B] that ω̃Xi is dualizing. Therefore, γX is an isomorphism on the nonsin-
gular locus X0 :=X − Sing(X). Thus the map

γ̃X = γ∨
X ⊗ 1OX(d−k) : ω

∨
X ⊗OX(d− k)→

(
Ωk

X

)∨ ⊗OX(d− k)

is also an isomorphism when restricted to X0.
Now assume that X ⊂ P

n is a Gorenstein variety of pure dimension k such
that codim(Sing(X),X) ≥ 2. Then the sheaf ω∨

X is locally-free, hence, in
particular, reflexive. Moreover, from [14, Proposition 5.21], we also conclude
that ω∨

X is normal.
If X is invariant under a Pfaff field F on P

n of rank k and degree d,
then we have a nonzero global section ζF of (Ωk

X)∨ ⊗OX(d− k); consider its
restriction ζF,0 = ζF |X0 to X0. Composing it with the the inverse of γ̃X |X0 ,
the restriction of the map γ̃X to X0, we obtain a section

γ̃X |X0(ζF,0) ∈H0
(
X0, ω

∨
X ⊗OX(d− k)|X0

)
.
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However, ω∨
X⊗OX(d−k)|X0 is a normal sheaf, so the above section extends to

a global section of ω∨
X ⊗OX(d− k). In particular, H0(X,ω∨

X ⊗OX(d− k)) 
=
{0}, therefore
(6) deg

(
ω∨
X ⊗OX(d− k)

)
≥ 0.

Let KX be a Cartier divisor such that OX(KX) = ωX .
Now, consider the following difference(

2g
(
X,OX(1)

)
− 2

)
−
[
OX(d− k) + (k− 1)OX(1)

]
· OX(1)k−1

=−
(
K−1

X +OX(d− k)
)
· OX(1)k−1 =−deg

(
ω∨
X ⊗OX(d− k)

)
≤ 0.

5. Complete intersection invariant varieties

We specialize to the case when the invariant variety X is a complete inter-
section.

First, we notice that the inequality of Theorem 1 is not sharp in general.
To see this, let X be a nonsingular complete intersection variety of dimension
m and multidegree (d1, . . . , dn−m), which is invariant under a k-dimensional
Pfaff field F on P

n; assume that m≥ k. It follows from [22, Corollary 1.5] that
ΘX is stable and one can apply Theorem 1 to obtain the following inequality:

d1 + · · ·+ dn−m ≤ deg(F)− k(
m−1
k−1

) + n+ 1.

Setting m= n−1 and k = 1, the inequality reduces to d1 ≤ deg(F)+n. How-
ever, Soares has shown, under the same circumstances, that d1 ≤ deg(F) + 1
[24, Theorem B].

In the critical case dim(X) = rank(F), Theorem 2 gives us the following
corollary.

Corollary 9. Let X be a k-dimensional complete intersection variety of
multidegree (d1, . . . , dn−k) such that either X is nonsingular in codimension 1.
If X is invariant under a Pfaff field F of rank k on P

n, then

d1 + · · ·+ dn−k ≤ deg(F) + n− k+ 1.

Proof. From the adjunction formula for dualizing sheaves, one obtains

2g
(
X,OX(1)

)
− 2 = deg(X)(d1 + · · ·+ dn−k − n+ k− 2).

By Theorem 2, this is less than or equal to (deg(F) − 1)deg(X), and the
desired inequality follows easily. �

It follows from [7, Corollary 4.5] that if X and F are as above, then

d1 + · · ·+ dn−k ≤

⎧⎨
⎩

deg(F) + n− k, if ρ≤ 0,

deg(F) + n− k+ ρ, if ρ > 0,
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where ρ := σ+ n− k+1− d1 − · · · − dn−k, with σ denoting the Castelnuovo–
Mumford regularity of the singular locus of X . Therefore, Corollary 9 allows
us to conclude that if X is nonsingular in codimension 1, then one can take
ρ= 1, regardless of σ.

References

[1] V. Ancona and G. Ottaviani, Stability of special instanton bundles on P
2n+1, Trans.

Amer. Math. Soc. 341 (1994), 677–693. MR 1136544

[2] M. Brunella and L. G. Mendes, Bounding the degree of solutions to Pfaff equations,

Publ. Mat. 44 (2000), 593–604. MR 1800822

[3] A. Campillo, M. M. Carnicer and J. Garćıa de la Fuente, Invariant curves by vector
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Norm. Sup. (4) 35 (2002), 231–266. MR 1914932

[17] J. Lipman, Dualizing sheaves, differentials and residues on algebraic varieties,
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