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TUKEY TYPES OF ULTRAFILTERS

NATASHA DOBRINEN AND STEVO TODORCEVIC

Abstract. We investigate the structure of the Tukey types of ul-
trafilters on countable sets partially ordered by reverse inclusion.

A canonization of cofinal maps from a p-point into another ultra-
filter is obtained. This is used in particular to study the Tukey

types of p-points and selective ultrafilters. Results fall into three

main categories: comparison to a basis element for selective ul-
trafilters, embeddings of chains and antichains into the Tukey

types, and Tukey types generated by block-basic ultrafilters on
FIN.

1. Introduction

Let D and E be partial orderings. We say that a function f : E → D
is cofinal if the image of each cofinal subset of E is cofinal in D. We say
that D is Tukey reducible to E, and write D ≤T E, if there is a cofinal map
from E to D. An equivalent formulation of Tukey reducibility was noticed
by Schmidt in [29]. Given partial orderings D and E, a map g : D → E such
that the image of each unbounded subset of D is an unbounded subset of E
is called a Tukey map or an unbounded map. E ≥T D iff there is a Tukey map
from D into E. If both D ≤T E and E ≤T D, then we write D ≡T E and say
that D and E are Tukey equivalent. ≡T is an equivalence relation, and ≤T

on the equivalence classes forms a partial ordering. The equivalence classes
can be called Tukey types or Tukey degrees.

In [37], Tukey introduced the Tukey ordering to develop the notion of
Moore–Smith convergence in topology to the more general setting of directed
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partial orderings. The study of cofinal types and Tukey types of partial or-
derings often reveals useful information for the comparison of different partial
orderings. For example, Tukey reducibility downward preserves calibre-like
properties, such as c.c.c., property K, precalibre ℵ1, σ-linked, and σ-centered
(see [35]).

Satisfactory classification theories of Tukey degrees have been developed
for several classes of ordered sets. The cofinal types of countable directed
systems are 1 and ω (see [37]). Day found a classification of countable ori-
ented systems (partially ordered sets) in [8] in terms of a three element basis.
Assuming PFA, Todorcevic in [34] classified the Tukey degrees of directed par-
tial orderings of cardinality ℵ1 by showing that there are exactly five cofinal
types, and in [35] classified the Tukey degrees of oriented systems (partially
ordered sets) of size ℵ1 in terms of a basis consisting of five forms of partial
orderings. However, he also showed in [35] that there are at least 2ℵ1 many
Tukey incomparable separative σ-centered partial orderings of size c. This
would preclude a satisfactory classification theory of all partial orderings of
size continuum.

However, the structure of the Tukey types of particular classes of partial
orderings of size continuum can yield useful information. This has been fully
stressed first in the paper [13] by Fremlin who considered partially ordered
sets occurring in analysis. After this, several papers appeared dealing with
different classes of posets such as, for example, the paper [31] of Solecki and
Todorcevic which makes a systematic study of the structure of the Tukey
degrees of topological directed sets. The paper [25] of Milovich is the first
paper after Isbell [17] to study Tukey degrees of ultrafilters on ω.

In this paper, we investigate the structure of the Tukey degrees of ultra-
filters on ω ordered by reverse inclusion. For any ultrafilter U on ω, (U , ⊇)
is a directed partial ordering. We remark that for any two directed partial
orderings D and E, D ≡T E iff D and E are cofinally similar ; that is, there
is a partial ordering into which both D and E embed as cofinal subsets [37].
So for ultrafilters, Tukey equivalence is the same as cofinal similarity.

Another motivation for this study, is that Tukey reducibility is a general-
ization of Rudin–Keisler reducibility.

Fact 1. Let U and V be ultrafilters on ω. If U ≥RK V , then U ≥T V .

Proof. Take a function h : ω → ω satisfying V = h(U ) := {X ⊆ ω : h−1(X) ∈
U }. Define f : U → V by f(X) = {h(n) : n ∈ X}, for each X ∈ U . Then f is
a cofinal map. �

Thus arises the question: How different are Tukey and Rudin–Keisler re-
ducibility? We shall study this question particularly for p-points.
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2. Notation and basic facts

In this section, we fix notation and provide some basic facts. All ultrafilters
in this paper have a base set which is countable. The base set will usually be
ω, but in Section 6 we also investigate ultrafilters on FIN, the family of finite,
nonempty subsets of ω.

Definition 2. Let (P, ≤) be a partial ordering. We say that a subset
C ⊆ P is cofinal in P if for each p ∈ P there is a c ∈ C such that p ≤ c. We
say that (P, ≤) is directed if for any p, r ∈ P , there is an s ∈ P such that p ≤ s
and r ≤ s.

Fact 3. If C is a cofinal subset of a partial ordering (P, ≤), then (C, ≤) ≡T

(P, ≤).

Proof. Let C be a cofinal subset of P and let idC : C → P be the identity
map. Then idC is both a cofinal map and a Tukey map. For if D ⊆ C
is cofinal in (C, ≤), then id′ ′

CD = D is also cofinal in (P, ≤). If B ⊆ P is
bounded in (P, ≤), then there is a p ∈ P bounding each element of B from
above. Take a c ∈ C such that p ≤ c. Then c bounds id−1

C (B). Thus, idC

maps each unbounded subset of C to an unbounded subset of P , hence is a
Tukey map. �

The partial ordering ≤ on an ultrafilter U is ⊇; that is, for X,Y ∈ U , X ≤ Y
iff X ⊇ Y . Note that (U , ⊇) is a directed partial ordering.

We now show that, for ultrafilters, there is a nice subclass of cofinal maps,
namely the monotone cofinal maps, to which we may restrict our attention.

Definition 4. Let (P, ≤P ) and (Q, ≤Q) be partial orderings. A map
f : P → Q is monotone if whenever p, r are in P and p ≤P r, then f(p) ≤Q

f(r). For the special case of ultrafilters U , V , this translates to the following: a
map f : U → V is monotone if whenever W,X ∈ U and W ⊇ X , then f(W ) ⊇
f(X).

Fact 5. Let (P, ≤P ) and (Q, ≤Q) be partial orderings. A monotone map
f : P → Q is a cofinal map if and only if its image f ′ ′P is a cofinal subset
of Q.

Proof. Let f : P → Q be a monotone map. If f is a cofinal map, then
certainly the image of P under f is a cofinal subset of Q.

Conversely, suppose the image f ′ ′P is cofinal in Q. Let C ⊆ P be a cofinal
subset of P and let q ∈ Q be given. Since f ′ ′P is cofinal in Q, there is a p ∈ P
such that q ≤Q f(p). Since C is cofinal in P , there is a c ∈ C such that p ≤P c.
Since f is monotone, q ≤Q f(p) ≤Q f(c). Therefore, f ′ ′C is cofinal in Q. �

Fact 6. Let U and V be ultrafilters. If U ≥T V , then this is witnessed by a
monotone cofinal map.
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Proof. Suppose U ≥T V . Then there is a Tukey map g : V → U witnessing
this. Define f : U → V by f(U) =

⋂
{V ∈ V : g(V ) ⊇ U }.

First, we check that f is a function from U into V . Let U ∈ U . Note that
{V ∈ V : g(V ) ⊇ U } = g−1({U ′ ∈ U : U ′ ⊇ U }). Since the set {U ′ ∈ U : U ′ ⊇
U } is bounded in U and g is a Tukey map, it follows that {V ∈ V : g(V ) ⊇ U }
is bounded in V . Thus,

⋂
{V ∈ V : g(V ) ⊇ U } is a member of V .

Next we check that f is monotone. Let U ⊇ U ′ be elements of U . Then
it is the case that {V ∈ V : g(V ) ⊇ U } ⊆ {V ∈ V : g(V ) ⊇ U ′ }. Thus, f(U) =⋂

{V ∈ V : g(V ) ⊇ U } ⊇
⋂

{V ∈ V : g(V ) ⊇ U ′ } = f(U ′).
Finally, we show that f ′ ′ U is cofinal in V . Let V ′ ∈ V . Then g(V ′) is in U ;

let U denote g(V ′). By definition, f(U) =
⋂

{V ∈ V : g(V ) ⊇ g(V ′)} ⊆ V ′.
Thus, by Fact 5, f is a monotone cofinal map from U into V . �

Thus, for ultrafilters, we can restrict ourselves to using monotone cofinal
maps.

We now fix some notation for the duration of the paper. Recall that the
partial ordering on a (finite or infinite) cartesian product of partially ordered
sets is the coordinate-wise ordering. Thus, the partial ordering on a cartesian
product of directed partial orderings is again a directed partial ordering.

Notation. Let U , V , and Un (n < ω) be ultrafilters. We define the nota-
tion for the following ultrafilters.
(1) U · V = {A ⊆ ω × ω : {i ∈ ω : {j ∈ ω : (i, j) ∈ A} ∈ V } ∈ U }.
(2) limn→U Un = {A ⊆ ω × ω : {n ∈ ω : {j ∈ ω : (n, j) ∈ A} ∈ Un} ∈ U }.
(3) We shall use U 2 to denote U · U ; and more generally, U n+1 shall denote

U · U n. We shall use U ω to denote limn→U U kn , where (kn)n<ω is any
strictly increasing sequence of natural numbers. More generally, for any
ordinal α < ω1, U α+1 denotes limn→U U α. For α a limit ordinal, U α is
used to denote any ultrafilter of the form limn→U U βn , where (βn)n<ω is
a strictly increasing sequence of ordinals such that supn<ω βn = α. (So
for ω ≤ α < ω1, U α does not denote a unique ultrafilter, but rather any
ultrafilter formed in the way described above.)

(4) U × V is defined to be the ordinary cartesian product of U and V with
the coordinate-wise ordering 〈⊇, ⊇〉.

(5) Πn<ω Un is the cartesian product of the Un with its natural coordinate-
wise product ordering. We will let Πn<ω U denote the cartesian product
of ω many copies of U .

The following basic facts are used throughout the paper.

Fact 7. Let U , U0, U1, V , V0, and V1 be ultrafilters.
(1) U × U ≡T U .
(2) U × V ≥T U and U × V ≥T V .
(3) If U1 ≥T U0 and V1 ≥T V0, then U1 × V1 ≥T U0 × V0.
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(4) If W ≥T U and W ≥T V , then W ≥T U × V . Thus, U × V is the minimal
Tukey type which is Tukey greater than or equal to both U and V .

(5) U · V ≥T U and U · V ≥T V , and therefore U · V ≥T U × V .

Proof. Let π1, π2 denote the projection maps πi : ω × ω → ω (i = 1,2) given
by π1(m,n) = m, and π2(m,n) = n.

(1) π1 induces the map π̄1 : U × U → U , given by π̄1(U,U ′) = U , which is a
cofinal map. Conversely, the map f(U) = (U,U) is a cofinal map from U into
U × U .

(2) Again, the induced map π̄1 : U × V → U given by π̄1(U,V ) = U is a
cofinal map. The second part follows since U × V ≡T V × U .

(3) Given monotone cofinal maps f : U1 → U0 and g : V1 → V0, define the
map h : U1 × V1 → U0 × V0 by h(U,V ) = (f(U), g(V )). Let X be a cofinal
subset of U1 × V1 and let (A,B) ∈ U0 × V0. There are U ∈ U1 and V ∈ V1 such
that f(U) ⊆ A and g(V ) ⊆ B. Since X is cofinal in U1 × V1, there is some
(U ′, V ′) ∈ X such that U ′ ⊆ U and V ′ ⊆ V . Since f and g are monotone,
h(U ′, V ′) = (f(U ′), g(V ′)) ≥ (f(U), g(V )) ≥ (A,B). Thus, h′ ′ X is cofinal in
U0 × V0.

(4) follows immediately from (1)–(3).
(5) Define f : U · V → U by f(A) = {π1(m,n) : (m,n) ∈ A}, for each A ∈

U · V . Then f is monotone, and has cofinal range in U . Hence, by Fact 6,
U · V ≥T U . (Alternatively, one can just note that the map π1 is a Rudin–
Keisler map from U · V to U ; and hence U · V ≥T U .)

Let g : U · V ≥T V be defined by g(A) = {π2(m,n) : (m,n) ∈ A}, for each
A ∈ U · V . Then g is monotone and has cofinal range in V , hence is a cofinal
map. �

Remark. One cannot conclude from the above that U · V ≡T U × V . Sec-
tion 4 contains an investigation into this matter.

At this point, we recall the definitions of the following special ultrafilters.
All these definitions can be found in [2]. Recall the standard notation ⊆∗,
where for X,Y in an ultrafilter U , we write X ⊆ ∗ Y to denote that |X \ Y | < ω.

Definition 8. Let U be an ultrafilter.
(1) U is selective if for every function f : ω → ω, there is an X ∈ U such that

either f � X is constant or f � X is one-to-one.
(2) U is a p-point if for every family {Xn : n < ω} ⊆ U there is an X ∈ U such

that X ⊆∗ Xn for each n < ω.
(3) U is a q-point if for each partition of ω into finite pieces {In : n < ω},

there is an X ∈ U such that |X ∩ In| ≤ 1 for each n < ω.
(4) U is rapid if for each function f : ω → ω, there exists an X ∈ U such that

|X ∩ f(n)| ≤ n for each n < ω.

The following well-known implications can be found in [2].
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Theorem 9.
(1) An ultrafilter is selective if and only if it is both a p-point and a q-point.
(2) Every q-point is rapid.

We point out that all of these special ultrafilters exist under CH, under
MA, and even under weaker assumptions involving cardinal invariants. How-
ever, the existence of selective ultrafilters, p-points, q-points, or even rapid
ultrafilters does not follow from ZFC. We refer the interested reader to [2] for
further exposition on these topics.

We point out the next fact, since it is useful to know, especially in Section 4.

Fact 10. For any ultrafilter U , U · U is not a p-point.

Proof. If U is principle, generated by {n}, then U · U is also principle,
generated by {(n,n)}. If U is not principle, then it contains the Fréchet filter.
For each n < ω, let An = [n,ω) × ω. Then each An is in U . However, there
is no B ∈ U · U such that B ⊆ ∗ An for all n < ω; for if B ⊆∗ An for all n < ω,
then for each n there could only be finitely many j such that (n, j) ∈ B. �

A word about the top Tukey type for ultrafilters. The directed set ([c]<ω, ⊆)
is the maximal Tukey type among all directed partial orderings of cardinality c.

Fact 11. Let (X, ≤) be any directed partial ordering of cardinality c. Then
(X, ≤) ≤T ([c]<ω, ⊆).

Proof. Let g : X → [c]<ω be any one-to-one function. Then g is a Tukey
map. To see this, let W be any unbounded subset of X . Then in particular, W
must be infinite, since every finite subset of X is bounded since X is directed.
Since g is one-to-one, the image g′ ′W is also infinite. Every infinite subset of
[c]<ω is unbounded, so g′ ′W is unbounded. �

The following combinatorial characterization of when an ultrafilter has top
Tukey type is useful.

Fact 12. Let U be an ultrafilter. (U , ⊇) ≡T ([c]<ω, ⊆) if and only if there
is a subset X ⊆ U such that | X | = c and for each infinite Y ⊆ X ,

⋂
Y /∈ U .

Proof. We first show the foreword direction by contrapositive. Suppose
that there is no subset X ⊆ U such that | X | = c and for each infinite Y ⊆ X ,⋂

Y /∈ U . Then for each subset X ⊆ U such that | X | = c, there is an infinite
Y ⊆ X such that

⋂
Y ∈ U . We shall show that there is no Tukey map from

([c]<ω, ⊆) into (U , ⊇).
Let g : ([c]<ω, ⊆) → (U , ⊇) be given. If the range of g has cardinality less

than c, then there is an uncountable subset C ⊆ [c]<ω and a U ∈ U such that
g′ ′ C = {U }. So g maps an unbounded set to a bounded set, hence is not a
Tukey map. Otherwise, the range of g has cardinality c. By our hypothesis,
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there is an infinite set Y ⊆ g′ ′[c]<ω such that
⋂

Y ∈ U . Letting C be the g-
preimage of Y , we see that C is infinite, hence unbounded. Thus, g is not a
Tukey map. Therefore, ([c]<ω, ⊆) 
≤T (U , ⊇).

Suppose there is a subset X ⊆ U such that | X | = c and for each infinite Y ⊆
X ,

⋂
Y /∈ U . By Fact 11, we know that (U , ⊇) ≤T ([c]<ω, ⊆), so it remains to

show that (U , ⊇) ≥T ([c]<ω, ⊆). Let g : [c]<ω → X be any one-to-one function.
Let Z ⊆ [c]<ω be unbounded. Then Z must be infinite, since ([c]<ω, ⊆) is
directed. Since g is one-to-one, g′ ′Z is an infinite subset of X . Thus,

⋂
g′ ′Z

is not in U , so g′ ′Z is unbounded in (U , ⊇). Therefore, g is a Tukey map. �

3. Basic and basically generated ultrafilters

The following type of partial ordering was introduced by Solecki and Todor-
cevic in [31].

Definition 13 ([31]). Let D be a separable metric space and let ≤ be a
partial ordering on D. We say that (D, ≤) is basic if:
(1) each pair of elements of D has the least upper bound with respect to

≤ and the binary operation of least upper bound from D × D to D is
continuous;

(2) each bounded sequence has a converging subsequence;
(3) each converging sequence has a bounded subsequence.

Each ultrafilter is a separable metric space using the metric inherited from
P (ω) viewed as the Cantor space. Recall that we define ≤ on an ultrafilter to
be ⊇. In this context, a sequence (Wn)n<ω of elements of P (ω) converges to
W ∈ P (ω) iff for each m there is some k such that for each n ≥ k, Wn ∩ m =
W ∩ m. It is not hard to see that every bounded subset of an ultrafilter has
a convergent subsequence. Thus, an ultrafilter is basic iff (3) holds.

The next theorem shows that the basic ultrafilters are exactly the p-points.
We recall the following characterization of non-meager ideals, which can be
found in [18] or [32]. An ideal I ⊆ P (ω) is called unbounded if for each strictly
increasing sequence of natural numbers (ni)i<ω , there is an X ∈ I such that
[ni, ni+1) ⊆ X for infinitely many i < ω. It was shown in [18] that an ideal
is unbounded if and only if it is nonmeager (as a subset of P (ω) with the
topology inherited from the Cantor space).

Theorem 14. An ideal I on P (ω) containing all finite subsets of ω is
basic relative to the Cantor topology iff I is a non-meager p-ideal. Hence, an
ultrafilter is basic iff it is a p-point.

Proof. Let I be an ideal on P (ω) containing all finite subsets of ω.
Assume I is basic. Let 〈nk : k < ω〉 be an increasing sequence of integers.

Note that each [nk, nk+1) ∈ I, since FIN ⊆ I . [nk, nk+1) → ∅; so by basicness,
there is a subsequence whose union is in I. Hence, I unbounded, and thus is
nonmeager.
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Let {An : n < ω} ⊆ I. We can assume that for each n < ω, An ⊆ An+1.
Let A′

n = An \ n. Then A′
n ⊆ An, so A′

n ∈ I. A′
n → ∅ in the Cantor topology,

so since I is basic, there is a subsequence nk such that
⋃

k<ω A′
nk

∈ I. Let
A =

⋃
k<ω Ank

. Then for each n < ω, An ⊆∗ A, since for each n there is an
nk > n such that An ⊆ Ank

⊆∗ A′
nk

⊆ A. Thus, I is a p-ideal.
Now suppose I is a nonmeager p-ideal. Suppose An,A ∈ I and An → A in

the Cantor topology. Take B ∈ I such that for each n, An ⊆∗ B. Let mk be
a strictly increasing sequence such that m0 = 0 and:
(1) n ≥ mk+1 implies An ∩ mk = A ∩ mk, and
(2) n ≤ mk implies An \ mk+1 ⊆ B.
Since I is nonmeager, there is a subsequence (mki)i<ω of (mk)k<ω such that
C :=

⋃
i<ω[mki ,mki+2) ∈ I. Let X =

⋃
i<ω Amki

+1.
We claim that X ⊆ A ∪ B ∪ C. Let i < ω be given. Then Amki

+1 ∩ mki =
A ∩ mki , by (1). Amki

+1 ∩ [mki ,mki+2) ⊆ C, since C contains the interval
[mki ,mki+2). Finally, Amki

+1 \ mki+2 ⊆ B, by (2). Thus, Amki
+1 ⊆ A ∪ B ∪ C.

Since i was arbitrary, we have the desired conclusion that X ⊆ A ∪ B ∪ C,
and hence X ∈ I. Therefore, I is basic, since every convergent sequence of
elements of I has a bounded subsequence. �

Remark. From the proof, we can see that an ultrafilter is basic iff every
sequence which converges to ω has a bounded subsequence.

The next definition gives a notion of ultrafilters which is weaker than p-
point.

Definition 15. We say that an ultrafilter U on P (ω) is basically generated
if it has a filter basis B ⊆ U (i.e. ∀A ∈ U ∃B ∈ B B ⊆ A) with the property
that each sequence {An : n < ω} ⊆ B converging to an element of B has a
subsequence {Ank

: k < ω} such that
⋂

k<ω Ank
∈ U .

Theorem 16. Suppose that U and Un (n < ω) are basically generated ul-
trafilters on P (ω) by filter bases which are closed under finite intersections.
Then V = limn→U Un is basically generated by a filter basis which is closed un-
der finite intersections. It follows that the collection of all ultrafilters basically
generated by some filter base closed under finite intersections is closed under
Fubini products.

Proof. Let B, Bn be filter bases of U , Un (n < ω) which are closed under
finite intersections and which witness the fact that U , Un are basically gen-
erated, respectively. Let p1 : ω × ω → ω be the projection map onto the first
coordinate. For A ⊆ ω × ω and n < ω, let (A)n denote {j < ω : (n, j) ∈ A}. Let
C = {A ∈ V : p1[A] ∈ B and for each n < ω, either (A)n = ∅ or (A)n ∈ Bn}.
Then C is a filter basis for V which is closed under finite intersections.

Consider a converging sequence An → B in C. Note that p1[An] → X for
some X ∈ U containing p1[B]. X might not be in B, but p1[B] is in B, since
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B ∈ C. So for each n < ω, let A′
n = An ∩ (p1[B] × ω), so that A′

n ∈ C. Note
that A′

n → B, p1[A′
n] → p1[B], and all p1[A′

n] ∈ B, since B is closed under
finite intersections. Since B witnesses that U is basically generated, there
is a subsequence of (p1[A′

n])n<ω whose intersection is in U . Take such a
subsequence and reindex it, so that we have

⋂
n<ω p1[A′

n] ∈ U . Let U denote⋂
n<ω p1[A′

n]. Note that U ⊆
⋂

n<ω p1[An]. Enumerate U as (nk)k<ω . Then
for each k < ω and each m < ω, (A′

m)nk
= (Am)nk

since nk ∈ U ⊆ p1[B]. So
for each k < ω, we have that (Am)nk

→ (B)nk
as m → ∞. Take a decreasing

sequence M0 ⊇ M1 ⊇ · · · ⊇ Mk ⊇ · · · of infinite subsets of ω such that for each
k,

⋂
m∈Mk

(Am)nk
∈ Unk

. We may assume that mk = minMk is a strictly
increasing sequence.

Let C =
⋂

l<ω Aml
. We claim that C ∈ V . Note that U = {nk : k < ω} ⊆

p1[Aml
] for all l, so U ⊆ p1[C]. Thus, p1[C] ∈ U . For each k,

⋂
l≥k(Aml

)nk
⊇⋂

m∈Mk
(Am)nk

which is in Unk
. Hence, intersecting

⋂
l≥k(Aml

)nk
with finitely

more members (Aml
)nk

, l < k, of Unk
still yields a member of Unk

. Thus,
(C)nk

=
⋂

l<ω(Aml
)nk

, which is in Unk
. Therefore, C ∈ V . �

Remark. For any ultrafilter U , U · U is not a p-point. Thus, there are
basically generated ultrafilters which are not p-points.

Recall Fact 11 which says that for every ultrafilter U , (U , ⊇) ≤T ([c]<ω, ⊆).
We say that an ultrafilter U has top Tukey type if (U , ⊇) ≡T ([c]<ω, ⊆). The
following theorem of Isbell shows that, in ZFC, there is always an ultrafilter
which has top Tukey type.

Theorem 17 (Isbell [17]). There is an ultrafilter Utop on ω realizing the
maximal cofinal type among all directed sets of cardinality continuum, i.e.
Utop ≡T [c]<ω .

We remark here that the same construction in Isbell’s proof was done inde-
pendently by Juhász in [19] (stated in [20]) in connection with strengthening
a theorem of Posṕı̌sil [27], though without the Tukey terminology.

There are in fact 2c many ultrafilters on ω having Tukey type exactly
([c]<ω, ⊆), since any collection of independent sets can be used in a canonical
way to construct an ultrafilter with top Tukey type. Thus, already we see that
for the case of the top Tukey type, the Rudin–Keisler equivalence relation is
strictly finer than the Tukey equivalence relation, since every Rudin–Keisler
equivalence class has cardinality c.

Note also that Utop is not basically representable, or in other words,

Theorem 18. If U is a basically generated ultrafilter on ω, then U <T [c]<ω .

Proof. Let U be basically generated. Then there is a filter basis B ⊆ U with
the property that each sequence (An)n<ω ⊆ B converging to an element of B
has a subsequence (Ank

)k<ω such that
⋂

k<ω Ank
∈ U .



916 N. DOBRINEN AND S. TODORCEVIC

Let X be any subset of U of cardinality c. For each X ∈ X , choose one
BX ∈ B such that BX ⊆ X . If there is an infinite Y ⊆ X and a B ∈ B such
that all X ∈ Y have BX = B, then this B ⊆

⋂
Y . Otherwise, {BX : X ∈

X } is uncountable, so there is a sequence (An)n<ω ⊆ {BX : X ∈ X } which
converges to some B ∈ {BX : X ∈ X }, and such that all An are distinct. Since
B witnesses that U is basically generated, there is a subsequence (Ank

)k<ω

such that
⋂

k<ω Ank
∈ U . Taking Y to be the collection of X ∈ X such that

BX = Ank
for some k, we have that Y is infinite and

⋂
Y ⊇

⋂
k<ω Ank

which
is in U . By Fact 12, (B, ⊇) <T ([c]<ω, ⊆). �

Corollary 19. Every p-point has Tukey type strictly below the top Tukey
type.

Proof. Since every basic ultrafilter is basically generated, it follows from
Theorems 14 and 18 that every p-point has Tukey type strictly below [c]<ω .

�

The next theorem gives a canonical form for cofinal maps from p-points
to any other ultrafilter. This theorem or similar ideas will be used in the
majority of proofs in the rest of this paper.

Recall that any subset of P (ω) is a topological space, with the subspace
topology inherited from the Cantor space. Thus, given any X , Y ⊆ P (ω),
a function f : X → Y is continuous if it is continuous with respect to the
subspace topologies on X and Y . Equivalently, a function f : X → Y is con-
tinuous if for each sequence (Xn)n<ω ⊆ X which converges to some X ∈ X ,
the sequence (f(Xn))n<ω converges to f(X).

If X ∈ U , then we use U � X to denote {Y ∈ U : Y ⊆ X}. Note that U � X
is a filter base for U , and hence (U , ⊇) ≡T (U � X, ⊇).

Theorem 20. Suppose U is a p-point on ω and V is an arbitrary ultrafilter
on ω such that U ≥T V . For each monotone cofinal map f : U → V , there is
an X̃ ∈ U such that f � (U � X̃) is continuous. Moreover, there is a contin-
uous monotone map f ∗ : P (ω) → P (ω) such that f ∗ � (U � X̃) = f � (U � X̃).
Hence, there is a continuous monotone cofinal map f ∗ � U from U into V
which extends f � (U � X̃).

Proof. Let U be a p-point, V be an ultrafilter, and suppose that U ≥T V .
Let f : U → V be a monotone cofinal map. Such an f exists, by Fact 6. We
claim that there is an X̃ ∈ U such that f : U � X̃ → V is continuous.

Construct a decreasing sequence X0 ⊇ X1 ⊇ · · · of elements of U with the
following properties, for each n < ω.
(1) Xn+1 ⊆ Xn;
(2) Xn ∩ n = ∅;
(3) for each s ⊆ n, for each k ≤ n, if there is a U ∈ U such that s = U ∩ (n+1)

and k /∈ f(U), then k /∈ f(s ∪ Xn).
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That there is such a sequence of Xn follows from f being monotone, as
we shall see now. If there is a U ∈ U such that ∅ = U ∩ 1 and 0 /∈ f(U), then
let X0 be such a U . If not, let X0 = ω. Suppose n > 0 and we already have
Xn−1. Fix a W ∈ U such that W ⊆ Xn−1 and W ∩ n = ∅. For each s ⊆ n and
each k ≤ n, if there is a U ∈ U such that s = U ∩ (n + 1) and k /∈ f(U), then
let Us,k be some such U . If there is no such U ∈ U , then let Us,k = W . Let
Xn = W ∩

⋂
{Us,k : s ⊆ n,k ≤ n}.

We check that Xn has the desired properties. By construction, (1) and
(2) hold. Note the following for each s ⊆ n and k ≤ n. If there is a U ∈ U
such that s = U ∩ (n+1) and k /∈ f(U), then k /∈ f(Us,k). In this case, for any
U ∈ U � Xn, since s ∪ U ⊆ Us,k and f is monotone, it follows that k /∈ f(s ∪ U).
In particular, k is not in f(s ∪ Xn). Thus, (3) holds.

Since U is a p-point, fix some Y ∈ U such that for each n < ω, Y ⊆∗ Xn. Let
0 = n0 < n1 < · · · be such that for each i < ω, for each n ≤ ni, Y \ ni+1 ⊆ Xn.
Let Z =

⋃∞
i=0[n2i+1, n2i+2). Without loss of generality, assume that Z /∈ U .

(If Z is in U , then let X̃ be Y ∩ Z. The proof for this case goes through
exactly as the one we give below, with the minor modification of readjusting
the indices by 1 at the outset.) Let X̃ = Y \ Z. We show that f � (U � X̃) is
continuous. Precisely, we shall show that there is a non-decreasing sequence
(mk)k<ω such that for each W ∈ U � X̃ , the initial segment f(W ) ∩ (k + 1) of
f(W ) is determined by W ∩ mk.

Given k < ω, let ik denote the least i for which n2ik+1 ≥ k. Let W ∈ U � X̃

be given and let s = W ∩ n2ik+1. Recalling that X̃ ∩ [n2ik+1, n2ik+2) = ∅,
we have that W \ n2ik+1 ⊆ X̃ \ n2ik+1 = X̃ \ n2ik+2 ⊆ Y \ n2ik+2 ⊆ Xn2ik+1 .
Therefore, k ∈ f(W ) iff k ∈ f(s ∪ Xn2ik+1) iff k ∈ f(s ∪ (X̃ \ n2ik+1)). Letting
mk = n2ik+1, we see that f � (U � X̃) is continuous, since the question of
whether or not k ∈ f(W ) is determined by the finite initial segment W ∩ mk

along with X̃ \ mk.
Next, we extend f on U � X̃ to all of U by defining f ′(X) = f(X ∩ X̃),

for X ∈ U . Then f ′ : U → V is again monotone. Moreover, for each X ∈ U
and k < ω, k ∈ f ′(X) iff k ∈ f(X ∩ X̃) iff k ∈ f(s ∪ (X̃ \ mk)), where s =
X ∩ X̃ ∩ mk. So whether or not k is in f ′(X) is determined by the initial
segment X ∩ X̃ ∩ mk of X ∩ X̃ ; hence f ′ is continuous.

Finally, we extend f ′ to a monotone continuous map f ∗ defined on all of
P (ω). For an arbitrary Z ⊆ ω set

(1) f ∗(Z) =
⋂{

f ′(X) : X ⊇ Z and X is cofinite
}
.

Note that since f ′ is monotone, f ∗(Z) is exactly
⋂

{f ′((Z ∩ n) ∪ [n,ω)) : n <
ω}, since every cofinite X containing Z contains (Z ∩ n) ∪ [n,ω) for some n.
From the definition of f ∗ and the fact that f ′ is monotone, it follows that f ∗

is monotone.
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First, we show that f ∗ � U = f ′. Let Z ∈ U be given. Let Zn = (Z ∩ n) ∪
[n,ω), for each n < ω. Then f ∗(Z) =

⋂
{f ′(Zn) : n < ω}. Since Zn → Z and

f ′ is continuous on U , it follows that f ′(Zn) → f ′(Z). This, along with the
fact that each f ′(Zn) ⊇ f ′(Z) imply that

⋂
n<ω f ′(Zn) equals f ′(Z). Hence,

f ∗(Z) =
⋂

n<ω f ′(Zn) = f ′(Z). Thus, f ∗ � U = f ′.
To see that f ∗ is continuous, we show that for each k < ω and Z ⊆ ω,

whether or not k is in f ∗(Z) is determined by the initial segment Z ∩ X̃ ∩ mk of
Z ∩ X̃ , along with X̃ \ mk. Let Z ⊆ ω and k < ω, and let Zn = (Z ∩ n) ∪ [n,ω)
for each n < ω. Then k ∈ f ∗(Z) iff for each n < ω, k ∈ f ′(Zn) iff for each
n ≥ mk, k ∈ f ′(Zn) iff for each n ≥ mk, k ∈ f ′(Zn ∩ X̃) iff k ∈ f(s ∪ (X̃ \ mk)),
where s = Z ∩ X̃ ∩ mk. �

Remark. Note that Theorem 20 gives the canonical form of cofinal maps
that is likely going to be the main object of study in this area from now
on: Every Tukey reduction U ≥T V for U a p-point is witnessed by some
monotone continuous f ∗ : P (ω) → P (ω) such that f ∗ � U is a cofinal map
from U into V . Moreover, for any monotone cofinal map f : U → V (where U
is a p-point), there is a a cofinal subset of the form U � X̃ for some X̃ ∈ U such
that f � (U � X̃) is continuous. Note that the restriction of f to any cofinal
subset of U � X̃ retains continuity, justifying the use of the word canonical.

Remark. Whereas the top Tukey type has cardinality 2c, the previous
theorem implies that the Tukey type of any p-point has cardinality c.

Corollary 21. Every ≤T -chain of p-points on ω has cardinality ≤ c+.

Proof. Theorem 20 shows that every Tukey chain F ⊆ {p-points} is c+-like,
that is, | { V ∈ F : V ≤T U } | ≤ c for all U ∈ F . �

Recall the Free Set Lemma of Hajnal.

Lemma 22 (Free Set Lemma of Hajnal [15]). If |X| = κ and λ < κ and
F : X → P (X) satisfies x /∈ F (x) and |F (x)| < λ, for all x ∈ X , then there is
a Y ⊆ X with x /∈ F (y) and y /∈ F (x) for all x, y ∈ Y and |Y | = κ.

Corollary 23. Every family X of p-points on ω of cardinality > c+ con-
tains a subfamily Z ⊆ X of equal size such that U 
≤T V whenever U 
= V are
in Z .

Proof. Let X be a family of p-points such that κ := | X | > c+. Define
F : X → P(X ) by F (U ) = { V ∈ X : V <T U }. By Theorem 20, for each U ∈ X ,

|F (U )| < c+. So, by the Free Set Lemma 22, there is a family Y ⊆ X such
that | Y | = κ and for each U , V ∈ Y , U /∈ F (V ) and V /∈ F (U ); that is, U 
<T V
and V 
<T U . By Theorem 20, there are at most c many ultrafilters Tukey
equivalent to any given p-point. Thus, there is a subfamily Z ⊆ Y also of
cardinality α such that every two p-points in Z are Tukey incomparable. �
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Remark. A similar trick was used by Rudin and Shelah in [30] in part
of their proof that there are always 2c many Rudin–Keisler incomparable
ultrafilters.

Next, we use Theorem 20 to see that some strength of selective ultrafilters
is preserved downward in the Tukey ordering.

Theorem 24. Suppose U is selective and U ≥T V . Then V is basically
generated.

Proof. By Theorem 20, there is a continuous monotone map f : P (ω) →
P (ω) such that f ′ ′ U ⊆ V and f ′ ′ U generates V . By the selective version of
the Prömel–Voight canonical form of the Galvin–Prikry theorem, there is an
M ∈ U , a Lipschitz map ϕ : [ω]ω → P (ω) such that ϕ(X) ⊆ X for each X ∈
[ω]ω, and a 1–1 homeomorphism ψ : range(ϕ) → P(ω) such that f = ψ ◦ ϕ.

Let B = f ′ ′ U � M . Note that B is a cofinal subset of V . We claim that
every converging sequence Xn → X of elements of B has a subsequence Xnk

such that
⋂

k<ω Xnk
∈ V . Let Xn, n < ω, and X be elements of B such

that Xn → X . Let Y = ψ−1(X) and Yn = ψ−1(Xn). Then Yn → Y , since
ψ is a 1–1 homeomorphism. Let K = {A ∈ U : ϕ(A) = Y } and Kn = {A ∈
U : ϕ(A) = Yn} (n ∈ ω). Then K and Kn are compact subsets of U such that
Kn → K. So in particular for an arbitrary choice An ∈ Kn (n ∈ ω), we can
find a subsequence Ank

converging to a member B in K. Note that Ank
is a

sequence in U converging to the member B, which is in U . Since U is basic
there is a further subsequence Anki

such that

A =
⋂

i<ω

Anki
∈ U .

It follows that Xnki
= f(Anki

) ⊇ f(A) for all i < ω and so in particular, f(A) ∈
V and f(A) ⊆

⋂
i<ω Xnki

. Thus, B witnesses that V is basically generated. �

It will be shown in Section 4 that for each selective ultrafilter U , U · U ≡T U ;
hence U ≡T V does not imply that V is selective.

Question 25. If U is a p-point and U ≥T V , does it follow that V is
basically generated?

Question 26. From Theorem 16, we know that every iteration of Fubini
products of p-points is basically generated. Is there an ultrafilter which is
basically generated but is not a Fubini limit of p-points?

Question 27. Can Theorem 20 be improved to show that if U is basically
generated and U ≥T V , then there is a continuous (or definable) monotone
cofinal map f : U → V witnessing this?1

1 Throughout the paper, we note progress on questions which has taken place between

the date of original submission of this article and the time of its printing. Recent work
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More generally,

Question 28. If V ≤T U <T [c]<ω , then is there a continuous (or definable)
monotone cofinal map f : U → V witnessing this?

One might first try to show that the existence of a continuous cofinal map
propagates Tukey downwards, or in other words,

Question 29. Suppose that U is such that whenever U ≥T V then there
is a continuous monotone cofinal map from U to V . If U ≥T W , then does it
follow that for each V ≤T W there is a continuous monotone cofinal map from
W into V ?2

4. Comparing Tukey types of ultrafilters with (ωω, ≤)

In this section, we investigate which ultrafilters are above (ωω, ≤), where
h ≤ g iff for each n < ω, h(n) ≤ g(n).

Fact 30. If U is a rapid ultrafilter, then U ≥T ωω .

Proof. Define f : U → ωω by letting f(X) be the function which enumerates
all but the least element of X in strictly increasing order. It is not hard to
check that f is a cofinal map. �

Hence, each selective ultrafilter and each q-point is Tukey above ωω .

Fact 31. For each ultrafilter U , U · U ≥T ωω .

Proof. Define f : U · U → ωω by letting f(A) be the function gA : ω → ω
defined by gA(n) = min(A)nk

, where (nk)k<ω enumerates those n for which
(A)n ∈ U . We shall show that f is a cofinal map.

Let X consist of those A ∈ U · U with the properties that (a) whenever
(A)n 
= ∅, then (A)n ∈ U , and (b) whenever m < n and (A)m, (A)n ∈ U , then
min(A)m ≤ min(A)n. Note that X is a base for U · U , so it suffices to show
that f � X is a cofinal map from X into ωω . We show that f � X is monotone
and has range which is cofinal in ωω , hence by Fact 5, f � X is a cofinal map
from X into ωω .

Let A,B ∈ X be given such that A ⊇ B. Then the sequence (ik)k<ω enu-
merating those n for which (B)n ∈ U is a subsequence of the sequence (nk)k<ω

of Raghavan in [28] implies that every basically generated ultrafilter has Tukey type of

cardinality c. In particular, he showed that if U is basically generated and V ≤T U , then
there is another ultrafilter W ≡T U such that the reduction V ≤T W is witnessed by a

Rudin–Keisler map. Recent work in [9] provides a canonization for all monotone cofinal
maps witnessing a Tukey reduction from any iteration of Fubini products of p-points. These

canonical maps are continuous with respect to the topology on �U -trees.
2 It has been recently shown in [9] that the answer is yes in the case that U is a p-point,

and in fact, weaker conditions are given there. In particular, every ultrafilter W which
is Tukey reducible to a p-point has the property that every Tukey reduction below W is

witnessed by a continuous monotone cofinal map.
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enumerating those n for which (A)n ∈ U . Hence, for each k, nk ≤ ik. Since
A,B are in X and A ⊇ B, we have that min(A)nk

≤ min(A)ik
≤ min(B)ik

;
hence gA(k) ≤ gB(k) for all k < ω. Therefore, f � X is monotone.

Next, let h : ω → ω be given. Define A to be the collection of pairs (n, l)
such that l > max{h(i) : i ≤ n}. Then A ∈ X and gA(n) ≥ h(n) for all n < ω.
Thus, f � X has cofinal range in ωω . �

Theorem 32. For any ultrafilters U , Un (n < ω), limn→U Un ≤T U ×
Πn<ω Un, where U × Πn<ω Un is given its natural product ordering. In par-
ticular, U · U ≤T Πn<ω U .

Proof. Let V denote limn→U Un. Let B = {A ∈ V : for each n < ω, either
(A)n = ∅ or (A)n ∈ Un}. Note that B is a basis for V ; hence it suffices
to construct a Tukey map g : B → U × Πn<ω Un. Given A ∈ B let g(A) =
(p1[A], (qn(A))n<ω), where qn(A) = (A)n if n ∈ p1[A] and qn(A) = ω other-
wise.

To verify g is a Tukey map, let Y be a bounded subset of V . Then there
is some (C, (Dn : n < ω)) ∈ U × Πn<ω Un which bounds Y . Let X = {A ∈
B : p1[A] ⊇ C and ∀n < ω, qn(A) ⊇ Dn}. Note that X contains the g-preimage
of Y . Let B =

⋂
X . Then p1[B] ⊇ C and for each n ∈ C, (B)n ⊇ Dn, so B ∈ V .

Moreover, by its definition, B bounds X . Hence B also bounds the g-preimage
of Y . �

Theorem 33. If U is a p-point, then Πn<ω U ≡T U × ωω and therefore
Πn<ω U ≡T U · U · U .

Proof. First, we show that Πn<ω U ≤T U × ωω . Given a sequence (An)n<ω ∈
Πn<ω U , choose a B ∈ U and an h : ω → ω such that B \ h(n) ⊆ An for each n.
(Since U is a p-point, there is a B ∈ U such that B ⊆ ∗ An for each n. Let
h(n) be the least m such that B \ m ⊆ An.) Set g((An)n<ω) = (B,h).

g is a Tukey map. To see this, let Y be a bounded subset of U × ωω .
Then there is some (B∗, h∗) ∈ U × ωω which bounds Y . Let X = {(An)n<ω :
g((An)n<ω) ≤ (B∗, h∗)}. Note that X set contains the g-preimage of Y . We
claim that X is bounded by (B∗ \ h∗(n))n<ω . For given any (An)n<ω ∈ X ,
letting (B,h) denote g((An)n<ω), we have that (B,h) ≤ (B∗, h∗), which means
that B ⊇ B∗ and h(n) ≤ h∗(n) for all n. So for each n, B∗ \ h∗(n) ⊆ B \ h(n) ⊆
An. Thus, (B∗ \ h∗(n))n<ω is a bound for X .

On the other hand, ωω ≤T U · U ≤T Πn<ω U , by Fact 31 and Theorem 32.
So U × ωω ≤T U × Πn<ω U = Πn<ω U .

Finally, U · U ≤T U · U · U and Fact 31 imply that U × ωω ≤T U × (U · U ) ≡T

U · U ≤T U · U · U . On the other hand, applying Theorem 32 twice, we have
U · U · U ≡T limn→U ·U U ≤T (U · U ) × Πn<ω U ≤T Πn<ω U × Πn<ω U = Πn<ω U .
Thus, U · U · U ≡T Πn<ω U . �

Corollary 34. If V is a p-point, V ≥T ωω , and U is any ultrafilter, then
U · V ≡T U × V . Hence, if both U and V are rapid p-points, then U · V ≡T V · U .
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Proof. By Theorem 32, U · V ≤T U × Πn<ω V . Since V is a p-point,
Πn<ω V ≡T V × ωω , by Theorem 33. V ≥T ωω implies that V × ωω ≡T V .
Therefore, U · V ≤T U × Πn<ω V ≡T U × V ≤T U · V . �

Theorem 35. The following are equivalent for a p-point U .
(1) U ≥T ωω ;
(2) U ≡T Πn<ω U ;
(3) U ≡T U · U .

Proof. Suppose U ≥T ωω . By Theorem 33, Πn<ω U ≡T U × ωω ≡T U ≤T

Πn<ω U . Suppose U ≡T Πn<ω U . Since always U ≤T U · U , and U · U ≤T Πn<ω U
by Theorem 32, we have that U ≡T U · U . If U ≡T U · U , then since U · U ≥T ωω ,
we have that U ≥T ωω . �

Corollary 36. If U is a p-point of cofinality < d, then U 
≥T ωω and
therefore U <T U · U .

Remark. Such an ultrafilter U exists in any extension of a model of CH
by a countable support iteration of length ω2 of superperfect-set forcing since
by a result of Shelah such an iteration preserves p-points.

Corollary 37. If U is a rapid p-point then Πn<ω U ≡T U · U ≡T U .

Remark. By Corollary 37, for each selective ultrafilter U , the Tukey type
of U is strictly coarser than the Rudin–Keisler type of U , even though they
both have cardinality c. That is, if U is selective, then U · U is not a p-point
yet U ≡T U · U . However, if U ≡RK V then V is selective. We remark here
that Todorcevic has more recently shown that if U is a p-point, V is selective
and U ≥T V , then U ≥RK V , and hence, V ≡RK U .3 Hence, although the
Tukey type of a selective ultrafilter includes non-p-points, any two selective
ultrafilters with the same Tukey type are isomorphic.

Theorem 38. Assuming p = c, there is a p-point U such that U 
≥T ωω and
therefore U <T U · U <T Utop.

Proof. Let {fα : 0 < α < c} be an enumeration of all Souslin-measurable
mappings from ωω into [ω]ω, and let {Xα : α < c} be an enumeration of P (ω).
We build an ultrafilter U to be generated by a ⊇∗ chain 〈Aα : α < c〉 of infinite
subsets of ω, while diagonalizing over all Souslin-measurable mappings of the
form fα : ωω → [ω]ω (α < c).

Let A0 = ω. Given α < c and {Aξ : ξ < α}, using the fact that p = c, there
is an A′

α ∈ [ω]ω such that A′
α ⊆∗ Aξ for all ξ < α. Let A′ ′

α = A′
α ∩ Xα if this is

infinite, otherwise, let A′ ′
α = A′

α \ Xα. If there is an x ∈ ωω such that A′ ′
α \ fα(x)

is infinite, then let Aα = A′ ′
α \ fα(x). Otherwise, we let Aα = A′ ′

α.

3 By the time of printing, this result has been extended by Raghavan in [28] to the
following more general context: For any ultrafilters U ≥T V , if V is a q-point and there is

a continuous cofinal map from U into V , then U ≥RB V .
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Let U be the p-point generated by the tower {Aα : α < c}. We need to
show that U 
≥T ωω . Suppose toward a contradiction that U ≥T ωω . Then
applying (Theorem 5.3(i) [31]), there is a Souslin measurable map f : ωω → U
such that f is a Tukey map. Since we listed all Souslin measurable maps
from ωω into [ω]ω, there is an α < c such that fα = f . Since the range of f
is contained in U , Aα is not A′

α \ fα(x) for any x ∈ ωω . Hence, Aα = A′ ′
α and

Aα ⊆∗ fα(x) for all x ∈ ωω .
Define Pn to be {x ∈ ωω : Aα \ n ⊆ fα(x)}. There is an n0 ∈ ω such that

Pn0 , is not bounded in ωω relative to the ordering of eventual domination.
(For if not, then for each n, there is some gn ∈ ωω which eventually dominates
every element of Pn. Let g be a function which eventually dominates each
gn. Then g ≥∗ x for each x such that for some n, Aα \ n ⊆ fα(x). But
Aα ⊆∗ fα(x) for all x ∈ ωω , and hence g eventually dominates every member
of ωω , contradiction.) In particular, there is a k ∈ ω and an infinite subset
{xi : i < ω} ⊆ Pn0 such that xi(k) ≥ i for all i < ω. It follows that {xi : i < ω}
is unbounded in (ωω, ≤) but its image {fα(xi) : i < ω} is bounded by Aα \ n,
which is in U . Thus, fα is not a Tukey map from ωω into U . �

Question 39. Is there an ultrafilter U on ω such that U <T U · U <T

U · U · U <T Utop?4

Remark. Using some assumptions like p = c, it seems possible to get Tukey
chains of p-points of order-type c+ which is, as we know, maximal possible.
By Corollary 53 below, CH implies there are Tukey chains of p-points of
length c. Dilip Raghavan has shown that, assuming CH, there is a Tukey
chain of p-points isomorphic to the reals.

Question 40. Is there an ultrafilter U <T Utop which is not Tukey re-
ducible to any p-point?

Question 41. Is every basically generated ultrafilter Tukey reducible to a
p-point?

Both of the preceding two questions are answered using the assumption
U 
≥T ωω for any p-point U (which is true in the iterated superperfect exten-
sion). Namely, then U · U 
≤T V for every ultrafilter U and every p-point V .

Question 42. Is there a p-ideal I on ω which is not countably generated
but I 
≥T ωω?

Remark. If b 
= d there is such a p-ideal, so the question is whether we
can get one with no extra set-theoretic assumptions.

Question 43. Does U · U ≡T U <T Utop imply U is basically generated?

4 After this article was first circulated, Blass and Milovich [26] have independently shown
that for all ultrafilters U , U · U ≡T U · U · U . Milovich’s results are more general, yielding,

for example, that U · V ≡T U · V · V for all nonprincipal filters U and V .
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5. Antichains, chains, and incomparable predecessors

We now investigate the structure of the Tukey types of p-points and se-
lective ultrafilters in terms of which chains, antichains, and incomparable
ultrafilters with a common upper bound embed into the Tukey types.

Theorem 44.
(1) Assume cov(M ) = c. Then there are 2c pairwise Tukey incomparable se-

lective ultrafilters.
(2) Assume d = u = c. Then there are 2c pairwise Tukey incomparable p-

points.

We prove Theorem 44 by proving it first in the case that 2c > c+ (see
Theorem 47), and then proving it in the case that 2c = c+ (see Theorem 49).
Of use will be two propositions of Ketonen. Recall (Theorem 1.7 [21]) of
Ketonen: If cov(M ) = c then every filter with a filter base of size less than c

can be extended to a selective ultrafilter. The key part of his proof uses the
following proposition.

Proposition 45 (Ketonen, Proposition 1.8 [21]). If cov(M ) = c and F
is a filter generated by less than c many sets, and {Pi : i < ω} is a partition
of ω so that for each i < ω,

⋃
{Pj : j > i} ∈ F , then there exists a set X ⊆ ω

such that {X} ∪ F has the finite intersection property, and for every i < ω,
|X ∩ Pi| ≤ 1.

The following proposition of Ketonen was used in his proof of (Theorem 1.2
[21]): d = c if and only if any filter generated by a base of cardinality less than
c can be extended to a p-point.

Proposition 46 (Ketonen, Proposition 1.3 [21]). If d = c, then given any
filter F generated by less than c elements and a sequence 〈Ai : i < ω〉 of ele-
ments of F , there exists a set A ⊆ ω so that F ∪ {A} has the finite intersection
property, and for each i < ω, A ⊆∗ Ai.

We are now equipped to prove Theorem 44 in the case that 2c > c+.

Theorem 47. Assume 2c > c+.
(1) Assume cov(M ) = c. Then there are 2c pairwise Tukey incomparable se-

lective ultrafilters.
(2) Assume d = u = c. Then there are 2c pairwise Tukey incomparable p-

points.

Proof. We prove (1) first. Recall that cov(M ) = c implies u = c, so every
filter base of cardinality less than c does not generate an ultrafilter. We fix
some notation used throughout the proof. Fix a listing 〈Dα : α < c〉 of all the
infinite subsets of ω. There are c many partitions of ω, so we fix a sequence

〈 �Pα : α < c〉 such that each �Pα = 〈Pn
α : n < ω〉 is a partition of ω (that is,
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⋃
n<ω Pn

α = ω and for each m 
= n, Pm
α ∩ Pn

α = ∅) and each partition of ω
appears in the listing. We shall say that a filter U is selective for the partition
�Pα if either there is some n < ω such that Pn

α ∈ U or else there is some X ∈ U
such that |X ∩ Pn

α | ≤ 1 for each n < ω.
We now begin the construction. In a very similar manner to the proof of

(Theorem 2 [3]) of Blass, we will construct selective ultrafilters Ux, x ∈ 2c,
such that for x 
= y, Ux 
= Uy . Let U〈·〉 be the Fréchet filter. If there is an i < ω

such that P i
0 is infinite, then let U ′

〈·〉 be the filter generated by U〈·〉 ∪ {P i
0 }.

Otherwise, for each i < ω, P i
0 is finite. Then take some infinite X such that

for each i, |X ∩ P i
0 | ≤ 1 and let U ′

〈·〉 be the filter generated by U〈·〉 ∪ {X}. Take
α0 minimal such that both Dα0 and Dc

α0
are in (U ′

〈·〉)
+. Let U〈0〉 be the filter

generated by U ′
〈·〉 ∪ {Dα0 } and let U〈1〉 be the filter generated by U ′

〈·〉 ∪ {Dc
α0

}.

Note that both U〈0〉 and U〈1〉 have countable filter bases, are selective for �P0,
and any ultrafilter extending U〈i〉 does not extend U〈1−i〉, for each i ≤ 1.

Suppose for t ∈ 2<c, the filter Ut has been constructed and has a filter
base of cardinality less than c. Let β be the length of t. The partition
of ω under consideration is �Pβ = 〈Pn

β : n < ω〉. If there is an n < ω such
that Pn

β ∈ Ut, then let U ′
t = Ut. Otherwise, for each n < ω,

⋃
j>n P j

β ∈ Ut.
Apply Proposition 45 to find an X ∈ [ω]ω such that {X} ∪ Ut has the finite
intersection property, and such that for each n < ω, |X ∩ Pn

β | ≤ 1. Let U ′
t be

the filter generated by {X} ∪ Ut. Take αβ minimal such that both Dαβ
and

Dc
αβ

are in (U ′
t)

+. (Note that αβ ≥ β.) Let Ut�0 be the filter generated by
U ′

t ∪ {Dαβ
} and let Ut�1 be the filter generated by U ′

t ∪ {Dc
αβ

}. Note that for
each i ≤ 1, both Ut�i have filter bases of cardinality less than c, are selective
for �Pβ , and any ultrafilter extending Ut�i does not extend Ut�(1−i).

For t ∈ 2<c with length of t some limit ordinal γ, if for all β < γ, Ut�β has
been constructed, then we let U =

⋃
β<γ Ut�β .

This constructs filters Ut, t ∈ 2<c, satisfying the following. For each t ∈
2<c,

(1) Ut is a filter with a filter base of cardinality less than c;
(2) If s is an initial segment of t, then Us ⊆ Ut;
(3) If the length of t is α+1 for some α < c, then for all β ≤ α, Ut is selective

for �Pβ , and either Dβ or Dc
β is in Ut;

(4) No ultrafilter can extend both Ut�0 and Ut�1.

For each x ∈ 2c, let Ux =
⋃

β<c
Ux�β . Then by (1)–(3), each Ux is a selective

ultrafilter. Furthermore, (4) implies that for x, y ∈ 2c, if x 
= y, then Ux 
= Uy .
Thus, we have 2c selective ultrafilters. By Theorem 20, each Ux has Tukey
type of cardinality at most c. Thus, there are 2c Tukey types among the
collection of Tukey types of the Ux, x ∈ 2c. Since 2c > c+, Corollary 23 yields
2c Tukey incomparable selective ultrafilters.
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The proof of (2) of the Theorem follows exactly the same steps as for (1)
with only the following modification which ensures that we build p-points
(instead of selective ultrafilters). Before starting the construction, fix an enu-
meration 〈 �Aα : α < c〉, where �Aα = 〈An

α : n < ω〉, such that for each countable
collection �B = 〈Bn : n < ω〉 of infinite subsets of ω, �B = �Aα for cofinally many
α < c.

We now begin the construction for (2). Let U 〈·〉 be the Fréchet filter. If the
sequence 〈An

0 : n < ω〉 is contained in U〈·〉, then apply Proposition 46 to obtain
a set B such that B ⊆ ∗ An

0 for each n < ω and such that {B} ∪ U〈·〉 has the
finite intersection property. In this case, let U ′

〈·〉 denote the filter generated
by {B} ∪ U〈·〉. If the sequence 〈An

0 : n < ω〉 is not contained in U 〈·〉, then let
U ′

〈·〉 = U〈·〉. Take α0 minimal such that both Dα0 and Dc
α0

are in (U ′
〈·〉)

+. Let
U〈0〉 be the filter generated by U ′

〈·〉 ∪ {Dα0 } and let U〈1〉 be the filter generated
by U ′

〈·〉 ∪ {Dc
α0

}.
Suppose for t ∈ 2<c, the filter Ut has been constructed and has a filter base

of size less than c. Let β be the length of t. If the sequence 〈An
β : n < ω〉

is contained in Ut, then apply Proposition 46 to obtain a set B such that
B ⊆∗ An

β for each n < ω and such that {B} ∪ Ut has the finite intersection
property. In this case, let U ′

t denote the filter generated by {B} ∪ Ut. If
the sequence 〈An

β : n < ω〉 is not contained in Ut, then let U ′
t = Ut. Take αβ

minimal such that both Dαβ
and Dc

αβ
are in (U ′

t)
+. Let Ut�0 be the filter

generated by U ′
t ∪ {Dαβ

} and let Ut�1 be the filter generated by U ′
t ∪ {Dc

αβ
}.

For t ∈ 2<c such that length of t is some limit ordinal γ, if for all β < γ, Ut�β
has been constructed, then we let Ut =

⋃
β<γ Ut�β .

For each x ∈ 2c, let Ux =
⋃

β<c
Ux�β . By similar arguments as for (1), each

Ux is an ultrafilter and for x 
= y, Ux 
= Uy . Moreover, d = c implies that the
cofinality of c is uncountable. Thus, any countable collection of elements of

Ux appears in Ut for some t ∈ 2<c such that t � x and hence is considered at
some stage in the construction of Ux. Thus, Ux is a p-point. By Theorem 20
and Corollary 23, we obtain 2c Tukey incomparable p-points. �

Next we take care of the case when 2c = c+. In this case, Corollary 23 does
not apply, so we present a new way of constructing c+ Tukey incomparable
selective ultrafilters (or p-points). To do so we shall use the following notion.

Given a continuous monotone function f : P (ω) → P(ω), define f̂ : 2<ω →
P (ω) by letting f̂(s) =

⋂
n≥m f(s̃ ∪ [n,ω)), for each m < ω and each s ∈ 2m,

where s̃ denotes {i < m : s(i) = 1}. We shall say that f is presented by the
function f̂ if the following hold:

(1) For each Z ⊆ ω, f(Z) =
⋃

{f̂(s) : s � Z}, where Z is identified with its
characteristic function;
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(2) For any X ⊆ ω and any l < ω, l ∈ f(X) iff l ∈ f̂(X ∩ (l + 1)), where
X ∩ (l + 1) is identified with its characteristic function of length l + 1.

In the proof of Theorem 20, it was shown that for any p-point Z , any
ultrafilter U , and any monotone cofinal map f : Z → U , there is a continuous
monotone map f ∗ : P (ω) → P (ω) and a cofinal subset Z � X̃ of Z such that
f ∗ � (Z � X̃) equals f � (Z � X̃). Moreover, the proof of Theorem 20 shows
that this f ∗ is presented by f̂ ∗. Thus, it suffices to consider only continuous
monotone maps f : P (ω) → P(ω) which are presented by f̂ .

Lemma 48. Let f : P (ω) → P(ω) be a continuous monotone map presented
by a map f̂ : 2<ω → P (ω), let U be a non-principal ultrafilter, and let Y be a
filter containing the Fréchet filter with a filter base of size less than u. Then
there is a Y ∈ Y + such that for any ultrafilter Z which extends Y ∪ {Y }, f � Z
is not a cofinal map from Z into U .

Proof. Let f , U , and Y satisfy the hypotheses. If there is a Y ∈ Y + such
that f(Y ) /∈ U , then we are done. So now suppose that for each Y ∈ Y +,
f(Y ) ∈ U . If there is a U ∈ U such that for each Y ∈ Y +, f(Y ) 
⊆ U , then for
every ultrafilter Z extending Y , f ′ ′ Z is not cofinal in U .

Thus, the remaining case is that f ′ ′ Y + is cofinal in U , which we assume
throughout the rest of the proof of the lemma. Let f̂ : 2<ω → P (ω) be given
such that f is presented by f̂ . Recall that for each s ∈ 2<ω , f̂(s) is the set
of all k which must be in f(X) for every extension X of s, and f̂ has the
property that for any X ⊆ ω and any l < ω, l ∈ f(X) iff l ∈ f̂(X ∩ (l + 1)).
For a filter W , the dual ideal is denoted by W ∗.

Claim 1. For any ultrafilter U , given any collection {Ci : i < ω} ⊆ U ∗ such
that each Ci is infinite, there is a U ∈ U such that for each i < ω, Ci 
⊆ U .

Proof. Let {Ci : i < ω} be a collection of infinite sets such that each Ci ∈
U ∗. Let a0 = min(C0) and b0 = min(C0 \ {a0}). Let I0 = {i < ω : {a0, b0} ⊆
Ci} and let I1 = {i < ω : {a0, b0} 
⊆ Ci}. Let i1 = min(I1). Let a1 = min(Ci1 \
{a0, b0}) and let b1 = min(Ci1 \ {a0, b0, a1}). Let I2 = {i ∈ I1 : {a1, b1} 
⊆ Ci}.
For general m, given Im, let im = min(Im), let am = min(Cim \ ({aj : j <
m} ∪ {bj : j < m})) and let bm = min(Cim \ ({aj : j ≤ m} ∪ {bj : j < m})).
Let Im+1 = {i ∈ Im : {am, bm} 
⊆ Ci}.

Let A = {am : m < ω} and B = {bm : m < ω}. Then A and B are infinite
and A ∩ B = ∅. Moreover, for each j < ω, there is an m such that j < im+1,
so {am′ , bm′ } ⊆ Cj for some m′ < m + 1. Hence, A ∩ Cj 
= ∅ and B ∩ Cj 
= ∅.
Therefore, for each j < ω, Cj 
⊆ A and Cj 
⊆ B. Note that one of A and
B ∪ (ω \ A) must be in U . However, neither A nor B ∪ (ω \ A) contains Cj for
any j < ω. �

Now we exhaust the possible cases regarding f̂ .
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Case 1. For each X ∈ Y +, identifying X with its characteristic function,
there is a finite initial segment s � X such that f̂(s) ∈ U . Let S be the
collection of s ∈ 2<ω such that f̂(s) ∈ U . Then for each X ∈ Y +, f(X) is the
union of the f̂(s), where s ∈ S and s � X . Since there are only countably
many f̂(s), s ∈ S , they cannot generate the ultrafilter U . Hence, for any
ultrafilter extension Z of Y , f ′ ′ Z is not cofinal in U .

Case 2. Not Case 1. Then there is an X0 ∈ Y + such that for each finite
initial segment s � X0, f̂(s) is not in U .

Subcase 2(a). There is an X1 ⊆ X0 in Y + such that for each Y ∈ Y + with
Y ⊆ X1, there is a finite initial segment s of Y such that f̂(s) is infinite. Let
S be the collection of finite initial segments s of members Y ⊆ X1 in Y + such
that f̂(s) is infinite. Then {f̂(s) : s ∈ S } satisfies the hypotheses of Claim 1.
Thus, there is a U ∈ U such that for each s ∈ S , f̂(s) 
⊆ U . Therefore, for any
ultrafilter Z extending Y ∪ {X1}, f ′ ′ Z is not cofinal in U , since for any Z ∈ Z ,
f(Z) =

⋃
{f̂(s) : s � Z}.

Subcase 2(b). For each X1 ⊆ X0 in Y +, there is some X2 ⊆ X1 also in Y +

such that for each finite initial segment s � X2, f̂(s) is finite. Fix some such
X2. Then note that for each s ∈ 2<ω such that s̃ ∈ [X2]<ω , f̂(s) is finite.
(Recall that s̃ denotes {i ∈ dom(s) : s(i) = 1}.) Let S2 denote {s ∈ 2<ω : s̃ ⊆
X2}.

Claim 2. There is a Y ∈ Y + such that Y ⊆ X2 and f(Y ) /∈ U .

Proof. Since each f̂(s) is finite for s ∈ S2, for each k there is an m such
that for each s ∈ 2k ∩ S2, max(f̂(s)) < m. Let j0 = 0. Given ji, choose ji+1

to be the least m > ji such that for each s ∈ 2ji ∩ S2, max(f̂(s)) < m. Notice
that for each i < ω and each s ∈ 2ji ∩ S2, we have that max(f̂(s)) < ji+1.

Let W be the filter generated by Y ∪ {X2}. Then W has a base of size less
than u (since Y does), so W is not an ultrafilter. Let H =

⋃
i<ω[j2i, j2i+1).

Then H and Hc cannot both be in W ∗, since W ∗ is a proper ideal. Without
loss of generality, assume that H /∈ W ∗. Then H ∈ W +. (If H is in W ∗, then
use Hc and modify the indexes in the following argument.)

Subclaim. There is an infinite, co-infinite set K ⊆ ω such that both⋃
i∈K [j2i, j2i+1) and

⋃
i∈Kc [j2i, j2i+1) are in W +.

Proof. For each i < ω, let j̄i denote the interval [j2i, j2i+1). Let K = {K ⊆
ω : ∃W ∈ W ∀i < ω (W ∩ j̄i 
= ∅ → i ∈ K)}. Note that K is a filter: By its
definition, K is closed under supersets and contains the Fréchet filter since
W ⊇ Y contains the Fréchet filter. Also if K and K ′ are in K as witnessed
by W,W ′ ∈ W , respectively, then W ∩ W ′ ∈ W , and W ∩ W ′ witnesses that
K ∩ K ′ ∈ K.

Let C be a base of size less than u for the filter W . For each W ∈ C, define
KW = {i ∈ ω : W ∩ j̄i 
= ∅ }. Let B = {KW : W ∈ C }. Note that B is a base for
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the filter K. Also, | B | ≤ | C | < u, so K is not an ultrafilter. Thus, we can fix a
K ∈ K+ \ K. Then also Kc ∈ K+ \ K; so K and Kc are both infinite. Define
A to be

⋃
i∈K [j2i, j2i+1) and B to be

⋃
i∈Kc [j2i, j2i+1). Note that both A and

B are subsets of H , A ∩ B = ∅, and A ∪ B = H .
We claim that both A and B are in W +. Since K ∈ K+, it follows that for

each J ∈ K, |K ∩ J | = ω. Since B generates K, we have that for each W ∈ C,
|K ∩ KW | = ω. Therefore, for each W ∈ C, {i ∈ K : W ∩ j̄i 
= ∅} is infinite.
Thus, A ∩ W = (

⋃
i∈K j̄i) ∩ W is infinite for each W ∈ C. Hence, A ∩ W is

infinite for each W ∈ W . Thus, A ∈ W +. Likewise, since Kc is in K+, we
have that B ∈ W +. This finishes the proof of the subclaim. �

We claim that f(A) ∩ f(B) = ∅. We shall prove more: For any I ⊆ ω,
f(

⋃
i∈I [j2i, j2i+1)) ⊆

⋃
i∈I [j2i, j2i+2). It suffices to prove this for all finite

I ⊆ ω since for any I ⊆ ω, f(
⋃

i∈I [j2i, j2i+1)) =
⋃

k<ω f̂(
⋃

i∈I∩k[j2i, j2i+1)).
f̂(∅) must be the empty set (for if not, then f would not map Y + cofinally

into U ). f̂([j0, j1)) ⊆ [j0, j2), by definition of j2. Suppose that k ≥ 1 and given
any finite I ⊆ k, f̂(

⋃
i∈I [j2i, j2i+1)) ⊆

⋃
i∈I [j2i, j2i+2). Let I ′ ⊆ k + 1 be given

and let I denote I ′ ∩ k. By the induction hypothesis, f̂(
⋃

i∈I [j2i, j2i+1)) ⊆⋃
i∈I [j2i, j2i+2). If I = I ′, we are done. If I 
= I ′, then k ∈ I ′. Recall

the fact that f̂ has the property that for any X ⊆ ω and any l < ω, l ∈
f(X) iff l ∈ f̂(X ∩ (l + 1)). Hence, by our choice of the ji, we have that
f̂(

⋃
i∈I′ [j2i, j2i+1)) ∩ j2k = f̂(

⋃
i∈I [j2i, j2i+1)). Thus, f̂(

⋃
i∈I′ [j2i, j2i+1)) ⊆⋃

i∈I′ [j2i, j2i+2).
Thus, f(A) ∩ f(B) = ∅. This implies that at least one of them is not in U .

Thus, Claim 2 holds. �

Taking a Y ∈ Y + satisfying Claim 2 contradicts the hypothesis that f ′ ′ ×
Y + ⊆ U . Thus, the lemma holds. �

Theorem 49.

(1) Assume cov(M ) = c. Then there are c+ pairwise Tukey incomparable
selective ultrafilters.

(2) Assume d = u = c. Then there are c+ pairwise Tukey incomparable p-
points.

Proof of (1). Assume cov(M ) = c. To show that there are c+ Tukey incom-
parable selective ultrafilters, we shall show that given ≤ c selective ultrafilters,
there is another selective ultrafilter Tukey incomparable with each of them.

Let Uγ , γ < κ, where κ ≤ c, be a collection of selective ultrafilters. Fix a
listing 〈Dα : α < c〉 of all the infinite subsets of ω. Fix a sequence 〈 �Pα : α < c〉
such that each �Pα = 〈Pn

α : n < ω〉 is a partition of ω and each partition of ω
appears in the listing. Fix a listing 〈fβ : β < c〉 of all continuous monotone
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maps f : P (ω) → P(ω) which is represented by f̂ : 2<ω → P(ω). Finally, fix
an onto function θ : c → { Uγ : γ < κ} × {fβ : β < c}.

We will construct filters Yα, α < c, satisfying the following:

(1) For α < α′ < c, Yα ⊆ Yα′ ;
(2) Yα has a base of cardinality less than c;
(3) Yα+1 is selective for �Pα;
(4) Either Dα or Dc

α is in Yα+1;
(5) If θ(α) is the pair 〈Uγα , fβα 〉, then for each ultrafilter Z extending Yα+1,

fβα � Uγα does not map Uγα cofinally into Z , and fβα � Z does not map
Z cofinally into Uγα .

We now begin the construction. Let Y0 be the Fréchet filter. Suppose
the filter Yα has been constructed. The partition of ω under consideration is
�Pα = 〈Pn

α : n < ω〉. If there is an n < ω such that Pn
α ∈ Yα, then let Y (0)

α+1 = Yα.
Otherwise, for each n < ω,

⋃
j>n P j

α ∈ Yα. Apply Proposition 45 to find an
X ∈ [ω]ω such that {X} ∪ Yα has the finite intersection property, and such
that for each n < ω, |X ∩ Pn

α | ≤ 1. Then let Y (0)
α+1 be the filter generated

by {X} ∪ Yα. If Dα ∈ (Y (0)
α+1)

+, then let Y (1)
α+1 be the filter generated by

{Dα} ∪ Y (0)
α+1. Otherwise, let Y (1)

α+1 be the filter generated by {Dc
α} ∪ Y (0)

α+1.
Next we consider θ(α), which is a pair 〈Uγα , fβα 〉 for some γα < κ and

βα < c. If f ′ ′
βα

Uγα ⊆ Y (1)
α+1, then fβα � Uγα will not be cofinal into any ultrafilter

extending Y (1)
α+1. In this case, let Y (2)

α+1 = Y (1)
α+1. If f ′ ′

βα
Uγα 
⊆ Y (1)

α+1, then take

some U ∈ Uγα such that fβα(U) /∈ Y (1)
α+1 and let Y (2)

α+1 be the filter generated by
Y (1)

α+1 ∪ {fβα(U)c}. Note that fβα � Uγα cannot be cofinal into any ultrafilter
extending Y (2)

α+1. By Lemma 48, there is a Y ∈ (Y (2)
α+1)

+ such that for any
ultrafilter Z which extends Y (2)

α+1 ∪ {Y }, fβα � Z is not a cofinal map from Z
into Uγα . Let Yα+1 be the filter generated by Y (2)

α+1 ∪ {Y }.
For limit ordinals λ < c, let Yλ =

⋃
α<λ Yα.

Let Y =
⋃

α<c
Yα. Then Y is a selective ultrafilter, by (1)–(4). Moreover,

Y is Tukey incomparable with each Uγ , γ < κ, by (5).
Since for each collection of selective ultrafilters of cardinality less than or

equal to c we can build another selective ultrafilter which is Tukey inequivalent
to each of them, it follows that there are c+ Tukey inequivalent selective
ultrafilters.

The proof of (2) of the theorem follows exactly the same steps as for (1)
with only the following modification. Before starting the construction, let
Uγ , γ < κ, where κ ≤ c, be a collection of p-points. Fix an enumeration
〈 �Aα : α < c〉, where �Aα = 〈An

α : n < ω〉, such that for each countable collection
�B = 〈Bn : n < ω〉 of infinite subsets of ω, �B = �Aα for cofinally many α < c.
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Let Y0 be the Fréchet filter. Given the filter Yα, if the collection {An
α : n <

ω} is not contained in Yα, then let Y (0)
α+1 = Yα. If {An

α : n < ω} is contained in
Yα, apply Proposition 46 to obtain a set B such that B ⊆∗ An

α for each n < ω
and such that {B} ∪ Yα has the finite intersection property. In this case, let
Y (0)

α+1 denote the filter generated by {B} ∪ Yα. The rest of the construction
of Yα+1 proceeds exactly as in part (1). Letting Y =

⋃
α<c

Yα, we see that
Y is a p-point which is Tukey inequivalent to every p-point Uγ , γ < κ. The
theorem then follows as in part (1). �

Theorem 44 follows from Theorem 47 and Theorem 49.

Remark. The stipulation in (1) in Theorem 44 that cov(M) = c is optimal,
at least for this construction. For by results of Fremlin and Canjar (see
Theorem 4.6.6 of [2]), cov(M) = c iff every filter with base of cardinality less
than c can be extended to a selective ultrafilter. The stipulation in (2) of
Theorem 44 that u = d = c is perhaps not optimal, since p-points exist just
under the assumption that d = c. It remains open whether, just assuming d =
c, there are 2κ Tukey incomparable ultrafilters for any κ such that cf(κ) = cf(c)
and 2<κ = c.

One way of making Tukey increasing chains of ultrafilters is by using κ-OK
points. We give the following definition straight from [22].

Definition 50 (Kunen [22]). Let X be a topological space and κ any
cardinal. If p ∈ X and Un (n < ω) are neighborhoods of p, a κ-refinement
system for 〈Un : n < ω〉 is a κ-sequence of neighborhoods of p, 〈Vα : α < κ〉
such that for all n ≥ 1,

∀α1 < α2 < · · · < αn < κ (Vα1 ∩ · · · ∩ Vαn ⊆ Un).

A point p ∈ X is κ-OK iff whenever Un (n < ω) are neighborhoods of p,
〈Un : n < ω〉 has a κ-refinement system.

Translating this into the context of ultrafilters, we let X be the Čech–
Stone remainder βω \ ω, the collection of all non-principle ultrafilters on ω.
A non-principle ultrafilter U is κ-OK iff whenever Un ∈ U (n < ω), there is
a κ-sequence 〈Vα : α < κ〉 of elements of U such that for all n ≥ 1, for all
α1 < · · · < αn < κ, Vα1 ∩ · · · ∩ Vαn ⊆∗ Un.

Kunen remarked in [22] that if U is κ-OK and κ > cof(U ), then U is a
p-point. It is easy to see the following.

Proposition 51. If U is κ-OK but not a p-point, then U ≥T [κ]<ω . Hence,
if U is κ-OK but not a p-point, then cof(U ) = κ iff U ≡T [κ]<ω .

Proof. Let U be κ-OK but not a p-point. Then there are Xn ∈ U such that
for each X ∈ U , there is an n < ω such that X 
⊆∗ Xn. Let {Cα : α ∈ [κ]<ω } ⊆
U witness that U is κ-OK for 〈Xn〉n<ω . Let g : [κ]<ω → U by g(α) = Cα for
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each α ∈ [κ]<ω . If X ⊆ [κ]<ω is unbounded, then X is infinite. Hence, g′ ′ X
is infinite, since g is 1–1. Take {Cαn : n < ω} to be any infinite subset of
g′ ′ X . Suppose {Cαn : n < ω} is ⊇∗ bounded below by Y ∈ U . Then for each
k, Y ⊆∗ ⋂

n≤k Cαn ⊆∗ Xk. But then for each n, Y ⊆∗ Xn, contradicting our
choice of {Xn : n < ω}. Thus, g : [κ]<ω → (U , ⊇∗) is a Tukey map. Therefore,
[κ]<ω ≤T (U , ⊇∗) ≤T (U , ⊇).

If cof(U ) 
= κ, then U 
≡T [κ]<ω ; hence, U >T [κ]<ω . If cof(U ) = κ, then
U ≤T [κ]<ω . �

It follows that if there are κ-OK non p-points with cofinality κ for each
uncountable κ < c, then there is a strictly increasing chain of ultrafilters of
length α, where α is such that ℵα = c. We would like to point out that
Milovich showed in [25] that and ultrafilter U is c-OK and not of top degree
iff U is a p-point.

We now give a general method for building Tukey increasing chains of p-
points.

Theorem 52. Assuming CH, for each p-point D there is a p-point E such
that E >RK D and moreover, E >T D.

Proof. We use the notation from [3]. In (Theorem 6 [3]), Blass proved
assuming MA that given a p-point D one can construct a p-point E >RK D.
Hence, E ≥T D. His construction can be slightly modified to kill all possible
cofinal maps from D into E so that we construct a p-point E which is both
Rudin–Keisler and Tukey strictly above D.

Let D be a given p-point. Fix a bijective pairing J : ω × ω → ω with inverse
(π1, π2), and identify ω with ω × ω via J . A subset Y ⊆ ω × ω is called small
iff the function cY (i) := | {y ∈ ω : (i, y) ∈ Y } | is bounded by some n < ω for all
i in some X ∈ D. Otherwise Y is called large. It is useful to note that from
(Lemma 1, p. 152 [3]), it follows that ω × ω is large, the union of any two
small sets is small, the complement of a small set is large, and any superset
of a large set is large. We give the following characterization of large sets.

Claim 1. Let Y ⊆ ω × ω. Y is large iff there is a W ∈ D such that cY � W
is bounded below by a non-decreasing, unbounded function on W .

Proof. First note that for any Y ⊆ ω × ω, Y is large iff for each n < ω,
{i < ω : cY (i) ≤ n} /∈ D iff for each n < ω, {i < ω : cY (i) > n} ∈ D. Let Y ⊆
ω × ω be large. For each n < ω, define Wn = {i < ω : cY (i) > n}. Then each
Wn ∈ D and Wn ⊇ Wn+1. Since D is a p-point, there is a W ∈ D such that
for each n < ω, W ⊆ ∗ Wn. Let kn be a strictly increasing sequence such that
for each n < ω, W \ kn ⊆ Wn. Note that for each i ∈ W \ kn, cY (i) > n.
Therefore, for each n < ω, for each i ∈ W ∩ (kn, kn+1], cY (i) > n. Hence, cY is
bounded below on W by the function g : W → ω, where for each n, for each
i ∈ W ∩ (kn, kn+1], g(i) = n.
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For the reverse direction, if Y ⊆ ω × ω, W ∈ D and cY � W is bounded
below by a non-decreasing unbounded function, then for each n < ω, {i ∈
W : cY (i) ≤ n} is finite, hence {i < ω : cY (i) ≤ n} /∈ D. Therefore, Y is large.

�

For the sake of readability, we repeat an argument of Blass (pp. 151–152
[3]) in this paragraph. We are going to construct a p-point E on ω × ω such
that π1(E) = D. To ensure that E 
≡RK D, it will suffice that π1 is not one-
to-one on any set of E. This means that E must contain the complement
of the graph of every function from ω to ω. Hence, E must also contain
the complement of every finite union of such graphs. If Y is the graph of
a function, then Y is small, for cY is bounded by 1 on all of ω. Also, if
A ∈ D and Y = (ω × ω) − π−1

1 (A), then Y is small, for cY is bounded by 0
on A. Therefore, if E is an ultrafilter on ω × ω containing no small set, then
E >RK D.

We now construct an ultrafilter E in ω1 stages. Let 〈fα : α < ω1〉 enumerate
all functions from ω × ω into ω, and let 〈hα : α < ω1〉 enumerate all continuous
monotone maps from P (ω) into P(ω). We build filter bases Yα, α < ω1, with
the following properties.

(1) Every set in Yα is large.
(2) If β < α < ω1, then Yβ ⊆ Yα.
(3) Yα is countable.
(4) fα is finite-to-one or bounded on some set of Yα+1.
(5) hα � D is not a cofinal map from D into any ultrafilter extending Yα+1.

Let Y0 = {ω × ω}. If α < ω1 is a limit ordinal and Yβ has been constructed
for all β < α, then let Yα =

⋃
β<α Yα.

If Yα is given, do the following. By (Lemma 3, p. 153 [3]), there is a set
T ⊆ ω × ω on which fα is finite-to-one or bounded, and such that T ∩ Y is
large for each Y ∈ Yα. Let Y ′

α be the filter base obtained by adjoining T to
Yα and closing under finite intersections.

Next, consider the continuous monotone map hα. If h′ ′
αD does not generate

an ultrafilter, there is nothing to do; let Yα+1 = Y ′
α. Suppose now that h′ ′

αD
generates an ultrafilter.

Claim 2. There is a set Z such that Z ∩ Y and Zc ∩ Y are large for each
Y ∈ Y ′

α.

Proof. By the inductive construction, Y ′
α is countable and every element

of Y ′
α is large. Let Xn (n < ω) be a base for Y ′

α such that each Xn ⊇ Xn+1.
Since each Xn is large, by Claim 1, there is a Wn ∈ D and a non-decreasing
unbounded function gn : Wn → ω such that for each i ∈ Wn, cXn(i) ≥ gn(i).
Without loss of generality, we can assume that each Wn ⊇ Wn+1. Since D is
a p-point, let W ∈ D satisfy for each n < ω, W ⊆∗ Wn.
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We shall build disjoint Z0,Z1 ⊆ ω × ω and a strictly increasing sequence
〈kn : n < ω〉 as follows. Let k0 be least such that for each i ∈ [k0, ω) ∩ W0,
g0(i) ≥ 2 and W \ k0 ⊆ W0. In general, choose km > km−1 satisfying
(1) for each j ≤ m and each i ∈ [km, ω) ∩ Wj , gj(i) ≥ 2(m + 1)2;
(2) W \ km ⊆ Wm (and hence for each j < m, W \ km ⊆ Wj).
Given m < ω and i ∈ W ∩ [km, km+1), for each j ≤ m, choose xi,j,l, yi,j,l, l ≤ m,
distinct in {z ∈ ω : (i, z) ∈ Xj } \ {xi,q,l, yi,q,l : l ≤ m,q < j}. (This is possible
since for each i ∈ W ∩ [km, km+1), for each j ≤ m, cXj (i) ≥ gj(i) ≥ 2(m+1)2.)
For each i ∈ W , define mi to be the integer m for which i ∈ [km, km+1). Define
Z0 = {(i, xi,j,l) : i ∈ W , j ≤ mi, l ≤ mi}; Z1 = {(i, yi,j,l) : i ∈ W , j ≤ mi, l ≤
mi}. Note that Z0,Z1 are large, disjoint, and have large intersection with each
Xn. Letting Z = Z0, then both Z and Zc have the desired properties. �

Take Z as in Claim 2. If Z ∈ h′ ′
αD, let Yα+1 be the filter base obtained by

closing Y ′
α ∪ {Zc} under finite intersections; and if Zc ∈ h′ ′

αD then let Yα+1 be
the filter base obtained by closing Y ′

α ∪ {Z} under finite intersections. Then
hα � D cannot be a cofinal map from D into any ultrafilter extending Yα+1.

As in the final argument of (Theorem 6 [3]), let Y =
⋃

α<ω1
Yα, and let B

be the filter of all sets whose complements are small. Every set of Y , being
large, has infinite intersection with every set of B, so there is an ultrafilter E
extending Y ∪ B. Then E >RK D, and E is a p-point since requirement (4) is
met for all α < ω1. Moreover, E >T D, since for every continuous monotone
map h : P (ω) → P(ω), h � D is not a cofinal map from D into E. �

Remark. Dilip Raghavan has independently observed Theorem 52.

Remark. If one is only interested in building an ultrafilter E Tukey strictly
above D, then one does not have to use large sets in the previous construction,
but one only needs to ensure that E is a p-point and that all continuous
monotone maps are prevented from being cofinal maps from D into E. In
the above proof, we used large sets to ensure that E also be Rudin–Keisler
strictly above D in order to obtain the following corollary.

Corollary 53. Assuming CH, there is a Tukey strictly increasing chain
of p-points of order type c.

Proof. In (Theorem 7 [3]), Blass proved that MA implies that any RK
increasing chain of p-points of length ω has an RK upper bound which is
a p-point. The p-point E constructed in the above Theorem 52 is also RK
strictly above D, so for any α < ω1, we can construct ω-length chains of p-
points Dα+n, where each Dα+n+1 >T Dα+n and Dα+n+1 >RK Dα+n (α < ω1)
and then use (Theorem 7 [3]) to find a p-point RK above each Dα+n, n < ω,
hence also Tukey above them. �

The following questions are to be answered assuming that p-points exist or
some assumption that guarantees their existence.
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Question 54. Is there a Tukey strictly increasing chain of p-points of
length c+?

The Tukey increasing chain of p-points constructed in the proof of Theo-
rem 52 is also Rudin–Keisler increasing. This leads to the next question.

Question 55. Given any strictly Tukey increasing sequence of p-points of
length ω, is there always a p-point Tukey above all of them?

In particular,

Question 56. Given any p-point V , is there a p-point U such that U >T V ,
but U and V are RK-incomparable?5

We now show that, assuming Martin’s Axiom, there are incomparable p-
points with a common upper bound and a common lower bound which are
also p-points.

Theorem 57. Assume Martin’s Axiom. There is a p-point D with two
Tukey-incomparable Tukey predecessors π1(D) and π2(D) which are also p-
points, which in turn have a common Tukey lower bound E which is also a
p-point. (In the following diagram, arrows represent strict Tukey reducibility.)

D

����������

����������

π1(D)

����������
π2(D)

����������

E

Proof. In (Theorem 9 [3]), Blass proved that assuming Martin’s Axiom,
there is a p-point with two RK-incomparable predecessors. He used the fol-
lowing notions which we shall also use. A subset of ω × ω of the form P × Q,
where P and Q are subsets of ω of cardinality n < ω, is called an n-square.
A subset of ω × ω is called large if it includes an n-square for every n, and
small otherwise. Blass’ construction builds a p-point D ⊆ ω × ω consisting
of large sets such that π1(D) and π2(D) are RK-incomparable. For i = 1,2,
πi(D) ≤RK D, hence πi(D) are also p-points and are ≤T D. The fact that
every member of D is large ensures that π1(D) and π2(D) are non-principal.

The following lemma will be useful for constructing the desired D.

Lemma 58. Given Y a filter base on ω × ω of size < c and a monotone
function h : P (ω) → P (ω), there is a large set U such that U ⊆∗ Y for each
Y ∈ Y , and for any ultrafilter D′ ⊇ Y ∪ {U } consisting only of large sets,
h � π1(D′) is not a cofinal map from πi(D′) → πj(D′), for i 
= j.

5 At the time of press, it is now known from recent work in [11] that the answer is yes.
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Proof. By (Lemma 2, Section 6 [3]) (which uses MA), there is a large set
X such that X ⊆∗ Y for each Y ∈ Y . Since X is large, we can choose Lk ⊆ X ,
k < ω, such that Lk is a (2k)-square and 〈π1(Lk) : k < ω〉, 〈π2(Lk) : k < ω〉
form block sequences; that is, for each k < ω and i = 1,2, each element in
πi(Lk) is less than each element in πi(Lk+1). Let I =

⋃
k<ω π1(Lk) and J =⋃

k<ω π2(Lk).
Case 1. There is an infinite I ′ ⊆ I such that letting J ′ = (ω \ h(I ′)) ∩

J and mk = min{ |I ′ ∩ π1(Lk)|, |J ′ ∩ π2(Lk)| }, the sequence 〈mk : k < ω〉 is
unbounded. Then there is a strictly increasing subsequence 〈mkn : n < ω〉.
Let W =

⋃
n<ω(I ′ ∩ π1(Lkn)) × (J ′ ∩ π2(Lkn)). Then W ⊆ X and W is large.

Note that if D′ is any ultrafilter extending Y ∪ {W }, then I ′ = π1(W ) is in
π1(D′) and h(I ′) is disjoint from J ′ = π2(W ) which is in π2(D′). Therefore,
f(I ′) /∈ π2(D′).

Case 2. Not Case 1. Then for each infinite I ′ ⊆ I , letting J ′ = (ω \ h(I ′)) ∩
J , there is an m < ω such that min{ |I ′ ∩ π1(Lk)|, |J ′ ∩ π2(Lk)| } ≤ m for each
k < ω. Let W ′ =

⋃
k<ω Lk. Then W ′ ⊆ X and W ′ is large.

Claim. For any I ′ ⊆ I such that I ′ = π1(V ′) for some large V ′ ⊆ W ′, there
is a strictly increasing sequence 〈kn : n < ω〉 and an m < ω such that for each
n, |h(I ′) ∩ π2(Lkn)| ≥ 2kn − m.

Proof. Let I ′ ⊆ I be such that I ′ = π1(V ′) for some large V ′ ⊆ W ′, and
let J ′ = (ω \ h(I ′)) ∩ J . Since we are in Case 2, there is an m < ω satisfying
min{|I ′ ∩ π1(Lk)|, |J ′ ∩ π2(Lk)| } ≤ m for each k < ω. Since V ′ is large and
V ′ ⊆ W ′, there is a subsequence 〈kn : n < ω〉 such that 〈 |I ′ ∩ π1(Lkn)| : n < ω〉
is a strictly increasing sequence of numbers greater than m. Then for each
n < ω, it must be the case that |J ′ ∩ π2(Lkn)| ≤ m. Note that for each n,
(ω \ h(I ′)) ∩ π2(Lkn) = (ω \ h(I ′)) ∩ J ∩ π2(Lkn) = J ′ ∩ π2(Lkn), since π2(Lkn) =
J ∩ π2(Lkn). Thus, for each n, |(ω \ h(I ′)) ∩ π2(Lkn)| = |J ′ ∩ π2(Lkn)| ≤ m.
Since |π2(Lkn)| = 2kn, it follows that |h(I ′) ∩ π2(Lkn)| ≥ 2kn − m. �

Divide each π2(Lk) into two disjoint sets each of size k, labeling one of
them Mk. Let J ∗ =

⋃
k<ω Mk. Let W = W ′ ∩ (ω × J ∗). Then W ⊆ X and

W is large. Let D′ be any ultrafilter extending Y ∪ {W } consisting only of
large sets. Since W ∈ D′, we have that J ∗ ∈ π2(D′). We claim that for all
I ′ ∈ π1(D′), h(I ′) 
⊆ J ∗.

Let I ′ be any member of π1(D′). Then there is a V ′ ′ ∈ D′ such that V ′ ′ ⊆ W
and I ′ ′ := π1(V ′ ′) ⊆ I ′. By the claim, there is a strictly increasing sequence
〈kn : n < ω〉 and an m such that for each n, |h(I ′ ′) ∩ π2(Lkn)| ≥ 2kn − m.
However, for each n, |J ∗ ∩ π2(Lkn)| = |Mkn | = kn, which is less than 2kn − m
for all large enough n. Thus, h(I ′ ′) 
⊆ J ∗. Since h is monotone, h(I ′) also
cannot be contained in J ∗. Thus, h � π1(D′) is not a cofinal map from π1(D′)
into π2(D′). This ends Case 2.

Thus, in both Cases 1 and 2, we have found a large W such that W ⊆∗ Y
for all Y ∈ Y and such that for any ultrafilter D′ extending Y ∪ {W } consisting
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only of large sets, h � π1(D′) is not a cofinal map from π1(D′) into π2(D′).
Now repeat the entire above argument starting with W in place of X and
reversing the roles of π1 and π2 to obtain a large U ⊆ W such that for any
ultrafilter D′ ⊇ Y ∪ {U } consisting only of large sets, h � π2(D′) is not a cofinal
map from π2(D′) into π1(D′). This finishes the proof of the lemma. �

Now we construct the desired p-point D on ω × ω. Enumerate P (ω × ω)
as Aα, α < c, and enumerate all continuous monotone maps from P (ω) into
P (ω) as hα, α < c. We construct filter bases Yα, α < c, which satisfy the
following.

(1) Yα is a filter base of size less than c.
(2) Every set in Yα is large.
(3) If β < α < c, then Yβ ⊆ Yα.
(4) Either Aα or ω × ω \ Aα is in Yα+1.
(5) There is a U ∈ Yα+1 such that U ⊆∗ Y for each Y ∈ Yα.
(6) For any ultrafilter D′ extending Yα+1 consisting only of large sets, fα �

π1(D′) is not a cofinal map from π1(D′) into π2(D′), and fα � π2(D′) is
not a cofinal map from π2(D′) into π1(D′).

Let Y0 = {ω × ω}. If α is a limit ordinal and Yβ has been defined for all
β < α, then let Yα =

⋃
β<α Yβ .

In the case that Yα has been constructed, construct Yα+1 as follows. By
(Lemma 2, p. 162 [3]), there is a large T such that T ⊆∗ Y for each Y ∈ Yα.
If Aα ∩ T is large, then let Y ′

α = Yα ∪ {Aα ∩ T }. Otherwise, Aα ∩ T is small.
Since T is large, then T \ Aα is large, by (Lemma 1, p. 162 [3]); so let Y ′

α =
Yα ∪ {T \ Aα}.

Next use Lemma 58 for Y ′
α and hα to obtain a large Uα such that such that

Uα ⊆∗ Y for each Y ∈ Y ′
α, and for any ultrafilter D′ ⊇ Y ′

α ∪ {Uα} consisting
only of large sets, hα � πi(D′) is not a cofinal map from πi(D′) into πj(D′),
for i ≤ 1 and j = 1 − i. Let Yα+1 = Y ′

α ∪ {Uα}.
Let D =

⋃
α<c

Yα. By (2), π1(D) and π2(D) are non-principal; by (4),
D is an ultrafilter; by (5), D is a p-point; and by (6), π1(D) and π2(D)
are Tukey-incomparable. Since π1(D) and π2(D) are Rudin–Keisler below
D, they are also p-points. Moreover, since the p-point D is Rudin–Keisler
above both π1(D) and π2(D), it follows from (Theorem 5 [3]) that there is a
p-point which is Rudin–Keisler (hence Tukey) below both π1(D) and π2(D).
Thus, assuming MA, the diamond lattice embeds into the Tukey degrees of
p-points. �

(Theorem 5 [3]) states that if countably many p-points have an RK up-
per bound which is a p-point, then they have an RK lower bound (which is
necessarily a p-point).
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Question 59. If countably many p-points have a Tukey upper bound
which is a p-point, do they necessarily have a Tukey lower bound which is
a p-point?

Question 60. Does every Tukey strictly decreasing sequence of p-points
have a Tukey lower bound which is a p-point?

Remark. Laflamme showed in [23] that in the NCF model of [5], the RK
ordering of p-points is upwards directed, and hence also downwards directed.
Thus, in the NCF model, the Tukey degrees of p-points are both upwards
and downwards directed. (We know by Theorem 16 that the class of basically
generated ultrafilters with bases closed under finite intersections is upwards
directed.) Recall that the cardinal inequality u < g implies NCF (see [6]), so
it is natural to ask the following.

Question 61. Does u < g imply there is a minimal Tukey degree in the
class of p-points?

6. Block-basic ultrafilters on FIN

In this section, we study the Tukey ordering between idempotent ultrafilters
U on the index set FIN and their Rudin–Keisler predecessors Umin,max, Umin,
and Umax. We begin by giving the relevant definitions for this investigation.

The following definitions may all be found in [1]. We let FIN denote the
collection of nonempty finite subsets of ω. Note that FIN is countable and
can serve as a base set for ultrafilters. Because of the natural structure on
FIN, which we shall give shortly, the ultrafilters on FIN may have some ex-
tra structure which can be utilized in the study of their Tukey types. The
set FIN carries the semigroup operation ∪, where for x, y ∈ FIN such that
max(x) < min(y), x ∪ y is defined to be {i ∈ ω : i ∈ x or i ∈ y}, the usual
union. (If max(x) 
≤ min(y), then x ∪ y is undefined.) This operation natu-
rally extends to a semigroup operation on the collection β FIN of ultrafilters
on FIN, that is, the Čech–Stone compactification of FIN, as follows. For U
and V ultrafilters on FIN, U ∪ V is defined to be the collection of all A ⊆ FIN
such that {x ∈ FIN : {y ∈ FIN : x ∪ y ∈ A} ∈ U } ∈ V . An idempotent ultrafilter
on the semigroup (FIN, ∪) is an ultrafilter U on FIN such that U ∪ U = U .
The existence of idempotent ultrafilters on FIN was established by S. Glazer
(see [7]).

At this point, we define some standard maps. The map min : FIN →
ω is given by min(x) is the least element of x, for any x ∈ FIN. Like-
wise, max : FIN → ω is defined by letting max(x) be the largest element
of x. The map (min,max) : FIN → ω × ω is defined by (min,max)(x) =
(min(x),max(x)). Note that whenever U is an ultrafilter on FIN, then the fol-
lowing are ultrafilters: Umin is the ultrafilter on ω generated by the collection
of sets {min(x) : x ∈ U }, U ∈ U . Umax is the ultrafilter on ω generated by the
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collection of sets {max(x) : x ∈ U }, U ∈ U . Umin,max is the ultrafilter on ω × ω
generated by the collection of sets {(min(x),max(x)) : x ∈ U }, U ∈ U . Note
that these are all ultrafilters, since they are images of U under the Rudin–
Keisler maps min, max, and (min,max), respectively. Thus, it also follows
that U ≥RK Umin,max, Umin,max ≥RK Umin, and Umin,max ≥RK Umax. Thus,
the same Tukey reductions between these ultrafilters hold.

In [4], Blass showed that Glazer’s proof easily adapts to show the following.

Theorem 62 (Blass, Theorem 2.1 [4]). Let V0 and V1 be a pair of non-
principal ultrafilters on ω. Then there is an idempotent ultrafilter U on FIN
such that Umin = V0 and Umax = V1.

Corollary 63. There exist idempotent ultrafilters on FIN realizing the
maximal Tukey type Utop.

Proof. Let V0 = V1 be a nonprincipal ultrafilter on ω such that V0 ≡T [c]<ω .
Then by Theorem 62, Umin = Umax = V0. Since U ≥RK Umin, we have that
U ≥T V0, which implies that U has the top Tukey type. �

Thus, one is naturally led to consider the conditions on idempotent ul-
trafilters U on FIN that would prevent U from having the maximal Tukey
type.

Definition 64. A block-sequence of FIN is an infinite sequence X =
(xn)n<ω of elements of FIN such that for each n < ω, max(xn) < min(xn+1).
For a block-sequence X , we let [X] denote {xn1 ∪ · · · ∪ xnk

: k < ω and n1 <
· · · < nk }, the set of finite unions of elements of X . For any m < ω, let X/m
denote (xn)n≥k where k is least such that min(xk) ≥ m.

The collection of block-sequences carry the following partial ordering ≤.
For two infinite block-sequences X = (xn)n<ω and Y = (yn)n<ω , define Y ≤ X
iff each member of Y is a finite union of elements of X ; i.e. yn ∈ [X] for each n.
We write Y ≤∗ X to mean that Y/m ≤ X for some m < ω. That is, Y ≤∗ X
iff there is some k such that for all n ≥ k, yn ∈ [X].

An idempotent ultrafilter U on FIN is called block-generated if it is gener-
ated by sets of the form [X] where X is an infinite block-sequence. (Block-
generated ultrafilters are called ordered-union ultrafilters in [4].)

We now state some relevant information about block-generated ultrafilters,
much of which was proved by Blass in [4].

Fact 65. Let U be any nonprincipal block-generated ultrafilter on FIN.
(1) (Proposition 3.3 [4]) U is idempotent.
(2) (Corollary 3.6 [4]) U is not a p-point.
(3) U is not a q-point.
(4) (Corollary 3.7 [4]) Umin,max is isomorphic (i.e., Rudin–Keisler equivalent)

to Umin · Umax.
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(5) (Proposition 3.9 [4]) Umin and Umax are q-points.
(6) Umin,max is neither a p-point nor a q-point.
(7) If Umin is selective, then Umin,max is rapid.

Proof. (3) We provide a proof of (3) since it does not seem to yet be in the
literature, though most likely it has been noticed before. Let U be a nonprin-
cipal block-generated ultrafilter on FIN and let Pn = {x ∈ FIN : max(x) = n}.
Then (Pn)n<ω forms a partition of FIN into finite sets. Let U be any element
of U . Since U is block-generated, there is some block sequence X such that
[X] ∈ U and [X] ⊆ U . Let y be any member of X except the first member of
X , and let n = max(y). Then there is an x ∈ X such that max(x) < min(y).
Thus, both x ∪ y and y are in [X] ∩ Pn. Hence, for each U ∈ U , there is some
n such that |U ∩ Pn| ≥ 2. Therefore, U is not a q-point.

(6) Let Mn = {xmin,max : min(x) = n}. Then {Mn : n < ω} is a partition
of ω. If X is any block sequence, then |[X]min,max ∩ Mn| = ω for infinitely
many n. So Umin,max is not a p-point. Let Pn = {ι({k,n}) : k < n}, where ι is
some fixed pairing function. Then for each n ≥ 1, Pn is finite, and {Pn : n ≥ 1}
is a partition of ω. If X is a block sequence, then |[X]min,max ∩ Pn| > 1 for
infinitely many n. Hence, Umin,max is not a q-point.

(7) Given a strictly increasing function g : ω → ω, without loss of generality
assuming the coding function ι : [ω]2 → ω has the property that ι({m,n}) ≥ n
for each m < n, let kl = 2l+1 for all l < ω. Since Umin is selective, there is an
infinite block-sequence X such that [X] ∈ U , |Xmin ∩ [0, g(k2)]| = 0, and for
each l ≥ 2, |Xmin ∩ (g(kl), g(kl+1)]| ≤ 1. Then |[X]min,max ∩ g(n)| < n for each
n < ω. �

By (5), the existence of block-generated ultrafilters on FIN cannot be
proved on the basis of the usual ZFC axioms of set theory, though using
Hindman’s theorem one can easily establish the existence of such ultrafilters
using CH or MA.

As noted above, no nontrivial idempotent ultrafilter on FIN is basic, since
such an ultrafilter is never a p-point, so we are naturally led to the following
relaxation of this notion.

Definition 66. For infinite block sequences Xn = (xn
k )k<ω and X =

(xk)k<ω , the sequence (Xn)n<ω converges to X (written Xn → X as n → ∞)
if for each l < ω there is an m < ω such that for all n ≥ m and all k ≤ l,
xn

k = xk. A block-generated ultrafilter U is block-basic if whenever we are
given a sequence (Xn)n<ω of infinite block sequences of elements of FIN such
that each [Xn] ∈ U and (Xn)n<ω converges to some infinite block sequence X
such that [X] ∈ U , then there is an infinite subsequence (Xnk

)k<ω such that⋂
k<ω[Xnk

] ∈ U .

Definition 67. Let FIN[n] denote the collection of all block sequences of
elements of FIN of length n. A block-generated ultrafilter U on FIN has the
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2-dimensional Ramsey Property if for each finite coloring of FIN[2], there is
an infinite block sequence X such that [X] ∈ U and [X][2] is monochromatic.
A block-generated ultrafilter U on FIN has the Ramsey Property if for each n <

ω and each finite coloring of FIN[n], there is an infinite block sequence X such
that [X] ∈ U and [X][n] is monochromatic. Let FIN[∞] denote the collection of
all infinite block sequences of elements of FIN. A block-generated ultrafilter U
on FIN has the ∞-dimensional Ramsey Property if for every analytic subset
A of FIN[∞] there is an infinite block sequence X such that [X] ∈ U and
[X][∞] is either included in or disjoint from A. (For more information about
∞-dimensional Ramsey Theory, see [36].)

The following theorem shows how the notion of block-basic ultrafilters fits
with several equivalences shown by Blass in [4].

Theorem 68. The following are equivalent for a block-generated ultrafilter
U on FIN.
(1) U is block-basic.
(2) For every sequence (Xn) of infinite block sequences of FIN such that

[Xn] ∈ U and Xn+1 ≤∗ Xn for each n, there is an infinite block sequence
X such that [X] ∈ U and X ≤∗ Xn for each n.

(3) U has the 2-dimensional Ramsey property.
(4) U has the Ramsey property.
(5) U has the ∞-dimensional Ramsey property.

Remark. (2) is called a stable ordered-union ultrafilter in [4].

Proof. The equivalence of (2), (3), (4) and (5) were established in (Theo-
rem 4.2 [4]).

(1) implies (2). Suppose U is block-basic. Let (Xn)n<ω be a sequence of
block-sequences of FIN such that [Xn] ∈ U and Xn+1 ≤∗ Xn for each n. Let
(mn)n<ω be a strictly increasing sequence such that X0 ≥ X1/m1 ≥ X2/m2 ≥
· · · . Let Yn = ({l})l≤mn

	(Xn/mn). Then each Yn =∗ Xn and Yn → ({l})l<ω .
By (1) there is a subsequence (nk)k<ω such that

⋂
k<ω[Ynk

] ∈ U . Since U is
block-generated, there is a Z such that [Z] ∈ U and [Z] ⊆

⋂
k<ω[Ynk

]. Then
for each n < ω, taking k such that nk > n, we have that Xn =∗ Yn ≥∗ Ynk

≥ Z.
Thus, (2) holds.

Now suppose that (2) holds. Since U is block-generated, (2) is equivalent
to the statement (2)′: For every sequence (Xn)n<ω of infinite block sequences
of FIN such that each [Xn] ∈ U , there is an infinite block sequence X such
that [X] ∈ U and X ≤∗ Xn for each n. Let (Xn)n<ω be a sequence of block
sequences such that each [Xn] ∈ U and (Xn)n<ω → X . By (2)′, there is a
Z ≤ X0 such that [Z] ∈ U and for each n < ω, Z ≤∗ Xn. Thus, there is a
strictly increasing sequence (mk)k<ω such that each mk = min(z) for some
z ∈ Z and
(a) n ≥ mk+1 implies Xn ∩ mk = X ∩ mk;
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(b) n ≤ mk implies Xn/mk+1 ≥ Z.
Let Z0 = {z ∈ Z : ∃k(m4k ≤ min(z) < m4k+2)}. If [Z0] ∈ U , then take some
Y ≤ Z0,X such that [Y ] ∈ U . For each k < ω, X4k+3 ∩ m4k+2 = X ∩ m4k+2 ≥
Y ∩ m4k+2. For each y ∈ Y , y ∩ [m4k+2,m4k+4) = ∅. X4k+3/m4k+4 ≥ Z ≥ Y .
Therefore,

⋂
k<ω[X4k+3] ⊇ [Y ]. If [Z0] /∈ U , then since U is block-generated,

there is a Z1 such that [Z1] ∈ U and [Z1] ⊆ [Z] \ [Z0]. Since Z1 ≤ Z and [Z1] ∩
[Z0] = ∅, for each z ∈ Z, if min(z) ∈ [m4k,m4k+2) then z /∈ Z1. Therefore,
Z1 ∩ Z0 = ∅. Hence, for each z ∈ Z1, min(z) ∈ [m4k+2,m4k+4). Letting Y ≤
Z1,X such that [Y ] ∈ U ,

⋂
k<ω[X4k+1] ⊇ [Y ]. Hence, (1) holds. �

Remark. Blass showed in [4], that for every stable ordered-union ultrafilter
U on FIN, both Umin and Umax are non-isomorphic selective ultrafilters. Thus,
we have the following corollary.

Corollary 69. If U is a block-basic ultrafilter on FIN, then Umin and
Umax are Rudin–Keisler incomparable selective ultrafilters on ω.

Remark. It follows by (Theorem 10 [28]) that for any block-basic ultra-
filter U on FIN, Umin and Umax are Tukey-incomparable.

Applying (Theorem 2.4 [4]) of Blass, we get some sort of converse to the
previous corollary.

Corollary 70. Assuming CH, for every pair V0 and V1 of non-isomorphic
selective ultrafilters on ω, there is a block-basic ultrafilter U on FIN such that
Umin = V0 and Umax = V1.

Our interest in block-basic ultrafilters on FIN is based on the following fact
whose proof is analogous to that of Theorem 20.

Theorem 71. Suppose U is a block-basic ultrafilter on FIN and that U ≥T

V for some ultrafilter V on any countable index set I . Then there is a mono-
tone continuous map f : P (FIN) → P (I) such that f ′ ′ U is a cofinal subset
of V .

Though the proof the next theorem follows the general outline of that of
Theorem 20, we include the proof here since it does use some extra arguments.

Theorem 72. Suppose U is a block-basic ultrafilter on FIN and V is
any ultrafilter on a countable index set I . If Umin,max ≥T V , then there are
an infinite block sequence X̃ such that [X̃] ∈ U and a monotone continu-
ous function f from {[X]min,max : X ≤ X̃} into P (I) whose restriction to
{[X]min,max : X ≤ X̃, [X] ∈ U } has cofinal range in V .

Proof. Let B be the collection of block sequences X such that [X] ∈ U .
Then {[X] : X ∈ B } is a base for U . Let C = {[X]min,max : X ∈ B }. Then C
is a base for Umin,max. For the sake of notation, let W denote Umin,max. Let
V be any ultrafilter on some countable base set I such that W ≥T V and let
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f : W → V be a monotone cofinal map witnessing that W ≥T V . Then f � C
is also a monotone cofinal map from C into V .

In a similar manner as in the proof of Theorem 20, we construct an X̃ ∈ B
such that the map f is continuous on {[W ]min,max : W ∈ B,W ≤ X̃}. Let

〈in : n < ω〉 be an enumeration of I . Let X0 = ({0}, {1}, {2}, . . .). Given Xn,
take Xn+1 ≤ Xn such that, letting (xn+1

i )i<ω denote Xn+1,

(1) min(xn+1
0 ) ≥ n + 1;

(2) For each finite block sequence s ⊆ P(n + 1), for each k ≤ n, if there is
a Z ∈ B such that min(Z) ≥ n + 1 and ik /∈ f([s ∪ Z]min,max), then ik /∈
f([s ∪ Xn]min,max).

Since U is block-basic, there is a Y ∈ B such that for each n < ω, Y ≤∗ Xn.
Let l0 = 0 and for each n < ω, let ln+1 > ln satisfy ln+1 = min(y) for some
y ∈ Y and Y/ln+1 ≤ Xln .

Color [Y ][2] as follows: Let h((y0, y1)) = 0 if there is an n < ω such that
max(y0) < ln and ln+2 ≤ min(y1); 1 otherwise. Since U has the Ramsey prop-
erty for pairs, there is a block-sequence X̃ ≤ Y such that h is constant on
[X̃][2]. h cannot be constantly 1 on [W ][2] for any block-sequence W , since
for any block-sequence (zk), there will be some n and some k < k′ such that
max(zk) < ln and ln+2 ≤ min(zk′ ); and such a pair will have color 0. Thus, h

is constantly 0 on [X̃][2].
Let (lnj ) be a subsequence of (ln) such that for each x in X̃ , either

max(x) < ln2j+1 or ln2j+2 ≤ min(x). Suppose W = (w0,w1,w2, . . .) ≤ X̃ and
is in B. Let C = [W ]min,max and let i ∈ I . Let k be such that i = ik.
Take j large enough that k < ln2j+1 and there is an m such that max(wm) <

ln2j+1 and min(wm+1) ≥ ln2j+2 . Note that W/ln2j+1 ≤ X̃/ln2j+1 ⊆ Y/ln2j+1 =
Y/ln2j+2 ≤ Xln2j+1

. Thus, i /∈ f(C) iff i /∈ f([t ∪ (W/ln2j+1)]min,max), where

t = (w0, . . . ,wm), iff i /∈ f([t ∪ Xln2j+1
]min,max) iff i /∈ f([t ∪ (X̃/ln2j+1)]min,max).

Thus, f is continuous on {[W ]min,max : W ∈ B,W ≤ X̃}.
In the following natural way, f � {[W ]min,max : W ∈ B,W ≤ X̃} can be

extended to a continuous monotone map from {[X]min,max : X ≤ X̃} into
P (I). For any X ≤ X̃ , define f ′([X]min,max) to be

⋂
{f([W ]min,max) : W ∈

B,W ≤ X̃ , and X ≤ W }. It follows from the definition of f ′ and the fact
that f is monotone on {[W ]min,max : W ∈ B,W ≤ X̃} that f ′ is monotone on
{[X]min,max : X ≤ X̃}. Note also that when restricted to {[W ]min,max : W ∈
B,W ≤ X̃} f ′ is the same as f . Finally, f ′ is continuous, since for any X ≤ X̃

and any k < ω, k ∈ f ′([X]min,max) iff for all W ∈ B,W ≤ X̃ , and X ≤ W ,
k ∈ f([W ]min,max), and each of these is determined by the initial segment of
W lying strictly below some particular ln2j+2 depending only on k. So a finite
amount of information which depends only on k and X determines whether
or not k is in f ′([X]min,max). Hence, f ′ is continuous. �
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Recall the following theorem of Hindman from [16], which is useful for
constructing block-basic ultrafilters.

Theorem 73 (Hindman’s theorem). For every finite coloring of FIN, there
is an infinite block sequence X = (xn) of members of FIN such that the set
[X] of all finite unions of members of X is monochromatic.

Theorem 74. Assuming CH, there is a block-basic ultrafilter U on FIN
such that Umin,max <T U and Umin and Umax are Tukey incomparable. (In the
following diagram, arrows represent strict Tukey reducibility.)

U

��
Umin,max

�����������

�����������

Umin

������������ Umax

������������

1

Proof. Recall that for every block-generated ultrafilter U on FIN,
Umin,max ≡RK Umin · Umax, and by Fact 30 and Corollary 34, Umin · Umax ≡T

Umin × Umax. Recall that Umin and Umax are Tukey incomparable, since they
are non-isomorphic selective ultrafilters. Thus, it suffices to construct a block-
basic ultrafilter U on FIN such that Umin,max <T U . Assuming CH, one can
construct a block-basic ultrafilter on FIN in the standard way (see [4]).

Fix a well-ordering 〈Aβ : β < ω1〉 of P (FIN). By Theorem 72, we can
enumerate as 〈(fβ , X̃β) : β < ω1〉, all pairs (f, X̃) such that X̃ ∈ FIN[∞] and
f : {[Z]min,max : Z ≤ X̃} → P (FIN) is a monotone continuous function. We
build a sequence 〈Sα : α < ω1〉 of elements of FIN[∞] such that for each α <
ω1:
(i) For all β < α, Sα ≤∗ Sβ ;
(ii) Either [Sα] ⊆ Aα or else [Sα] ∩ Aα = ∅;
(iii) One of the following hold:

(a) [Sα] ∩ [X̃α] = ∅; or
(b) for each W ′ ≤ Sα, fα([W ′]min,max) 
⊆ [Sα]; or
(c) fα([Sα]min,max) ∩ [Sα] = ∅.

Let S0 be any block sequence such that either [S0] ⊆ A0 or else [S0] ∩ A0 = ∅.
Such an S0 exists by Hindman’s theorem. At stage α in the construction, let
Y be a block sequence such that:
(i) for all β < α, Y ≤ ∗ Sβ , and
(ii) either [Y ] ⊆ Aα or else [Y ] ∩ Aα = ∅.
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(The standard argument using Hindman’s theorem to find such a Y can be
found on p. 93 of [4].)

Now we show there is an Sα ≤ Y satisfying (iii). If there is no block
sequence Z ≤ Y, X̃α, then the domain of fα is not contained in Umin,max for
any block-generated ultrafilter U extending {[Sβ ] : β < α}. In this case, use
Hindman’s theorem to find an Sα ≤ Y such that [Sα] ∩ [X̃α] = ∅.

Now suppose there is a Z ≤ Y, X̃α. If there is a W ≤ Z such that for
each W ′ ≤ W , fα([W ′]min,max) 
⊆ [W ], then let Sα = W . This ensures that
fα cannot be cofinal into any block-generated ultrafilter extending the filter
generated by {[Sβ ] : β ≤ α}, since fα is monotone.

Otherwise, for each W ≤ Z, there is a W ′ ≤ W such that fα([W ′]min,max) ⊆
[W ]. Let (zi) denote Z. Fix W = (wi) to be the block sequence where
each wi = z3i ∪ z3i+1 ∪ z3i+2. Thus, W ≤ Z. Fix some W ′ ≤ W such that
fα([W ′]min,max) ⊆ [W ]. W ′ ≤ W means that W ′ = (w′

j), where each w′
j =⋃

i∈Ij
wi, where each Ij is some finite set. Let mj = min(Ij) and kj = max(Ij).

Let Sα = (sj), where each sj = z3mj ∪ z3kj+2. Then min(sj) = min(w′
j) and

max(sj) = max(w′
j) for all j < ω; so [W ′]min,max = [Sα]min,max. Note that

[W ] ∩ [Sα] = ∅, and Sα ≤ Z. Note that for any ultrafilter U extending {[Sβ ] :
β ≤ α}, [Sα]min,max ∈ Umin,max. Hence, fα([Sα]min,max) = fα([W ′]min,max) ⊆
[W ] which is disjoint from [Sα]. Thus, the range of fα will not be contained
in U . By this and the previous two paragraphs, we have satisfied (iii).

Let U be the filter generated by {[Sα] : α < ω1}. Condition (ii) ensures
that U is an ultrafilter which is block-generated. Condition (iii) ensures that
Umin,max 
≥T U , and thus U >T Umin,max. �

Question 75. If U is any block-basic ultrafilter, does it follow that U >T

Umin,max?

Remark. Note that the proof of Theorem 74 shows that the generic filter
for the forcing notion (FIN[∞], ≤∗) adjoins a block-basic ultrafilter U on FIN
with the properties stated in Theorem 68. On the other hand, an argument
analogous with the case of selective ultrafilters on ω (see Theorem 4.9 of
Todorcevic appearing in [12]) shows that if there is a supercompact cardinal,
then every block-basic ultrafilter U on FIN is generic over L(R) for the forcing
notion (FIN[∞], ≤∗). Thus, the conclusion of Theorem 4.9 in [12] is true for
any block-basic ultrafilter U on FIN assuming the existence of a supercompact
cardinal. This leads us also to the following related problem.

Problem 76. Assume the existence of a supercompact cardinal. Let U be
an arbitrary block-basic ultrafilter on FIN. Show that the inner model L(R)[U ]
has exactly five Tukey types of ultrafilters on a countable index set.

This problem is based on the U -version of Taylor’s canonical Ramsey theo-
rem for FIN stating that for each map f : FIN → ω, there is an [X] ∈ U such
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that f � [X] is equivalent to one of the five mappings: constant, identity, min,
max, (min, max) (see [1], [33]). If the answer to this problem is positive, then
one can look at ultrafilters U on the index set FINk (k = 1,2,3, . . .) with analo-
gous Ramsey-theoretic properties whose corresponding inner models L(R)[U ]
have different finite numbers of Tukey types. This will of course be based on
Gower’s theorem for FINk and Lopez–Abad’s canonical Ramsey theorem for
FINk (see [1], [24], [14]). For example, for a block-basic ultrafilter U on FIN2,
one could expect exactly 43 Tukey types of ultrafilters in L(R)[U ].

The following is a subproblem of Problem 76.

Question 77. Is it true that for each block-basic U , there are no Tukey
types (a) strictly between U and Umin,max, (b) strictly between Umin,max and
Umin, and (c) strictly between Umin,max and Umax?

Question 78. Are there block-basic ultrafilters U , V on FIN which are
Tukey equivalent but RK incomparable?

7. A characterization of ultrafilters which are not of Tukey top
degree

In this section, we investigate Isbell’s question of whether ZFC implies that
there is always an ultrafilter which does not have top Tukey degree. It will be
useful here to consider the directed partial ordering ⊇ ∗ on ultrafilters as well
as the one we have been considering all along, namely ⊇. We note that always
(U , ⊇∗) ≤T (U , ⊇); for any subset X ⊆ U which is unbounded in (U , ⊇∗) is also
unbounded in (U , ⊇), so the identity map idU : (U , ⊇∗) → (U , ⊇) is a Tukey
map. Hence, if (U , ⊇) <T [c]ω , then also (U , ⊇∗) <T [c]ω . Milovich showed in
[25] that for any non-p-point U , there is an ultrafilter V such that (V , ⊇) ≤T

(U , ⊇∗). Thus, there is an ultrafilter U such that (U , ⊇) <T ([c]<ω, ⊆) if and
only if there is an ultrafilter V such that (V , ⊇∗) <T ([c]<ω, ⊆).

CH implies the existence of p-points, which solves Isbell’s problem, since
p-points have Tukey type strictly below the top, by Corollary 19. Thus, we
now assume ¬CH throughout this section. Assuming ¬CH, the following
combinatorial principle holds.

Definition 79 (Todorcevic). ♦[c]ω is the statement: There exist sets SA ⊆
A, A ∈ [c]ω , such that for each X ⊆ c, {A ∈ [c]ω : X ∩ A = SA} is stationary
in [c]ω .

This implies the next combinatorial principle in the same way that the
standard ♦ implies ♦−.

Definition 80 (Todorcevic). ♦−
[[ω]ω ]ω is the statement: There exist ordered

pairs (UA, XA), where A ∈ [[ω]ω]ω and XA ⊆ UA ⊆ A, such that for each pair
(U , X ) with X ⊆ U and X , U ∈ [[ω]ω]c, {A ∈ [[ω]ω]ω : UA = U ∩ A, XA = X ∩ A}
is stationary in [[ω]ω]ω .
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We now proceed to define some dense subsets of [ω]ω , denoted DA and
D′

A which can be used to give conditions under which an ultrafilter on ω is a
p-point, and other conditions under which it has Tukey type less than [c]<ω .
For the rest of this section, fix a ♦−

[[ω]ω ]ω sequence (UA, XA), where A ∈ [[ω]ω]ω .

Definition 81. Let PA = {W ∈ [ω]ω : ∃X ∈ UA(W ∩ X = ∅)}, QA = {W ∈
[ω]ω : ∀X ∈ XA(W ⊆∗ X)}, and Q′

A = {W ∈ [ω]ω : ∃(Bn)n<ω ∈ [XA]ω(∀n <
ω,W ⊆∗ Bn)}. Note that QA ⊆ Q′

A. Let DA = PA ∪ QA and D′
A = PA ∪ Q′

A.

Fact 82. For each A ∈ [[ω]ω]ω , DA and D′
A are dense open in the partial

ordering ([ω]ω, ⊇).

Proof. First, note that PA, DA, and D′
A are open. Thus, we need only

show density. Let Y ∈ [ω]ω . Suppose UA does not generate a nonprincipal
filter. Then there are U,V ∈ UA such that |U ∩ V | < ω. Either |Y \ U | = ω or
|Y \ V | = ω. Thus, there is a W ∈ [Y ]ω such that for some X ∈ UA, W ∩ X = ∅.
Hence W ∈ PA. Suppose that UA generates a nonprincipal filter. Then for any
U,V ∈ UA, U and V have infinite intersection. If Y /∈ 〈UA〉+, then there is an
X ∈ UA such that |Y ∩ X| < ω. So W = Y \ X ∈ PA. Otherwise, Y ∈ 〈UA〉+.
Then there is a W ∈ [Y ]ω such that for each B ∈ UA, W ⊆∗ B, since | UA| ≤ ω.
In particular, W ∈ QA, and any W ′ ∈ [W ]ω is also in QA. Therefore, DA is
dense open in [ω]ω . Moreover, since QA ⊆ Q′

A, it follows that W ∈ Q′
A and

any W ′ ∈ [W ]ω is also in Q′
A. Therefore, D′

A is also dense open. �

Fact 83. For any nonprincipal ultrafilter U , {A ∈ [[ω]ω]ω : U ∩ D′
A 
= ∅} is

stationary.

Proof. Let U be a nonprincipal ultrafilter and suppose that {A ∈ [[ω]ω]ω :
U ∩ D′

A 
= ∅} is not stationary. Then {A ∈ [[ω]ω]ω : U ∩ D′
A = ∅} contains a

club set, call it C. Let X =
⋃

{ XA : A ∈ C } ∩ U . Let X ∈ U . There are club
many A ∈ [[ω]ω]ω with X ∈ A. Thus, there are club many A with (A, U ∩ A) ≺
([ω]ω, U ). By ♦−

[[ω]ω ]ω , there is an A ∈ [ω]ω with X ∈ A such that U ∩ A = UA

and U ∩ A = XA. Therefore, U = X .
We claim that for each Y ∈ [U ]ω , there is no X ∈ U such that X ⊆∗ Y for

each Y ∈ Y . Let Y ∈ [U ]ω , and take an A ∈ C containing the Fréchet filter such
that Y ⊆ A, U ∩ D′

A = ∅, UA = U ∩ A, and XA = U ∩ A. Then Y ⊆ U ∩ A = XA.
For each infinite subset Z of Y , there is no U ∈ U such that U ⊆∗ Z for all
Z ∈ Z , since Q′

A ∩ U = ∅. Contradiction, since ω ∈ Q′
A ∩ U ∩ A, and ω is a

pseudointersection of the Fréchet filter, which is contained in U ∩ A. �

Fact 84. If U is an ultrafilter and U ∩ D′
A 
= ∅ for club many A ∈ [[ω]ω]ω ,

then (U , ⊇∗) <T ([c]<ω, ⊆). Thus, there is an ultrafilter V such that (V , ⊇) <T

([c]<ω, ⊆).

Proof. Let X ∈ [U ]c. {A ∈ [[ω]ω]ω : (A, U ∩ A, X ∩ A) ≺ ([ω]ω, U , X )} is club
in [[ω]ω]ω . By ♦−

[[ω]ω ]ω , {A ∈ [[ω]ω]ω : U ∩ A = UA, X ∩ A = XA} is stationary.
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If U ∩ D′
A 
= ∅ for club many A, then there are stationarily many A such that

U ∩ A = UA and X ∩ A = XA; and either there is a U ∈ UA and a W ∈ U
such that U ∩ W = ∅, which is impossible, or else there is a W ∈ U and a
sequence of distinct sets (Bn)n<ω ∈ [XA]ω = A ∩ X such that for each n < ω,
W ⊆∗ Bn. Therefore, (U , ⊇∗) is not of Tukey top degree. It follows from
(Proposition 3.12 [25]) that there is an ultrafilter V such that (V, ⊇) is not of
Tukey top degree. �

Fact 85. The following are equivalent:

(1) U is a p-point;
(2) U ∩ DA 
= ∅ for all A ∈ [[ω]ω]ω ;
(3) U ∩ DA 
= ∅ for club many A.

Proof. To show (1) implies (2), suppose U is a p-point and let A ∈ [[ω]ω]ω

be given. If UA 
⊆ U , then taking an X ∈ UA \ U , we have ω \ X ∈ U ∩ PA.
If UA ⊆ U , then since XA is countable, there is a W ∈ U which is almost
contained in every member of XA. Hence, W ∈ U ∩ QA. Thus, U ∩ DA 
= ∅
for all A ∈ [[ω]ω]ω .

(2) implies (3) is trivial.
To see that (3) implies (1), suppose that C is club in [[ω]ω]ω and for each

A ∈ C, U ∩ DA 
= ∅. Let Y ∈ [U ]ω . Take A such that Y ⊆ A, (A, U ∩ A, U ∩ A) ≺
([ω]ω, U , U ), UA = U ∩ A, XA = U ∩ A, and U ∩ DA 
= ∅. Then Y ⊆ U ∩ A = XA.
Since U ∩ DA 
= ∅, there is a W ∈ U such that for each X ∈ XA, W ⊆ ∗ X .
Hence, there is a W ∈ U such that W ⊆∗ Y for each Y ∈ Y . �

Remark. Assuming ¬CH and that there are no p-points (the remaining
open case for Isbell’s Problem), to solve Isbell’s Problem in the affirmative,
Fact 84 shows that it suffices to find an ultrafilter U such that the collection of
A ∈ [[ω]ω]ω such that U ∩ D′

A 
= ∅ contains a club set. Under the assumption
of no p-points, Fact 85 implies the set {A ∈ [[ω]ω]ω : U ∩ DA = ∅} cannot be
club.

Question 86. Assume ¬CH and there are no p-points. Can we use these
dense sets, or similar ones, to obtain

(1) an ultrafilter which is not Tukey top?
(2) an ultrafilter which is not Tukey top but also is not basically generated?

8. Concluding remarks and problems

Recall that the properties of p-point and rapid are preserved under Rudin–
Keisler reducibility.
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Question 87. Which properties of ultrafilters are preserved under Tukey
reducibility?6

By Theorem 35, if a p-point U ≥T ωω , then U ≡T U · U , which is not a p-
point, so the property of being a p-point is not preserved by Tukey reducibility.
However, we may ask the following.

Question 88. If U is a p-point and U ≥T V , then is there a p-point W
such that W ≡T V ?7

Question 89. Which lattices can be embedded into the Tukey types of
p-points? In particular, are there two Tukey incomparable p-points which
have no p-point as a common Tukey upper bound?

Question 90. Are there two Tukey non-comparable ultrafilters whose least
upper bound is the top Tukey type?

Question 91. Does every Tukey minimal type contain a selective ultrafil-
ter?

Question 92. What is the structure of the Rudin–Keisler types within
the top Tukey type?
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modern analysis and algebra, Academia Publishing House of the Czechoslovak Acad-

emy of Sciences, Praha, 1967, pp. 205–206. MR 0216467
[20] I. Juhász, Remarks on a theorem of B. Posṕı̌sil (Russian), Comment. Math. Univ.

Carolin. 8 (1967), 231–247. MR 0216467
[21] J. Ketonen, On the existence of P-points in the Stone–Cech compactification of inte-

gers, Fund. Math. 92 (1976), 91–94. MR 0433387
[22] K. Kunen, Weak P-points in N ∗, Colloquia Mathematica Societatis János Bolyai, vol.

23. Topology, Budapest, North-Holland, Amsterdam, 1978, pp. 741–749. MR 0588822
[23] C. Laflamme, Upward directedness of the Rudin–Keiser ordering of p-points, J. Sym-

bolic Logic 55 (1990), 449–456. MR 1056362
[24] J. Lopez-Abad, Canonical equivalence relations on nets of PSc0 , Discrete Math. 307

(2007), 2943–2978. MR 2371069
[25] D. Milovich, Tukey classes of ultrafilters on ω, Topology Proc. 32 (2008), 351–362.

MR 1500094
[26] D. Milovich, Forbidden rectangles in compacta, Topology Appl. 159 (2012), 3180–3189.

MR 2948276
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