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HYPERSURFACES WITH CONSTANT SECTIONAL
CURVATURE OF S" xR AND H" x R

FERNANDO MANFIO AND RUY TOJEIRO

ABSTRACT. We classify the hypersurfaces of S x R and H™ x R
with constant sectional curvature and dimension n > 3.

1. Introduction

The submanifold geometry of the product spaces S* x R and H” x R has
been extensively studied in the last years. Here S™ and H" denote the sphere
and hyperbolic space of dimension n, respectively. Emphasis has been given on
minimal and constant mean curvature surfaces in S? x R and H? x R, starting
with the work in [1] and [15], among others. See [11] for an up-to-date list of
references on this topic.

Surfaces of constant Gaussian curvature of S? x R and H? x R were in-
vestigated in [2] and [3], with special attention to their global properties (see
also [12] for a local study in H? x R). In particular, nonexistence of complete
surfaces of constant Gaussian curvature ¢ in S? x R (respectively, H? x R) was
established for ¢ < —1 and 0 < ¢ < 1 (respectively, ¢ < —1). It was also shown
that a complete surface of constant Gaussian curvature ¢ > 1 in S? x R (re-
spectively, ¢ >0 in H? x R) must be a rotation surface. Moreover, the profile
curves of such surfaces have been explicitly determined.

Our aim in this paper is to classify all hypersurfaces with constant sectional
curvature and dimension n >3 of S x R and H" x R. It turns out that for
n > 4 a hypersurface of constant sectional curvature ¢ in S™ X R (respectively,
H"™ x R) only exists, even locally, if ¢ > 1 (respectively, ¢ > —1), and for any
such values of ¢ it must be an open subset of a complete rotation hypersurface.
In the case n = 3, exactly one class of nonrotational hypersurfaces of S* x R
and H"™ x R with constant sectional curvature arises. Each hypersurface in
this class in S* x R (respectively, H? x R) has constant sectional curvature

Received September 11, 2009; received in final form February 22, 2010.
2010 Mathematics Subject Classification. 53B25.

(©2012 University of Illinois

397


http://www.ams.org/msc/

398 F. MANFIO AND R. TOJEIRO

c € (0,1) (respectively, ¢ € (=1,0)), and is constructed in an explicit way
by means of a family of parallel flat surfaces in S* (respectively, H?). An
interesting property of such a hypersurface is that its unit normal vector field
makes a constant angle with the unit vector field spanning the factor R. All
surfaces in S? x R and H? x R with this property were classified in [8] and [9],
where they were called constant angle surfaces. Here we give a simple proof
of a generalization of this result to constant angle hypersurfaces of arbitrary
dimension of both S” x R and H" x R.

2. Preliminaries

Let QF denote either the sphere S™ or hyperbolic space H", according as e =
1 or € = —1, respectively. In order to study hypersurfaces f: M"™ — Q2 x R,
our approach is to regard f as an isometric immersion into E"*2, where
E"*+2 denotes either Euclidean space or Lorentzian space of dimension (n+2),
according as € =1 or € = —1, respectively. More precisely, let (z1,...,%n12)
be the standard coordinates on E"*2 with respect to which the flat metric is
written as

ds® =edai +dzj + - +dal .
Regard E"t! as
E" = {(z1,...,2p42) € E"t?: g, 40 = 0}

and
Qr={(z1,...,2p41) EE" ! i exit a3+ a2, =} (21 >0ife=—1).
Then we consider the inclusion

i:Qr xR —-E"! x R=E""?

and study the composition i o f, which we also denote by f.

Given a hypersurface f : M™ — QI x R, let N denote a unit normal vector
field to f and let % be a unit vector field tangent to the second factor. Then,
a vector field T and a smooth function ¥ on M™ are defined by

0
—=f.T+vUN.
T [T +v
Notice that T is the gradient of the height function h = (f, %>.
Two trivial classes of hypersurfaces of Q7 x R arise if either v or 1" vanishes

identically:

PROPOSITION 2.1. Let f: M"™ — QI xR be a hypersurface.

(i) If T vanishes identically, then f(M™) is an open subset of a slice Q7 x {t}.
(ii) If v vanishes identically, then f(M™) is an open subset of a Riemannian
product M"~1 x R, where M"~! is a hypersurface of Q™.
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Let V and R be the Levi-Civita connection and the curvature tensor of
M™, respectively, and let A be the shape operator of f with respect to V.
Then the Gauss and Codazzi equations are
(2.1) RX,Y)Z=(AXNAY)Z

+e((XAY)Z =Y, T X AT)Z+ (X, T) (Y AT)Z),
and
(2.2) VxAY —VyAX — AIX,)Y]=ev(X AY)T,

respectively, where X,Y,Z € TM. Moreover, the fact that % is parallel in
Q7 x R yields for all X € T'M that

VxTZ I/AX,

(2.3) X(v) = —(AX,T).

3. A basic lemma
Our main goal in this section is to prove the following lemma.

LEMMA 3.1. Let f: M} — QF x R be a hypersurface of dimension n >3
and constant sectional curvature ¢ # 0. Assume that T #0 at x € M. Then
T is a principal direction at x.

Lemma 3.1 will follow by putting together Lemma 3.2 and Proposition 3.3
below:

LEMMA 3.2. Let f: M™ — QI x R be a hypersurface. Suppose that T # 0
at x € M™. Then f has flat normal bundle at x as an isometric immersion
into E"T2 if and only if T is a principal direction at x.

PROPOSITION 3.3. Any isometric immersion g: M — E"*2 of a Rie-
mannian manifold with dimension n > 3 and constant sectional curvature
c#0 has flat normal bundle.

Lemma 3.2 was first proved in [7] for n =2 and e =1. A proof of the
general case can be found in [16]. For the proof of Proposition 3.3, we make
use of standard facts from [13] on the theory of flat bilinear forms. Recall
that a symmetric bilinear form §: V x V — W, where V and W are finite-
dimensional vector spaces, is said to be flat with respect to an inner product
() WxW-SRif

(BX,Y),B(Z,T)) - (BX.T),8(Z,Y)) =0

for all X,Y,Z,T € V. Clearly, the standard example of a flat bilinear form is
the second fundamental form of an isometric immersion between space forms
with the same constant sectional curvature.
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Denote by N () C V the nullity subspace of 3, given by
N(B)={XeV:B(X,Y)=0forallY €V},
and by S(B8) C W its image subspace
S(B) =span{B(X,Y): X,Y € V}.

The next result is a basic fact on flat bilinear forms (cf. Corollary 1 and
Corollary 2 in [13]):

THEOREM 3.4. [13] Let B: V xV — W be a flat bilinear form with respect
to an inner product (-,-) on W. Assume that {-,-) is either positive-definite or

Lorentzian and, in the latter case, suppose that S(5) is a nongenerate subspace
of W, that is, S(3) N S(B)*+ ={0}. Then

dim N(B) > dimV — dim S(5).

Another fact we will need in order to handle the case n =3 in Proposi-
tion 3.3 is the following consequence of Theorem 2 in [13].

THEOREM 3.5. [13] Let §: V x V — W be a flat bilinear form with respect
to an inner product (-,-) on W. Assume that dimV = dim W, that N(8) = {0}
and that (-,-) is either positive-definite or Lorentzian. Moreover, in the latter
case suppose that there exists a vector e € W such that (3(-,-),e) is positive
definite. Then there exists a diagonalyzing basis {e1,...,en} for B, that is,

Blei,e;) =0 for 1<i#j<n.

Proof of Proposition 3.3. First, recall that R"*? admits an umbilical in-
clusion 4 into both hyperbolic space H?*3 and the Lorentzian sphere S7+2:!
of constant sectional curvature ¢, according as ¢ < 0 or ¢ > 0, respectively,
that is, its second fundamental form « is

AX,Y) = V/[el(X,Y)n,

where 71 is one of the two normal vectors such that (n,n) = —sgn(c), and
sgn(c) = ¢/|c|. Similarly, Lorentzian space L"*? admits umbilical inclusions
into H? 2! or S7T12 according as ¢ < 0 or ¢ > 0, respectively.

Then, the second fundamental form oy = g*a +i.aqy of ¢ =io0 g at every
x € M is a flat bilinear form with respect to the inner product () on its
three-dimensional normal space. The inner product (-,-) is positive-definite
if c <0 and E"*2 = R™"*2, Lorentzian if either ¢ > 0 and E"*2? = R"*2 or if
c¢< 0 and E"*2 =L"*2 and has index two if ¢ >0 and E"*2 =L"*2. In the
latter case, cvy is also flat with respect to the Lorentzian inner product —(:,-).
Moreover, since

<0‘¢('7')777>:<g*a('v')vn>:—5gn(c) |C|<'a'>a

it follows that N(ay) ={0}. Let us consider the two possible cases:
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(i) S(avg) is nondegenerate: in this case, Theorem 3.4 gives
dim S(ay) >n —dim N(ay) =n.

Since dim S(ag) < 3, this implies that n =3 = dim S(cag). The bilinear form
(ag(-,-), —sgn(c)n) being positive definite, it follows from Theorem 3.5 that
there exists a basis {e1, es,e3} of T, M2 such that ay(e;,e;) =0 for i # 5. In
particular, we have

0= <o¢¢(ei,ej),77> = —sgn(c)\/rc\(ei,ej) for i # 7,

that is, {e1,es,e3} is an orthogonal basis. Since {e1,eq,e3} also diagonalizes
ayg, we conclude that g has flat normal bundle.

(ii) S(ay) is degenerate: in this case, there exists a nonzero vector p €
S(ap) N S(ag)t. Writing p=n +i.(, with ¢ a unit normal vector to g, we
obtain from 0= (as(X,Y), p) for all X, Y € T, M that

<ag (X’ Y)7 <> = sgn(c)\/HQ(, Y>

for all X,Y € T, M, that is, g has an umbilical normal direction. Since g has
codimension two, the Ricci equation implies that its normal bundle is flat. [

The flat case ¢ =0 can also be handled by means of Theorem 3.4.

LEMMA 3.6. Let f: My — Q2 xR be a flat hypersurface of dimension
n>3. Assume that T #0 at x € M§.

(i) Ife=1, then n=3 and v vanishes at x.

(ii) If e = —1, then either v vanishes at © or Ay = A¢ for one of the two
possible choices of a unit normal vector N to f and the outward pointing
unit normal vector & to Q" x R in E"2 at z.

Proof. Regard f as an isometric immersion into E"*2. Then, its second
fundamental form « is a flat bilinear map by the Gauss equation. On the
other hand, it is easily seen that the shape operator of f with respect to £ is
given by

AT =—1*T and AX=-X for X € {T}.

If either e =1 or ¢ = —1 and S(«) is a nondegenerate subspace of the (Lorent-
zian) two-dimensional normal space of f in E"*2 at z, then it follows from
Theorem 3.4 that

2>dimS(o) > n —dim N(a) > n — dimker A;.

Since dimker A; <1, and dimker A¢ =1 only if v =0 at z, we obtain that
n=3and vr=0 at z.

Now assume that S(«a) is degenerate. Then S(«) is spanned by the light-
like vector N — & for one of the two unit normal vectors N to f in Q2 x R at
z. But the fact that N — ¢ € S(a)t just means that Ay = Ag. O
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4. Rotation hypersurfaces

Rotation hypersurfaces of S™ x R and H” x R have been defined and their
principal curvatures computed in [6], as an extension of the work in [4] on
rotation hypersurfaces of space forms.

With notations as in Section 2, let P? be a three-dimensional subspace

of E"*2 containing the % and the (’)xa+2 directions. Then (Q" x R)N P3 =

Q! x R. Denote by 7 the group of isometries of E"t2 that fix pointwise a two-
e y group p

dimensional subspace P? C P? also containing the 8m6+2 -direction. Consider a

curve o in Q! x R C P? that lies in one of the two half-spaces of P3 determined
by P2.

DEFINITION 4.1. A rotation hypersurface in Q2 x R with profile curve «
and axis P2 is the orbit of o under the action of T.

1o}

Donis In

We will always assume that P? is spanned by a% and

’ 0Ty

the case € = 1, we also assume that P? is spanned by 6%1 and 8$a+2 , and that

the curve « is parametrized by arc length as

a(s) = (sin(k(s)),O, e 7(),cos(k(s)),h(s)),
where s runs over an interval I where cos(k(s)) > 0, so that «(I) is con-

tained in a closed half-space determined by P?. Here k,h: I — R are smooth
functions satisfying

(4.1) E(s)>+h(s)>*=1 forallsel.

In this case, the rotation hypersurface in S x R with profile curve o and axis
P? can be parametrized by

(4.2) f(s,t) = (sin(k(s)),cos(k(s))¢1(t),...,cos(k(s))en(t), h(s)),

where t = (t1,...,t,_1) and ¢ = (¢1,...,p,) parametrizes S*~! C R®. The
metric induced by f is

(4.3) do® = ds® + cos® (k(s))dt?,
where dt? is the standard metric of S*~1.
For e = —1, one has three distinct possibilities, according as the two-plane

P? is Lorentzian, Riemannian or degenerate, respectively. We call f, ac-
cordingly, a rotation hypersurface of spherical, hyperbolic or parabolic type,
because the orbits of Z are spheres, hyperbolic spaces or horospheres, respec-

tively. In the first case, we can assume that P? is spanned by 8%1 and 8:1:8+2

and that the curve « is parametrized by

(4.4) a(s) = (cosh(k(s)),0,...,0,sinh(k(s)), h(s)).

Then f can be parametrized by

(4.5)  f(s,t) = (cosh(k(s)),sinh(k(s))¢1(t),...,sinh(k(s))en(t), h(s)).
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The induced metric is
(4.6) do® = ds* + sinh® (k(s)) dt?,

where dt? is the standard metric of S*~1.
In the second case, assuming that P2 is spanned by

and

1o}
the
OTn i1
curve « can also be parametrized as in (4.4), and a parametrization of f is
(4.7)  f(s,t) = (cosh(k(s))p1(t),...,cosh(k(s)) ey (t),sinh(k(s)),h(s)),

where t = (t1,...,t,_1) and ¢ = (¢1,...,¢,) parametrizes H*~! C L". The
induced metric is

(4.8) do?® = ds® + cosh? (k(s))dt?,

where dt? is the standard metric of H" 1.
Finally, when P? is degenerate, we choose a pseudo-orthonormal basis

Oxpia’

e () e (el
! ﬂ 8331 31‘n+1 ’ et \ﬁ (9331 anH ’ J 8xj
for j € {2,...,n,n + 2}, and assume that P? is spanned by e,;1 and e, 2.

Notice that (e1,e1) =0=(ept1,€nt1) and (e1,en41) =1. Then we can pa-
rametrize a by

1
afs) = <k(s),0, ...,0,—2k(8),h(s)>,
with
(4.9) k(s)>0 and (Ink)?(s)+h(s)*=1,
and a parametrization of f is

(4.10)  f(5.t2,..-1tn)

= <k’(s)7k(s)t2,...,k(s)tn,—le(s) - @ t?,h(s)).
=2

The induced metric is
(4.11) do? = ds* + k*(s)dt?,
where dt? is the standard metric of R™~1.

REMARK 4.2. Our definition of a rotation hypersurface in Q7 x R was
taken from [6], and naturally extends the one given in [4] for space forms.
For e = —1, it differs from that used in [2], where only rotation surfaces of
spherical type were considered.

We are now in a position to classify rotation hypersurfaces of Q7 x R with
constant sectional curvature ¢ and dimension n > 3. We state separately the
cases e =1 and e = —1.



404 F. MANFIO AND R. TOJEIRO

THEOREM 4.3. Let f: M — S™ xR be a rotation hypersurface with con-
stant sectional curvature ¢ and dimension n > 3. Then ¢ > 1. Moreover,
(i) if e=1 then f(M2) is an open subset of a slice S™ x {t}.
(ii) Ife>1 then f(M?) is an open subset of a complete hypersurface that can
be parametrized by (4.2), with

(4.12) k(s) = arccos(% sin(\/as)>

and

(413) h(s)=—/ =

c—1_ /cos(y/es) +y/c—sin®(\/cs)
ln< e ), s€[0,7/\/c].

THEOREM 4.4. Let f: M} — H" xR be a rotation hypersurface with con-
stant sectional curvature ¢ and dimension n > 3. Then ¢ > —1. Moreover,
(i) if c=—1 then f(M™) is an open subset of a slice H"™ x {t}.
(ii) If c€ (—1,0) then one of the following possibilities holds:
(a) f(M™) is an open subset of a complete hypersurface of spherical type
that can be parametrized by (4.5), with

Sinh(\/—_cs)>

(4.14) k(s) = arcsinh(\/l__c

and

(4.15) h(s) = \/T 1n<COSh(‘/__CS) /et Sinh2(‘/__cs)>.

14++/—c

(b) f(M™) is an open subset of a complete hypersurface of hyperbolical
type that can be parametrized by (4.7), with

cosh(v/—cs)

(4.16) k(s) = arccosh \/l__c

and

(4.17) h(s) =1/ < +1 In(sinh(v/—=cs) + \/c + cosh®(v/=cs)).

(c) f(M™) is an open subset of a complete hypersurface of parabolical
type that can be parametrized by (4.10), with

(4.18) k(s) = expyv/—cs
and
(4.19) h(s)=v1+ecs.

(iii) If ¢=0, then one of the following possibilities holds:
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(a) f(M™) is an open subset of a complete hypersurface of spherical type
that can be parametrized by (4.5), with

(4.20) k(s) = arcsinh(s)

and

(4.21) h(s)=—1+ 1+ s2.

(b) f(M™) is an open subset of a Riemannian product M™~! x R, where
M"™=1 is a horosphere of H".
(iv) If ¢ > 0, then f(M™) is an open subset of a complete hypersurface of
spherical type that can be parametrized by (4.5), with

(4.22) k(s) = arcsmh<\% sin(\/Es))

and

(4.23) h(s) = —ﬁ arctan(M)

¢+ sin’(/cs)

REMARK 4.5. The hypersurfaces in Theorems 4.3 and 4.4 also occur in
dimension n = 2. In particular, those in parts (ii)(b) and (ii)(c) of Theorem 4.4
provide examples of complete surfaces of constant Gaussian curvature c €
(—1,0) in H? x R that do not appear in [2].

For the proofs of Theorems 4.3 and 4.4, we make use of the following fact.

PROPOSITION 4.6. Assume that the warped product I x,QF, n>2, § €
{=1,0,1}, has constant sectional curvature c.

(i) If ¢>0, then 6 =1 and p(s) = % sin(y/cs + 6p), 00 € R.

(ii) If ¢=0, then one of the following possibilities holds:
(a) =1 and p(s) =+£s+ sg,s0 € R.
(b) 6=0 and p(s) =A€R.

(iii) If ¢ <0, then one of the following possibilities holds:
(a) 6=—1 and p(s) = \/%7 cosh(v/—cs +6p),6p € R.
(b) 0 =0 and p(s) =exp(Ev/—cs+ sg),s0 € R.
(¢) =1 and p(s) = \/%—C sinh(v/—cs+6p),00 € R.

Proof. In a warped product I x,Q%, n > 2, the sectional curvature along a
plane tangent to Q% is (6 — (p)?)/p?, whereas the sectional curvature along a
plane spanned by unit vectors 9/0s and X tangent to I and QY, respectively,
is —p”/p. Therefore, I x,Q} has constant sectional curvature c if and only if

(4.24) (p/)2 +cp? =0.
Notice that —p”/p = ¢, or equivalently,
(4.25) o' +ep=0,
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follows by differentiating (4.24). If ¢ > 0, we obtain from (4.24) that § = 1.
Moreover, by (4.25) we have that

p(s) = Acos/cs + Bsiny/cs

for some A, B € R, which gives (p')? + cp? = ¢(A% + B?). From (4.24) we get
c(A% + B?) =1, hence we may write

1 1
A=—sinfy and B = —cosfy

e Ve

for some 0y € R. It follows that

p(s) = % sin(y/cs + o).

The remaining cases are similar. O

Proof of Theorems 4.3 and 4.4. First, we determine the possible values of
¢ for a rotation hypersurface f: M} — QI x R with constant sectional cur-
vature ¢ and dimension n > 3. If T' vanishes on an open subset, then ¢=¢
by Proposition 2.1. Otherwise, we can assume that 7' is nowhere vanishing.
Then f has two principal curvatures A and u # 0, the first one with T as
principal direction (cf. [6]). Let {T,X;,...,X,—1} be an orthogonal basis of
eigenvectors of A at x, with

AT =)T and AX;=pX;, 1<i<n-1.

From the Gauss equation (2.1) of f for X =X, and Y =Z =X}, i # j, we
get

c—e=p’

and hence ¢ > ¢. This proves the first assertions in Theorems 4.3 and 4.4.

Now assume that ¢ =1. Then f can be parametrized by (4.2), with k(s)
and h(s) satisfying (4.1), and the metric induced by f is given by (4.3). Since
c>1, by Proposition 4.6 we must have

cos(k(s)) = % sin(v/cs + o)

for some 6y € R. Replacing s by s — 6y/+/c, we can assume that 6y = 0. If
c=1, then f just parametrizes an open subset of a slice S™ x {t}. If ¢ > 1, we
obtain that k(s) and h(s) are given by (4.12) and (4.13), respectively. The
corresponding profile curve is exactly that of the complete surface of constant
sectional curvature ¢ in S? x R determined in [2], and their argument also
applies to show the completeness of f in any dimension n > 3.

From now on, we deal with the case e = —1. Assume first that f is of spher-
ical type. Then f can be parametrized by (4.5), with k(s) and h(s) satisfying



HYPERSURFACES WITH CONSTANT CURVATURE OF SV x R AND HY x R 407

(4.1), and the metric induced by f is given by (4.6). By Proposition 4.6, the
warping function sinh(k(s)) must be equal to

% sin(v/cs + 6),

+s4 59, so€R,

sinh(v/—cs +6p), 6y €R, or

1
—c

according as ¢ >0, ¢ <0 or ¢ =0, respectively. After suitably replacing the
parameter s, we can assume that 8y = 0 in the first two cases, and that
sinh(k(s)) = s in the last one. Each possibility gives rise to the expressions
(4.14), (4.22) and (4.20) for k(s), and (4.15), (4.23) and (4.21) for h(s), re-
spectively. The corresponding profile curves are exactly those of the complete
rotation surfaces with constant sectional curvature of spherical type deter-
mined in [2], and the completeness of the corresponding hypersurfaces can be
seen in the same way as in [2].

Now suppose that f is of hyperbolical type. Then, it can be parametrized
by (4.7), with k(s) and h(s) satisfying (4.1), and the induced metric is (4.8).
Since ¢ > —1, by Proposition 4.6 we must have ¢ € [-1,0) and

cosh(k(s)) = \/1__0 cosh(v/—cs +6p), 0y €R.
As before, we can assume that 6y =0. If ¢=—1, then f(M") is an open
subset of a slice H" x {t}. Otherwise, k and h are given by (4.16) and (4.17),
respectively.
Finally, suppose that f is of parabolical type. Then, it can be parametrized
by (4.10), with k(s) and h(s) satisfying (4.9), and the induced metric is (4.11).
By Proposition 4.6, we must have ¢ <0 and

kE(s)=Ae€R or k(s)=exp(£v—cs+s0), so€R,

according as ¢ =0 or ¢ < 0, respectively. In the first case, f just parametrizes
an open subset of a Riemannian product M"~! x R, where M"~! is a horo-
sphere of H". In the second case, we can assume that k is given by (4.18),
and then h is as in (4.19). Completeness of the hypersurfaces in this and the
preceding case is straightforward. O

5. Constant angle hypersurfaces

Let g: M"™! — Q" be a hypersurface and let gs: M"~! — Q" be the
family of parallel hypersurfaces to g, that is,

9s(x) = Cc(s)g(x) + S (s) N (),

where N is a unit normal vector field to g,

C(s) = coss, ife=1, and  S.(s) = sins, ife=1,
S coshs, ife=-1 S sinhs, ife=—1.



408 F. MANFIO AND R. TOJEIRO

For e =1, write the principal curvatures of g as
Ai=cotl;,, 0<0;<m1<i<m,

where the 6; form an increasing sequence. For X in the eigenspace of the shape
operator Ay of g corresponding to the principal curvature A;, 1 <i<m, we

have
. . sin(6; — s)
s X = gx(cossX —sinsAyX) = (coss —sinscot§;) X = il
mduo;

Thus, g5 is an immersion at z if and only if s # 6;(z)(mod 7) for 1 <i<m.
For e = —1, write the principal curvatures of g with absolute value greater
than 1 as

/\i:COthei, 917&0,1§z§m

As in the preceding case, for X in the eigenspace of the shape operator Ay
corresponding to the principal curvature A;, 1 <i <m, we have

__ sinh(0; — s)
"~ sinh6;

Thus, gs is an immersion at  if and only if s # ;(x) for any 1 <i < m.
In the case e =1, set

U:={(z,s) e M" " xR: s€ (O(z) — 7,01 (x))}

For e = —1, let 0 (respectively, #_) be the least (respectively, greater) of the
6; that is greater than 1 (respectively, less than —1), and set

U:={(z,s) e M" " xR:s€(0_(z),04(x))}.

gS* X

In both cases, if V € M™ ! is an open subset and I is an open interval
containing 0 such that V x I C U, then g, is an immersion on V for every
s € I, with

(5.1) Ns(z) = —eS:(s)g(x) + Ce(s)N(z)
as a unit normal vector at x.
Now define

f:M":=V xI—-QrxRcE"?
by
(5.2) f(x,s):gs(x)—FBs%, B>0.
Then

fiX=g¢s,X forany X €TV,
and
f*g =N;+B 0

0s ot’
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Since g5 is an immersion on V for every s € I, it follows that f is an immersion
on M"™ with

(5.3) n(m,s):—ENS(x)—i—l%, a=+1+ B2,
a a

as a unit normal vector field. Thus, f has the property that

2 ON_ 1
"ot/ " a

is constant on M™. Following [8], f was called in [16] a constant angle hyper-
surface. Constant angle surfaces in S? x R and H? x R have been classified in
[8] and [9], respectively. The next result was obtained in [16] as a consequence
of a more general theorem. For the sake of completeness, we provide here a
simple and direct proof.

THEOREM 5.1. Any constant angle hypersurface f: M™ — QP xR is either
an open subset of a slice Q2 x {to} for some tg € R, an open subset of a product
M"1 xR, where M™~! is a hypersurface of QF, or it is locally given by the
preceding construction.

Proof. Let  be a unit normal vector field to f. By assumption, v =
(n,0/0t) is constant on M™, which we can assume to belong to [0,1]. Since
| T||? +v? = 1, the vector field T has also constant length. By Proposition 2.1,
the cases v =1 and v = 0 correspond to the first two possibilities in the state-
ment, respectively. From now on, we assume that v € (0,1), hence T is a
vector field whose length is also a constant in (0,1). Since T is a gradient
vector field, its integral curves are (not unit-speed) geodesics in M™. The
fact that 7T is a gradient also implies that the orthogonal distribution {7} is
integrable. Thus, there exists locally a diffeomorphism ¢ : M ! x I — M™,
where I is an open interval containing 0, such that i(x,-): I — M™ are in-
tegral curves of T and 1(-,s) : M™~1 — M™ are integral manifolds of {T}*.
Set F'= f o1, with f being regarded as an isometric immersion into E**2.
Then

0 0
X(F, = )=( X, = )=W.X,T)=0
(7.2}~ {10ux, 2 = oxn
for any X € TM™~!. Thus (F(z,s), %> = p(s) for some smooth function p
on I.
On the other hand, since v is constant, it follows from (2.3) that
0=dv(X)=—(AX,T) forall X eTM",

hence AT =0. Thus F(z,-) : I — QI xR are geodesics in Q7 x R, where F' =
fow. Therefore, the projections Iy o F(z,-) : I - QZF and IIyo F(z,-): I - R
are geodesics of Q and R, respectively.
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That Iy o F(x,-): I — R are geodesics in R just means that p(s) = Bs,
for some constant B > 0, after possibly a translation in the parameter s and
changing s by —s. Now define g : M"~1 — Q" by

g(z) =111 o F(z,0).

Rescaling the parameter s so that the geodesics II o F'(x,-): I — QF have
unit speed, the fact that they are normal to g at g(x) for any x € M™~! just
says that

IT; o F(x, s) = gs(x),

where g; denotes the parallel hypersurface to g at a distance s. 0

REMARK 5.2. The proof of Theorem 5.1 also applies to hypersurfaces of
R™*! whose unit normal vector field makes a constant angle with a fixed
direction 9/0t. Namely, writing R"*! = R™ x R, with the second factor being
spanned by 9/9¢t, it shows that any such hypersurface is either an open subset
of an affine subspace R™ x {to} for some ¢y, € R, an open subset of a product
M" 1 xR, where M™ ! is a hypersurface of R™, or it is locally given by (5.2),
where g, is the family of parallel hypersurfaces to some hypersurface g in the
first factor R™, namely, gs(z) = g(z) + sN(z) for a unit vector field N to g.
A proof of this fact for surfaces in R® was given in [14].

6. Nonrotational examples in dimension three

Here we use the construction of the previous section to produce a family
of nonrotational hypersurfaces of S* x R (respectively, H? x R) with constant
sectional curvature c for any c € (0,1) (respectively, c € (—1,0)).

Given a hypersurface g: M"~! — Q" and the family g, : M"~! — Q"
of parallel hypersurfaces to g, an easy computation shows that, whenever
cote s := C.(5)/S:(s) is not a principal curvature of g at any z € M™~!, the
shape operator A of gs with respect to the unit normal vector field N, given
by (5.1) is

(6.1) Ay = (cot. sT — A) " (cot. sA +€I).
Let g: M? — Q2 be a surface and let
f:M]P=VxICM?*xR—-Q>xRCE’

be defined as in the previous section in terms of g. The normal space of f,
as a submanifold of E®, is spanned by the unit normal vector field n given by
(5.3) and by the unit normal vector field £(z, s) = gs(z), which is normal to
Q3 xR at f(x,s). We have

aVxn=Bg, A*X = Bf, A°X

and
aVagn =¢eBgs =¢eB¢,
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hence the principal curvatures of Af; are

B B
LPre 2k and 0
a v PR ’

where k{ and k3 are the principal curvatures of g, the principal curvature 0
corresponding to the principal direction 9/9s. On the other hand,

ﬁszgs*X:f*X

and ) 5 B
V%szs = ﬁf*a - 577-

Thus, the principal curvatures of Ag are —1/a? and —1, the first being simple
with 9/0s as principal direction, and the second having multiplicity two with
TV as eigenbundle.

Now assume that M? = Mg is flat. Then, the principal curvatures k; and
ko of g satisfy k1ko = —e everywhere. By (6.1), the principal curvatures of g,
with respect to N, are

cote sk; + ¢
s — 5714—, 1<i<2,
cote s — k;
hence kjk5 = —e, that is, g, is also a flat surface. It follows that the sectional

curvature of M? along TV is

B B €
2 _2gs — =
(-2u)(-5m) +e=

which is also the sectional curvature of M? along any plane spanned by 9/ds
and a vector X € TV.

REMARK 6.1. It is easily seen that if the hypersurface f just constructed is
regarded as a submanifold of R® for € = 1, then it does not have any umbilical
normal direction at any point. Hence, it provides a new example of a constant
curvature submanifold of R® with codimension two that is free of weak-umbilic
points in the sense of [13].

EXAMPLE 6.2. As an explicit example, consider the Clifford torus
g: MZ:=S"(cosbp) x S*(sinfy) — S*
parametrized by
g(t1,t2) = (cos By costy, cosbysinty,sin by costs,sinbysints),
which has
N(t1,t3) = (—sinfycosty, —sin by sinty, cos by costa, cos by sints)
as a unit normal vector field in S®. Then,

f:MZxR—S?
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given by (5.2) can be reparametrized by
f(t1,ta,8) = (cosscosty,cosssinty,sin scosts,sinssinty, Bs),

after replacing s+ 6y by s and a translation in the 9/9t-direction. This hy-
persurface appears in [5] as an example of a weak-umbilic free doubly-rotation
surface with constant sectional curvature having the helix s+ (cos s,sin s, Bs)
as profile, in the sense of [10].

A similar example can be constructed in H? x R, starting with the flat
surface

g: MZ:=H"(coshfp) x S*(sinh ) — H>
parametrized by
g(t1,t2) = (coshy costy,coshbysinty,sinh by costs,sinh Oy sints).
In this case, the corresponding constant curvature hypersurface of H? x R is
f(t1,ta,8) = (cosh scosty, cosh ssintq, sinh s costa, sinh ssinty, Bs).

These examples can be characterized as the only constant curvature hyper-
surfaces of Q2 x R with three distinct principal curvatures and 0 as principal
curvature in the T-direction and whose two remaining principal curvatures
are constant along {T'}=.

7. The main result

In this section, we prove our main result, namely, we provide a complete
classification of all hypersurfaces with constant sectional curvature of Q7 x R,
n > 3. We state separately the cases e =1 and € = —1. For € =1, we have the
following theorem.

THEOREM 7.1. Let f: M — S™ xR, n >3, be an isometric immersion
of a Riemannian manifold of constant sectional curvature c. Then ¢ > 0.
Moreover,

(i) ifc=0, thenn =3 and f(Mg3) is an open subset of a Riemannian product
M@ x R, where M@ is a flat surface of S3.
(ii) Ifc€ (0,1), thenn =3 and f is locally given by the construction described
in Section 6.
(iii) If c=1, then f(M7') is an open subset of a slice S™ x {t}.
(iv) If ¢ > 1, then f(M?Z) is an open subset of a rotation hypersurface given
by Theorem 4.3(ii).

The classification of constant curvature hypersurfaces of H” x R with di-
mension n > 3 reads as follows.

THEOREM 7.2. Let f: M} — H" xR, n >3, be an isometric immersion
of a Riemannian manifold of constant sectional curvature c. Then ¢ > —1.
Moreover,
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(i) if c=—1, then f(M"y) is an open subset of a slice H™ x {t}.

(ii) Ifc€ (—1,0), then either n =3 and f is locally given by the construction
described in Section 6, or f(M') is an open subset of one of the rotation
hypersurfaces given by Theorem 4.4(ii).

(iii) If c=0, then one of the following possibilities holds:

(a) n=3 and f(M§3) is an open subset of a Riemannian product Mg x R,
where Mg is a flat surface of H3.

(b) f(ME) is an open subset of a Riemannian product MJ' ™' x R, where
MP~" is a horosphere of H™.

(c) f(ME) is an open subset of the spherical rotation hypersurface given
by Theorem 4.4(iii)(a).

(iv) If ¢> 0, then f(MI) is an open subset of the spherical rotation hyper-
surface given by Theorem 4.4(iv).

Proof of Theorems 7.1 and 7.2. Assume ¢ # 0 and that the vector field T
does not vanish at © € M™. Then T is a principal direction of f at z by
Lemma 3.1. Let {T,X7,...,X,_1} be an orthogonal basis of eigenvectors of
Apn at z, with

ANT:/\T and ANXl:AZXZ, ].SZS’I”L*].

From the Gauss equation (2.1) of f for X =X, and Y =Z =X}, i # j, we
get

(71) C—EZ)\Z')\]‘, ’L;’é]
On the other hand, for X =T and Y = Z = X, the Gauss equation yields
(7.2) c—e= M\ —e||T|%

Assume first that ¢ =¢. By (7.1), we can assume that A; =0 for all 2 <4 <
n — 1. Then, applying (7.2) for ¢ > 2 yields a contradiction with T # 0. We
conclude that for ¢ = e the vector field T' vanishes identically, and this gives
part (iii) of Theorem 7.1 and part (i) of Theorem 7.2.

Now suppose that ¢ #¢e. Then T cannot vanish on any open subset. Thus,
we can assume without loss of generality that it is nowhere vanishing. If n >4,
we obtain from (7.1) that all ;s coincide for 2 < i <n —1. Denote all of them
by . Then, the Gauss equations now read

(7.3) c—e=pu’
and
(7.4) c—e=Mu—¢||T|?

which can also be written as
(7.5) c= M+ e
In particular, it follows from (7.3) that ¢ > e.



414 F. MANFIO AND R. TOJEIRO

Now, since T # 0, it follows from (7.3) and (7.4) that A # u. Moreover,
since T is a principal direction, we obtain from (2.3) that v is constant along
the leaves of {T'}*, and hence the same holds for A by (7.5) (since y has mul-
tiplicity greater than one, one can show using the Codazzi equation (2.2) that
it is constant along its eigenbundle; cf. the proof of Theorem 1 in [6]). Then,
one can use the following result to conclude that f is a rotation hypersurface.
It slightly generalizes Theorem 1 in [6], but actually follows from its proof.

PROPOSITION 7.3. Let f: M"™ — QI x R be a hypersurface with n > 3
and T #0. Assume that f has exactly two principal curvatures \ and p
everywhere, the first one being simple with T as a principal direction. If A
is constant along the leaves of the eigenbundle {T} of u, then f(M™) is an
open subset of a rotation hypersurface.

Thus, the proofs of Theorems 7.1 and 7.2 for ¢ # 0 and n > 4 are completed
by Theorems 4.3 and 4.4. This also applies to the case n =3 when we have
A2 = A3 everywhere. By (7.1) and (7.2), this is not the case only if A=0. In
this situation, equation (7.5) reduces to

EVT =¢C.

Hence, f is a constant angle hypersurface. Therefore, by Theorem 5.1 it is
locally given by (5.2) for some surface g: M? — Q3. Moreover, if we write
v =1/a, it was shown in Section 6 that the principal curvatures of f are

B . B
——k3, ——k; and 0,
a a

where k7 and k3 are the principal curvatures of g;,. By the Gauss equa-

tion (7.1), we have
B B
—e= (2w ) (-Zk3).
o= () (0m)

Replacing ¢ = e/a® and using that B? + 1 = a?, it follows that k{k§ = —e,
hence g is a flat surface.

Finally, if ¢ =0 then Lemma 3.6 already gives the assertion in Theo-
rem 7.1(i) if e =1. For ¢ = —1, it implies that either v vanishes or f has
exactly two distinct principal curvatures, one of them simple with 7" as prin-
cipal direction. The first possibility corresponds to the two first cases in The-
orem 7.2(iii). In the second one, we conclude as before that f is a rotation
hypersurface, and the proof is completed by Theorem 4.4. O

REMARK 7.4. In [16], a complete classification of all hypersurfaces of Q7 x
R that have T as a principal direction was obtained. As a consequence, it was
shown that in Proposition 7.3 above the assumption that A is constant along
{T}+ is automatically satisfied. Apart from this observation, however, using
that classification would apparently not simplify the proofs of Theorems 7.1
and 7.2.
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